documentation
[pspp] / doc / statistics.texi
1 @c PSPP - a program for statistical analysis.
2 @c Copyright (C) 2017, 2020 Free Software Foundation, Inc.
3 @c Permission is granted to copy, distribute and/or modify this document
4 @c under the terms of the GNU Free Documentation License, Version 1.3
5 @c or any later version published by the Free Software Foundation;
6 @c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
7 @c A copy of the license is included in the section entitled "GNU
8 @c Free Documentation License".
9 @c
10 @node Statistics
11 @chapter Statistics
12
13 This chapter documents the statistical procedures that @pspp{} supports so
14 far.
15
16 @menu
17 * DESCRIPTIVES::                Descriptive statistics.
18 * FREQUENCIES::                 Frequency tables.
19 * EXAMINE::                     Testing data for normality.
20 * GRAPH::                       Plot data.
21 * CORRELATIONS::                Correlation tables.
22 * CROSSTABS::                   Crosstabulation tables.
23 * CTABLES::                     Custom tables.
24 * FACTOR::                      Factor analysis and Principal Components analysis.
25 * GLM::                         Univariate Linear Models.
26 * LOGISTIC REGRESSION::         Bivariate Logistic Regression.
27 * MEANS::                       Average values and other statistics.
28 * NPAR TESTS::                  Nonparametric tests.
29 * T-TEST::                      Test hypotheses about means.
30 * ONEWAY::                      One way analysis of variance.
31 * QUICK CLUSTER::               K-Means clustering.
32 * RANK::                        Compute rank scores.
33 * RELIABILITY::                 Reliability analysis.
34 * ROC::                         Receiver Operating Characteristic.
35 @end menu
36
37 @node DESCRIPTIVES
38 @section DESCRIPTIVES
39
40 @vindex DESCRIPTIVES
41 @display
42 DESCRIPTIVES
43         /VARIABLES=@var{var_list}
44         /MISSING=@{VARIABLE,LISTWISE@} @{INCLUDE,NOINCLUDE@}
45         /FORMAT=@{LABELS,NOLABELS@} @{NOINDEX,INDEX@} @{LINE,SERIAL@}
46         /SAVE
47         /STATISTICS=@{ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
48                      SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
49                      SESKEWNESS,SEKURTOSIS@}
50         /SORT=@{NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
51                RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME@}
52               @{A,D@}
53 @end display
54
55 The @cmd{DESCRIPTIVES} procedure reads the active dataset and outputs
56 linear descriptive statistics requested by the user.  In addition, it can optionally
57 compute Z-scores.
58
59 The @subcmd{VARIABLES} subcommand, which is required, specifies the list of
60 variables to be analyzed.  Keyword @subcmd{VARIABLES} is optional.
61
62 All other subcommands are optional:
63
64 The @subcmd{MISSING} subcommand determines the handling of missing variables.  If
65 @subcmd{INCLUDE} is set, then user-missing values are included in the
66 calculations.  If @subcmd{NOINCLUDE} is set, which is the default, user-missing
67 values are excluded.  If @subcmd{VARIABLE} is set, then missing values are
68 excluded on a variable by variable basis; if @subcmd{LISTWISE} is set, then
69 the entire case is excluded whenever any value in that case has a
70 system-missing or, if @subcmd{INCLUDE} is set, user-missing value.
71
72 The @subcmd{FORMAT} subcommand has no effect.  It is accepted for
73 backward compatibility.
74
75 The @subcmd{SAVE} subcommand causes @cmd{DESCRIPTIVES} to calculate Z scores for all
76 the specified variables.  The Z scores are saved to new variables.
77 Variable names are generated by trying first the original variable name
78 with Z prepended and truncated to a maximum of 8 characters, then the
79 names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00 through
80 ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence.  In addition, Z score
81 variable names can be specified explicitly on @subcmd{VARIABLES} in the variable
82 list by enclosing them in parentheses after each variable.
83 When Z scores are calculated, @pspp{} ignores @cmd{TEMPORARY},
84 treating temporary transformations as permanent.
85
86 The @subcmd{STATISTICS} subcommand specifies the statistics to be displayed:
87
88 @table @code
89 @item @subcmd{ALL}
90 All of the statistics below.
91 @item @subcmd{MEAN}
92 Arithmetic mean.
93 @item @subcmd{SEMEAN}
94 Standard error of the mean.
95 @item @subcmd{STDDEV}
96 Standard deviation.
97 @item @subcmd{VARIANCE}
98 Variance.
99 @item @subcmd{KURTOSIS}
100 Kurtosis and standard error of the kurtosis.
101 @item @subcmd{SKEWNESS}
102 Skewness and standard error of the skewness.
103 @item @subcmd{RANGE}
104 Range.
105 @item MINIMUM
106 Minimum value.
107 @item MAXIMUM
108 Maximum value.
109 @item SUM
110 Sum.
111 @item DEFAULT
112 Mean, standard deviation of the mean, minimum, maximum.
113 @item SEKURTOSIS
114 Standard error of the kurtosis.
115 @item SESKEWNESS
116 Standard error of the skewness.
117 @end table
118
119 The @subcmd{SORT} subcommand specifies how the statistics should be sorted.  Most
120 of the possible values should be self-explanatory.  @subcmd{NAME} causes the
121 statistics to be sorted by name.  By default, the statistics are listed
122 in the order that they are specified on the @subcmd{VARIABLES} subcommand.
123 The @subcmd{A} and @subcmd{D} settings request an ascending or descending
124 sort order, respectively.
125
126 @subsection Descriptives Example
127
128 The @file{physiology.sav} file contains various physiological data for a sample
129 of persons.   Running the @cmd{DESCRIPTIVES} command on the variables @exvar{height}
130 and @exvar{temperature} with the default options allows one to see simple linear
131 statistics for these two variables.  In @ref{descriptives:ex}, these variables
132 are specfied on the @subcmd{VARIABLES} subcommand and the @subcmd{SAVE} option
133 has been used, to request that Z scores be calculated.
134
135 After the command has completed, this example runs @cmd{DESCRIPTIVES} again, this
136 time on the @exvar{zheight} and @exvar{ztemperature} variables,
137 which are the two normalized (Z-score) variables generated by the
138 first @cmd{DESCRIPTIVES} command.
139
140 @float Example, descriptives:ex
141 @psppsyntax {descriptives.sps}
142 @caption {Running two @cmd{DESCRIPTIVES} commands, one with the @subcmd{SAVE} subcommand}
143 @end float
144
145 @float Screenshot, descriptives:scr
146 @psppimage {descriptives}
147 @caption {The Descriptives dialog box with two variables and Z-Scores option selected}
148 @end float
149
150 In @ref{descriptives:res}, we can see that there are 40 valid data for each of the variables
151 and no missing values.   The mean average of the height and temperature is 16677.12
152 and 37.02 respectively.  The descriptive statistics for temperature seem reasonable.
153 However there is a very high standard deviation for @exvar{height} and a suspiciously
154 low minimum.  This is due to a data entry error in the
155 data (@pxref{Identifying incorrect data}).
156
157 In the second Descriptive Statistics command, one can see that the mean and standard
158 deviation of both Z score variables is 0 and 1 respectively.  All Z score statistics
159 should have these properties since they are normalized versions of the original scores.
160
161 @float Result, descriptives:res
162 @psppoutput {descriptives}
163 @caption {Descriptives statistics including two normalized variables (Z-scores)}
164 @end float
165
166 @node FREQUENCIES
167 @section FREQUENCIES
168
169 @vindex FREQUENCIES
170 @display
171 FREQUENCIES
172         /VARIABLES=@var{var_list}
173         /FORMAT=@{TABLE,NOTABLE,LIMIT(@var{limit})@}
174                 @{AVALUE,DVALUE,AFREQ,DFREQ@}
175         /MISSING=@{EXCLUDE,INCLUDE@}
176         /STATISTICS=@{DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,
177                      KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
178                      SESKEWNESS,SEKURTOSIS,ALL,NONE@}
179         /NTILES=@var{ntiles}
180         /PERCENTILES=percent@dots{}
181         /HISTOGRAM=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
182                    [@{FREQ[(@var{y_max})],PERCENT[(@var{y_max})]@}] [@{NONORMAL,NORMAL@}]
183         /PIECHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
184                   [@{FREQ,PERCENT@}] [@{NOMISSING,MISSING@}]
185         /BARCHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
186                   [@{FREQ,PERCENT@}]
187         /ORDER=@{ANALYSIS,VARIABLE@}
188
189
190 (These options are not currently implemented.)
191         /HBAR=@dots{}
192         /GROUPED=@dots{}
193 @end display
194
195 The @cmd{FREQUENCIES} procedure outputs frequency tables for specified
196 variables.
197 @cmd{FREQUENCIES} can also calculate and display descriptive statistics
198 (including median and mode) and percentiles, and various graphical representations
199 of the frequency distribution.
200
201 The @subcmd{VARIABLES} subcommand is the only required subcommand.  Specify the
202 variables to be analyzed.
203
204 The @subcmd{FORMAT} subcommand controls the output format.  It has several
205 possible settings:
206
207 @itemize @subcmd{}
208 @item
209 @subcmd{TABLE}, the default, causes a frequency table to be output for every
210 variable specified.  @subcmd{NOTABLE} prevents them from being output.  @subcmd{LIMIT}
211 with a numeric argument causes them to be output except when there are
212 more than the specified number of values in the table.
213
214 @item
215 Normally frequency tables are sorted in ascending order by value.  This
216 is @subcmd{AVALUE}.  @subcmd{DVALUE} tables are sorted in descending order by value.
217 @subcmd{AFREQ} and @subcmd{DFREQ} tables are sorted in ascending and descending order,
218 respectively, by frequency count.
219 @end itemize
220
221 The @subcmd{MISSING} subcommand controls the handling of user-missing values.
222 When @subcmd{EXCLUDE}, the default, is set, user-missing values are not included
223 in frequency tables or statistics.  When @subcmd{INCLUDE} is set, user-missing
224 are included.  System-missing values are never included in statistics,
225 but are listed in frequency tables.
226
227 The available @subcmd{STATISTICS} are the same as available
228 in @cmd{DESCRIPTIVES} (@pxref{DESCRIPTIVES}), with the addition
229 of @subcmd{MEDIAN}, the data's median
230 value, and MODE, the mode.  (If there are multiple modes, the smallest
231 value is reported.)  By default, the mean, standard deviation of the
232 mean, minimum, and maximum are reported for each variable.
