work on docs
[pspp] / doc / statistics.texi
1 @c PSPP - a program for statistical analysis.
2 @c Copyright (C) 2017, 2020 Free Software Foundation, Inc.
3 @c Permission is granted to copy, distribute and/or modify this document
4 @c under the terms of the GNU Free Documentation License, Version 1.3
5 @c or any later version published by the Free Software Foundation;
6 @c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
7 @c A copy of the license is included in the section entitled "GNU
8 @c Free Documentation License".
9 @c
10 @node Statistics
11 @chapter Statistics
12
13 This chapter documents the statistical procedures that @pspp{} supports so
14 far.
15
16 @menu
17 * DESCRIPTIVES::                Descriptive statistics.
18 * FREQUENCIES::                 Frequency tables.
19 * EXAMINE::                     Testing data for normality.
20 * GRAPH::                       Plot data.
21 * CORRELATIONS::                Correlation tables.
22 * CROSSTABS::                   Crosstabulation tables.
23 * CTABLES::                     Custom tables.
24 * FACTOR::                      Factor analysis and Principal Components analysis.
25 * GLM::                         Univariate Linear Models.
26 * LOGISTIC REGRESSION::         Bivariate Logistic Regression.
27 * MEANS::                       Average values and other statistics.
28 * NPAR TESTS::                  Nonparametric tests.
29 * T-TEST::                      Test hypotheses about means.
30 * ONEWAY::                      One way analysis of variance.
31 * QUICK CLUSTER::               K-Means clustering.
32 * RANK::                        Compute rank scores.
33 * RELIABILITY::                 Reliability analysis.
34 * ROC::                         Receiver Operating Characteristic.
35 @end menu
36
37 @node DESCRIPTIVES
38 @section DESCRIPTIVES
39
40 @vindex DESCRIPTIVES
41 @display
42 DESCRIPTIVES
43         /VARIABLES=@var{var_list}
44         /MISSING=@{VARIABLE,LISTWISE@} @{INCLUDE,NOINCLUDE@}
45         /FORMAT=@{LABELS,NOLABELS@} @{NOINDEX,INDEX@} @{LINE,SERIAL@}
46         /SAVE
47         /STATISTICS=@{ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
48                      SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
49                      SESKEWNESS,SEKURTOSIS@}
50         /SORT=@{NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
51                RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME@}
52               @{A,D@}
53 @end display
54
55 The @cmd{DESCRIPTIVES} procedure reads the active dataset and outputs
56 linear descriptive statistics requested by the user.  In addition, it can optionally
57 compute Z-scores.
58
59 The @subcmd{VARIABLES} subcommand, which is required, specifies the list of
60 variables to be analyzed.  Keyword @subcmd{VARIABLES} is optional.
61
62 All other subcommands are optional:
63
64 The @subcmd{MISSING} subcommand determines the handling of missing variables.  If
65 @subcmd{INCLUDE} is set, then user-missing values are included in the
66 calculations.  If @subcmd{NOINCLUDE} is set, which is the default, user-missing
67 values are excluded.  If @subcmd{VARIABLE} is set, then missing values are
68 excluded on a variable by variable basis; if @subcmd{LISTWISE} is set, then
69 the entire case is excluded whenever any value in that case has a
70 system-missing or, if @subcmd{INCLUDE} is set, user-missing value.
71
72 The @subcmd{FORMAT} subcommand has no effect.  It is accepted for
73 backward compatibility.
74
75 The @subcmd{SAVE} subcommand causes @cmd{DESCRIPTIVES} to calculate Z scores for all
76 the specified variables.  The Z scores are saved to new variables.
77 Variable names are generated by trying first the original variable name
78 with Z prepended and truncated to a maximum of 8 characters, then the
79 names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00 through
80 ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence.  In addition, Z score
81 variable names can be specified explicitly on @subcmd{VARIABLES} in the variable
82 list by enclosing them in parentheses after each variable.
83 When Z scores are calculated, @pspp{} ignores @cmd{TEMPORARY},
84 treating temporary transformations as permanent.
85
86 The @subcmd{STATISTICS} subcommand specifies the statistics to be displayed:
87
88 @table @code
89 @item @subcmd{ALL}
90 All of the statistics below.
91 @item @subcmd{MEAN}
92 Arithmetic mean.
93 @item @subcmd{SEMEAN}
94 Standard error of the mean.
95 @item @subcmd{STDDEV}
96 Standard deviation.
97 @item @subcmd{VARIANCE}
98 Variance.
99 @item @subcmd{KURTOSIS}
100 Kurtosis and standard error of the kurtosis.
101 @item @subcmd{SKEWNESS}
102 Skewness and standard error of the skewness.
103 @item @subcmd{RANGE}
104 Range.
105 @item MINIMUM
106 Minimum value.
107 @item MAXIMUM
108 Maximum value.
109 @item SUM
110 Sum.
111 @item DEFAULT
112 Mean, standard deviation of the mean, minimum, maximum.
113 @item SEKURTOSIS
114 Standard error of the kurtosis.
115 @item SESKEWNESS
116 Standard error of the skewness.
117 @end table
118
119 The @subcmd{SORT} subcommand specifies how the statistics should be sorted.  Most
120 of the possible values should be self-explanatory.  @subcmd{NAME} causes the
121 statistics to be sorted by name.  By default, the statistics are listed
122 in the order that they are specified on the @subcmd{VARIABLES} subcommand.
123 The @subcmd{A} and @subcmd{D} settings request an ascending or descending
124 sort order, respectively.
125
126 @subsection Descriptives Example
127
128 The @file{physiology.sav} file contains various physiological data for a sample
129 of persons.   Running the @cmd{DESCRIPTIVES} command on the variables @exvar{height}
130 and @exvar{temperature} with the default options allows one to see simple linear
131 statistics for these two variables.  In @ref{descriptives:ex}, these variables
132 are specfied on the @subcmd{VARIABLES} subcommand and the @subcmd{SAVE} option
133 has been used, to request that Z scores be calculated.
134
135 After the command has completed, this example runs @cmd{DESCRIPTIVES} again, this
136 time on the @exvar{zheight} and @exvar{ztemperature} variables,
137 which are the two normalized (Z-score) variables generated by the
138 first @cmd{DESCRIPTIVES} command.
139
140 @float Example, descriptives:ex
141 @psppsyntax {descriptives.sps}
142 @caption {Running two @cmd{DESCRIPTIVES} commands, one with the @subcmd{SAVE} subcommand}
143 @end float
144
145 @float Screenshot, descriptives:scr
146 @psppimage {descriptives}
147 @caption {The Descriptives dialog box with two variables and Z-Scores option selected}
148 @end float
149
150 In @ref{descriptives:res}, we can see that there are 40 valid data for each of the variables
151 and no missing values.   The mean average of the height and temperature is 16677.12
152 and 37.02 respectively.  The descriptive statistics for temperature seem reasonable.
153 However there is a very high standard deviation for @exvar{height} and a suspiciously
154 low minimum.  This is due to a data entry error in the
155 data (@pxref{Identifying incorrect data}).
156
157 In the second Descriptive Statistics command, one can see that the mean and standard
158 deviation of both Z score variables is 0 and 1 respectively.  All Z score statistics
159 should have these properties since they are normalized versions of the original scores.
160
161 @float Result, descriptives:res
162 @psppoutput {descriptives}
163 @caption {Descriptives statistics including two normalized variables (Z-scores)}
164 @end float
165
166 @node FREQUENCIES
167 @section FREQUENCIES
168
169 @vindex FREQUENCIES
170 @display
171 FREQUENCIES
172         /VARIABLES=@var{var_list}
173         /FORMAT=@{TABLE,NOTABLE,LIMIT(@var{limit})@}
174                 @{AVALUE,DVALUE,AFREQ,DFREQ@}
175         /MISSING=@{EXCLUDE,INCLUDE@}
176         /STATISTICS=@{DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,
177                      KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
178                      SESKEWNESS,SEKURTOSIS,ALL,NONE@}
179         /NTILES=@var{ntiles}
180         /PERCENTILES=percent@dots{}
181         /HISTOGRAM=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
182                    [@{FREQ[(@var{y_max})],PERCENT[(@var{y_max})]@}] [@{NONORMAL,NORMAL@}]
183         /PIECHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
184                   [@{FREQ,PERCENT@}] [@{NOMISSING,MISSING@}]
185         /BARCHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
186                   [@{FREQ,PERCENT@}]
187         /ORDER=@{ANALYSIS,VARIABLE@}
188
189
190 (These options are not currently implemented.)
191         /HBAR=@dots{}
192         /GROUPED=@dots{}
193 @end display
194
195 The @cmd{FREQUENCIES} procedure outputs frequency tables for specified
196 variables.
197 @cmd{FREQUENCIES} can also calculate and display descriptive statistics
198 (including median and mode) and percentiles, and various graphical representations
199 of the frequency distribution.
200
201 The @subcmd{VARIABLES} subcommand is the only required subcommand.  Specify the
202 variables to be analyzed.
203
204 The @subcmd{FORMAT} subcommand controls the output format.  It has several
205 possible settings:
206
207 @itemize @subcmd{}
208 @item
209 @subcmd{TABLE}, the default, causes a frequency table to be output for every
210 variable specified.  @subcmd{NOTABLE} prevents them from being output.  @subcmd{LIMIT}
211 with a numeric argument causes them to be output except when there are
212 more than the specified number of values in the table.
213
214 @item
215 Normally frequency tables are sorted in ascending order by value.  This
216 is @subcmd{AVALUE}.  @subcmd{DVALUE} tables are sorted in descending order by value.
217 @subcmd{AFREQ} and @subcmd{DFREQ} tables are sorted in ascending and descending order,
218 respectively, by frequency count.
219 @end itemize
220
221 The @subcmd{MISSING} subcommand controls the handling of user-missing values.
222 When @subcmd{EXCLUDE}, the default, is set, user-missing values are not included
223 in frequency tables or statistics.  When @subcmd{INCLUDE} is set, user-missing
224 are included.  System-missing values are never included in statistics,
225 but are listed in frequency tables.
226
227 The available @subcmd{STATISTICS} are the same as available
228 in @cmd{DESCRIPTIVES} (@pxref{DESCRIPTIVES}), with the addition
229 of @subcmd{MEDIAN}, the data's median
230 value, and MODE, the mode.  (If there are multiple modes, the smallest
231 value is reported.)  By default, the mean, standard deviation of the
232 mean, minimum, and maximum are reported for each variable.
233
234 @cindex percentiles
235 @subcmd{PERCENTILES} causes the specified percentiles to be reported.
236 The percentiles should  be presented at a list of numbers between 0
237 and 100 inclusive.
238 The @subcmd{NTILES} subcommand causes the percentiles to be reported at the
239 boundaries of the data set divided into the specified number of ranges.
240 For instance, @subcmd{/NTILES=4} would cause quartiles to be reported.
241
242 @cindex histogram
243 The @subcmd{HISTOGRAM} subcommand causes the output to include a histogram for
244 each specified numeric variable.  The X axis by default ranges from
245 the minimum to the maximum value observed in the data, but the @subcmd{MINIMUM}
246 and @subcmd{MAXIMUM} keywords can set an explicit range.
247 @footnote{The number of
248 bins is chosen according to the Freedman-Diaconis rule:
249 @math{2 \times IQR(x)n^{-1/3}}, where @math{IQR(x)} is the interquartile range of @math{x}
250 and @math{n} is the number of samples.    Note that
251 @cmd{EXAMINE} uses a different algorithm to determine bin sizes.}
252 Histograms are not created for string variables.
253
254 Specify @subcmd{NORMAL} to superimpose a normal curve on the
255 histogram.
256
257 @cindex piechart
258 The @subcmd{PIECHART} subcommand adds a pie chart for each variable to the data.  Each
259 slice represents one value, with the size of the slice proportional to
260 the value's frequency.  By default, all non-missing values are given
261 slices.
262 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to limit the
263 displayed slices to a given range of values.
264 The keyword @subcmd{NOMISSING} causes missing values to be omitted from the
265 piechart.  This is the default.
266 If instead, @subcmd{MISSING} is specified, then the pie chart includes
267 a single slice representing all system missing and user-missing cases.
268
269 @cindex bar chart
270 The @subcmd{BARCHART} subcommand produces a bar chart for each variable.
271 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to omit
272 categories whose counts which lie outside the specified limits.
273 The @subcmd{FREQ} option (default) causes the ordinate to display the frequency
274 of each category, whereas the @subcmd{PERCENT} option displays relative
275 percentages.
276
277 The @subcmd{FREQ} and @subcmd{PERCENT} options on @subcmd{HISTOGRAM} and
278 @subcmd{PIECHART} are accepted but not currently honoured.
279
280 The @subcmd{ORDER} subcommand is accepted but ignored.
281
282 @subsection Frequencies Example
283
284 @ref{frequencies:ex} runs a frequency analysis on the @exvar{sex}
285 and @exvar{occupation} variables from the @file{personnel.sav} file.
286 This is useful to get an general idea of the way in which these nominal
287 variables are distributed.
288
289 @float Example, frequencies:ex
290 @psppsyntax {frequencies.sps}
291 @caption {Running frequencies on the @exvar{sex} and @exvar{occupation} variables}
292 @end float
293
294 If you are using the graphic user interface, the dialog box is set up such that
295 by default, several statistics are calculated.   Some are not particularly useful
296 for categorical variables, so you may want to disable those.
297
298 @float Screenshot, frequencies:scr
299 @psppimage {frequencies}
300 @caption {The frequencies dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
301 @end float
302
303 From @ref{frequencies:res} it is evident that there are 33 males, 21 females and
304 2 persons for whom their sex has not been entered.
305
306 One can also see how many of each occupation there are in the data.
307 When dealing with string variables used as nominal values, running a frequency
308 analysis is useful to detect data input entries.  Notice that
309 one @exvar{occupation} value has been mistyped as ``Scrientist''.  This entry should
310 be corrected, or marked as missing before using the data.
311
312 @float Result, frequencies:res
313 @psppoutput {frequencies}
314 @caption {The relative frequencies of @exvar{sex} and @exvar{occupation}}
315 @end float
316
317 @node EXAMINE
318 @section EXAMINE
319
320 @vindex EXAMINE
321 @cindex Exploratory data analysis
322 @cindex normality, testing
323
324 @display
325 EXAMINE
326         VARIABLES= @var{var1} [@var{var2}] @dots{} [@var{varN}]
327            [BY @var{factor1} [BY @var{subfactor1}]
328              [ @var{factor2} [BY @var{subfactor2}]]
329              @dots{}
330              [ @var{factor3} [BY @var{subfactor3}]]
331             ]
332         /STATISTICS=@{DESCRIPTIVES, EXTREME[(@var{n})], ALL, NONE@}
333         /PLOT=@{BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL[(@var{t})], ALL, NONE@}
334         /CINTERVAL @var{p}
335         /COMPARE=@{GROUPS,VARIABLES@}
336         /ID=@var{identity_variable}
337         /@{TOTAL,NOTOTAL@}
338         /PERCENTILE=[@var{percentiles}]=@{HAVERAGE, WAVERAGE, ROUND, AEMPIRICAL, EMPIRICAL @}
339         /MISSING=@{LISTWISE, PAIRWISE@} [@{EXCLUDE, INCLUDE@}]
340                 [@{NOREPORT,REPORT@}]
341
342 @end display
343
344 The @cmd{EXAMINE} command is used to perform exploratory data analysis.
345 In particular, it is useful for testing how closely a distribution follows a
346 normal distribution, and for finding outliers and extreme values.