233
234 @cindex percentiles
235 @subcmd{PERCENTILES} causes the specified percentiles to be reported.
236 The percentiles should  be presented at a list of numbers between 0
237 and 100 inclusive.
238 The @subcmd{NTILES} subcommand causes the percentiles to be reported at the
239 boundaries of the data set divided into the specified number of ranges.
240 For instance, @subcmd{/NTILES=4} would cause quartiles to be reported.
241
242 @cindex histogram
243 The @subcmd{HISTOGRAM} subcommand causes the output to include a histogram for
244 each specified numeric variable.  The X axis by default ranges from
245 the minimum to the maximum value observed in the data, but the @subcmd{MINIMUM}
246 and @subcmd{MAXIMUM} keywords can set an explicit range.
247 @footnote{The number of
248 bins is chosen according to the Freedman-Diaconis rule:
249 @math{2 \times IQR(x)n^{-1/3}}, where @math{IQR(x)} is the interquartile range of @math{x}
250 and @math{n} is the number of samples.    Note that
251 @cmd{EXAMINE} uses a different algorithm to determine bin sizes.}
252 Histograms are not created for string variables.
253
254 Specify @subcmd{NORMAL} to superimpose a normal curve on the
255 histogram.
256
257 @cindex piechart
258 The @subcmd{PIECHART} subcommand adds a pie chart for each variable to the data.  Each
259 slice represents one value, with the size of the slice proportional to
260 the value's frequency.  By default, all non-missing values are given
261 slices.
262 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to limit the
263 displayed slices to a given range of values.
264 The keyword @subcmd{NOMISSING} causes missing values to be omitted from the
265 piechart.  This is the default.
266 If instead, @subcmd{MISSING} is specified, then the pie chart includes
267 a single slice representing all system missing and user-missing cases.
268
269 @cindex bar chart
270 The @subcmd{BARCHART} subcommand produces a bar chart for each variable.
271 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to omit
272 categories whose counts which lie outside the specified limits.
273 The @subcmd{FREQ} option (default) causes the ordinate to display the frequency
274 of each category, whereas the @subcmd{PERCENT} option displays relative
275 percentages.
276
277 The @subcmd{FREQ} and @subcmd{PERCENT} options on @subcmd{HISTOGRAM} and
278 @subcmd{PIECHART} are accepted but not currently honoured.
279
280 The @subcmd{ORDER} subcommand is accepted but ignored.
281
282 @subsection Frequencies Example
283
284 @ref{frequencies:ex} runs a frequency analysis on the @exvar{sex}
285 and @exvar{occupation} variables from the @file{personnel.sav} file.
286 This is useful to get an general idea of the way in which these nominal
287 variables are distributed.
288
289 @float Example, frequencies:ex
290 @psppsyntax {frequencies.sps}
291 @caption {Running frequencies on the @exvar{sex} and @exvar{occupation} variables}
292 @end float
293
294 If you are using the graphic user interface, the dialog box is set up such that
295 by default, several statistics are calculated.   Some are not particularly useful
296 for categorical variables, so you may want to disable those.
297
298 @float Screenshot, frequencies:scr
299 @psppimage {frequencies}
300 @caption {The frequencies dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
301 @end float
302
303 From @ref{frequencies:res} it is evident that there are 33 males, 21 females and
304 2 persons for whom their sex has not been entered.
305
306 One can also see how many of each occupation there are in the data.
307 When dealing with string variables used as nominal values, running a frequency
308 analysis is useful to detect data input entries.  Notice that
309 one @exvar{occupation} value has been mistyped as ``Scrientist''.  This entry should
310 be corrected, or marked as missing before using the data.
311
312 @float Result, frequencies:res
313 @psppoutput {frequencies}
314 @caption {The relative frequencies of @exvar{sex} and @exvar{occupation}}
315 @end float
316
317 @node EXAMINE
318 @section EXAMINE
319
320 @vindex EXAMINE
321 @cindex Exploratory data analysis
322 @cindex normality, testing
323
324 @display
325 EXAMINE
326         VARIABLES= @var{var1} [@var{var2}] @dots{} [@var{varN}]
327            [BY @var{factor1} [BY @var{subfactor1}]
328              [ @var{factor2} [BY @var{subfactor2}]]
329              @dots{}
330              [ @var{factor3} [BY @var{subfactor3}]]
331             ]
332         /STATISTICS=@{DESCRIPTIVES, EXTREME[(@var{n})], ALL, NONE@}
333         /PLOT=@{BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL[(@var{t})], ALL, NONE@}
334         /CINTERVAL @var{p}
335         /COMPARE=@{GROUPS,VARIABLES@}
336         /ID=@var{identity_variable}
337         /@{TOTAL,NOTOTAL@}
338         /PERCENTILE=[@var{percentiles}]=@{HAVERAGE, WAVERAGE, ROUND, AEMPIRICAL, EMPIRICAL @}
339         /MISSING=@{LISTWISE, PAIRWISE@} [@{EXCLUDE, INCLUDE@}]
340                 [@{NOREPORT,REPORT@}]
341
342 @end display
343
344 The @cmd{EXAMINE} command is used to perform exploratory data analysis.
345 In particular, it is useful for testing how closely a distribution follows a
346 normal distribution, and for finding outliers and extreme values.
347
348 The @subcmd{VARIABLES} subcommand is mandatory.
349 It specifies the dependent variables and optionally variables to use as
350 factors for the analysis.
351 Variables listed before the first @subcmd{BY} keyword (if any) are the
352 dependent variables.
353 The dependent variables may optionally be followed by a list of
354 factors which tell @pspp{} how to break down the analysis for each
355 dependent variable.
356
357 Following the dependent variables, factors may be specified.
358 The factors (if desired) should be preceded by a single @subcmd{BY} keyword.
359 The format for each factor is
360 @display
361 @var{factorvar} [BY @var{subfactorvar}].
362 @end display
363 Each unique combination of the values of  @var{factorvar} and
364 @var{subfactorvar} divide the dataset into @dfn{cells}.
365 Statistics are calculated for each cell
366 and for the entire dataset (unless @subcmd{NOTOTAL} is given).
367
368 The @subcmd{STATISTICS} subcommand specifies which statistics to show.
369 @subcmd{DESCRIPTIVES} produces a table showing some parametric and
370 non-parametrics statistics.
371 @subcmd{EXTREME} produces a table showing the extremities of each cell.
372 A number in parentheses, @var{n} determines
373 how many upper and lower extremities to show.
374 The default number is 5.
375
376 The subcommands @subcmd{TOTAL} and @subcmd{NOTOTAL} are mutually exclusive.
377 If @subcmd{TOTAL} appears, then statistics for the entire dataset
378 as well as for each cell are produced.
379 If @subcmd{NOTOTAL} appears, then statistics are produced only for the cells
380 (unless no factor variables have been given).
381 These subcommands have no effect if there have  been no factor variables
382 specified.
383
384 @cindex boxplot
385 @cindex histogram
386 @cindex npplot
387 @cindex spreadlevel plot
388 The @subcmd{PLOT} subcommand specifies which plots are to be produced if any.
389 Available plots are @subcmd{HISTOGRAM}, @subcmd{NPPLOT},  @subcmd{BOXPLOT} and
390 @subcmd{SPREADLEVEL}.
391 The first three can be used to visualise how closely each cell conforms to a
392 normal distribution, whilst the spread vs.@: level plot can be useful to visualise
393 how the variance differs between factors.
394 Boxplots show you the outliers and extreme values.
395 @footnote{@subcmd{HISTOGRAM} uses Sturges' rule to determine the number of
396 bins, as approximately @math{1 + \log2(n)}, where @math{n} is the number of samples.
397 Note that @cmd{FREQUENCIES} uses a different algorithm to find the bin size.}
398
399 The @subcmd{SPREADLEVEL} plot displays the interquartile range versus the
400 median.  It takes an optional parameter @var{t}, which specifies how the data
401 should be transformed prior to plotting.
402 The given value @var{t} is a power to which the data are raised.  For example, if
403 @var{t} is given as 2, then the square of the data is used.
404 Zero, however is a special value.  If @var{t} is 0 or
405 is omitted, then data are transformed by taking its natural logarithm instead of
406 raising to the power of @var{t}.
407
408 @cindex Shapiro-Wilk
409 When one or more plots are requested, @subcmd{EXAMINE} also performs the
410 Shapiro-Wilk test for each category.
411 There are however a number of provisos:
412 @itemize
413 @item All weight values must be integer.
414 @item The cumulative weight value must be in the range [3, 5000]
415 @end itemize
416
417 The @subcmd{COMPARE} subcommand is only relevant if producing boxplots, and it is only
418 useful there is more than one dependent variable and at least one factor.
419 If
420 @subcmd{/COMPARE=GROUPS} is specified, then one plot per dependent variable is produced,
421 each of which contain boxplots for all the cells.
422 If @subcmd{/COMPARE=VARIABLES} is specified, then one plot per cell is produced,
423 each containing one boxplot per dependent variable.
424 If the @subcmd{/COMPARE} subcommand is omitted, then @pspp{} behaves as if
425 @subcmd{/COMPARE=GROUPS} were given.
426
427 The @subcmd{ID} subcommand is relevant only if @subcmd{/PLOT=BOXPLOT} or
428 @subcmd{/STATISTICS=EXTREME} has been given.
429 If given, it should provide the name of a variable which is to be used
430 to labels extreme values and outliers.
431 Numeric or string variables are permissible.
432 If the @subcmd{ID} subcommand is not given, then the case number is used for
433 labelling.
434
435 The @subcmd{CINTERVAL} subcommand specifies the confidence interval to use in
436 calculation of the descriptives command.  The default is 95%.
437
438 @cindex percentiles
439 The @subcmd{PERCENTILES} subcommand specifies which percentiles are to be calculated,
440 and which algorithm to use for calculating them.  The default is to
441 calculate the 5, 10, 25, 50, 75, 90, 95 percentiles using the
442 @subcmd{HAVERAGE} algorithm.
443
444 The @subcmd{TOTAL} and @subcmd{NOTOTAL} subcommands are mutually exclusive.  If @subcmd{NOTOTAL}
445 is given and factors have been specified in the @subcmd{VARIABLES} subcommand,
446 then statistics for the unfactored dependent variables are
447 produced in addition to the factored variables.  If there are no
448 factors specified then @subcmd{TOTAL} and @subcmd{NOTOTAL} have no effect.
449
450
451 The following example generates descriptive statistics and histograms for
452 two variables @var{score1} and @var{score2}.
453 Two factors are given, @i{viz}: @var{gender} and @var{gender} BY @var{culture}.
454 Therefore, the descriptives and histograms are generated for each
455 distinct  value
456 of @var{gender} @emph{and} for each distinct combination of the values
457 of @var{gender} and @var{race}.
458 Since the @subcmd{NOTOTAL} keyword is given, statistics and histograms for
459 @var{score1} and @var{score2} covering the  whole dataset are not produced.
460 @example
461 EXAMINE @var{score1} @var{score2} BY
462         @var{gender}
463         @var{gender} BY @var{culture}
464         /STATISTICS = DESCRIPTIVES
465         /PLOT = HISTOGRAM
466         /NOTOTAL.
467 @end example
468
469 Here is a second example showing how the @cmd{examine} command can be used to find extremities.
470 @example
471 EXAMINE @var{height} @var{weight} BY
472         @var{gender}
473         /STATISTICS = EXTREME (3)
474         /PLOT = BOXPLOT
475         /COMPARE = GROUPS
476         /ID = @var{name}.
477 @end example
478 In this example, we look at the height and weight of a sample of individuals and
479 how they differ between male and female.
480 A table showing the 3 largest and the 3 smallest values of @exvar{height} and
481 @exvar{weight} for each gender, and for the whole dataset as are shown.
482 In addition, the @subcmd{/PLOT} subcommand requests boxplots.
483 Because @subcmd{/COMPARE = GROUPS} was specified, boxplots for male and female are
484 shown in juxtaposed in the same graphic, allowing us to easily see the difference between
485 the genders.
486 Since the variable @var{name} was specified on the @subcmd{ID} subcommand,
487 values of the @var{name} variable are used to label the extreme values.
488
489 @strong{Warning!}
490 If you specify many dependent variables or factor variables
491 for which there are many distinct values, then @cmd{EXAMINE} will produce a very
492 large quantity of output.
493
494 @node GRAPH
495 @section GRAPH
496
497 @vindex GRAPH
498 @cindex Exploratory data analysis
499 @cindex normality, testing
500
501 @display
502 GRAPH
503         /HISTOGRAM [(NORMAL)]= @var{var}
504         /SCATTERPLOT [(BIVARIATE)] = @var{var1} WITH @var{var2} [BY @var{var3}]
505         /BAR = @{@var{summary-function}(@var{var1}) | @var{count-function}@} BY @var{var2} [BY @var{var3}]
506         [ /MISSING=@{LISTWISE, VARIABLE@} [@{EXCLUDE, INCLUDE@}] ]
507                 [@{NOREPORT,REPORT@}]
508
509 @end display
510
511 The @cmd{GRAPH} command produces graphical plots of data. Only one of the subcommands
512 @subcmd{HISTOGRAM}, @subcmd{BAR} or @subcmd{SCATTERPLOT} can be specified, @i{i.e.} only one plot
513 can be produced per call of @cmd{GRAPH}. The @subcmd{MISSING} is optional.
514
515 @menu
516 * SCATTERPLOT::             Cartesian Plots
517 * HISTOGRAM::               Histograms
518 * BAR CHART::               Bar Charts
519 @end menu
520
521 @node SCATTERPLOT
522 @subsection Scatterplot
523 @cindex scatterplot
524
525 The subcommand @subcmd{SCATTERPLOT} produces an xy plot of the
526 data.
527 @cmd{GRAPH} uses the third variable @var{var3}, if specified, to determine
528 the colours and/or markers for the plot.
529 The following is an example for producing a scatterplot.
530
531 @example
532 GRAPH
533         /SCATTERPLOT = @var{height} WITH @var{weight} BY @var{gender}.
534 @end example
535
536 This example produces a scatterplot where @var{height} is plotted versus @var{weight}. Depending
537 on the value of the @var{gender} variable, the colour of the datapoint is different. With
538 this plot it is possible to analyze gender differences for @var{height} versus @var{weight} relation.
539
540 @node HISTOGRAM
541 @subsection Histogram
542 @cindex histogram
543
544 The subcommand @subcmd{HISTOGRAM} produces a histogram. Only one variable is allowed for
545 the histogram plot.
546 The keyword @subcmd{NORMAL} may be specified in parentheses, to indicate that the ideal normal curve
547 should be superimposed over the histogram.
548 For an alternative method to produce histograms @pxref{EXAMINE}. The
549 following example produces a histogram plot for the variable @var{weight}.
550
551 @example
552 GRAPH
553         /HISTOGRAM = @var{weight}.
554 @end example
555
556 @node BAR CHART
557 @subsection Bar Chart
558 @cindex bar chart
559
560 The subcommand @subcmd{BAR} produces a bar chart.
561 This subcommand requires that a @var{count-function} be specified (with no arguments) or a @var{summary-function} with a variable @var{var1} in parentheses.
562 Following the summary or count function, the keyword @subcmd{BY} should be specified and then a catagorical variable, @var{var2}.
563 The values of the variable @var{var2} determine the labels of the bars to be plotted.
564 Optionally a second categorical variable @var{var3} may be specified in which case a clustered (grouped) bar chart is produced.
565
566 Valid count functions are
567 @table @subcmd
568 @item COUNT
569 The weighted counts of the cases in each category.
570 @item PCT
571 The weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
572 @item CUFREQ
573 The cumulative weighted counts of the cases in each category.
574 @item CUPCT
575 The cumulative weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
576 @end table
577
578 The summary function is applied to @var{var1} across all cases in each category.
579 The recognised summary functions are:
580 @table @subcmd
581 @item SUM
582 The sum.
583 @item MEAN
584 The arithmetic mean.
585 @item MAXIMUM
586 The maximum value.
587 @item MINIMUM
588 The minimum value.
589 @end table
590
591 The following examples assume a dataset which is the results of a survey.
592 Each respondent has indicated annual income, their sex and city of residence.
593 One could create a bar chart showing how the mean income varies between of residents of different cities, thus:
594 @example
595 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city}.
596 @end example
597
598 This can be extended to also indicate how income in each city differs between the sexes.
599 @example
600 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city} BY @var{sex}.
601 @end example
602
603 One might also want to see how many respondents there are from each city.  This can be achieved as follows:
604 @example
605 GRAPH  /BAR  = COUNT BY @var{city}.
606 @end example
607
608 Bar charts can also be produced using the @ref{FREQUENCIES} and @ref{CROSSTABS} commands.
609
610 @node CORRELATIONS
611 @section CORRELATIONS
612
613 @vindex CORRELATIONS
614 @display
615 CORRELATIONS
616      /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
617      [
618       .
619       .
620       .
621       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
622       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
623      ]
624
625      [ /PRINT=@{TWOTAIL, ONETAIL@} @{SIG, NOSIG@} ]
626      [ /STATISTICS=DESCRIPTIVES XPROD ALL]
627      [ /MISSING=@{PAIRWISE, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
628 @end display
629
630 @cindex correlation
631 The @cmd{CORRELATIONS} procedure produces tables of the Pearson correlation coefficient
632 for a set of variables.  The significance of the coefficients are also given.
633
634 At least one @subcmd{VARIABLES} subcommand is required. If you specify the @subcmd{WITH}
635 keyword, then a non-square correlation table is produced.
636 The variables preceding @subcmd{WITH}, are used as the rows of the table,
637 and the variables following @subcmd{WITH} are used as the columns of the table.
638 If no @subcmd{WITH} subcommand is specified, then @cmd{CORRELATIONS} produces a
639 square, symmetrical table using all variables.
640
641 The @cmd{MISSING} subcommand determines the handling of missing variables.
642 If @subcmd{INCLUDE} is set, then user-missing values are included in the
643 calculations, but system-missing values are not.
644 If @subcmd{EXCLUDE} is set, which is the default, user-missing
645 values are excluded as well as system-missing values.
646
647 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
648 whenever any variable  specified in any @cmd{/VARIABLES} subcommand
649 contains a missing value.
650 If @subcmd{PAIRWISE} is set, then a case is considered missing only if either of the
651 values  for the particular coefficient are missing.
652 The default is @subcmd{PAIRWISE}.
653
654 The @subcmd{PRINT} subcommand is used to control how the reported significance values are printed.
655 If the @subcmd{TWOTAIL} option is used, then a two-tailed test of significance is
656 printed.  If the @subcmd{ONETAIL} option is given, then a one-tailed test is used.
657 The default is @subcmd{TWOTAIL}.
658
659 If the @subcmd{NOSIG} option is specified, then correlation coefficients with significance less than
660 0.05 are highlighted.
661 If @subcmd{SIG} is specified, then no highlighting is performed.  This is the default.
662
663 @cindex covariance
664 The @subcmd{STATISTICS} subcommand requests additional statistics to be displayed.  The keyword
665 @subcmd{DESCRIPTIVES} requests that the mean, number of non-missing cases, and the non-biased
666 estimator of the standard deviation are displayed.
667 These statistics are displayed in a separated table, for all the variables listed
668 in any @subcmd{/VARIABLES} subcommand.
669 The @subcmd{XPROD} keyword requests cross-product deviations and covariance estimators to
670 be displayed for each pair of variables.
671 The keyword @subcmd{ALL} is the union of @subcmd{DESCRIPTIVES} and @subcmd{XPROD}.
672
673 @node CROSSTABS
674 @section CROSSTABS
675
676 @vindex CROSSTABS
677 @display
678 CROSSTABS
679         /TABLES=@var{var_list} BY @var{var_list} [BY @var{var_list}]@dots{}
680         /MISSING=@{TABLE,INCLUDE,REPORT@}
681         /FORMAT=@{TABLES,NOTABLES@}
682                 @{AVALUE,DVALUE@}
683         /CELLS=@{COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
684                 ASRESIDUAL,ALL,NONE@}
685         /COUNT=@{ASIS,CASE,CELL@}
686                @{ROUND,TRUNCATE@}
687         /STATISTICS=@{CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
688                      KAPPA,ETA,CORR,ALL,NONE@}
689         /BARCHART
690
691 (Integer mode.)