347
348 The @subcmd{VARIABLES} subcommand is mandatory.
349 It specifies the dependent variables and optionally variables to use as
350 factors for the analysis.
351 Variables listed before the first @subcmd{BY} keyword (if any) are the
352 dependent variables.
353 The dependent variables may optionally be followed by a list of
354 factors which tell @pspp{} how to break down the analysis for each
355 dependent variable.
356
357 Following the dependent variables, factors may be specified.
358 The factors (if desired) should be preceded by a single @subcmd{BY} keyword.
359 The format for each factor is
360 @display
361 @var{factorvar} [BY @var{subfactorvar}].
362 @end display
363 Each unique combination of the values of  @var{factorvar} and
364 @var{subfactorvar} divide the dataset into @dfn{cells}.
365 Statistics are calculated for each cell
366 and for the entire dataset (unless @subcmd{NOTOTAL} is given).
367
368 The @subcmd{STATISTICS} subcommand specifies which statistics to show.
369 @subcmd{DESCRIPTIVES} produces a table showing some parametric and
370 non-parametrics statistics.
371 @subcmd{EXTREME} produces a table showing the extremities of each cell.
372 A number in parentheses, @var{n} determines
373 how many upper and lower extremities to show.
374 The default number is 5.
375
376 The subcommands @subcmd{TOTAL} and @subcmd{NOTOTAL} are mutually exclusive.
377 If @subcmd{TOTAL} appears, then statistics for the entire dataset
378 as well as for each cell are produced.
379 If @subcmd{NOTOTAL} appears, then statistics are produced only for the cells
380 (unless no factor variables have been given).
381 These subcommands have no effect if there have  been no factor variables
382 specified.
383
384 @cindex boxplot
385 @cindex histogram
386 @cindex npplot
387 @cindex spreadlevel plot
388 The @subcmd{PLOT} subcommand specifies which plots are to be produced if any.
389 Available plots are @subcmd{HISTOGRAM}, @subcmd{NPPLOT},  @subcmd{BOXPLOT} and
390 @subcmd{SPREADLEVEL}.
391 The first three can be used to visualise how closely each cell conforms to a
392 normal distribution, whilst the spread vs.@: level plot can be useful to visualise
393 how the variance differs between factors.
394 Boxplots show you the outliers and extreme values.
395 @footnote{@subcmd{HISTOGRAM} uses Sturges' rule to determine the number of
396 bins, as approximately @math{1 + \log2(n)}, where @math{n} is the number of samples.
397 Note that @cmd{FREQUENCIES} uses a different algorithm to find the bin size.}
398
399 The @subcmd{SPREADLEVEL} plot displays the interquartile range versus the
400 median.  It takes an optional parameter @var{t}, which specifies how the data
401 should be transformed prior to plotting.
402 The given value @var{t} is a power to which the data are raised.  For example, if
403 @var{t} is given as 2, then the square of the data is used.
404 Zero, however is a special value.  If @var{t} is 0 or
405 is omitted, then data are transformed by taking its natural logarithm instead of
406 raising to the power of @var{t}.
407
408 @cindex Shapiro-Wilk
409 When one or more plots are requested, @subcmd{EXAMINE} also performs the
410 Shapiro-Wilk test for each category.
411 There are however a number of provisos:
412 @itemize
413 @item All weight values must be integer.
414 @item The cumulative weight value must be in the range [3, 5000]
415 @end itemize
416
417 The @subcmd{COMPARE} subcommand is only relevant if producing boxplots, and it is only
418 useful there is more than one dependent variable and at least one factor.
419 If
420 @subcmd{/COMPARE=GROUPS} is specified, then one plot per dependent variable is produced,
421 each of which contain boxplots for all the cells.
422 If @subcmd{/COMPARE=VARIABLES} is specified, then one plot per cell is produced,
423 each containing one boxplot per dependent variable.
424 If the @subcmd{/COMPARE} subcommand is omitted, then @pspp{} behaves as if
425 @subcmd{/COMPARE=GROUPS} were given.
426
427 The @subcmd{ID} subcommand is relevant only if @subcmd{/PLOT=BOXPLOT} or
428 @subcmd{/STATISTICS=EXTREME} has been given.
429 If given, it should provide the name of a variable which is to be used
430 to labels extreme values and outliers.
431 Numeric or string variables are permissible.
432 If the @subcmd{ID} subcommand is not given, then the case number is used for
433 labelling.
434
435 The @subcmd{CINTERVAL} subcommand specifies the confidence interval to use in
436 calculation of the descriptives command.  The default is 95%.
437
438 @cindex percentiles
439 The @subcmd{PERCENTILES} subcommand specifies which percentiles are to be calculated,
440 and which algorithm to use for calculating them.  The default is to
441 calculate the 5, 10, 25, 50, 75, 90, 95 percentiles using the
442 @subcmd{HAVERAGE} algorithm.
443
444 The @subcmd{TOTAL} and @subcmd{NOTOTAL} subcommands are mutually exclusive.  If @subcmd{NOTOTAL}
445 is given and factors have been specified in the @subcmd{VARIABLES} subcommand,
446 then statistics for the unfactored dependent variables are
447 produced in addition to the factored variables.  If there are no
448 factors specified then @subcmd{TOTAL} and @subcmd{NOTOTAL} have no effect.
449
450
451 The following example generates descriptive statistics and histograms for
452 two variables @var{score1} and @var{score2}.
453 Two factors are given, @i{viz}: @var{gender} and @var{gender} BY @var{culture}.
454 Therefore, the descriptives and histograms are generated for each
455 distinct  value
456 of @var{gender} @emph{and} for each distinct combination of the values
457 of @var{gender} and @var{race}.
458 Since the @subcmd{NOTOTAL} keyword is given, statistics and histograms for
459 @var{score1} and @var{score2} covering the  whole dataset are not produced.
460 @example
461 EXAMINE @var{score1} @var{score2} BY
462         @var{gender}
463         @var{gender} BY @var{culture}
464         /STATISTICS = DESCRIPTIVES
465         /PLOT = HISTOGRAM
466         /NOTOTAL.
467 @end example
468
469 Here is a second example showing how the @cmd{examine} command can be used to find extremities.
470 @example
471 EXAMINE @var{height} @var{weight} BY
472         @var{gender}
473         /STATISTICS = EXTREME (3)
474         /PLOT = BOXPLOT
475         /COMPARE = GROUPS
476         /ID = @var{name}.
477 @end example
478 In this example, we look at the height and weight of a sample of individuals and
479 how they differ between male and female.
480 A table showing the 3 largest and the 3 smallest values of @exvar{height} and
481 @exvar{weight} for each gender, and for the whole dataset as are shown.
482 In addition, the @subcmd{/PLOT} subcommand requests boxplots.
483 Because @subcmd{/COMPARE = GROUPS} was specified, boxplots for male and female are
484 shown in juxtaposed in the same graphic, allowing us to easily see the difference between
485 the genders.
486 Since the variable @var{name} was specified on the @subcmd{ID} subcommand,
487 values of the @var{name} variable are used to label the extreme values.
488
489 @strong{Warning!}
490 If you specify many dependent variables or factor variables
491 for which there are many distinct values, then @cmd{EXAMINE} will produce a very
492 large quantity of output.
493
494 @node GRAPH
495 @section GRAPH
496
497 @vindex GRAPH
498 @cindex Exploratory data analysis
499 @cindex normality, testing
500
501 @display
502 GRAPH
503         /HISTOGRAM [(NORMAL)]= @var{var}
504         /SCATTERPLOT [(BIVARIATE)] = @var{var1} WITH @var{var2} [BY @var{var3}]
505         /BAR = @{@var{summary-function}(@var{var1}) | @var{count-function}@} BY @var{var2} [BY @var{var3}]
506         [ /MISSING=@{LISTWISE, VARIABLE@} [@{EXCLUDE, INCLUDE@}] ]
507                 [@{NOREPORT,REPORT@}]
508
509 @end display
510
511 The @cmd{GRAPH} command produces graphical plots of data. Only one of the subcommands
512 @subcmd{HISTOGRAM}, @subcmd{BAR} or @subcmd{SCATTERPLOT} can be specified, @i{i.e.} only one plot
513 can be produced per call of @cmd{GRAPH}. The @subcmd{MISSING} is optional.
514
515 @menu
516 * SCATTERPLOT::             Cartesian Plots
517 * HISTOGRAM::               Histograms
518 * BAR CHART::               Bar Charts
519 @end menu
520
521 @node SCATTERPLOT
522 @subsection Scatterplot
523 @cindex scatterplot
524
525 The subcommand @subcmd{SCATTERPLOT} produces an xy plot of the
526 data.
527 @cmd{GRAPH} uses the third variable @var{var3}, if specified, to determine
528 the colours and/or markers for the plot.
529 The following is an example for producing a scatterplot.
530
531 @example
532 GRAPH
533         /SCATTERPLOT = @var{height} WITH @var{weight} BY @var{gender}.
534 @end example
535
536 This example produces a scatterplot where @var{height} is plotted versus @var{weight}. Depending
537 on the value of the @var{gender} variable, the colour of the datapoint is different. With
538 this plot it is possible to analyze gender differences for @var{height} versus @var{weight} relation.
539
540 @node HISTOGRAM
541 @subsection Histogram
542 @cindex histogram
543
544 The subcommand @subcmd{HISTOGRAM} produces a histogram. Only one variable is allowed for
545 the histogram plot.
546 The keyword @subcmd{NORMAL} may be specified in parentheses, to indicate that the ideal normal curve
547 should be superimposed over the histogram.
548 For an alternative method to produce histograms @pxref{EXAMINE}. The
549 following example produces a histogram plot for the variable @var{weight}.
550
551 @example
552 GRAPH
553         /HISTOGRAM = @var{weight}.
554 @end example
555
556 @node BAR CHART
557 @subsection Bar Chart
558 @cindex bar chart
559
560 The subcommand @subcmd{BAR} produces a bar chart.
561 This subcommand requires that a @var{count-function} be specified (with no arguments) or a @var{summary-function} with a variable @var{var1} in parentheses.
562 Following the summary or count function, the keyword @subcmd{BY} should be specified and then a catagorical variable, @var{var2}.
563 The values of the variable @var{var2} determine the labels of the bars to be plotted.
564 Optionally a second categorical variable @var{var3} may be specified in which case a clustered (grouped) bar chart is produced.
565
566 Valid count functions are
567 @table @subcmd
568 @item COUNT
569 The weighted counts of the cases in each category.
570 @item PCT
571 The weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
572 @item CUFREQ
573 The cumulative weighted counts of the cases in each category.
574 @item CUPCT
575 The cumulative weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
576 @end table
577
578 The summary function is applied to @var{var1} across all cases in each category.
579 The recognised summary functions are:
580 @table @subcmd
581 @item SUM
582 The sum.
583 @item MEAN
584 The arithmetic mean.
585 @item MAXIMUM
586 The maximum value.
587 @item MINIMUM
588 The minimum value.
589 @end table
590
591 The following examples assume a dataset which is the results of a survey.
592 Each respondent has indicated annual income, their sex and city of residence.
593 One could create a bar chart showing how the mean income varies between of residents of different cities, thus:
594 @example
595 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city}.
596 @end example
597
598 This can be extended to also indicate how income in each city differs between the sexes.
599 @example
600 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city} BY @var{sex}.
601 @end example
602
603 One might also want to see how many respondents there are from each city.  This can be achieved as follows:
604 @example
605 GRAPH  /BAR  = COUNT BY @var{city}.
606 @end example
607
608 Bar charts can also be produced using the @ref{FREQUENCIES} and @ref{CROSSTABS} commands.
609
610 @node CORRELATIONS
611 @section CORRELATIONS
612
613 @vindex CORRELATIONS
614 @display
615 CORRELATIONS
616      /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
617      [
618       .
619       .
620       .
621       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
622       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
623      ]
624
625      [ /PRINT=@{TWOTAIL, ONETAIL@} @{SIG, NOSIG@} ]
626      [ /STATISTICS=DESCRIPTIVES XPROD ALL]
627      [ /MISSING=@{PAIRWISE, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
628 @end display
629
630 @cindex correlation
631 The @cmd{CORRELATIONS} procedure produces tables of the Pearson correlation coefficient
632 for a set of variables.  The significance of the coefficients are also given.
633
634 At least one @subcmd{VARIABLES} subcommand is required. If you specify the @subcmd{WITH}
635 keyword, then a non-square correlation table is produced.
636 The variables preceding @subcmd{WITH}, are used as the rows of the table,
637 and the variables following @subcmd{WITH} are used as the columns of the table.
638 If no @subcmd{WITH} subcommand is specified, then @cmd{CORRELATIONS} produces a
639 square, symmetrical table using all variables.
640
641 The @cmd{MISSING} subcommand determines the handling of missing variables.
642 If @subcmd{INCLUDE} is set, then user-missing values are included in the
643 calculations, but system-missing values are not.
644 If @subcmd{EXCLUDE} is set, which is the default, user-missing
645 values are excluded as well as system-missing values.
646
647 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
648 whenever any variable  specified in any @cmd{/VARIABLES} subcommand
649 contains a missing value.
650 If @subcmd{PAIRWISE} is set, then a case is considered missing only if either of the
651 values  for the particular coefficient are missing.
652 The default is @subcmd{PAIRWISE}.
653
654 The @subcmd{PRINT} subcommand is used to control how the reported significance values are printed.
655 If the @subcmd{TWOTAIL} option is used, then a two-tailed test of significance is
656 printed.  If the @subcmd{ONETAIL} option is given, then a one-tailed test is used.
657 The default is @subcmd{TWOTAIL}.
658
659 If the @subcmd{NOSIG} option is specified, then correlation coefficients with significance less than
660 0.05 are highlighted.
661 If @subcmd{SIG} is specified, then no highlighting is performed.  This is the default.
662
663 @cindex covariance
664 The @subcmd{STATISTICS} subcommand requests additional statistics to be displayed.  The keyword
665 @subcmd{DESCRIPTIVES} requests that the mean, number of non-missing cases, and the non-biased
666 estimator of the standard deviation are displayed.
667 These statistics are displayed in a separated table, for all the variables listed
668 in any @subcmd{/VARIABLES} subcommand.
669 The @subcmd{XPROD} keyword requests cross-product deviations and covariance estimators to
670 be displayed for each pair of variables.
671 The keyword @subcmd{ALL} is the union of @subcmd{DESCRIPTIVES} and @subcmd{XPROD}.
672
673 @node CROSSTABS
674 @section CROSSTABS
675
676 @vindex CROSSTABS
677 @display
678 CROSSTABS
679         /TABLES=@var{var_list} BY @var{var_list} [BY @var{var_list}]@dots{}
680         /MISSING=@{TABLE,INCLUDE,REPORT@}
681         /FORMAT=@{TABLES,NOTABLES@}
682                 @{AVALUE,DVALUE@}
683         /CELLS=@{COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
684                 ASRESIDUAL,ALL,NONE@}
685         /COUNT=@{ASIS,CASE,CELL@}
686                @{ROUND,TRUNCATE@}
687         /STATISTICS=@{CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
688                      KAPPA,ETA,CORR,ALL,NONE@}
689         /BARCHART
690
691 (Integer mode.)