692         /VARIABLES=@var{var_list} (@var{low},@var{high})@dots{}
693 @end display
694
695 The @cmd{CROSSTABS} procedure displays crosstabulation
696 tables requested by the user.  It can calculate several statistics for
697 each cell in the crosstabulation tables.  In addition, a number of
698 statistics can be calculated for each table itself.
699
700 The @subcmd{TABLES} subcommand is used to specify the tables to be reported.  Any
701 number of dimensions is permitted, and any number of variables per
702 dimension is allowed.  The @subcmd{TABLES} subcommand may be repeated as many
703 times as needed.  This is the only required subcommand in @dfn{general
704 mode}.
705
706 Occasionally, one may want to invoke a special mode called @dfn{integer
707 mode}.  Normally, in general mode, @pspp{} automatically determines
708 what values occur in the data.  In integer mode, the user specifies the
709 range of values that the data assumes.  To invoke this mode, specify the
710 @subcmd{VARIABLES} subcommand, giving a range of data values in parentheses for
711 each variable to be used on the @subcmd{TABLES} subcommand.  Data values inside
712 the range are truncated to the nearest integer, then assigned to that
713 value.  If values occur outside this range, they are discarded.  When it
714 is present, the @subcmd{VARIABLES} subcommand must precede the @subcmd{TABLES}
715 subcommand.
716
717 In general mode, numeric and string variables may be specified on
718 TABLES.  In integer mode, only numeric variables are allowed.
719
720 The @subcmd{MISSING} subcommand determines the handling of user-missing values.
721 When set to @subcmd{TABLE}, the default, missing values are dropped on a table by
722 table basis.  When set to @subcmd{INCLUDE}, user-missing values are included in
723 tables and statistics.  When set to @subcmd{REPORT}, which is allowed only in
724 integer mode, user-missing values are included in tables but marked with
725 a footnote and excluded from statistical calculations.
726
727 The @subcmd{FORMAT} subcommand controls the characteristics of the
728 crosstabulation tables to be displayed.  It has a number of possible
729 settings:
730
731 @itemize @w{}
732 @item
733 @subcmd{TABLES}, the default, causes crosstabulation tables to be output.
734 @subcmd{NOTABLES}, which is equivalent to @code{CELLS=NONE}, suppresses them.
735
736 @item
737 @subcmd{AVALUE}, the default, causes values to be sorted in ascending order.
738 @subcmd{DVALUE} asserts a descending sort order.
739 @end itemize
740
741 The @subcmd{CELLS} subcommand controls the contents of each cell in the displayed
742 crosstabulation table.  The possible settings are:
743
744 @table @asis
745 @item COUNT
746 Frequency count.
747 @item ROW
748 Row percent.
749 @item COLUMN
750 Column percent.
751 @item TOTAL
752 Table percent.
753 @item EXPECTED
754 Expected value.
755 @item RESIDUAL
756 Residual.
757 @item SRESIDUAL
758 Standardized residual.
759 @item ASRESIDUAL
760 Adjusted standardized residual.
761 @item ALL
762 All of the above.
763 @item NONE
764 Suppress cells entirely.
765 @end table
766
767 @samp{/CELLS} without any settings specified requests @subcmd{COUNT}, @subcmd{ROW},
768 @subcmd{COLUMN}, and @subcmd{TOTAL}.
769 If @subcmd{CELLS} is not specified at all then only @subcmd{COUNT}
770 is selected.
771
772 By default, crosstabulation and statistics use raw case weights,
773 without rounding.  Use the @subcmd{/COUNT} subcommand to perform
774 rounding: CASE rounds the weights of individual weights as cases are
775 read, CELL rounds the weights of cells within each crosstabulation
776 table after it has been constructed, and ASIS explicitly specifies the
777 default non-rounding behavior.  When rounding is requested, ROUND, the
778 default, rounds to the nearest integer and TRUNCATE rounds toward
779 zero.
780
781 The @subcmd{STATISTICS} subcommand selects statistics for computation:
782
783 @table @asis
784 @item CHISQ
785 @cindex chi-square
786
787 Pearson chi-square, likelihood ratio, Fisher's exact test, continuity
788 correction, linear-by-linear association.
789 @item PHI
790 Phi.
791 @item CC
792 Contingency coefficient.
793 @item LAMBDA
794 Lambda.
795 @item UC
796 Uncertainty coefficient.
797 @item BTAU
798 Tau-b.
799 @item CTAU
800 Tau-c.
801 @item RISK
802 Risk estimate.
803 @item GAMMA
804 Gamma.
805 @item D
806 Somers' D.
807 @item KAPPA
808 Cohen's Kappa.
809 @item ETA
810 Eta.
811 @item CORR
812 Spearman correlation, Pearson's r.
813 @item ALL
814 All of the above.
815 @item NONE
816 No statistics.
817 @end table
818
819 Selected statistics are only calculated when appropriate for the
820 statistic.  Certain statistics require tables of a particular size, and
821 some statistics are calculated only in integer mode.
822
823 @samp{/STATISTICS} without any settings selects CHISQ.  If the
824 @subcmd{STATISTICS} subcommand is not given, no statistics are calculated.
825
826 @cindex bar chart
827 The @samp{/BARCHART} subcommand produces a clustered bar chart for the first two
828 variables on each table.
829 If a table has more than two variables, the counts for the third and subsequent levels
830 are aggregated and the chart is produced as if there were only two variables.
831
832
833 @strong{Please note:} Currently the implementation of @cmd{CROSSTABS} has the
834 following limitations:
835
836 @itemize @bullet
837 @item
838 Significance of some symmetric and directional measures is not calculated.
839 @item
840 Asymptotic standard error is not calculated for
841 Goodman and Kruskal's tau or symmetric Somers' d.
842 @item
843 Approximate T is not calculated for symmetric uncertainty coefficient.
844 @end itemize
845
846 Fixes for any of these deficiencies would be welcomed.
847
848 @subsection Crosstabs Example
849
850 @cindex chi-square test of independence
851
852 A researcher wishes to know if, in an industry, a person's sex is related to
853 the person's occupation.  To investigate this, she has determined that the
854 @file{personnel.sav} is a representative, randomly selected sample of persons.
855 The researcher's null hypothesis is that a person's sex has no relation to a
856 person's occupation. She uses a chi-squared test of independence to investigate
857 the hypothesis.
858
859 @float Example, crosstabs:ex
860 @psppsyntax {crosstabs.sps}
861 @caption {Running crosstabs on the @exvar{sex} and @exvar{occupation} variables}
862 @end float
863
864 The syntax in @ref{crosstabs:ex} conducts a chi-squared test of independence.
865 The line @code{/tables = occupation by sex} indicates that @exvar{occupation}
866 and @exvar{sex} are the variables to be tabulated.  To do this using the @gui{}
867 you must place these variable names respectively in the @samp{Row} and
868 @samp{Column} fields as shown in @ref{crosstabs:scr}.
869
870 @float Screenshot, crosstabs:scr
871 @psppimage {crosstabs}
872 @caption {The Crosstabs dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
873 @end float
874
875 Similarly, the @samp{Cells} button shows a dialog box to select the @code{count}
876 and @code{expected} options.  All other cell options can be deselected for this
877 test.
878
879 You would use the @samp{Format} and @samp{Statistics}  buttons to select options
880 for the @subcmd{FORMAT} and @subcmd{STATISTICS} subcommands.  In this example,
881 the @samp{Statistics} requires only the @samp{Chisq} option to be checked.  All
882 other options should be unchecked.  No special settings are required from the
883 @samp{Format} dialog.
884
885 As shown in @ref{crosstabs:res} @cmd{CROSSTABS} generates a contingency table
886 containing the observed count and the expected count of each sex and each
887 occupation.  The expected count is the count which would be observed if the
888 null hypothesis were true.
889
890 The significance of the Pearson Chi-Square value is very much larger than the
891 normally accepted value of 0.05 and so one cannot reject the null hypothesis.
892 Thus the researcher must conclude that a person's sex has no relation to the
893 person's occupation.
894
895 @float Results, crosstabs:res
896 @psppoutput {crosstabs}
897 @caption {The results of a test of independence between @exvar{sex} and @exvar{occupation}}
898 @end float
899
900 @node CTABLES
901 @section CTABLES
902
903 @vindex CTABLES
904 @cindex custom tables
905 @cindex tables, custom
906
907 @code{CTABLES} has the following overall syntax.  At least one
908 @code{TABLE} subcommand is required:
909
910 @display
911 @t{CTABLES}
912   @dots{}@i{global subcommands}@dots{}
913   [@t{/TABLE} @i{axis} [@t{BY} @i{axis} [@t{BY} @i{axis}]]
914    @dots{}@i{per-table subcommands}@dots{}]@dots{}
915 @end display
916
917 @noindent
918 where each @i{axis} may be empty or take one of the following forms:
919
920 @display
921 @i{variable}
922 @i{variable} @t{[}@{@t{C} @math{|} @t{S}@}@t{]}
923 @i{axis} + @i{axis}
924 @i{axis} > @i{axis}
925 (@i{axis})
926 @i{axis} @t{[}@i{summary} [@i{string}] [@i{format}]@t{]}
927 @end display
928
929 The following subcommands precede the first @code{TABLE} subcommand
930 and apply to all of the output tables.  All of these subcommands are
931 optional:
932
933 @display
934 @t{/FORMAT}
935     [@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
936     [@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
937     [@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
938     [@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
939     [@t{MISSING=}@i{string}]
940 @t{/VLABELS}
941     @t{VARIABLES=}@i{variables}
942     @t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
943 @ignore @c not yet implemented
944 @t{/MRSETS COUNTDUPLICATES=}@{@t{YES} @math{|} @t{NO}@}
945 @end ignore
946 @t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
947 @t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
948 @t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
949     [@t{LABEL=}@i{string}]
950     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
951     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
952 @t{/WEIGHT VARIABLE=}@i{variable}
953 @t{/HIDESMALLCOUNTS COUNT=@i{count}}
954 @end display
955
956 The following subcommands follow @code{TABLE} and apply only to the
957 previous @code{TABLE}.  All of these subcommands are optional:
958
959 @display
960 @t{/SLABELS}
961     [@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
962     [@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
963 @t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
964 @t{/CATEGORIES} @t{VARIABLES=}@i{variables}
965     @{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
966    @math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
967      [@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
968      [@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
969     [@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
970     [@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
971 @t{/TITLES}
972     [@t{TITLE=}@i{string}@dots{}]
973     [@t{CAPTION=}@i{string}@dots{}]
974     [@t{CORNER=}@i{string}@dots{}]
975 @ignore  @c not yet implemented
976 @t{/CRITERIA CILEVEL=}@i{percentage}
977 @t{/SIGTEST TYPE=CHISQUARE}
978     [@t{ALPHA=}@i{siglevel}]
979     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
980     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
981 @t{/COMPARETEST TYPE=}@{@t{PROP} @math{|} @t{MEAN}@}
982     [@t{ALPHA=}@i{value}[@t{,} @i{value}]]
983     [@t{ADJUST=}@{@t{BONFERRONI} @math{|} @t{BH} @math{|} @t{NONE}@}]
984     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
985     [@t{MEANSVARIANCE=}@{@t{ALLCATS} @math{|} @t{TESTEDCATS}@}]
986     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
987     [@t{MERGE=}@{@t{NO} @math{|} @t{YES}@}]
988     [@t{STYLE=}@{@t{APA} @math{|} @t{SIMPLE}@}]
989     [@t{SHOWSIG=}@{@t{NO} @math{|} @t{YES}@}]
990 @end ignore
991 @end display
992
993 The @code{CTABLES} (aka ``custom tables'') command produces
994 multi-dimensional tables from categorical and scale data.  It offers
995 many options for data summarization and formatting.