692         /VARIABLES=@var{var_list} (@var{low},@var{high})@dots{}
693 @end display
694
695 The @cmd{CROSSTABS} procedure displays crosstabulation
696 tables requested by the user.  It can calculate several statistics for
697 each cell in the crosstabulation tables.  In addition, a number of
698 statistics can be calculated for each table itself.
699
700 The @subcmd{TABLES} subcommand is used to specify the tables to be reported.  Any
701 number of dimensions is permitted, and any number of variables per
702 dimension is allowed.  The @subcmd{TABLES} subcommand may be repeated as many
703 times as needed.  This is the only required subcommand in @dfn{general
704 mode}.
705
706 Occasionally, one may want to invoke a special mode called @dfn{integer
707 mode}.  Normally, in general mode, @pspp{} automatically determines
708 what values occur in the data.  In integer mode, the user specifies the
709 range of values that the data assumes.  To invoke this mode, specify the
710 @subcmd{VARIABLES} subcommand, giving a range of data values in parentheses for
711 each variable to be used on the @subcmd{TABLES} subcommand.  Data values inside
712 the range are truncated to the nearest integer, then assigned to that
713 value.  If values occur outside this range, they are discarded.  When it
714 is present, the @subcmd{VARIABLES} subcommand must precede the @subcmd{TABLES}
715 subcommand.
716
717 In general mode, numeric and string variables may be specified on
718 TABLES.  In integer mode, only numeric variables are allowed.
719
720 The @subcmd{MISSING} subcommand determines the handling of user-missing values.
721 When set to @subcmd{TABLE}, the default, missing values are dropped on a table by
722 table basis.  When set to @subcmd{INCLUDE}, user-missing values are included in
723 tables and statistics.  When set to @subcmd{REPORT}, which is allowed only in
724 integer mode, user-missing values are included in tables but marked with
725 a footnote and excluded from statistical calculations.
726
727 The @subcmd{FORMAT} subcommand controls the characteristics of the
728 crosstabulation tables to be displayed.  It has a number of possible
729 settings:
730
731 @itemize @w{}
732 @item
733 @subcmd{TABLES}, the default, causes crosstabulation tables to be output.
734 @subcmd{NOTABLES}, which is equivalent to @code{CELLS=NONE}, suppresses them.
735
736 @item
737 @subcmd{AVALUE}, the default, causes values to be sorted in ascending order.
738 @subcmd{DVALUE} asserts a descending sort order.
739 @end itemize
740
741 The @subcmd{CELLS} subcommand controls the contents of each cell in the displayed
742 crosstabulation table.  The possible settings are:
743
744 @table @asis
745 @item COUNT
746 Frequency count.
747 @item ROW
748 Row percent.
749 @item COLUMN
750 Column percent.
751 @item TOTAL
752 Table percent.
753 @item EXPECTED
754 Expected value.
755 @item RESIDUAL
756 Residual.
757 @item SRESIDUAL
758 Standardized residual.
759 @item ASRESIDUAL
760 Adjusted standardized residual.
761 @item ALL
762 All of the above.
763 @item NONE
764 Suppress cells entirely.
765 @end table
766
767 @samp{/CELLS} without any settings specified requests @subcmd{COUNT}, @subcmd{ROW},
768 @subcmd{COLUMN}, and @subcmd{TOTAL}.
769 If @subcmd{CELLS} is not specified at all then only @subcmd{COUNT}
770 is selected.
771
772 By default, crosstabulation and statistics use raw case weights,
773 without rounding.  Use the @subcmd{/COUNT} subcommand to perform
774 rounding: CASE rounds the weights of individual weights as cases are
775 read, CELL rounds the weights of cells within each crosstabulation
776 table after it has been constructed, and ASIS explicitly specifies the
777 default non-rounding behavior.  When rounding is requested, ROUND, the
778 default, rounds to the nearest integer and TRUNCATE rounds toward
779 zero.
780
781 The @subcmd{STATISTICS} subcommand selects statistics for computation:
782
783 @table @asis
784 @item CHISQ
785 @cindex chi-square
786
787 Pearson chi-square, likelihood ratio, Fisher's exact test, continuity
788 correction, linear-by-linear association.
789 @item PHI
790 Phi.
791 @item CC
792 Contingency coefficient.
793 @item LAMBDA
794 Lambda.
795 @item UC
796 Uncertainty coefficient.
797 @item BTAU
798 Tau-b.
799 @item CTAU
800 Tau-c.
801 @item RISK
802 Risk estimate.
803 @item GAMMA
804 Gamma.
805 @item D
806 Somers' D.
807 @item KAPPA
808 Cohen's Kappa.
809 @item ETA
810 Eta.
811 @item CORR
812 Spearman correlation, Pearson's r.
813 @item ALL
814 All of the above.
815 @item NONE
816 No statistics.
817 @end table
818
819 Selected statistics are only calculated when appropriate for the
820 statistic.  Certain statistics require tables of a particular size, and
821 some statistics are calculated only in integer mode.
822
823 @samp{/STATISTICS} without any settings selects CHISQ.  If the
824 @subcmd{STATISTICS} subcommand is not given, no statistics are calculated.
825
826 @cindex bar chart
827 The @samp{/BARCHART} subcommand produces a clustered bar chart for the first two
828 variables on each table.
829 If a table has more than two variables, the counts for the third and subsequent levels
830 are aggregated and the chart is produced as if there were only two variables.
831
832
833 @strong{Please note:} Currently the implementation of @cmd{CROSSTABS} has the
834 following limitations:
835
836 @itemize @bullet
837 @item
838 Significance of some symmetric and directional measures is not calculated.
839 @item
840 Asymptotic standard error is not calculated for
841 Goodman and Kruskal's tau or symmetric Somers' d.
842 @item
843 Approximate T is not calculated for symmetric uncertainty coefficient.
844 @end itemize
845
846 Fixes for any of these deficiencies would be welcomed.
847
848 @subsection Crosstabs Example
849
850 @cindex chi-square test of independence
851
852 A researcher wishes to know if, in an industry, a person's sex is related to
853 the person's occupation.  To investigate this, she has determined that the
854 @file{personnel.sav} is a representative, randomly selected sample of persons.
855 The researcher's null hypothesis is that a person's sex has no relation to a
856 person's occupation. She uses a chi-squared test of independence to investigate
857 the hypothesis.
858
859 @float Example, crosstabs:ex
860 @psppsyntax {crosstabs.sps}
861 @caption {Running crosstabs on the @exvar{sex} and @exvar{occupation} variables}
862 @end float
863
864 The syntax in @ref{crosstabs:ex} conducts a chi-squared test of independence.
865 The line @code{/tables = occupation by sex} indicates that @exvar{occupation}
866 and @exvar{sex} are the variables to be tabulated.  To do this using the @gui{}
867 you must place these variable names respectively in the @samp{Row} and
868 @samp{Column} fields as shown in @ref{crosstabs:scr}.
869
870 @float Screenshot, crosstabs:scr
871 @psppimage {crosstabs}
872 @caption {The Crosstabs dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
873 @end float
874
875 Similarly, the @samp{Cells} button shows a dialog box to select the @code{count}
876 and @code{expected} options.  All other cell options can be deselected for this
877 test.
878
879 You would use the @samp{Format} and @samp{Statistics}  buttons to select options
880 for the @subcmd{FORMAT} and @subcmd{STATISTICS} subcommands.  In this example,
881 the @samp{Statistics} requires only the @samp{Chisq} option to be checked.  All
882 other options should be unchecked.  No special settings are required from the
883 @samp{Format} dialog.
884
885 As shown in @ref{crosstabs:res} @cmd{CROSSTABS} generates a contingency table
886 containing the observed count and the expected count of each sex and each
887 occupation.  The expected count is the count which would be observed if the
888 null hypothesis were true.
889
890 The significance of the Pearson Chi-Square value is very much larger than the
891 normally accepted value of 0.05 and so one cannot reject the null hypothesis.
892 Thus the researcher must conclude that a person's sex has no relation to the
893 person's occupation.
894
895 @float Results, crosstabs:res
896 @psppoutput {crosstabs}
897 @caption {The results of a test of independence between @exvar{sex} and @exvar{occupation}}
898 @end float
899
900 @node CTABLES
901 @section CTABLES
902
903 @vindex CTABLES
904 @cindex custom tables
905 @cindex tables, custom
906
907 @code{CTABLES} has the following overall syntax.  At least one
908 @code{TABLE} subcommand is required:
909
910 @display
911 @t{CTABLES}
912   @dots{}@i{global subcommands}@dots{}
913   [@t{/TABLE} @i{axis} [@t{BY} @i{axis} [@t{BY} @i{axis}]]
914    @dots{}@i{per-table subcommands}@dots{}]@dots{}
915 @end display
916
917 @noindent
918 where each @i{axis} may be empty or take one of the following forms:
919
920 @display
921 @i{variable}
922 @i{variable} @t{[}@{@t{C} @math{|} @t{S}@}@t{]}
923 @i{axis} + @i{axis}
924 @i{axis} > @i{axis}
925 (@i{axis})
926 @i{axis} @t{(}@i{summary} [@i{string}] [@i{format}]@t{)}
927 @end display
928
929 The following subcommands precede the first @code{TABLE} subcommand
930 and apply to all of the output tables.  All of these subcommands are
931 optional:
932
933 @display
934 @t{/FORMAT}
935     [@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
936     [@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
937     [@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
938     [@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
939     [@t{MISSING=}@i{string}]
940 @t{/VLABELS}
941     @t{VARIABLES=}@i{variables}
942     @t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
943 @t{/MRSETS COUNTDUPLICATES=}@{@t{YES} @math{|} @t{NO}@}
944 @t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
945 @t{/PCOMPUTE} @t{&}@i{category}@t{=EXPR(}@i{expression}@t{)}
946 @t{/PPROPERTIES} @t{&}@i{category}@dots{}
947     [@t{LABEL=}@i{string}]
948     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
949     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
950 @t{/WEIGHT VARIABLE=}@i{variable}
951 @t{/HIDESMALLCOUNTS COUNT=@i{count}}
952 @end display
953
954 The following subcommands follow @code{TABLE} and apply only to the
955 previous @code{TABLE}.  All of these subcommands are optional:
956
957 @display
958 @t{/SLABELS}
959     [@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
960     [@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
961 @t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
962 @t{/CRITERIA CILEVEL=}@i{percentage}
963 @t{/CATEGORIES} @t{VARIABLES=}@i{variables}
964     @{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
965    @math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
966      [@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
967      [@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
968     [@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
969     [@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
970 @t{/TITLES}
971     [@t{TITLE=}@i{string}@dots{}]
972     [@t{CAPTION=}@i{string}@dots{}]
973     [@t{CORNER=}@i{string}@dots{}]
974 @t{/SIGTEST TYPE=CHISQUARE}
975     [@t{ALPHA=}@i{siglevel}]
976     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
977     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
978 @t{/COMPARETEST TYPE=}@{@t{PROP} @math{|} @t{MEAN}@}
979     [@t{ALPHA=}@i{value}[@t{,} @i{value}]]
980     [@t{ADJUST=}@{@t{BONFERRONI} @math{|} @t{BH} @math{|} @t{NONE}@}]
981     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
982     [@t{MEANSVARIANCE=}@{@t{ALLCATS} @math{|} @t{TESTEDCATS}@}]
983     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
984     [@t{MERGE=}@{@t{NO} @math{|} @t{YES}@}]
985     [@t{STYLE=}@{@t{APA} @math{|} @t{SIMPLE}@}]
986     [@t{SHOWSIG=}@{@t{NO} @math{|} @t{YES}@}]
987 @end display
988
989 The @code{CTABLES} (aka ``custom tables'') command produces
990 multi-dimensional tables from categorical and scale data.  It offers
991 many options for data summarization and formatting.
992
993 This section's examples use data from the 2008 (USA) National Survey
994 of Drinking and Driving Attitudes and Behaviors, a public domain data
995 set from the (USA) National Highway Traffic Administration and
996 available at @url{https://data.transportation.gov}.  @pspp{} includes
997 this data set, with a slightly modified dictionary, as
998 @file{examples/nhtsa.sav}.
999
1000 @menu
1001 * CTABLES Basics::
1002 * CTABLES Data Summarization::
1003 @end menu
1004
1005 @node CTABLES Basics
1006 @subsection Basics
1007
1008 The only required subcommand is @code{TABLE}, which specifies the
1009 variables to include along each axis:
1010 @display
1011 @t{/TABLE} @i{rows} [@t{BY} @i{columns} [@t{BY} @i{layers}]]
1012 @end display
1013 @noindent
1014 In @code{TABLE}, each of @var{rows}, @var{columns}, and @var{layers}
1015 is either empty or an axis expression that specifies one or more
1016 variables.  At least one must specify an axis expression.
1017
1018 @menu
1019 * CTABLES Categorical Variable Basics::
1020 * CTABLES Scalar Variable Basics::
1021 * CTABLES Overriding Measurement Level::
1022 * CTABLES Multiple Response Sets::
1023 @end menu
1024
1025 @node CTABLES Categorical Variable Basics
1026 @subsubsection Categorical Variables
1027
1028 An axis expression that names a categorical variable divides the data
1029 into cells according to the values of that variable.  When all the
1030 variables named on @code{TABLE} are categorical, by default each cell
1031 displays the number of cases that it contains, so specifying a single
1032 variable yields a frequency table:
1033
1034 @example
1035 CTABLES /TABLE=AgeGroup.
1036 @end example
1037 @psppoutput {ctables1}
1038
1039 @noindent
1040 Specifying a row and a column categorical variable yields a
1041 crosstabulation:
1042
1043 @example
1044 CTABLES /TABLE=AgeGroup BY qns3a.
1045 @end example
1046 @psppoutput {ctables2}
1047
1048 @noindent
1049 The @samp{>} ``nesting'' operator nests multiple variables on a single
1050 axis, e.g.:
1051
1052 @example
1053 CTABLES /TABLE qn105ba BY AgeGroup > qns3a.
1054 @end example
1055 @psppoutput {ctables3}
1056
1057 @noindent
1058 The @samp{+} ``stacking'' operator allows a single output table to
1059 include multiple data analyses.  With @samp{+}, @code{CTABLES} divides
1060 the output table into multiple @dfn{sections}, each of which includes
1061 an analysis of the full data set.  For example, the following command
1062 separately tabulates age group and driving frequency by gender:
1063
1064 @example
1065 CTABLES /TABLE AgeGroup + qn1 BY qns3a.
1066 @end example
1067 @psppoutput {ctables4}
1068
1069 @noindent
1070 If @samp{+} and @samp{>} are used together, @samp{>} binds more
1071 tightly.  Use parentheses to override operator precedence.  Thus:
1072
1073 @example
1074 CTABLES /TABLE qn26 + qn27 > qns3a.
1075 CTABLES /TABLE (qn26 + qn27) > qns3a.
1076 @end example
1077 @psppoutput {ctables5}
1078
1079 @node CTABLES Scalar Variable Basics
1080 @subsubsection Scalar Variables
1081
1082 Categorical variables make @code{CTABLES} divide tables into cells.
1083 With scalar variables, @code{CTABLES} instead calculates a summary
1084 measure, by default the mean, of the values that fall into a cell.
1085 For example, if the only variable specified is a scalar variable, then
1086 the output is a single cell that holds the mean of all of the data:
1087
1088 @example
1089 CTABLES /TABLE qnd1.
1090 @end example
1091 @psppoutput {ctables6}
1092
1093 A scalar variable may nest with categorical variables.  The following
1094 example shows the mean age of survey respondents across gender and
1095 language groups:
1096
1097 @example
1098 CTABLES /TABLE qns3a > qnd1 BY region.
1099 @end example
1100 @psppoutput {ctables7}
1101
1102 The order of nesting of scalar and categorical variables affects table
1103 labeling, but it does not affect the data displayed in the table.  The
1104 following example shows how the output changes when the nesting order
1105 of the scalar and categorical variable are interchanged:
1106
1107 @example
1108 CTABLES /TABLE qnd1 > qns3a BY region.
1109 @end example
1110 @psppoutput {ctables8}
1111
1112 Only a single scalar variable may appear in each section; that is, a
1113 scalar variable may not nest inside a scalar variable directly or
1114 indirectly.  Scalar variables may only appear on one axis within
1115 @code{TABLE}.
1116
1117 @node CTABLES Overriding Measurement Level
1118 @subsubsection Overriding Measurement Level
1119
1120 By default, @code{CTABLES} uses a variable's measurement level to
1121 decide whether to treat it as categorical or scalar.  Variables
1122 assigned the nominal or ordinal measurement level are treated as
1123 categorical, and scalar variables are treated as scalar.
1124
1125 Use the @code{VARIABLE LEVEL} command to change a variable's
1126 measurement level.  To treat a variable as categorical or scalar only
1127 for one use on @code{CTABLES}, add @samp{[C]} or @samp{[S]},
1128 respectively, after the variable name.  The following example shows
1129 how to analyze the scalar variable @code{qn20} as categorical:
1130
1131 @example
1132 CTABLES /TABLE qn20 [C] BY qns3a.
1133 @end example
1134 @psppoutput {ctables9}
1135
1136 @node CTABLES Multiple Response Sets
1137 @subsubheading Multiple Response Sets
1138
1139 The @code{CTABLES} command does not yet support multiple response
1140 sets.
1141
1142 @node CTABLES Data Summarization
1143 @subsection Data Summarization
1144
1145 The @code{CTABLES} command allows the user to control how the data are
1146 summarized with summary specifications, which are enclosed in square
1147 brackets following a variable name on the @code{TABLE} subcommand.
1148 When all the variables are categorical, summary specifications can be
1149 given for the innermost nested variables on any one axis.  When a
1150 scalar variable is present, only the scalar variable may have summary
1151 specifications.  The following example includes a summary
1152 specification for column and row percentages for categorical
1153 variables, and mean and median for a scalar variable:
1154
1155 @example
1156 CTABLES
1157     /TABLE=qnd1 [MEAN, MEDIAN] BY qns3a
1158     /TABLE=AgeGroup [COLPCT, ROWPCT] BY qns3a.
1159 @end example
1160 @psppoutput {ctables10}
1161
1162 A summary specification may override the default label and format by
1163 appending a string or format specification or both (in that order) to
1164 the summary function name.  For example:
1165
1166 @example
1167 CTABLES /TABLE=AgeGroup [COLPCT 'Gender %' PCT5.0,
1168                          ROWPCT 'Age Group %' PCT5.0]
1169                BY qns3a.
1170 @end example
1171 @psppoutput {ctables11}
1172
1173 Parentheses provide a shorthand to apply summary specifications to
1174 multiple variables.  For example, both of these commands:
1175
1176 @example
1177 CTABLES /TABLE=AgeGroup[COLPCT] + qns1[COLPCT] BY qns3a.
1178 CTABLES /TABLE=(AgeGroup + qns1)[COLPCT] BY qns3a.
1179 @end example
1180
1181 @noindent
1182 produce the same output shown below:
1183
1184 @psppoutput {ctables12}
1185
1186 The following section lists the available summary functions.
1187
1188 @menu
1189 * CTABLES Summary Functions for Categorical and Scale Variables::
1190 @end menu
1191
1192 @node CTABLES Summary Functions
1193 @subsubsection Summary Functions
1194
1195 This section lists the summary functions that can be applied to cells
1196 in @code{CTABLES}.  Many of these functions have an @var{area} in
1197 their names.  The supported areas are:
1198
1199 @itemize @bullet
1200 @item
1201 Areas that correspond to parts of @dfn{subtables}, whose contents are
1202 the cells that pair an innermost row variable and an innermost column
1203 variable:
1204
1205 @table @code
1206 @item ROW
1207 A row within a subtable.
1208
1209 @item COL
1210 A column within a subtable.
1211
1212 @item SUBTABLE
1213 All the cells in a subtable
1214 @end table
1215
1216 @item
1217 Areas that correspond to parts of @dfn{sections}, where stacked
1218 variables divide each section from another:
1219
1220 @table @code
1221 @item TABLE
1222 An entire section.
1223
1224 @item LAYER
1225 A layer within a section.
1226
1227 @item LAYERROW
1228 A row in one layer within a section.
1229
1230 @item LAYERCOL
1231 A column in one layer within a section.
1232 @end table
1233 @end itemize
1234
1235 The following summary functions may be applied to any variable
1236 regardless of whether it is categorical or scalar.  The default label
1237 for each function is listed in parentheses:
1238
1239 @table @asis
1240 @item @code{COUNT} (``Count'')
1241 The sum of weights in a cell.
1242
1243 @item @code{@i{area}PCT} or @code{@i{area}PCT.COUNT} (``@i{Area} %'')
1244 A percentage within the specified @var{area}.
1245
1246 @item @code{@i{area}PCT.VALIDN} (``@i{Area} Valid N %'')
1247 A percentage of valid values within the specified @var{area}.
1248
1249 @item @code{@i{area}PCT.TOTALN} (``@i{Area} Total N %'')
1250 A percentage of total values within the specified @var{area}.
1251 @end table
1252
1253 The following summary functions apply only to scale variables:
1254
1255 @table @asis
1256 @item @code{MAXIMUM} (``Maximum'')
1257 The largest value.
1258
1259 @item @code{MEAN} (``Mean'')
1260 The mean.
1261
1262 @item @code{MEDIAN} (``Median'')
1263 The median value.
1264
1265 @item @code{MINIMUM} (``Minimum'')
1266 The smallest value.
1267
1268 @item @code{MISSING} (``Missing'')
1269 Sum of weights of user- and system-missing values.
1270
1271 @item @code{MODE} (``Mode'')
1272 The highest-frequency value.  Ties are broken by taking the smallest mode.
1273
1274 @item @code{@i{area}PCT.SUM} (``@i{Area} Sum %'')
1275 Percentage of the sum of the values across @var{area}.
1276
1277 @item @code{PTILE} @i{n} (``Percentile @i{n}'')
1278 The @var{n}th percentile, where @math{0 @leq{} @var{n} @leq{} 100}.
1279
1280 @item @code{RANGE} (``Range'')
1281 The maximum minus the minimum.
1282
1283 @item @code{SEMEAN} (``Std Error of Mean'')
1284 The standard error of the mean.
1285
1286 @item @code{STDDEV} (``Std Deviation'')
1287 The standard deviation.
1288
1289 @item @code{SUM} (``Sum'')
1290 The sum.
1291
1292 @item @code{TOTALN} (``Total N'')
1293 The sum of total count weights.
1294
1295 @item @code{VALIDN} (``Valid N'')
1296 The sum of valid count weights.
1297
1298 @item @code{VARIANCE} (``Variance'')
1299 The variance.
1300 @end table
1301
1302 If the @code{WEIGHT} subcommand specified an adjustment weight
1303 variable, then the following summary functions use its value instead
1304 of the dictionary weight variable.  Otherwise, they are equivalent to
1305 the summary function without the @samp{E}-prefix:
1306
1307 @itemize @bullet
1308 @item
1309 @code{ECOUNT} (``Adjusted Count'')
1310
1311 @item
1312 @code{ETOTALN} (``Adjusted Total N'')
1313
1314 @item
1315 @code{EVALIDN} (``Adjusted Valid N'')
1316 @end itemize
1317
1318 The following summary functions with a @samp{U}-prefix are equivalent
1319 to the same ones without the prefix, except that they use unweighted
1320 counts:
1321
1322 @itemize @bullet
1323 @item
1324 @code{UCOUNT} (``Unweighted Count'')
1325
1326 @item
1327 @code{U@i{area}PCT} or @code{U@i{area}PCT.COUNT} (``Unweighted @i{Area} %'')
1328
1329 @item
1330 @code{U@i{area}PCT.VALIDN} (``Unweighted @i{Area} Valid N %'')
1331
1332 @item
1333 @code{U@i{area}PCT.TOTALN} (``Unweighted @i{Area} Total N %'')
1334
1335 @item
1336 @code{UMEAN} (``Unweighted Mean'')
1337
1338 @item
1339 @code{UMEDIAN} (``Unweighted Median'')
1340
1341 @item
1342 @code{UMISSING} (``Unweighted Missing'')
1343
1344 @item
1345 @code{UMODE} (``Unweight Mode'')
1346
1347 @item
1348 @code{U@i{area}PCT.SUM} (``Unweighted @i{Area} Sum %'')
1349
1350 @item
1351 @code{UPTILE} @i{n} (``Unweighted Percentile @i{n}'') 
1352
1353 @item
1354 @code{USEMEAN} (``Unweighted Std Error of Mean'')
1355
1356 @item
1357 @code{USTDDEV} (``Unweighted Std Deviation'')
1358
1359 @item
1360 @code{USUM} (``Unweighted Sum'')
1361
1362 @item
1363 @code{UTOTALN} (``Unweighted Total N'')
1364
1365 @item
1366 @code{UVALIDN} (``Unweighted Valid N'')
1367
1368 @item
1369 @code{UVARIANCE} (``Unweighted Variance'')
1370 @end itemize
1371
1372 @node FACTOR
1373 @section FACTOR
1374
1375 @vindex FACTOR
1376 @cindex factor analysis
1377 @cindex principal components analysis
1378 @cindex principal axis factoring
1379 @cindex data reduction
1380
1381 @display
1382 FACTOR  @{
1383          VARIABLES=@var{var_list},
1384          MATRIX IN (@{CORR,COV@}=@{*,@var{file_spec}@})
1385         @}
1386
1387         [ /METHOD = @{CORRELATION, COVARIANCE@} ]
1388
1389         [ /ANALYSIS=@var{var_list} ]
1390
1391         [ /EXTRACTION=@{PC, PAF@}]
1392
1393         [ /ROTATION=@{VARIMAX, EQUAMAX, QUARTIMAX, PROMAX[(@var{k})], NOROTATE@}]
1394
1395         [ /PRINT=[INITIAL] [EXTRACTION] [ROTATION] [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [KMO] [AIC] [SIG] [ALL] [DEFAULT] ]
1396
1397         [ /PLOT=[EIGEN] ]
1398
1399         [ /FORMAT=[SORT] [BLANK(@var{n})] [DEFAULT] ]
1400
1401         [ /CRITERIA=[FACTORS(@var{n})] [MINEIGEN(@var{l})] [ITERATE(@var{m})] [ECONVERGE (@var{delta})] [DEFAULT] ]
1402
1403         [ /MISSING=[@{LISTWISE, PAIRWISE@}] [@{INCLUDE, EXCLUDE@}] ]
1404 @end display
1405
1406 The @cmd{FACTOR} command performs Factor Analysis or Principal Axis Factoring on a dataset.  It may be used to find
1407 common factors in the data or for data reduction purposes.
1408
1409 The @subcmd{VARIABLES} subcommand is required (unless the @subcmd{MATRIX IN}
1410 subcommand is used).
1411 It lists the variables which are to partake in the analysis.  (The @subcmd{ANALYSIS}
1412 subcommand may optionally further limit the variables that
1413 participate; it is useful primarily in conjunction with @subcmd{MATRIX IN}.)
1414
1415 If @subcmd{MATRIX IN} instead of @subcmd{VARIABLES} is specified, then the analysis
1416 is performed on a pre-prepared correlation or covariance matrix file instead of on
1417 individual data cases.  Typically the matrix file will have been generated by
1418 @cmd{MATRIX DATA} (@pxref{MATRIX DATA}) or provided by a third party.
1419 If specified, @subcmd{MATRIX IN} must be followed by @samp{COV} or @samp{CORR},
1420 then by @samp{=} and @var{file_spec} all in parentheses.
1421 @var{file_spec} may either be an asterisk, which indicates the currently loaded
1422 dataset, or it may be a file name to be loaded. @xref{MATRIX DATA}, for the expected
1423 format of the file.
1424
1425 The @subcmd{/EXTRACTION} subcommand is used to specify the way in which factors
1426 (components) are extracted from the data.
1427 If @subcmd{PC} is specified, then Principal Components Analysis is used.
1428 If @subcmd{PAF} is specified, then Principal Axis Factoring is
1429 used. By default Principal Components Analysis is used.
1430
1431 The @subcmd{/ROTATION} subcommand is used to specify the method by which the
1432 extracted solution is rotated.  Three orthogonal rotation methods are available:
1433 @subcmd{VARIMAX} (which is the default), @subcmd{EQUAMAX}, and @subcmd{QUARTIMAX}.
1434 There is one oblique rotation method, @i{viz}: @subcmd{PROMAX}.
1435 Optionally you may enter the power of the promax rotation @var{k}, which must be enclosed in parentheses.
1436 The default value of @var{k} is 5.
1437 If you don't want any rotation to be performed, the word @subcmd{NOROTATE}
1438 prevents the command from performing any rotation on the data.
1439
1440 The @subcmd{/METHOD} subcommand should be used to determine whether the
1441 covariance matrix or the correlation matrix of the data is
1442 to be analysed.  By default, the correlation matrix is analysed.
1443
1444 The @subcmd{/PRINT} subcommand may be used to select which features of the analysis are reported:
1445
1446 @itemize
1447 @item @subcmd{UNIVARIATE}
1448       A table of mean values, standard deviations and total weights are printed.
1449 @item @subcmd{INITIAL}
1450       Initial communalities and eigenvalues are printed.
1451 @item @subcmd{EXTRACTION}
1452       Extracted communalities and eigenvalues are printed.
1453 @item @subcmd{ROTATION}
1454       Rotated communalities and eigenvalues are printed.
1455 @item @subcmd{CORRELATION}
1456       The correlation matrix is printed.
1457 @item @subcmd{COVARIANCE}
1458       The covariance matrix is printed.
1459 @item @subcmd{DET}
1460       The determinant of the correlation or covariance matrix is printed.
1461 @item @subcmd{AIC}
1462       The anti-image covariance and anti-image correlation matrices are printed.
1463 @item @subcmd{KMO}
1464       The Kaiser-Meyer-Olkin measure of sampling adequacy and the Bartlett test of sphericity is printed.
1465 @item @subcmd{SIG}
1466       The significance of the elements of correlation matrix is printed.
1467 @item @subcmd{ALL}
1468       All of the above are printed.
1469 @item @subcmd{DEFAULT}
1470       Identical to @subcmd{INITIAL} and @subcmd{EXTRACTION}.
1471 @end itemize
1472
1473 If @subcmd{/PLOT=EIGEN} is given, then a ``Scree'' plot of the eigenvalues is
1474 printed.  This can be useful for visualizing the factors and deciding
1475 which factors (components) should be retained.