996
997 This section's examples use data from the 2008 (USA) National Survey
998 of Drinking and Driving Attitudes and Behaviors, a public domain data
999 set from the (USA) National Highway Traffic Administration and
1000 available at @url{https://data.transportation.gov}.  @pspp{} includes
1001 this data set, with a slightly modified dictionary, as
1002 @file{examples/nhtsa.sav}.
1003
1004 @node CTABLES Basics
1005 @subsection Basics
1006
1007 The only required subcommand is @code{TABLE}, which specifies the
1008 variables to include along each axis:
1009 @display
1010 @t{/TABLE} @i{rows} [@t{BY} @i{columns} [@t{BY} @i{layers}]]
1011 @end display
1012 @noindent
1013 In @code{TABLE}, each of @var{rows}, @var{columns}, and @var{layers}
1014 is either empty or an axis expression that specifies one or more
1015 variables.  At least one must specify an axis expression.
1016
1017 @node CTABLES Categorical Variable Basics
1018 @subsubsection Categorical Variables
1019
1020 An axis expression that names a categorical variable divides the data
1021 into cells according to the values of that variable.  When all the
1022 variables named on @code{TABLE} are categorical, by default each cell
1023 displays the number of cases that it contains, so specifying a single
1024 variable yields a frequency table, much like the output of the
1025 @code{FREQUENCIES} command (@pxref{FREQUENCIES}):
1026
1027 @example
1028 CTABLES /TABLE=AgeGroup.
1029 @end example
1030 @psppoutput {ctables1}
1031
1032 @noindent
1033 Specifying a row and a column categorical variable yields a
1034 crosstabulation, much like the output of the @code{CROSSTABS} command
1035 (@pxref{CROSSTABS}):
1036
1037 @example
1038 CTABLES /TABLE=AgeGroup BY qns3a.
1039 @end example
1040 @psppoutput {ctables2}
1041
1042 @noindent
1043 The @samp{>} ``nesting'' operator nests multiple variables on a single
1044 axis, e.g.:
1045
1046 @example
1047 CTABLES /TABLE qn105ba BY AgeGroup > qns3a.
1048 @end example
1049 @psppoutput {ctables3}
1050
1051 @noindent
1052 The @samp{+} ``stacking'' operator allows a single output table to
1053 include multiple data analyses.  With @samp{+}, @code{CTABLES} divides
1054 the output table into multiple @dfn{sections}, each of which includes
1055 an analysis of the full data set.  For example, the following command
1056 separately tabulates age group and driving frequency by gender:
1057
1058 @example
1059 CTABLES /TABLE AgeGroup + qn1 BY qns3a.
1060 @end example
1061 @psppoutput {ctables4}
1062
1063 @noindent
1064 When @samp{+} and @samp{>} are used together, @samp{>} binds more
1065 tightly.  Use parentheses to override operator precedence.  Thus:
1066
1067 @example
1068 CTABLES /TABLE qn26 + qn27 > qns3a.
1069 CTABLES /TABLE (qn26 + qn27) > qns3a.
1070 @end example
1071 @psppoutput {ctables5}
1072
1073 @node CTABLES Scalar Variable Basics
1074 @subsubsection Scalar Variables
1075
1076 For a categorical variable, @code{CTABLES} divides the table into a
1077 cell per category.  For a scalar variable, @code{CTABLES} instead
1078 calculates a summary measure, by default the mean, of the values that
1079 fall into a cell.  For example, if the only variable specified is a
1080 scalar variable, then the output is a single cell that holds the mean
1081 of all of the data:
1082
1083 @example
1084 CTABLES /TABLE qnd1.
1085 @end example
1086 @psppoutput {ctables6}
1087
1088 A scalar variable may nest with categorical variables.  The following
1089 example shows the mean age of survey respondents across gender and
1090 language groups:
1091
1092 @example
1093 CTABLES /TABLE qns3a > qnd1 BY region.
1094 @end example
1095 @psppoutput {ctables7}
1096
1097 The order of nesting of scalar and categorical variables affects table
1098 labeling, but it does not affect the data displayed in the table.  The
1099 following example shows how the output changes when the nesting order
1100 of the scalar and categorical variable are interchanged:
1101
1102 @example
1103 CTABLES /TABLE qnd1 > qns3a BY region.
1104 @end example
1105 @psppoutput {ctables8}
1106
1107 Only a single scalar variable may appear in each section; that is, a
1108 scalar variable may not nest inside a scalar variable directly or
1109 indirectly.  Scalar variables may only appear on one axis within
1110 @code{TABLE}.
1111
1112 @node CTABLES Overriding Measurement Level
1113 @subsubsection Overriding Measurement Level
1114
1115 By default, @code{CTABLES} uses a variable's measurement level to
1116 decide whether to treat it as categorical or scalar.  Variables
1117 assigned the nominal or ordinal measurement level are treated as
1118 categorical, and scalar variables are treated as scalar.
1119
1120 When @pspp{} reads data from a file in an external format, such as a
1121 text file, variables' measurement levels are often unknown.  If
1122 @code{CTABLES} runs when a variable has an unknown measurement level,
1123 it makes an initial pass through the data to guess measurement levels
1124 using the rules described in an earlier section (@pxref{Measurement
1125 Level}).  Use the @code{VARIABLE LEVEL} command to set or change a
1126 variable's measurement level (@pxref{VARIABLE LEVEL}).
1127
1128 To treat a variable as categorical or scalar only for one use on
1129 @code{CTABLES}, add @samp{[C]} or @samp{[S]}, respectively, after the
1130 variable name.  The following example shows the output when variable
1131 @code{qn20} is analyzed as scalar (the default for its measurement
1132 level) and as categorical:
1133
1134 @example
1135 CTABLES
1136     /TABLE qn20 BY qns3a
1137     /TABLE qn20 [C] BY qns3a.
1138 @end example
1139 @psppoutput {ctables9}
1140
1141 @ignore
1142 @node CTABLES Multiple Response Sets
1143 @subsubheading Multiple Response Sets
1144
1145 The @code{CTABLES} command does not yet support multiple response
1146 sets.
1147 @end ignore
1148
1149 @node CTABLES Data Summarization
1150 @subsection Data Summarization
1151
1152 The @code{CTABLES} command allows the user to control how the data are
1153 summarized with @dfn{summary specifications}, syntax that lists one or
1154 more summary function names, optionally separated by commas, and which
1155 are enclosed in square brackets following a variable name on the
1156 @code{TABLE} subcommand.  When all the variables are categorical,
1157 summary specifications can be given for the innermost nested variables
1158 on any one axis.  When a scalar variable is present, only the scalar
1159 variable may have summary specifications.
1160
1161 The following example includes a summary specification for column and
1162 row percentages for categorical variables, and mean and median for a
1163 scalar variable:
1164
1165 @example
1166 CTABLES
1167     /TABLE=qnd1 [MEAN, MEDIAN] BY qns3a
1168     /TABLE=AgeGroup [COLPCT, ROWPCT] BY qns3a.
1169 @end example
1170 @psppoutput {ctables10}
1171
1172 A summary specification may override the default label and format by
1173 appending a string or format specification or both (in that order) to
1174 the summary function name.  For example:
1175
1176 @example
1177 CTABLES /TABLE=AgeGroup [COLPCT 'Gender %' PCT5.0,
1178                          ROWPCT 'Age Group %' PCT5.0]
1179                BY qns3a.
1180 @end example
1181 @psppoutput {ctables11}
1182
1183 In addition to the standard formats, @code{CTABLES} allows the user to
1184 specify the following special formats:
1185
1186 @multitable {@code{NEGPAREN@i{w}.@i{d}}} {Encloses all numbers in parentheses.} {@t{(42.96%)}} {@t{(-42.96%)}}
1187 @item @code{NEGPAREN@i{w}.@i{d}}
1188 @tab Encloses negative numbers in parentheses.
1189 @tab @t{@w{    }42.96}
1190 @tab @t{@w{  }(42.96)}
1191
1192 @item @code{NEQUAL@i{w}.@i{d}}
1193 @tab Adds a @code{N=} prefix.
1194 @tab @t{@w{  }N=42.96}
1195 @tab @t{@w{ }N=-42.96}
1196
1197 @item @code{@code{PAREN@i{w}.@i{d}}}
1198 @tab Encloses all numbers in parentheses.
1199 @tab @t{@w{  }(42.96)}
1200 @tab @t{@w{ }(-42.96)}
1201
1202 @item @code{PCTPAREN@i{w}.@i{d}}
1203 @tab Encloses all numbers in parentheses with a @samp{%} suffix.