1476
1477 The @subcmd{/FORMAT} subcommand determined how data are to be
1478 displayed in loading matrices.  If @subcmd{SORT} is specified, then
1479 the variables are sorted in descending order of significance.  If
1480 @subcmd{BLANK(@var{n})} is specified, then coefficients whose absolute
1481 value is less than @var{n} are not printed.  If the keyword
1482 @subcmd{DEFAULT} is specified, or if no @subcmd{/FORMAT} subcommand is
1483 specified, then no sorting is performed, and all coefficients are printed.
1484
1485 You can use the @subcmd{/CRITERIA} subcommand to specify how the number of
1486 extracted factors (components) are chosen.  If @subcmd{FACTORS(@var{n})} is
1487 specified, where @var{n} is an integer, then @var{n} factors are
1488 extracted.  Otherwise, the @subcmd{MINEIGEN} setting is used.
1489 @subcmd{MINEIGEN(@var{l})} requests that all factors whose eigenvalues
1490 are greater than or equal to @var{l} are extracted. The default value
1491 of @var{l} is 1. The @subcmd{ECONVERGE} setting has effect only when
1492 using iterative algorithms for factor extraction (such as Principal Axis
1493 Factoring).  @subcmd{ECONVERGE(@var{delta})} specifies that
1494 iteration should cease when the maximum absolute value of the
1495 communality estimate between one iteration and the previous is less
1496 than @var{delta}. The default value of @var{delta} is 0.001.
1497
1498 The @subcmd{ITERATE(@var{m})} may appear any number of times and is
1499 used for two different purposes. It is used to set the maximum number
1500 of iterations (@var{m}) for convergence and also to set the maximum
1501 number of iterations for rotation.
1502 Whether it affects convergence or rotation depends upon which
1503 subcommand follows the @subcmd{ITERATE} subcommand.
1504 If @subcmd{EXTRACTION} follows, it affects convergence.
1505 If @subcmd{ROTATION} follows, it affects rotation.
1506 If neither @subcmd{ROTATION} nor @subcmd{EXTRACTION} follow a
1507 @subcmd{ITERATE} subcommand, then the entire subcommand is ignored.
1508 The default value of @var{m} is 25.
1509
1510 The @cmd{MISSING} subcommand determines the handling of missing
1511 variables.  If @subcmd{INCLUDE} is set, then user-missing values are
1512 included in the calculations, but system-missing values are not.
1513 If @subcmd{EXCLUDE} is set, which is the default, user-missing
1514 values are excluded as well as system-missing values.  This is the
1515 default. If @subcmd{LISTWISE} is set, then the entire case is excluded
1516 from analysis whenever any variable  specified in the @cmd{VARIABLES}
1517 subcommand contains a missing value.
1518
1519 If @subcmd{PAIRWISE} is set, then a case is considered missing only if
1520 either of the values  for the particular coefficient are missing.
1521 The default is @subcmd{LISTWISE}.
1522
1523 @node GLM
1524 @section GLM
1525
1526 @vindex GLM
1527 @cindex univariate analysis of variance
1528 @cindex fixed effects
1529 @cindex factorial anova
1530 @cindex analysis of variance
1531 @cindex ANOVA
1532
1533
1534 @display
1535 GLM @var{dependent_vars} BY @var{fixed_factors}
1536      [/METHOD = SSTYPE(@var{type})]
1537      [/DESIGN = @var{interaction_0} [@var{interaction_1} [... @var{interaction_n}]]]
1538      [/INTERCEPT = @{INCLUDE|EXCLUDE@}]
1539      [/MISSING = @{INCLUDE|EXCLUDE@}]
1540 @end display
1541
1542 The @cmd{GLM} procedure can be used for fixed effects factorial Anova.
1543
1544 The @var{dependent_vars} are the variables to be analysed.
1545 You may analyse several variables in the same command in which case they should all
1546 appear before the @code{BY} keyword.
1547
1548 The @var{fixed_factors} list must be one or more categorical variables.  Normally it
1549 does not make sense to enter a scalar variable in the @var{fixed_factors} and doing
1550 so may cause @pspp{} to do a lot of unnecessary processing.
1551
1552 The @subcmd{METHOD} subcommand is used to change the method for producing the sums of
1553 squares.  Available values of @var{type} are 1, 2 and 3.  The default is type 3.
1554
1555 You may specify a custom design using the @subcmd{DESIGN} subcommand.
1556 The design comprises a list of interactions where each interaction is a
1557 list of variables separated by a @samp{*}.  For example the command
1558 @display
1559 GLM subject BY sex age_group race
1560     /DESIGN = age_group sex group age_group*sex age_group*race
1561 @end display
1562 @noindent specifies the model @math{subject = age_group + sex + race + age_group*sex + age_group*race}.
1563 If no @subcmd{DESIGN} subcommand is specified, then the default is all possible combinations
1564 of the fixed factors.  That is to say
1565 @display
1566 GLM subject BY sex age_group race
1567 @end display
1568 implies the model
1569 @math{subject = age_group + sex + race + age_group*sex + age_group*race + sex*race + age_group*sex*race}.
1570
1571
1572 The @subcmd{MISSING} subcommand determines the handling of missing
1573 variables.
1574 If @subcmd{INCLUDE} is set then, for the purposes of GLM analysis,
1575 only system-missing values are considered
1576 to be missing; user-missing values are not regarded as missing.
1577 If @subcmd{EXCLUDE} is set, which is the default, then user-missing
1578 values are considered to be missing as well as system-missing values.
1579 A case for which any dependent variable or any factor
1580 variable has a missing value is excluded from the analysis.
1581
1582 @node LOGISTIC REGRESSION
1583 @section LOGISTIC REGRESSION
1584
1585 @vindex LOGISTIC REGRESSION
1586 @cindex logistic regression
1587 @cindex bivariate logistic regression
1588
1589 @display
1590 LOGISTIC REGRESSION [VARIABLES =] @var{dependent_var} WITH @var{predictors}
1591
1592      [/CATEGORICAL = @var{categorical_predictors}]
1593
1594      [@{/NOCONST | /ORIGIN | /NOORIGIN @}]
1595
1596      [/PRINT = [SUMMARY] [DEFAULT] [CI(@var{confidence})] [ALL]]
1597
1598      [/CRITERIA = [BCON(@var{min_delta})] [ITERATE(@var{max_interations})]
1599                   [LCON(@var{min_likelihood_delta})] [EPS(@var{min_epsilon})]
1600                   [CUT(@var{cut_point})]]
1601
1602      [/MISSING = @{INCLUDE|EXCLUDE@}]
1603 @end display
1604
1605 Bivariate Logistic Regression is used when you want to explain a dichotomous dependent
1606 variable in terms of one or more predictor variables.
1607
1608 The minimum command is
1609 @example
1610 LOGISTIC REGRESSION @var{y} WITH @var{x1} @var{x2} @dots{} @var{xn}.
1611 @end example
1612 Here, @var{y} is the dependent variable, which must be dichotomous and @var{x1} @dots{} @var{xn}
1613 are the predictor variables whose coefficients the procedure estimates.
1614
1615 By default, a constant term is included in the model.
1616 Hence, the full model is
1617 @math{
1618 {\bf y}
1619 = b_0 + b_1 {\bf x_1}
1620 + b_2 {\bf x_2}
1621 + \dots
1622 + b_n {\bf x_n}
1623 }
1624
1625 Predictor variables which are categorical in nature should be listed on the @subcmd{/CATEGORICAL} subcommand.
1626 Simple variables as well as interactions between variables may be listed here.
1627
1628 If you want a model without the constant term @math{b_0}, use the keyword @subcmd{/ORIGIN}.
1629 @subcmd{/NOCONST} is a synonym for @subcmd{/ORIGIN}.
1630
1631 An iterative Newton-Raphson procedure is used to fit the model.
1632 The @subcmd{/CRITERIA} subcommand is used to specify the stopping criteria of the procedure,
1633 and other parameters.
1634 The value of @var{cut_point} is used in the classification table.  It is the
1635 threshold above which predicted values are considered to be 1.  Values
1636 of @var{cut_point} must lie in the range [0,1].
1637 During iterations, if any one of the stopping criteria are satisfied, the procedure is
1638 considered complete.
1639 The stopping criteria are:
1640 @itemize
1641 @item The number of iterations exceeds @var{max_iterations}.
1642       The default value of @var{max_iterations} is 20.
1643 @item The change in the all coefficient estimates are less than @var{min_delta}.
1644 The default value of @var{min_delta} is 0.001.
1645 @item The magnitude of change in the likelihood estimate is less than @var{min_likelihood_delta}.
1646 The default value of @var{min_delta} is zero.
1647 This means that this criterion is disabled.
1648 @item The differential of the estimated probability for all cases is less than @var{min_epsilon}.
1649 In other words, the probabilities are close to zero or one.
1650 The default value of @var{min_epsilon} is 0.00000001.
1651 @end itemize
1652
1653
1654 The @subcmd{PRINT} subcommand controls the display of optional statistics.
1655 Currently there is one such option, @subcmd{CI}, which indicates that the
1656 confidence interval of the odds ratio should be displayed as well as its value.
1657 @subcmd{CI} should be followed by an integer in parentheses, to indicate the
1658 confidence level of the desired confidence interval.
1659
1660 The @subcmd{MISSING} subcommand determines the handling of missing
1661 variables.
1662 If @subcmd{INCLUDE} is set, then user-missing values are included in the
1663 calculations, but system-missing values are not.
1664 If @subcmd{EXCLUDE} is set, which is the default, user-missing
1665 values are excluded as well as system-missing values.
1666 This is the default.
1667
1668 @node MEANS
1669 @section MEANS
1670
1671 @vindex MEANS
1672 @cindex means
1673
1674 @display
1675 MEANS [TABLES =]
1676       @{@var{var_list}@}
1677         [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]]
1678
1679       [ /@{@var{var_list}@}
1680          [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]] ]
1681
1682       [/CELLS = [MEAN] [COUNT] [STDDEV] [SEMEAN] [SUM] [MIN] [MAX] [RANGE]
1683         [VARIANCE] [KURT] [SEKURT]
1684         [SKEW] [SESKEW] [FIRST] [LAST]
1685         [HARMONIC] [GEOMETRIC]
1686         [DEFAULT]
1687         [ALL]
1688         [NONE] ]
1689
1690       [/MISSING = [INCLUDE] [DEPENDENT]]
1691 @end display
1692
1693 You can use the @cmd{MEANS} command to calculate the arithmetic mean and similar
1694 statistics, either for the dataset as a whole or for categories of data.
1695
1696 The simplest form of the command is
1697 @example
1698 MEANS @var{v}.
1699 @end example
1700 @noindent which calculates the mean, count and standard deviation for @var{v}.
1701 If you specify a grouping variable, for example
1702 @example
1703 MEANS @var{v} BY @var{g}.
1704 @end example
1705 @noindent then the means, counts and standard deviations for @var{v} after having
1706 been grouped by @var{g} are calculated.
1707 Instead of the mean, count and standard deviation, you could specify the statistics
1708 in which you are interested:
1709 @example
1710 MEANS @var{x} @var{y} BY @var{g}
1711       /CELLS = HARMONIC SUM MIN.
1712 @end example
1713 This example calculates the harmonic mean, the sum and the minimum values of @var{x} and @var{y}
1714 grouped by @var{g}.
1715
1716 The @subcmd{CELLS} subcommand specifies which statistics to calculate.  The available statistics
1717 are:
1718 @itemize
1719 @item @subcmd{MEAN}
1720 @cindex arithmetic mean
1721       The arithmetic mean.
1722 @item @subcmd{COUNT}
1723       The count of the values.
1724 @item @subcmd{STDDEV}
1725       The standard deviation.
1726 @item @subcmd{SEMEAN}
1727       The standard error of the mean.
1728 @item @subcmd{SUM}
1729       The sum of the values.
1730 @item @subcmd{MIN}
1731       The minimum value.
1732 @item @subcmd{MAX}
1733       The maximum value.
1734 @item @subcmd{RANGE}
1735       The difference between the maximum and minimum values.
1736 @item @subcmd{VARIANCE}
1737       The variance.
1738 @item @subcmd{FIRST}
1739       The first value in the category.
1740 @item @subcmd{LAST}
1741       The last value in the category.
1742 @item @subcmd{SKEW}
1743       The skewness.
1744 @item @subcmd{SESKEW}
1745       The standard error of the skewness.
1746 @item @subcmd{KURT}
1747       The kurtosis
1748 @item @subcmd{SEKURT}
1749       The standard error of the kurtosis.
1750 @item @subcmd{HARMONIC}
1751 @cindex harmonic mean
1752       The harmonic mean.
1753 @item @subcmd{GEOMETRIC}
1754 @cindex geometric mean
1755       The geometric mean.
1756 @end itemize
1757
1758 In addition, three special keywords are recognized:
1759 @itemize
1760 @item @subcmd{DEFAULT}
1761       This is the same as @subcmd{MEAN} @subcmd{COUNT} @subcmd{STDDEV}.
1762 @item @subcmd{ALL}
1763       All of the above statistics are calculated.
1764 @item @subcmd{NONE}
1765       No statistics are calculated (only a summary is shown).
1766 @end itemize
1767
1768
1769 More than one @dfn{table} can be specified in a single command.
1770 Each table is separated by a @samp{/}. For
1771 example
1772 @example
1773 MEANS TABLES =
1774       @var{c} @var{d} @var{e} BY @var{x}
1775       /@var{a} @var{b} BY @var{x} @var{y}
1776       /@var{f} BY @var{y} BY @var{z}.
1777 @end example
1778 has three tables (the @samp{TABLE =} is optional).
1779 The first table has three dependent variables @var{c}, @var{d} and @var{e}
1780 and a single categorical variable @var{x}.
1781 The second table has two dependent variables @var{a} and @var{b},
1782 and two categorical variables @var{x} and @var{y}.
1783 The third table has a single dependent variables @var{f}
1784 and a categorical variable formed by the combination of @var{y} and @var{z}.
1785
1786
1787 By default values are omitted from the analysis only if missing values
1788 (either system missing or user missing)
1789 for any of the variables directly involved in their calculation are
1790 encountered.
1791 This behaviour can be modified with the  @subcmd{/MISSING} subcommand.
1792 Three options are possible: @subcmd{TABLE}, @subcmd{INCLUDE} and @subcmd{DEPENDENT}.
1793
1794 @subcmd{/MISSING = INCLUDE} says that user missing values, either in the dependent
1795 variables or in the categorical variables should be taken at their face
1796 value, and not excluded.
1797
1798 @subcmd{/MISSING = DEPENDENT} says that user missing values, in the dependent
1799 variables should be taken at their face value, however cases which
1800 have user missing values for the categorical variables should be omitted
1801 from the calculation.
1802
1803 @subsection Example Means
1804
1805 The dataset in @file{repairs.sav} contains the mean time between failures (@exvar{mtbf})
1806 for a sample of artifacts produced by different factories and trialed under
1807 different operating conditions.
1808 Since there are four combinations of categorical variables, by simply looking
1809 at the list of data, it would be hard to how the scores vary for each category.
1810 @ref{means:ex} shows one way of tabulating the @exvar{mtbf} in a way which is
1811 easier to understand.