1204 @tab @t{@w{ }(42.96%)}
1205 @tab @t{(-42.96%)}
1206 @end multitable
1207
1208 Parentheses provide a shorthand to apply summary specifications to
1209 multiple variables.  For example, both of these commands:
1210
1211 @example
1212 CTABLES /TABLE=AgeGroup[COLPCT] + qns1[COLPCT] BY qns3a.
1213 CTABLES /TABLE=(AgeGroup + qns1)[COLPCT] BY qns3a.
1214 @end example
1215
1216 @noindent
1217 produce the same output shown below:
1218
1219 @psppoutput {ctables12}
1220
1221 The following sections list the available summary functions.  After
1222 each function's name is given its default label and format.  If no
1223 format is listed, then the default format is the print format for the
1224 variable being summarized.
1225
1226 @node CTABLES Summary Functions for Individual Cells
1227 @subsubsection Summary Functions for Individual Cells
1228
1229 This section lists the summary functions that consider only an
1230 individual cell in @code{CTABLES}.  Only one such summary function,
1231 @code{COUNT}, may be applied to both categorical and scale variables:
1232
1233 @table @asis
1234 @item @code{COUNT} (``Count'', F40.0)
1235 The sum of weights in a cell.
1236
1237 If @code{CATEGORIES} for one or more of the variables in a table
1238 include missing values (@pxref{CTABLES Per-Variable Category
1239 Options}), then some or all of the categories for a cell might be
1240 missing values.  @code{COUNT} counts data included in a cell
1241 regardless of whether its categories are missing.
1242 @end table
1243
1244 The following summary functions apply only to scale variables or
1245 totals and subtotals for categorical variables.  Be cautious about
1246 interpreting the summary value in the latter case, because it is not
1247 necessarily meaningful; however, the mean of a Likert scale, etc.@:
1248 may have a straightforward interpreation.
1249
1250 @table @asis
1251 @item @code{MAXIMUM} (``Maximum'')
1252 The largest value.
1253
1254 @item @code{MEAN} (``Mean'')
1255 The mean.
1256
1257 @item @code{MEDIAN} (``Median'')
1258 The median value.
1259
1260 @item @code{MINIMUM} (``Minimum'')
1261 The smallest value.
1262
1263 @item @code{MISSING} (``Missing'')
1264 Sum of weights of user- and system-missing values.
1265
1266 @item @code{MODE} (``Mode'')
1267 The highest-frequency value.  Ties are broken by taking the smallest mode.
1268
1269 @item @code{PTILE} @i{n} (``Percentile @i{n}'')
1270 The @var{n}th percentile, where @math{0 @leq{} @var{n} @leq{} 100}.
1271
1272 @item @code{RANGE} (``Range'')
1273 The maximum minus the minimum.
1274
1275 @item @code{SEMEAN} (``Std Error of Mean'')
1276 The standard error of the mean.
1277
1278 @item @code{STDDEV} (``Std Deviation'')
1279 The standard deviation.
1280
1281 @item @code{SUM} (``Sum'')
1282 The sum.
1283
1284 @item @code{TOTALN} (``Total N'', F40.0)
1285 The sum of weights in a cell.
1286
1287 For scale data, @code{COUNT} and @code{TOTALN} are the same.
1288
1289 For categorical data, @code{TOTALN} counts missing values in excluded
1290 categories, that is, user-missing values not in an explicit category
1291 list on @code{CATEGORIES} (@pxref{CTABLES Per-Variable Category
1292 Options}), or user-missing values excluded because
1293 @code{MISSING=EXCLUDE} is in effect on @code{CATEGORIES}, or
1294 system-missing values.  @code{COUNT} does not count these.
1295
1296 @xref{CTABLES Missing Values for Summary Variables}, for details of
1297 how @code{CTABLES} summarizes missing values.
1298
1299 @item @code{VALIDN} (``Valid N'', F40.0)
1300 The sum of valid count weights in included categories.
1301
1302 For categorical variables, @code{VALIDN} does not count missing values
1303 regardless of whether they are in included categories via
1304 @code{CATEGORIES}.  @code{VALIDN} does not count valid values that are
1305 in excluded categories.  @xref{CTABLES Missing Values for Summary
1306 Variables}, for details.
1307
1308 @item @code{VARIANCE} (``Variance'')
1309 The variance.
1310 @end table
1311
1312 @node CTABLES Summary Functions for Groups of Cells
1313 @subsubsection Summary Functions for Groups of Cells
1314
1315 These summary functions summarize over multiple cells within an area
1316 of the output chosen by the user and specified as part of the function
1317 name.  The following basic @var{area}s are supported, in decreasing
1318 order of size:
1319
1320 @table @code
1321 @item TABLE
1322 A @dfn{section}.  Stacked variables divide sections of the output from
1323 each other.  sections may span multiple layers.
1324
1325 @item LAYER
1326 A section within a single layer.
1327
1328 @item SUBTABLE
1329 A @dfn{subtable}, whose contents are the cells that pair an innermost
1330 row variable and an innermost column variable within a single layer.
1331 @end table
1332
1333 The following shows how the output for the table expression @code{qn61
1334 > qn57 BY qnd7a > qn86 + qn64b BY qns3a}@footnote{This is not
1335 necessarily a meaningful table, so for clarity variable labels are
1336 omitted.} is divided up into @code{TABLE}, @code{LAYER}, and
1337 @code{SUBTABLE} areas.  Each unique value for Table ID is one section,
1338 and similarly for Layer ID and Subtable ID.  Thus, this output has two
1339 @code{TABLE} areas (one for @code{qnd7a} and one for @code{qn64b}),
1340 four @code{LAYER} areas (for those two variables, per layer), and 12
1341 @code{SUBTABLE} areas.
1342 @psppoutput {ctables22}
1343
1344 @code{CTABLES} also supports the following @var{area}s that further
1345 divide a subtable or a layer within a section:
1346
1347 @table @code
1348 @item LAYERROW
1349 @itemx LAYERCOL
1350 A row or column, respectively, in one layer of a section.
1351
1352 @item ROW
1353 @itemx COL
1354 A row or column, respectively, in a subtable.
1355 @end table
1356
1357 The following summary functions for groups of cells are available for
1358 each @var{area} described above, for both categorical and scale
1359 variables:
1360
1361 @table @asis
1362 @item @code{@i{area}PCT} or @code{@i{area}PCT.COUNT} (``@i{Area} %'', PCT40.1)
1363 A percentage of total counts within @var{area}.
1364
1365 @item @code{@i{area}PCT.VALIDN} (``@i{Area} Valid N %'', PCT40.1)
1366 A percentage of total counts for valid values within @var{area}.
1367
1368 @item @code{@i{area}PCT.TOTALN} (``@i{Area} Total N %'', PCT40.1)
1369 A percentage of total counts for all values within @var{area}.
1370 @end table
1371
1372 Scale variables and totals and subtotals for categorical variables may
1373 use the following additional group cell summary function:
1374
1375 @table @asis
1376 @item @code{@i{area}PCT.SUM} (``@i{Area} Sum %'', PCT40.1)
1377 Percentage of the sum of the values within @var{area}.
1378 @end table
1379
1380 @node CTABLES Summary Functions for Adjusted Weights
1381 @subsubsection Summary Functions for Adjusted Weights
1382
1383 If the @code{WEIGHT} subcommand specified an effective weight variable
1384 (@pxref{CTABLES Effective Weight}), then the following summary functions
1385 use its value instead of the dictionary weight variable.  Otherwise,
1386 they are equivalent to the summary function without the
1387 @samp{E}-prefix:
1388
1389 @itemize @bullet
1390 @item
1391 @code{ECOUNT} (``Adjusted Count'', F40.0)
1392
1393 @item
1394 @code{ETOTALN} (``Adjusted Total N'', F40.0)
1395
1396 @item
1397 @code{EVALIDN} (``Adjusted Valid N'', F40.0)
1398 @end itemize
1399
1400 @node CTABLES Unweighted Summary Functions
1401 @subsubsection Unweighted Summary Functions
1402
1403 The following summary functions with a @samp{U}-prefix are equivalent
1404 to the same ones without the prefix, except that they use unweighted
1405 counts:
1406
1407 @itemize @bullet
1408 @item
1409 @code{UCOUNT} (``Unweighted Count'', F40.0)
1410
1411 @item
1412 @code{U@i{area}PCT} or @code{U@i{area}PCT.COUNT} (``Unweighted @i{Area} %'', PCT40.1)
1413
1414 @item
1415 @code{U@i{area}PCT.VALIDN} (``Unweighted @i{Area} Valid N %'', PCT40.1)
1416
1417 @item
1418 @code{U@i{area}PCT.TOTALN} (``Unweighted @i{Area} Total N %'', PCT40.1)
1419
1420 @item
1421 @code{UMEAN} (``Unweighted Mean'')
1422
1423 @item
1424 @code{UMEDIAN} (``Unweighted Median'')
1425
1426 @item
1427 @code{UMISSING} (``Unweighted Missing'')
1428
1429 @item
1430 @code{UMODE} (``Unweighted Mode'')
1431
1432 @item
1433 @code{U@i{area}PCT.SUM} (``Unweighted @i{Area} Sum %'', PCT40.1)
1434
1435 @item
1436 @code{UPTILE} @i{n} (``Unweighted Percentile @i{n}'') 
1437
1438 @item
1439 @code{USEMEAN} (``Unweighted Std Error of Mean'')
1440
1441 @item
1442 @code{USTDDEV} (``Unweighted Std Deviation'')
1443
1444 @item
1445 @code{USUM} (``Unweighted Sum'')
1446
1447 @item
1448 @code{UTOTALN} (``Unweighted Total N'', F40.0)
1449
1450 @item
1451 @code{UVALIDN} (``Unweighted Valid N'', F40.0)
1452
1453 @item
1454 @code{UVARIANCE} (``Unweighted Variance'', F40.0)
1455 @end itemize
1456
1457 @node CTABLES Statistics Positions and Labels
1458 @subsection Statistics Positions and Labels
1459
1460 @display
1461 @t{/SLABELS}
1462     [@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
1463     [@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
1464 @end display
1465
1466 The @code{SLABELS} subcommand controls the position and visibility of
1467 summary statistics for the @code{TABLE} subcommand that it follows.
1468
1469 @code{POSITION} sets the axis on which summary statistics appear.