1812
1813 @float Example, means:ex
1814 @psppsyntax {means.sps}
1815 @caption {Running @cmd{MEANS} on the @exvar{mtbf} score with categories @exvar{factory} and @exvar{environment}}
1816 @end float
1817
1818 The results are shown in @ref{means:res}.   The figures shown indicate the mean,
1819 standard deviation and number of samples in each category.
1820 These figures however do not indicate whether the results are statistically
1821 significant.  For that, you would need to use the procedures @cmd{ONEWAY}, @cmd{GLM} or
1822 @cmd{T-TEST} depending on the hypothesis being tested.
1823
1824 @float Result, means:res
1825 @psppoutput {means}
1826 @caption {The @exvar{mtbf} categorised by @exvar{factory} and @exvar{environment}}
1827 @end float
1828
1829 Note that there is no limit to the number of variables for which you can calculate
1830 statistics, nor to the number of categorical variables per layer, nor the number
1831 of layers.
1832 However, running @cmd{MEANS} on a large numbers of variables, or with categorical variables
1833 containing a large number of distinct values may result in an extremely large output, which
1834 will not be easy to interpret.
1835 So you should consider carefully which variables to select for participation in the analysis.
1836
1837 @node NPAR TESTS
1838 @section NPAR TESTS
1839
1840 @vindex NPAR TESTS
1841 @cindex nonparametric tests
1842
1843 @display
1844 NPAR TESTS
1845
1846      nonparametric test subcommands
1847      .
1848      .
1849      .
1850
1851      [ /STATISTICS=@{DESCRIPTIVES@} ]
1852
1853      [ /MISSING=@{ANALYSIS, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
1854
1855      [ /METHOD=EXACT [ TIMER [(@var{n})] ] ]
1856 @end display
1857
1858 @cmd{NPAR TESTS} performs nonparametric tests.
1859 Non parametric tests make very few assumptions about the distribution of the
1860 data.
1861 One or more tests may be specified by using the corresponding subcommand.
1862 If the @subcmd{/STATISTICS} subcommand is also specified, then summary statistics are
1863 produces for each variable that is the subject of any test.
1864
1865 Certain tests may take a long time to execute, if an exact figure is required.
1866 Therefore, by default asymptotic approximations are used unless the
1867 subcommand @subcmd{/METHOD=EXACT} is specified.
1868 Exact tests give more accurate results, but may take an unacceptably long
1869 time to perform.  If the @subcmd{TIMER} keyword is used, it sets a maximum time,
1870 after which the test is abandoned, and a warning message printed.
1871 The time, in minutes, should be specified in parentheses after the @subcmd{TIMER} keyword.
1872 If the @subcmd{TIMER} keyword is given without this figure, then a default value of 5 minutes
1873 is used.
1874
1875
1876 @menu
1877 * BINOMIAL::                Binomial Test
1878 * CHISQUARE::               Chi-square Test
1879 * COCHRAN::                 Cochran Q Test
1880 * FRIEDMAN::                Friedman Test
1881 * KENDALL::                 Kendall's W Test
1882 * KOLMOGOROV-SMIRNOV::      Kolmogorov Smirnov Test
1883 * KRUSKAL-WALLIS::          Kruskal-Wallis Test
1884 * MANN-WHITNEY::            Mann Whitney U Test
1885 * MCNEMAR::                 McNemar Test
1886 * MEDIAN::                  Median Test
1887 * RUNS::                    Runs Test
1888 * SIGN::                    The Sign Test
1889 * WILCOXON::                Wilcoxon Signed Ranks Test
1890 @end menu
1891
1892
1893 @node    BINOMIAL
1894 @subsection Binomial test
1895 @vindex BINOMIAL
1896 @cindex binomial test
1897
1898 @display
1899      [ /BINOMIAL[(@var{p})]=@var{var_list}[(@var{value1}[, @var{value2})] ] ]
1900 @end display
1901
1902 The @subcmd{/BINOMIAL} subcommand compares the observed distribution of a dichotomous
1903 variable with that of a binomial distribution.
1904 The variable @var{p} specifies the test proportion of the binomial
1905 distribution.
1906 The default value of 0.5 is assumed if @var{p} is omitted.
1907
1908 If a single value appears after the variable list, then that value is
1909 used as the threshold to partition the observed values. Values less
1910 than or equal to the threshold value form the first category.  Values
1911 greater than the threshold form the second category.
1912
1913 If two values appear after the variable list, then they are used
1914 as the values which a variable must take to be in the respective
1915 category.
1916 Cases for which a variable takes a value equal to neither of the specified
1917 values, take no part in the test for that variable.
1918
1919 If no values appear, then the variable must assume dichotomous
1920 values.
1921 If more than two distinct, non-missing values for a variable
1922 under test are encountered then an error occurs.
1923
1924 If the test proportion is equal to 0.5, then a two tailed test is
1925 reported.   For any other test proportion, a one tailed test is
1926 reported.
1927 For one tailed tests, if the test proportion is less than
1928 or equal to the observed proportion, then the significance of
1929 observing the observed proportion or more is reported.
1930 If the test proportion is more than the observed proportion, then the
1931 significance of observing the observed proportion or less is reported.
1932 That is to say, the test is always performed in the observed
1933 direction.
1934
1935 @pspp{} uses a very precise approximation to the gamma function to
1936 compute the binomial significance.  Thus, exact results are reported
1937 even for very large sample sizes.
1938
1939
1940 @node    CHISQUARE
1941 @subsection Chi-square Test
1942 @vindex CHISQUARE
1943 @cindex chi-square test
1944
1945
1946 @display
1947      [ /CHISQUARE=@var{var_list}[(@var{lo},@var{hi})] [/EXPECTED=@{EQUAL|@var{f1}, @var{f2} @dots{} @var{fn}@}] ]
1948 @end display
1949
1950
1951 The @subcmd{/CHISQUARE} subcommand produces a chi-square statistic for the differences
1952 between the expected and observed frequencies of the categories of a variable.
1953 Optionally, a range of values may appear after the variable list.
1954 If a range is given, then non integer values are truncated, and values
1955 outside the  specified range are excluded from the analysis.
1956
1957 The @subcmd{/EXPECTED} subcommand specifies the expected values of each
1958 category.
1959 There must be exactly one non-zero expected value, for each observed
1960 category, or the @subcmd{EQUAL} keyword must be specified.
1961 You may use the notation @subcmd{@var{n}*@var{f}} to specify @var{n}
1962 consecutive expected categories all taking a frequency of @var{f}.
1963 The frequencies given are proportions, not absolute frequencies.  The
1964 sum of the frequencies need not be 1.
1965 If no @subcmd{/EXPECTED} subcommand is given, then equal frequencies
1966 are expected.
1967
1968 @subsubsection Chi-square Example
1969
1970 A researcher wishes to investigate whether there are an equal number of
1971 persons of each sex in a population.   The sample chosen for invesigation
1972 is that from the @file {physiology.sav} dataset.   The null hypothesis for
1973 the test is that the population comprises an equal number of males and females.
1974 The analysis is performed as shown in @ref{chisquare:ex}.
1975
1976 @float Example, chisquare:ex
1977 @psppsyntax {chisquare.sps}
1978 @caption {Performing a chi-square test to check for equal distribution of sexes}
1979 @end float
1980
1981 There is only one test variable, @i{viz:} @exvar{sex}.  The other variables in the dataset
1982 are ignored.
1983
1984 @float Screenshot, chisquare:scr
1985 @psppimage {chisquare}
1986 @caption {Performing a chi-square test using the graphic user interface}
1987 @end float
1988
1989 In @ref{chisquare:res} the summary box shows that in the sample, there are more males
1990 than females.  However the significance of chi-square result is greater than 0.05
1991 --- the most commonly accepted p-value --- and therefore
1992 there is not enough evidence to reject the null hypothesis and one must conclude
1993 that the evidence does not indicate that there is an imbalance of the sexes
1994 in the population.
1995
1996 @float Result, chisquare:res
1997 @psppoutput {chisquare}
1998 @caption {The results of running a chi-square test on @exvar{sex}}
1999 @end float
2000
2001
2002 @node COCHRAN
2003 @subsection Cochran Q Test
2004 @vindex Cochran
2005 @cindex Cochran Q test
2006 @cindex Q, Cochran Q
2007
2008 @display
2009      [ /COCHRAN = @var{var_list} ]
2010 @end display
2011
2012 The Cochran Q test is used to test for differences between three or more groups.
2013 The data for @var{var_list} in all cases must assume exactly two
2014 distinct values (other than missing values).
2015
2016 The value of Q is displayed along with its Asymptotic significance
2017 based on a chi-square distribution.
2018
2019 @node FRIEDMAN
2020 @subsection Friedman Test
2021 @vindex FRIEDMAN
2022 @cindex Friedman test
2023
2024 @display
2025      [ /FRIEDMAN = @var{var_list} ]
2026 @end display
2027
2028 The Friedman test is used to test for differences between repeated measures when
2029 there is no indication that the distributions are normally distributed.
2030
2031 A list of variables which contain the measured data must be given.  The procedure
2032 prints the sum of ranks for each variable, the test statistic and its significance.
2033
2034 @node KENDALL
2035 @subsection Kendall's W Test
2036 @vindex KENDALL
2037 @cindex Kendall's W test
2038 @cindex coefficient of concordance
2039
2040 @display
2041      [ /KENDALL = @var{var_list} ]
2042 @end display
2043
2044 The Kendall test investigates whether an arbitrary number of related samples come from the
2045 same population.
2046 It is identical to the Friedman test except that the additional statistic W, Kendall's Coefficient of Concordance is printed.
2047 It has the range [0,1] --- a value of zero indicates no agreement between the samples whereas a value of
2048 unity indicates complete agreement.
2049
2050
2051 @node KOLMOGOROV-SMIRNOV
2052 @subsection Kolmogorov-Smirnov Test
2053 @vindex KOLMOGOROV-SMIRNOV
2054 @vindex K-S
2055 @cindex Kolmogorov-Smirnov test
2056
2057 @display
2058      [ /KOLMOGOROV-SMIRNOV (@{NORMAL [@var{mu}, @var{sigma}], UNIFORM [@var{min}, @var{max}], POISSON [@var{lambda}], EXPONENTIAL [@var{scale}] @}) = @var{var_list} ]
2059 @end display
2060
2061 The one sample Kolmogorov-Smirnov subcommand is used to test whether or not a dataset is
2062 drawn from a particular distribution.  Four distributions are supported, @i{viz:}
2063 Normal, Uniform, Poisson and Exponential.
2064
2065 Ideally you should provide the parameters of the distribution against
2066 which you wish to test the data. For example, with the normal
2067 distribution  the mean (@var{mu})and standard deviation (@var{sigma})
2068 should be given; with the uniform distribution, the minimum
2069 (@var{min})and maximum (@var{max}) value should be provided.
2070 However, if the parameters are omitted they are imputed from the
2071 data.  Imputing the parameters reduces the power of the test so should
2072 be avoided if possible.
2073
2074 In the following example, two variables @var{score} and @var{age} are
2075 tested to see if they follow a normal distribution with a mean of 3.5
2076 and a standard deviation of 2.0.
2077 @example
2078   NPAR TESTS
2079         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score} @var{age}.
2080 @end example
2081 If the variables need to be tested against different distributions, then a separate
2082 subcommand must be used.  For example the following syntax tests @var{score} against
2083 a normal distribution with mean of 3.5 and standard deviation of 2.0 whilst @var{age}
2084 is tested against a normal distribution of mean 40 and standard deviation 1.5.
2085 @example
2086   NPAR TESTS
2087         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score}
2088         /KOLMOGOROV-SMIRNOV (normal 40 1.5) =  @var{age}.
2089 @end example
2090
2091 The abbreviated subcommand  @subcmd{K-S} may be used in place of @subcmd{KOLMOGOROV-SMIRNOV}.
2092
2093 @node KRUSKAL-WALLIS
2094 @subsection Kruskal-Wallis Test
2095 @vindex KRUSKAL-WALLIS
2096 @vindex K-W
2097 @cindex Kruskal-Wallis test
2098
2099 @display
2100      [ /KRUSKAL-WALLIS = @var{var_list} BY var (@var{lower}, @var{upper}) ]
2101 @end display
2102
2103 The Kruskal-Wallis test is used to compare data from an
2104 arbitrary number of populations.  It does not assume normality.
2105 The data to be compared are specified by @var{var_list}.
2106 The categorical variable determining the groups to which the
2107 data belongs is given by @var{var}. The limits @var{lower} and
2108 @var{upper} specify the valid range of @var{var}.
2109 If @var{upper} is smaller than @var{lower}, the PSPP will assume their values
2110 to be reversed. Any cases for which @var{var} falls outside
2111 [@var{lower}, @var{upper}] are ignored.
2112
2113 The mean rank of each group as well as the chi-squared value and
2114 significance of the test are printed.
2115 The abbreviated subcommand  @subcmd{K-W} may be used in place of
2116 @subcmd{KRUSKAL-WALLIS}.
2117
2118
2119 @node MANN-WHITNEY
2120 @subsection Mann-Whitney U Test
2121 @vindex MANN-WHITNEY
2122 @vindex M-W
2123 @cindex Mann-Whitney U test
2124 @cindex U, Mann-Whitney U
2125
2126 @display
2127      [ /MANN-WHITNEY = @var{var_list} BY var (@var{group1}, @var{group2}) ]
2128 @end display
2129
2130 The Mann-Whitney subcommand is used to test whether two groups of data
2131 come from different populations. The variables to be tested should be
2132 specified in @var{var_list} and the grouping variable, that determines
2133 to which group the test variables belong, in @var{var}.
2134 @var{Var} may be either a string or an alpha variable.
2135 @var{Group1} and @var{group2} specify the
2136 two values of @var{var} which determine the groups of the test data.
2137 Cases for which the @var{var} value is neither @var{group1} or
2138 @var{group2} are ignored.
2139
2140 The value of the Mann-Whitney U statistic, the Wilcoxon W, and the
2141 significance are printed.
2142 You may abbreviated the subcommand @subcmd{MANN-WHITNEY} to
2143 @subcmd{M-W}.
2144
2145
2146 @node MCNEMAR
2147 @subsection McNemar Test
2148 @vindex MCNEMAR
2149 @cindex McNemar test
2150
2151 @display
2152      [ /MCNEMAR @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
2153 @end display
2154
2155 Use McNemar's test to analyse the significance of the difference between
2156 pairs of correlated proportions.
2157
2158 If the @code{WITH} keyword is omitted, then tests for all
2159 combinations of the listed variables are performed.
2160 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
2161 is also given, then the number of variables preceding @code{WITH}
2162 must be the same as the number following it.
2163 In this case, tests for each respective pair of variables are
2164 performed.
2165 If the @code{WITH} keyword is given, but the
2166 @code{(PAIRED)} keyword is omitted, then tests for each combination
2167 of variable preceding @code{WITH} against variable following
2168 @code{WITH} are performed.
2169
2170 The data in each variable must be dichotomous.  If there are more
2171 than two distinct variables an error will occur and the test will
2172 not be run.
2173
2174 @node MEDIAN
2175 @subsection Median Test
2176 @vindex MEDIAN
2177 @cindex Median test
2178
2179 @display
2180      [ /MEDIAN [(@var{value})] = @var{var_list} BY @var{variable} (@var{value1}, @var{value2}) ]
2181 @end display
2182
2183 The median test is used to test whether independent samples come from
2184 populations with a common median.