1470 With @t{POSITION=COLUMN}, which is the default, each summary statistic
1471 appears in a column.  For example:
1472
1473 @example
1474 CTABLES /TABLE=qnd1 [MEAN, MEDIAN] BY qns3a.
1475 @end example
1476 @psppoutput {ctables13}
1477
1478 @noindent
1479 With @t{POSITION=ROW}, each summary statistic appears in a row, as
1480 shown below:
1481
1482 @example
1483 CTABLES /TABLE=qnd1 [MEAN, MEDIAN] BY qns3a /SLABELS POSITION=ROW.
1484 @end example
1485 @psppoutput {ctables14}
1486
1487 @noindent
1488 @t{POSITION=LAYER} is also available to place each summary statistic in
1489 a separate layer.
1490
1491 Labels for summary statistics are shown by default.  Use
1492 @t{VISIBLE=NO} to suppress them.  Because unlabeled data can cause
1493 confusion, it should only be considered if the meaning of the data is
1494 evident, as in a simple case like this:
1495
1496 @example
1497 CTABLES /TABLE=AgeGroup [TABLEPCT] /SLABELS VISIBLE=NO.
1498 @end example
1499 @psppoutput {ctables15}
1500
1501 @node CTABLES Category Label Positions
1502 @subsection Category Label Positions
1503
1504 @display
1505 @t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
1506 @end display
1507
1508 The @code{CLABELS} subcommand controls the position of category labels
1509 for the @code{TABLE} subcommand that it follows.  By default, or if
1510 @t{AUTO} is specified, category labels for a given variable nest
1511 inside the variable's label on the same axis.  For example, the
1512 command below results in age categories nesting within the age group
1513 variable on the rows axis and gender categories within the gender
1514 variable on the columns axis:
1515
1516 @example
1517 CTABLES /TABLE AgeGroup BY qns3a.
1518 @end example
1519 @psppoutput {ctables16}
1520
1521 @t{ROWLABELS=OPPOSITE} or @t{COLLABELS=OPPOSITE} move row or column
1522 variable category labels, respectively, to the opposite axis.  The
1523 setting affects only the innermost variable or variables, which must
1524 be categorical, on the given axis.  For example:
1525
1526 @example
1527 CTABLES /TABLE AgeGroup BY qns3a /CLABELS ROWLABELS=OPPOSITE.
1528 CTABLES /TABLE AgeGroup BY qns3a /CLABELS COLLABELS=OPPOSITE.
1529 @end example
1530 @psppoutput {ctables17}
1531
1532 @t{ROWLABELS=LAYER} or @t{COLLABELS=LAYER} move the innermost row or
1533 column variable category labels, respectively, to the layer axis.
1534
1535 Only one axis's labels may be moved, whether to the opposite axis or
1536 to the layer axis.
1537
1538 @subsubheading Effect on Summary Statistics
1539
1540 @code{CLABELS} primarily affects the appearance of tables, not the
1541 data displayed in them.  However, @code{CTABLES} can affect the values
1542 displayed for statistics that summarize areas of a table, since it can
1543 change the definitions of these areas.
1544
1545 For example, consider the following syntax and output:
1546
1547 @example
1548 CTABLES /TABLE AgeGroup BY qns3a [ROWPCT, COLPCT].
1549 @end example
1550 @psppoutput {ctables23}
1551
1552 @noindent
1553 Using @code{COLLABELS=OPPOSITE} changes the definitions of rows and
1554 columns, so that column percentages display what were previously row
1555 percentages and the new row percentages become meaningless (because
1556 there is only one cell per row):
1557
1558 @example
1559 CTABLES
1560     /TABLE AgeGroup BY qns3a [ROWPCT, COLPCT]
1561     /CLABELS COLLABELS=OPPOSITE.
1562 @end example
1563 @psppoutput {ctables24}
1564
1565 @subsubheading Moving Categories for Stacked Variables
1566
1567 If @code{CLABELS} moves category labels from an axis with stacked
1568 variables, the variables that are moved must have the same category
1569 specifications (@pxref{CTABLES Per-Variable Category Options}) and the
1570 same value labels.
1571
1572 The following shows both moving stacked category variables and
1573 adapting to the changing definitions of rows and columns:
1574
1575 @example
1576 CTABLES /TABLE (qn105ba + qn105bb) [COLPCT].
1577 CTABLES /TABLE (qn105ba + qn105bb) [ROWPCT]
1578   /CLABELS ROW=OPPOSITE.
1579 @end example
1580 @psppoutput {ctables25}
1581
1582 @node CTABLES Per-Variable Category Options
1583 @subsection Per-Variable Category Options
1584
1585 @display
1586 @t{/CATEGORIES} @t{VARIABLES=}@i{variables}
1587     @{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
1588    @math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
1589      [@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
1590      [@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
1591     [@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
1592     [@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
1593 @end display
1594
1595 The @code{CATEGORIES} subcommand specifies, for one or more
1596 categorical variables, the categories to include and exclude, the sort
1597 order for included categories, and treatment of missing values.  It
1598 also controls the totals and subtotals to display.  It may be
1599 specified any number of times, each time for a different set of
1600 variables.  @code{CATEGORIES} applies to the table produced by the
1601 @code{TABLE} subcommand that it follows.
1602
1603 @code{CATEGORIES} does not apply to scalar variables.
1604
1605 @t{VARIABLES} is required and must list the variables for the subcommand
1606 to affect.
1607
1608 The syntax may specify the categories to include and their sort order
1609 either explicitly or implicitly.  The following sections give the
1610 details of each form of syntax, followed by information on totals and
1611 subtotals and the @code{EMPTY} setting.
1612
1613 @node CTABLES Explicit Categories
1614 @subsubsection Explicit Categories
1615
1616 @anchor{CTABLES Explicit Category List}
1617
1618 To use @code{CTABLES} to explicitly specify categories to include,
1619 list the categories within square brackets in the desired sort order.
1620 Use spaces or commas to separate values.  Categories not covered by
1621 the list are excluded from analysis.
1622
1623 Each element of the list takes one of the following forms:
1624
1625 @table @t
1626 @item @i{number}
1627 @itemx '@i{string}'
1628 A numeric or string category value, for variables that have the
1629 corresponding type.
1630
1631 @item '@i{date}'
1632 @itemx '@i{time}'
1633 A date or time category value, for variables that have a date or time
1634 print format.
1635
1636 @item @i{min} THRU @i{max}
1637 @itemx LO THRU @i{max}
1638 @itemx @i{min} THRU HI
1639 A range of category values, where @var{min} and @var{max} each takes
1640 one of the forms above, in increasing order.
1641
1642 @item MISSING
1643 All user-missing values.  (To match individual user-missing values,
1644 specify their category values.)
1645
1646 @item OTHERNM
1647 Any non-missing value not covered by any other element of the list
1648 (regardless of where @t{OTHERNM} is placed in the list).
1649
1650 @item &@i{postcompute}
1651 A computed category name (@pxref{CTABLES Computed Categories}).
1652
1653 @item SUBTOTAL
1654 @itemx HSUBTOTAL
1655 A subtotal (@pxref{CTABLES Totals and Subtotals}).
1656 @end table
1657
1658 If multiple elements of the list cover a given category, the last one
1659 in the list takes precedence.
1660
1661 @c TODO example
1662
1663 @node CTABLES Implicit Categories
1664 @subsubsection Implicit Categories
1665
1666 In the absence of an explicit list of categories, @code{CATEGORIES}
1667 allows @code{KEY}, @code{ORDER}, and @code{MISSING} to specify how to
1668 select and sort categories.
1669
1670 The @code{KEY} setting specifies the sort key.  By default, or with
1671 @code{KEY=VALUE}, categories are sorted by default.  Categories may
1672 also be sorted by value label, with @code{KEY=LABEL}, or by the value
1673 of a summary function, e.g.@: @code{KEY=COUNT}.
1674 @ignore  @c Not yet implemented
1675 For summary functions, a variable name may be specified in
1676 parentheses, e.g.@: @code{KEY=MAXIUM(qnd1)}, and this is required for
1677 functions that apply only to scalar variables.  The @code{PTILE}
1678 function also requires a percentage argument, e.g.@:
1679 @code{KEY=PTILE(qnd1, 90)}.  Only summary functions used in the table
1680 may be used, except that @code{COUNT} is always allowed.
1681 @end ignore
1682
1683 By default, or with @code{ORDER=A}, categories are sorted in ascending
1684 order.  Specify @code{ORDER=D} to sort in descending order.
1685
1686 User-missing values are excluded by default, or with
1687 @code{MISSING=EXCLUDE}.  Specify @code{MISSING=INCLUDE} to include
1688 user-missing values.  The system-missing value is always excluded.
1689
1690 @c TODO example
1691
1692 @node CTABLES Totals and Subtotals
1693 @subsubsection Totals and Subtotals
1694
1695 @code{CATEGORIES} also controls display of totals and subtotals.  By
1696 default, or with @code{TOTAL=NO}, totals are not displayed.  Use
1697 @code{TOTAL=YES} to display a total.  By default, the total is labeled
1698 ``Total''; use @code{LABEL="@i{label}"} to override it.
1699
1700 Subtotals are also not displayed by default.  To add one or more
1701 subtotals, use an explicit category list and insert @code{SUBTOTAL} or
1702 @code{HSUBTOTAL} in the position or positions where the subtotal
1703 should appear.  The subtotal becomes an extra row or column or layer.
1704 @code{HSUBTOTAL} additionally hides the categories that make up the
1705 subtotal.  Either way, the default label is ``Subtotal'', use
1706 @code{SUBTOTAL="@i{label}"} or @code{HSUBTOTAL="@i{label}"} to specify
1707 a custom label.
1708
1709 @c TODO
1710
1711 By default, or with @code{POSITION=AFTER}, totals are displayed in the
1712 output after the last category and subtotals apply to categories that
1713 precede them.  With @code{POSITION=BEFORE}, totals come before the
1714 first category and subtotals apply to categories that follow them.
1715
1716 @c TODO
1717
1718 Only categorical variables may have totals and subtotals.  Scalar
1719 variables may be ``totaled'' indirectly by enabling totals and
1720 subtotals on a categorical variable within which the scalar variable is
1721 summarized.
1722
1723 @c TODO
1724
1725 By default, @pspp{} uses the same summary functions for totals and
1726 subtotals as other categories.  To summarize totals and subtotals
1727 differently, specify the summary functions for totals and subtotals
1728 after the ordinary summary functions inside a nested set of @code{[]}
1729 following @code{TOTALS}.  For example, the following syntax displays
1730 @code{COUNT} for individual categories and totals and @code{VALIDN}
1731 for totals, as shown:
1732
1733 @example
1734 CTABLES
1735     /TABLE qnd7a [COUNT, TOTALS[COUNT, VALIDN]]
1736     /CATEGORIES VARIABLES=qnd7a TOTAL=YES MISSING=INCLUDE.