2185 The median of the populations against which the samples are to be tested
2186 may be given in parentheses immediately after the
2187 @subcmd{/MEDIAN} subcommand.  If it is not given, the median is imputed from the
2188 union of all the samples.
2189
2190 The variables of the samples to be tested should immediately follow the @samp{=} sign. The
2191 keyword @code{BY} must come next, and then the grouping variable.  Two values
2192 in parentheses should follow.  If the first value is greater than the second,
2193 then a 2 sample test is performed using these two values to determine the groups.
2194 If however, the first variable is less than the second, then a @i{k} sample test is
2195 conducted and the group values used are all values encountered which lie in the
2196 range [@var{value1},@var{value2}].
2197
2198
2199 @node RUNS
2200 @subsection Runs Test
2201 @vindex RUNS
2202 @cindex runs test
2203
2204 @display
2205      [ /RUNS (@{MEAN, MEDIAN, MODE, @var{value}@})  = @var{var_list} ]
2206 @end display
2207
2208 The @subcmd{/RUNS} subcommand tests whether a data sequence is randomly ordered.
2209
2210 It works by examining the number of times a variable's value crosses a given threshold.
2211 The desired threshold must be specified within parentheses.
2212 It may either be specified as a number or as one of @subcmd{MEAN}, @subcmd{MEDIAN} or @subcmd{MODE}.
2213 Following the threshold specification comes the list of variables whose values are to be
2214 tested.
2215
2216 The subcommand shows the number of runs, the asymptotic significance based on the
2217 length of the data.
2218
2219 @node SIGN
2220 @subsection Sign Test
2221 @vindex SIGN
2222 @cindex sign test
2223
2224 @display
2225      [ /SIGN @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
2226 @end display
2227
2228 The @subcmd{/SIGN} subcommand tests for differences between medians of the
2229 variables listed.
2230 The test does not make any assumptions about the
2231 distribution of the data.
2232
2233 If the @code{WITH} keyword is omitted, then tests for all
2234 combinations of the listed variables are performed.
2235 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
2236 is also given, then the number of variables preceding @code{WITH}
2237 must be the same as the number following it.
2238 In this case, tests for each respective pair of variables are
2239 performed.
2240 If the @code{WITH} keyword is given, but the
2241 @code{(PAIRED)} keyword is omitted, then tests for each combination
2242 of variable preceding @code{WITH} against variable following
2243 @code{WITH} are performed.
2244
2245 @node WILCOXON
2246 @subsection Wilcoxon Matched Pairs Signed Ranks Test
2247 @vindex WILCOXON
2248 @cindex wilcoxon matched pairs signed ranks test
2249
2250 @display
2251      [ /WILCOXON @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
2252 @end display
2253
2254 The @subcmd{/WILCOXON} subcommand tests for differences between medians of the
2255 variables listed.
2256 The test does not make any assumptions about the variances of the samples.
2257 It does however assume that the distribution is symmetrical.
2258
2259 If the @subcmd{WITH} keyword is omitted, then tests for all
2260 combinations of the listed variables are performed.
2261 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
2262 is also given, then the number of variables preceding @subcmd{WITH}
2263 must be the same as the number following it.
2264 In this case, tests for each respective pair of variables are
2265 performed.
2266 If the @subcmd{WITH} keyword is given, but the
2267 @subcmd{(PAIRED)} keyword is omitted, then tests for each combination
2268 of variable preceding @subcmd{WITH} against variable following
2269 @subcmd{WITH} are performed.
2270
2271 @node T-TEST
2272 @section T-TEST
2273
2274 @vindex T-TEST
2275
2276 @display
2277 T-TEST
2278         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
2279         /CRITERIA=CI(@var{confidence})
2280
2281
2282 (One Sample mode.)
2283         TESTVAL=@var{test_value}
2284         /VARIABLES=@var{var_list}
2285
2286
2287 (Independent Samples mode.)
2288         GROUPS=var(@var{value1} [, @var{value2}])
2289         /VARIABLES=@var{var_list}
2290
2291
2292 (Paired Samples mode.)
2293         PAIRS=@var{var_list} [WITH @var{var_list} [(PAIRED)] ]
2294
2295 @end display
2296
2297
2298 The @cmd{T-TEST} procedure outputs tables used in testing hypotheses about
2299 means.
2300 It operates in one of three modes:
2301 @itemize
2302 @item One Sample mode.
2303 @item Independent Groups mode.
2304 @item Paired mode.
2305 @end itemize
2306
2307 @noindent
2308 Each of these modes are described in more detail below.
2309 There are two optional subcommands which are common to all modes.
2310
2311 The @cmd{/CRITERIA} subcommand tells @pspp{} the confidence interval used
2312 in the tests.  The default value is 0.95.
2313
2314
2315 The @cmd{MISSING} subcommand determines the handling of missing
2316 variables.
2317 If @subcmd{INCLUDE} is set, then user-missing values are included in the
2318 calculations, but system-missing values are not.
2319 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2320 values are excluded as well as system-missing values.
2321 This is the default.
2322
2323 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
2324 whenever any variable  specified in the @subcmd{/VARIABLES}, @subcmd{/PAIRS} or
2325 @subcmd{/GROUPS} subcommands contains a missing value.
2326 If @subcmd{ANALYSIS} is set, then missing values are excluded only in the analysis for
2327 which they would be needed. This is the default.
2328
2329
2330 @menu
2331 * One Sample Mode::             Testing against a hypothesized mean
2332 * Independent Samples Mode::    Testing two independent groups for equal mean
2333 * Paired Samples Mode::         Testing two interdependent groups for equal mean
2334 @end menu
2335
2336 @node One Sample Mode
2337 @subsection One Sample Mode
2338
2339 The @subcmd{TESTVAL} subcommand invokes the One Sample mode.
2340 This mode is used to test a population mean against a hypothesized
2341 mean.
2342 The value given to the @subcmd{TESTVAL} subcommand is the value against
2343 which you wish to test.
2344 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
2345 tell @pspp{} which variables you wish to test.
2346
2347 @subsubsection Example - One Sample T-test
2348
2349 A researcher wishes to know whether the weight of persons in a population
2350 is different from the national average.
2351 The samples are drawn from the population under investigation and recorded
2352 in the file @file{physiology.sav}.
2353 From the Department of Health, she
2354 knows that the national average weight of healthy adults is 76.8kg.
2355 Accordingly the @subcmd{TESTVAL} is set to 76.8.
2356 The null hypothesis therefore is that the mean average weight of the
2357 population from which the sample was drawn is 76.8kg.
2358
2359 As previously noted (@pxref{Identifying incorrect data}), one
2360 sample in the dataset contains a weight value
2361 which is clearly incorrect.  So this is excluded from the analysis
2362 using the @cmd{SELECT} command.
2363
2364 @float Example, one-sample-t:ex
2365 @psppsyntax {one-sample-t.sps}
2366 @caption {Running a one sample T-Test after excluding all non-positive values}
2367 @end float
2368
2369 @float Screenshot, one-sample-t:scr
2370 @psppimage {one-sample-t}
2371 @caption {Using the One Sample T-Test dialog box to test @exvar{weight} for a mean of 76.8kg}
2372 @end float
2373
2374
2375 @ref{one-sample-t:res} shows that the mean of our sample differs from the test value
2376 by -1.40kg.  However the significance is very high (0.610).  So one cannot
2377 reject the null hypothesis, and must conclude there is not enough evidence
2378 to suggest that the mean weight of the persons in our population is different
2379 from 76.8kg.
2380
2381 @float Results, one-sample-t:res
2382 @psppoutput {one-sample-t}
2383 @caption {The results of a one sample T-test of @exvar{weight} using a test value of 76.8kg}
2384 @end float
2385
2386 @node Independent Samples Mode
2387 @subsection Independent Samples Mode
2388
2389 The @subcmd{GROUPS} subcommand invokes Independent Samples mode or
2390 `Groups' mode.
2391 This mode is used to test whether two groups of values have the
2392 same population mean.
2393 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
2394 tell @pspp{} the dependent variables you wish to test.
2395
2396 The variable given in the @subcmd{GROUPS} subcommand is the independent
2397 variable which determines to which group the samples belong.
2398 The values in parentheses are the specific values of the independent
2399 variable for each group.
2400 If the parentheses are omitted and no values are given, the default values
2401 of 1.0 and 2.0 are assumed.
2402
2403 If the independent variable is numeric,
2404 it is acceptable to specify only one value inside the parentheses.
2405 If you do this, cases where the independent variable is
2406 greater than or equal to this value belong to the first group, and cases
2407 less than this value belong to the second group.
2408 When using this form of the @subcmd{GROUPS} subcommand, missing values in
2409 the independent variable are excluded on a listwise basis, regardless
2410 of whether @subcmd{/MISSING=LISTWISE} was specified.
2411
2412 @subsubsection Example - Independent Samples T-test
2413
2414 A researcher wishes to know whether within a population, adult males
2415 are taller than adult females.
2416 The samples are drawn from the population under investigation and recorded
2417 in the file @file{physiology.sav}.
2418
2419 As previously noted (@pxref{Identifying incorrect data}), one
2420 sample in the dataset contains a height value
2421 which is clearly incorrect.  So this is excluded from the analysis
2422 using the @cmd{SELECT} command.
2423
2424
2425 @float Example, indepdendent-samples-t:ex
2426 @psppsyntax {independent-samples-t.sps}
2427 @caption {Running a independent samples T-Test after excluding all observations less than 200kg}
2428 @end float
2429
2430
2431 The null hypothesis is that both males and females are on average
2432 of equal height.
2433
2434 @float Screenshot, independent-samples-t:scr
2435 @psppimage {independent-samples-t}
2436 @caption {Using the Independent Sample T-test dialog, to test for differences of @exvar{height} between values of @exvar{sex}}
2437 @end float
2438
2439
2440 In this case, the grouping variable is @exvar{sex}, so this is entered
2441 as the variable for the @subcmd{GROUP} subcommand.  The group values are  0 (male) and
2442 1 (female).
2443
2444 If you are running the proceedure using syntax, then you need to enter
2445 the values corresponding to each group within parentheses.
2446 If you are using the graphic user interface, then you have to open
2447 the ``Define Groups'' dialog box and enter the values corresponding
2448 to each group as shown in @ref{define-groups-t:scr}.  If, as in this case, the dataset has defined value
2449 labels for the group variable, then you can enter them by label
2450 or by value.
2451
2452 @float Screenshot, define-groups-t:scr
2453 @psppimage {define-groups-t}
2454 @caption {Setting the values of the grouping variable for an Independent Samples T-test}
2455 @end float
2456
2457 From @ref{independent-samples-t:res}, one can clearly see that the @emph{sample} mean height
2458 is greater for males than for females.  However in order to see if this
2459 is a significant result, one must consult the T-Test table.
2460
2461 The T-Test table contains two rows; one for use if the variance of the samples
2462 in each group may be safely assumed to be equal, and the second row
2463 if the variances in each group may not be safely assumed to be equal.
2464
2465 In this case however, both rows show a 2-tailed significance less than 0.001 and
2466 one must therefore reject the null hypothesis and conclude that within
2467 the population the mean height of males and of females are unequal.
2468
2469 @float Result, independent-samples-t:res
2470 @psppoutput {independent-samples-t}
2471 @caption {The results of an independent samples T-test of @exvar{height} by @exvar{sex}}
2472 @end float
2473
2474 @node Paired Samples Mode
2475 @subsection Paired Samples Mode
2476
2477 The @cmd{PAIRS} subcommand introduces Paired Samples mode.
2478 Use this mode when repeated measures have been taken from the same
2479 samples.
2480 If the @subcmd{WITH} keyword is omitted, then tables for all
2481 combinations of variables given in the @cmd{PAIRS} subcommand are
2482 generated.
2483 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
2484 is also given, then the number of variables preceding @subcmd{WITH}
2485 must be the same as the number following it.
2486 In this case, tables for each respective pair of variables are
2487 generated.
2488 In the event that the @subcmd{WITH} keyword is given, but the
2489 @subcmd{(PAIRED)} keyword is omitted, then tables for each combination
2490 of variable preceding @subcmd{WITH} against variable following
2491 @subcmd{WITH} are generated.
2492
2493
2494 @node ONEWAY
2495 @section ONEWAY
2496
2497 @vindex ONEWAY
2498 @cindex analysis of variance
2499 @cindex ANOVA
2500
2501 @display
2502 ONEWAY
2503         [/VARIABLES = ] @var{var_list} BY @var{var}
2504         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
2505         /CONTRAST= @var{value1} [, @var{value2}] ... [,@var{valueN}]
2506         /STATISTICS=@{DESCRIPTIVES,HOMOGENEITY@}
2507         /POSTHOC=@{BONFERRONI, GH, LSD, SCHEFFE, SIDAK, TUKEY, ALPHA ([@var{value}])@}
2508 @end display
2509
2510 The @cmd{ONEWAY} procedure performs a one-way analysis of variance of
2511 variables factored by a single independent variable.
2512 It is used to compare the means of a population
2513 divided into more than two groups.
2514
2515 The dependent variables to be analysed should be given in the @subcmd{VARIABLES}
2516 subcommand.
2517 The list of variables must be followed by the @subcmd{BY} keyword and
2518 the name of the independent (or factor) variable.
2519
2520 You can use the @subcmd{STATISTICS} subcommand to tell @pspp{} to display
2521 ancillary information.  The options accepted are:
2522 @itemize
2523 @item DESCRIPTIVES
2524 Displays descriptive statistics about the groups factored by the independent
2525 variable.
2526 @item HOMOGENEITY
2527 Displays the Levene test of Homogeneity of Variance for the
2528 variables and their groups.
2529 @end itemize
2530
2531 The @subcmd{CONTRAST} subcommand is used when you anticipate certain
2532 differences between the groups.
2533 The subcommand must be followed by a list of numerals which are the
2534 coefficients of the groups to be tested.
2535 The number of coefficients must correspond to the number of distinct
2536 groups (or values of the independent variable).
2537 If the total sum of the coefficients are not zero, then @pspp{} will
2538 display a warning, but will proceed with the analysis.
2539 The @subcmd{CONTRAST} subcommand may be given up to 10 times in order
2540 to specify different contrast tests.
2541 The @subcmd{MISSING} subcommand defines how missing values are handled.
2542 If @subcmd{LISTWISE} is specified then cases which have missing values for
2543 the independent variable or any dependent variable are ignored.
2544 If @subcmd{ANALYSIS} is specified, then cases are ignored if the independent
2545 variable is missing or if the dependent variable currently being
2546 analysed is missing.  The default is @subcmd{ANALYSIS}.
2547 A setting of @subcmd{EXCLUDE} means that variables whose values are
2548 user-missing are to be excluded from the analysis. A setting of
2549 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
2550
2551 Using the @code{POSTHOC} subcommand you can perform multiple
2552 pairwise comparisons on the data. The following comparison methods
2553 are available:
2554 @itemize
2555 @item @subcmd{LSD}
2556 Least Significant Difference.
2557 @item @subcmd{TUKEY}
2558 Tukey Honestly Significant Difference.
2559 @item @subcmd{BONFERRONI}
2560 Bonferroni test.
2561 @item @subcmd{SCHEFFE}
2562 Scheff@'e's test.
2563 @item @subcmd{SIDAK}
2564 Sidak test.
2565 @item @subcmd{GH}
2566 The Games-Howell test.
2567 @end itemize
2568
2569 @noindent
2570 Use the optional syntax @code{ALPHA(@var{value})} to indicate that
2571 @cmd{ONEWAY} should perform the posthoc tests at a confidence level of
2572 @var{value}.  If @code{ALPHA(@var{value})} is not specified, then the
2573 confidence level used is 0.05.
2574
2575 @node QUICK CLUSTER
2576 @section QUICK CLUSTER
2577 @vindex QUICK CLUSTER
2578
2579 @cindex K-means clustering
2580 @cindex clustering
2581
2582 @display
2583 QUICK CLUSTER @var{var_list}
2584       [/CRITERIA=CLUSTERS(@var{k}) [MXITER(@var{max_iter})] CONVERGE(@var{epsilon}) [NOINITIAL]]
2585       [/MISSING=@{EXCLUDE,INCLUDE@} @{LISTWISE, PAIRWISE@}]
2586       [/PRINT=@{INITIAL@} @{CLUSTER@}]
2587       [/SAVE[=[CLUSTER[(@var{membership_var})]] [DISTANCE[(@var{distance_var})]]]
2588 @end display
2589
2590 The @cmd{QUICK CLUSTER} command performs k-means clustering on the
2591 dataset.  This is useful when you wish to allocate cases into clusters
2592 of similar values and you already know the number of clusters.
2593
2594 The minimum specification is @samp{QUICK CLUSTER} followed by the names
2595 of the variables which contain the cluster data.  Normally you will also
2596 want to specify @subcmd{/CRITERIA=CLUSTERS(@var{k})} where @var{k} is the
2597 number of clusters.  If this is not specified, then @var{k} defaults to 2.
2598
2599 If you use @subcmd{/CRITERIA=NOINITIAL} then a naive algorithm to select
2600 the initial clusters is used.   This will provide for faster execution but
2601 less well separated initial clusters and hence possibly an inferior final
2602 result.
2603
2604
2605 @cmd{QUICK CLUSTER} uses an iterative algorithm to select the clusters centers.
2606 The subcommand  @subcmd{/CRITERIA=MXITER(@var{max_iter})} sets the maximum number of iterations.
2607 During classification, @pspp{} will continue iterating until until @var{max_iter}
2608 iterations have been done or the convergence criterion (see below) is fulfilled.
2609 The default value of @var{max_iter} is 2.
2610
2611 If however, you specify @subcmd{/CRITERIA=NOUPDATE} then after selecting the initial centers,
2612 no further update to the cluster centers is done.  In this case, @var{max_iter}, if specified.
2613 is ignored.
2614
2615 The subcommand  @subcmd{/CRITERIA=CONVERGE(@var{epsilon})} is used
2616 to set the convergence criterion.  The value of convergence criterion is  @var{epsilon}
2617 times the minimum distance between the @emph{initial} cluster centers.  Iteration stops when
2618 the  mean cluster distance between  one iteration and the next
2619 is less than the convergence criterion.  The default value of @var{epsilon} is zero.
2620
2621 The @subcmd{MISSING} subcommand determines the handling of missing variables.
2622 If @subcmd{INCLUDE} is set, then user-missing values are considered at their face
2623 value and not as missing values.
2624 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2625 values are excluded as well as system-missing values.
2626
2627 If @subcmd{LISTWISE} is set, then the entire case is excluded from the analysis
2628 whenever any of the clustering variables contains a missing value.
2629 If @subcmd{PAIRWISE} is set, then a case is considered missing only if all the
2630 clustering variables contain missing values.  Otherwise it is clustered
2631 on the basis of the non-missing values.
2632 The default is @subcmd{LISTWISE}.
2633
2634 The @subcmd{PRINT} subcommand requests additional output to be printed.
2635 If @subcmd{INITIAL} is set, then the initial cluster memberships will
2636 be printed.
2637 If @subcmd{CLUSTER} is set, the cluster memberships of the individual
2638 cases are displayed (potentially generating lengthy output).
2639
2640 You can specify the subcommand @subcmd{SAVE} to ask that each case's cluster membership
2641 and the euclidean distance between the case and its cluster center be saved to
2642 a new variable in the active dataset.   To save the cluster membership use the
2643 @subcmd{CLUSTER} keyword and to save the distance use the @subcmd{DISTANCE} keyword.
2644 Each keyword may optionally be followed by a variable name in parentheses to specify
2645 the new variable which is to contain the saved parameter.  If no variable name is specified,
2646 then PSPP will create one.
2647
2648 @node RANK
2649 @section RANK
2650
2651 @vindex RANK
2652 @display
2653 RANK
2654         [VARIABLES=] @var{var_list} [@{A,D@}] [BY @var{var_list}]
2655         /TIES=@{MEAN,LOW,HIGH,CONDENSE@}
2656         /FRACTION=@{BLOM,TUKEY,VW,RANKIT@}
2657         /PRINT[=@{YES,NO@}
2658         /MISSING=@{EXCLUDE,INCLUDE@}
2659
2660         /RANK [INTO @var{var_list}]
2661         /NTILES(k) [INTO @var{var_list}]
2662         /NORMAL [INTO @var{var_list}]
2663         /PERCENT [INTO @var{var_list}]
2664         /RFRACTION [INTO @var{var_list}]
2665         /PROPORTION [INTO @var{var_list}]
2666         /N [INTO @var{var_list}]
2667         /SAVAGE [INTO @var{var_list}]
2668 @end display
2669
2670 The @cmd{RANK} command ranks variables and stores the results into new
2671 variables.
2672
2673 The @subcmd{VARIABLES} subcommand, which is mandatory, specifies one or
2674 more variables whose values are to be ranked.
2675 After each variable, @samp{A} or @samp{D} may appear, indicating that
2676 the variable is to be ranked in ascending or descending order.
2677 Ascending is the default.
2678 If a @subcmd{BY} keyword appears, it should be followed by a list of variables
2679 which are to serve as group variables.
2680 In this case, the cases are gathered into groups, and ranks calculated
2681 for each group.
2682
2683 The @subcmd{TIES} subcommand specifies how tied values are to be treated.  The
2684 default is to take the mean value of all the tied cases.
2685
2686 The @subcmd{FRACTION} subcommand specifies how proportional ranks are to be
2687 calculated.  This only has any effect if @subcmd{NORMAL} or @subcmd{PROPORTIONAL} rank
2688 functions are requested.
2689
2690 The @subcmd{PRINT} subcommand may be used to specify that a summary of the rank
2691 variables created should appear in the output.
2692
2693 The function subcommands are @subcmd{RANK}, @subcmd{NTILES}, @subcmd{NORMAL}, @subcmd{PERCENT}, @subcmd{RFRACTION},
2694 @subcmd{PROPORTION} and @subcmd{SAVAGE}.  Any number of function subcommands may appear.
2695 If none are given, then the default is RANK.
2696 The @subcmd{NTILES} subcommand must take an integer specifying the number of
2697 partitions into which values should be ranked.
2698 Each subcommand may be followed by the @subcmd{INTO} keyword and a list of
2699 variables which are the variables to be created and receive the rank
2700 scores.  There may be as many variables specified as there are
2701 variables named on the @subcmd{VARIABLES} subcommand.  If fewer are specified,
2702 then the variable names are automatically created.
2703
2704 The @subcmd{MISSING} subcommand determines how user missing values are to be
2705 treated. A setting of @subcmd{EXCLUDE} means that variables whose values are
2706 user-missing are to be excluded from the rank scores. A setting of
2707 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
2708
2709 @include regression.texi
2710
2711
2712 @node RELIABILITY
2713 @section RELIABILITY
2714
2715 @vindex RELIABILITY
2716 @display
2717 RELIABILITY
2718         /VARIABLES=@var{var_list}
2719         /SCALE (@var{name}) = @{@var{var_list}, ALL@}
2720         /MODEL=@{ALPHA, SPLIT[(@var{n})]@}
2721         /SUMMARY=@{TOTAL,ALL@}
2722         /MISSING=@{EXCLUDE,INCLUDE@}
2723 @end display
2724
2725 @cindex Cronbach's Alpha
2726 The @cmd{RELIABILITY} command performs reliability analysis on the data.
2727
2728 The @subcmd{VARIABLES} subcommand is required. It determines the set of variables
2729 upon which analysis is to be performed.
2730
2731 The @subcmd{SCALE} subcommand determines the  variables for which
2732 reliability is to be calculated.  If @subcmd{SCALE} is omitted, then analysis for
2733 all variables named in the @subcmd{VARIABLES} subcommand are used.
2734 Optionally, the @var{name} parameter may be specified to set a string name
2735 for the scale.
2736
2737 The @subcmd{MODEL} subcommand determines the type of analysis. If @subcmd{ALPHA} is specified,
2738 then Cronbach's Alpha is calculated for the scale.  If the model is @subcmd{SPLIT},
2739 then the variables  are divided into 2 subsets.  An optional parameter
2740 @var{n} may be given, to specify how many variables to be in the first subset.
2741 If @var{n} is omitted, then it defaults to one half of the variables in the
2742 scale, or one half minus one if there are an odd number of variables.
2743 The default model is @subcmd{ALPHA}.
2744
2745 By default, any cases with user missing, or system missing values for
2746 any variables given in the @subcmd{VARIABLES} subcommand are omitted
2747 from the analysis.  The @subcmd{MISSING} subcommand determines whether
2748 user missing values are included or excluded in the analysis.
2749
2750 The @subcmd{SUMMARY} subcommand determines the type of summary analysis to be performed.
2751 Currently there is only one type: @subcmd{SUMMARY=TOTAL}, which displays per-item
2752 analysis tested against the totals.
2753
2754 @subsection Example - Reliability
2755
2756 Before analysing the results of a survey -- particularly for a multiple choice survey --
2757 it is desireable to know whether the respondents have considered their answers
2758 or simply provided random answers.
2759
2760 In the following example the survey results from the file @file{hotel.sav} are used.
2761 All five survey questions are included in the reliability analysis.
2762 However, before running the analysis, the data must be preprocessed.
2763 An examination of the survey questions reveals that two questions, @i{viz:} v3 and v5
2764 are negatively worded, whereas the others are positively worded.
2765 All questions must be based upon the same scale for the analysis to be meaningful.
2766 One could use the @cmd{RECODE} command (@pxref{RECODE}), however a simpler way is
2767 to use @cmd{COMPUTE} (@pxref{COMPUTE}) and this is what is done in @ref{reliability:ex}.
2768
2769 @float Example, reliability:ex
2770 @psppsyntax {reliability.sps}
2771 @caption {Investigating the reliability of survey responses}
2772 @end float
2773
2774 In this case, all variables in the data set are used.  So we can use the special
2775 keyword @samp{ALL} (@pxref{BNF}).
2776
2777 @float Screenshot, reliability:src
2778 @psppimage {reliability}
2779 @caption {Reliability dialog box with all variables selected}
2780 @end float
2781
2782 @ref{reliability:res} shows that Cronbach's Alpha is 0.11  which is a value normally considered too
2783 low to indicate consistency within the data.  This is possibly due to the small number of
2784 survey questions.  The survey should be redesigned before serious use of the results are
2785 applied.
2786
2787 @float Result, reliability:res
2788 @psppoutput {reliability}
2789 @caption {The results of the reliability command on @file{hotel.sav}}
2790 @end float
2791
2792
2793 @node ROC
2794 @section ROC
2795
2796 @vindex ROC
2797 @cindex Receiver Operating Characteristic
2798 @cindex Area under curve
2799
2800 @display
2801 ROC     @var{var_list} BY @var{state_var} (@var{state_value})
2802         /PLOT = @{ CURVE [(REFERENCE)], NONE @}
2803         /PRINT = [ SE ] [ COORDINATES ]
2804         /CRITERIA = [ CUTOFF(@{INCLUDE,EXCLUDE@}) ]
2805           [ TESTPOS (@{LARGE,SMALL@}) ]
2806           [ CI (@var{confidence}) ]
2807           [ DISTRIBUTION (@{FREE, NEGEXPO @}) ]
2808         /MISSING=@{EXCLUDE,INCLUDE@}
2809 @end display
2810
2811
2812 The @cmd{ROC} command is used to plot the receiver operating characteristic curve
2813 of a dataset, and to estimate the area under the curve.
2814 This is useful for analysing the efficacy of a variable as a predictor of a state of nature.
2815
2816 The mandatory @var{var_list} is the list of predictor variables.
2817 The variable @var{state_var} is the variable whose values represent the actual states,
2818 and @var{state_value} is the value of this variable which represents the positive state.
2819
2820 The optional subcommand @subcmd{PLOT} is used to determine if and how the @subcmd{ROC} curve is drawn.
2821 The keyword @subcmd{CURVE} means that the @subcmd{ROC} curve should be drawn, and the optional keyword @subcmd{REFERENCE},
2822 which should be enclosed in parentheses, says that the diagonal reference line should be drawn.
2823 If the keyword @subcmd{NONE} is given, then no @subcmd{ROC} curve is drawn.
2824 By default, the curve is drawn with no reference line.
2825
2826 The optional subcommand @subcmd{PRINT} determines which additional
2827 tables should be printed.  Two additional tables are available.  The
2828 @subcmd{SE} keyword says that standard error of the area under the
2829 curve should be printed as well as the area itself.  In addition, a
2830 p-value for the null hypothesis that the area under the curve equals
2831 0.5 is printed.   The @subcmd{COORDINATES} keyword says that a
2832 table of coordinates of the @subcmd{ROC} curve should be printed.
2833
2834 The @subcmd{CRITERIA} subcommand has four optional parameters:
2835 @itemize @bullet
2836 @item The @subcmd{TESTPOS} parameter may be @subcmd{LARGE} or @subcmd{SMALL}.
2837 @subcmd{LARGE} is the default, and says that larger values in the predictor variables are to be
2838 considered positive.  @subcmd{SMALL} indicates that smaller values should be considered positive.
2839
2840 @item The @subcmd{CI} parameter specifies the confidence interval that should be printed.
2841 It has no effect if the @subcmd{SE} keyword in the @subcmd{PRINT} subcommand has not been given.
2842
2843 @item The @subcmd{DISTRIBUTION} parameter determines the method to be used when estimating the area
2844 under the curve.
2845 There are two possibilities, @i{viz}: @subcmd{FREE} and @subcmd{NEGEXPO}.
2846 The @subcmd{FREE} method uses a non-parametric estimate, and the @subcmd{NEGEXPO} method a bi-negative
2847 exponential distribution estimate.
2848 The @subcmd{NEGEXPO} method should only be used when the number of positive actual states is
2849 equal to the number of negative actual states.
2850 The default is @subcmd{FREE}.
2851
2852 @item The @subcmd{CUTOFF} parameter is for compatibility and is ignored.
2853 @end itemize
2854
2855 The @subcmd{MISSING} subcommand determines whether user missing values are to
2856 be included or excluded in the analysis.  The default behaviour is to
2857 exclude them.
2858 Cases are excluded on a listwise basis; if any of the variables in @var{var_list}
2859 or if the variable @var{state_var} is missing, then the entire case is
2860 excluded.
2861
2862 @c  LocalWords:  subcmd subcommand