1737 @end example
1738 @psppoutput {ctables26}
1739
1740 @node CTABLES Categories Without Values
1741 @subsubsection Categories Without Values
1742
1743 Some categories might not be included in the data set being analyzed.
1744 For example, our example data set has no cases in the ``15 or
1745 younger'' age group.  By default, or with @code{EMPTY=INCLUDE},
1746 @pspp{} includes these empty categories in output tables.  To exclude
1747 them, specify @code{EMPTY=EXCLUDE}.
1748
1749 For implicit categories, empty categories potentially include all the
1750 values with value labels for a given variable; for explicit
1751 categories, they include all the values listed individually and all
1752 values with value labels that are covered by ranges or @code{MISSING}
1753 or @code{OTHERNM}.
1754
1755 @c TODO
1756
1757 @node CTABLES Titles
1758 @subsection Titles
1759
1760 @display
1761 @t{/TITLES}
1762     [@t{TITLE=}@i{string}@dots{}]
1763     [@t{CAPTION=}@i{string}@dots{}]
1764     [@t{CORNER=}@i{string}@dots{}]
1765 @end display
1766
1767 The @code{TITLES} subcommand sets the title, caption, and corner text
1768 for the table output for the previous @code{TABLE} subcommand.  Any
1769 number of strings may be specified for each kind of text, with each
1770 string appearing on a separate line in the output.  The title appears
1771 above the table, the caption below the table, and the corner text
1772 appears in the table's upper left corner.  By default, the title is
1773 ``Custom Tables'' and the caption and corner text are empty.  With
1774 some table output styles, the corner text is not displayed.
1775
1776 The strings provided in this subcommand may contain the following
1777 macro-like keywords that @pspp{} substitutes at the time that it runs
1778 the command:
1779
1780 @table @code @c (
1781 @item )DATE
1782 The current date, e.g.@: MM/DD/YY.  The format is locale-dependent.
1783
1784 @c (
1785 @item )TIME
1786 The current time, e.g.@: HH:MM:SS.  The format is locale-dependent.
1787
1788 @c (
1789 @item )TABLE
1790 The expression specified on the @code{TABLE} command.  Summary
1791 and measurement level specifications are omitted, and variable labels are used in place of variable names.
1792 @end table
1793
1794 @c TODO example
1795
1796 @node CTABLES Table Formatting
1797 @subsection Table Formatting
1798
1799 @display
1800 @t{/FORMAT}
1801     [@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
1802     [@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
1803     [@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
1804     [@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
1805     [@t{MISSING=}@i{string}]
1806 @end display
1807
1808 The @code{FORMAT} subcommand, which must precede the first
1809 @code{TABLE} subcommand, controls formatting for all the output
1810 tables.  @code{FORMAT} and all of its settings are optional.
1811
1812 Use @code{MINCOLWIDTH} and @code{MAXCOLWIDTH} to control the minimum
1813 or maximum width of columns in output tables.  By default, with
1814 @code{DEFAULT}, column width varies based on content.  Otherwise,
1815 specify a number for either or both of these settings.  If both are
1816 specified, @code{MAXCOLWIDTH} must be greater than or equal to
1817 @code{MINCOLWIDTH}.  The default unit, or with @code{UNITS=POINTS}, is
1818 points (1/72 inch), or specify @code{UNITS=INCHES} to use inches or
1819 @code{UNITS=CM} for centimeters.  @pspp{} does not currently honor any
1820 of these settings.
1821
1822 By default, or with @code{EMPTY=ZERO}, zero values are displayed in
1823 their usual format.  Use @code{EMPTY=BLANK} to use an empty cell
1824 instead, or @code{EMPTY="@i{string}"} to use the specified string.
1825
1826 By default, missing values are displayed as @samp{.}, the same as in
1827 other tables.  Specify @code{MISSING="@i{string}"} to instead use a
1828 custom string.
1829
1830 @node CTABLES Display of Variable Labels
1831 @subsection Display of Variable Labels
1832
1833 @display
1834 @t{/VLABELS}
1835     @t{VARIABLES=}@i{variables}
1836     @t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
1837 @end display
1838
1839 The @code{VLABELS} subcommand, which must precede the first
1840 @code{TABLE} subcommand, controls display of variable labels in all
1841 the output tables.  @code{VLABELS} is optional.  It may appear
1842 multiple times to adjust settings for different variables.
1843
1844 @code{VARIABLES} and @code{DISPLAY} are required.  The value of
1845 @code{DISPLAY} controls how variable labels are displayed for the
1846 variables listed on @code{VARIABLES}.  The supported values are:
1847
1848 @table @code
1849 @item DEFAULT
1850 Use the setting from @code{SET TVARS} (@pxref{SET TVARS}).
1851
1852 @item NAME
1853 Show only a variable name.
1854
1855 @item LABEL
1856 Show only a variable label.
1857
1858 @item BOTH
1859 Show variable name and label.
1860
1861 @item NONE
1862 Show nothing.
1863 @end table
1864
1865 @c TODO example
1866
1867 @node CTABLES Missing Value Treatment
1868 @subsection Missing Value Treatment
1869
1870 The @code{TABLE} subcommand on @code{CTABLES} specifies two different
1871 kinds of variables: variables that divide tables into cells (which are
1872 always categorical) and variables being summarized (which may be
1873 categorical or scale).  @pspp{} treats missing values differently in
1874 each kind of variable:
1875
1876 @itemize @bullet
1877 @item
1878 For variables that divide tables into cells, per-variable category
1879 options determine which data is analyzed.  If any of the categories
1880 for such a variable would exclude a case, then that case is not
1881 included.
1882
1883 @item
1884 The treatment of missing values in variables being summarized varies
1885 between scale and scale and categorical variables.  The following
1886 section describes their treatment in detail.
1887
1888 By default, each summarized variable is considered separately for
1889 missing value treatment.  A section below describes how to consider
1890 missing values listwise for summarizing scale variables.
1891 @end itemize
1892
1893 @c TODO example
1894
1895 @node CTABLES Missing Values for Summary Variables
1896 @subsubsection Missing Values for Summary Variables
1897
1898 For summary variables, values that are valid and in included
1899 categories are analyzed, and values that are missing or in excluded
1900 categories are not analyzed, with the following exceptions:
1901
1902 @itemize @bullet
1903 @item
1904 The ``@t{VALIDN}'' summary functions (@code{VALIDN}, @code{EVALIDN},
1905 @code{UVALIDN}, @code{@i{area}PCT.VALIDN}, and
1906 @code{U@i{area}PCT.VALIDN}) only count valid values in included
1907 categories (not missing values in included categories).
1908
1909 @item
1910 The ``@t{TOTALN}'' summary functions (@code{TOTALN}, @code{ETOTALN},
1911 @code{UTOTALN}, @code{@i{area}PCT.TOTALN}), and
1912 @code{U@i{area}PCT.TOTALN} count all values (valid and missing) in
1913 included categories and missing (but not valid) values in excluded
1914 categories.
1915 @end itemize
1916
1917 @noindent
1918 For categorical variables, system-missing values are never in included
1919 categories.  For scale variables, there is no notion of included and
1920 excluded categories, so all values are effectively included.
1921
1922 The following table provides another view of the above rules:
1923
1924 @multitable {@w{ }@w{ }@w{ }@w{ }Missing values in excluded categories} {@t{VALIDN}} {other} {@t{TOTALN}}
1925 @headitem @tab @t{VALIDN} @tab other @tab @t{TOTALN}
1926 @item @headitemfont{Categorical variables:}
1927 @item @w{ }@w{ }@w{ }@w{ }Valid values in included categories   @tab yes @tab yes @tab yes
1928 @item @w{ }@w{ }@w{ }@w{ }Missing values in included categories @tab --- @tab yes @tab yes
1929 @item @w{ }@w{ }@w{ }@w{ }Missing values in excluded categories @tab --- @tab --- @tab yes
1930 @item @w{ }@w{ }@w{ }@w{ }Valid values in excluded categories   @tab --- @tab --- @tab ---
1931 @item @headitemfont{Scale variables:}
1932 @item @w{ }@w{ }@w{ }@w{ }Valid values                          @tab yes @tab yes @tab yes
1933 @item @w{ }@w{ }@w{ }@w{ }User- or system-missing values        @tab --- @tab yes @tab yes
1934 @end multitable
1935
1936 @node CTABLES Scale Missing Values
1937 @subsubsection Scale Missing Values
1938
1939 @display
1940 @t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
1941 @end display
1942
1943 The @code{SMISSING} subcommand, which must precede the first
1944 @code{TABLE} subcommand, controls treatment of missing values for
1945 scalar variables in producing all the output tables.  @code{SMISSING}
1946 is optional.
1947
1948 With @code{SMISSING=VARIABLE}, which is the default, missing values
1949 are excluded on a variable-by-variable basis.  With
1950 @code{SMISSING=LISTWISE}, when stacked scalar variables are nested
1951 together with a categorical variable, a missing value for any of the
1952 scalar variables causes the case to be excluded for all of them.
1953
1954 As an example, consider the following dataset, in which @samp{x} is a
1955 categorical variable and @samp{y} and @samp{z} are scale:
1956
1957 @psppoutput{ctables18}
1958
1959 @noindent
1960 With the default missing-value treatment, @samp{x}'s mean is 20, based
1961 on the values 10, 20, and 30, and @samp{y}'s mean is 50, based on 40,
1962 50, and 60:
1963
1964 @example
1965 CTABLES /TABLE (y + z) > x.
1966 @end example
1967 @psppoutput{ctables19}
1968
1969 @noindent
1970 By adding @code{SMISSING=LISTWISE}, only cases where @samp{y} and
1971 @samp{z} are both non-missing are considered, so @samp{x}'s mean
1972 becomes 15, as the average of 10 and 20, and @samp{y}'s mean becomes
1973 55, the average of 50 and 60:
1974
1975 @example
1976 CTABLES /SMISSING LISTWISE /TABLE (y + z) > x.
1977 @end example
1978 @psppoutput{ctables20}
1979
1980 @noindent
1981 Even with @code{SMISSING=LISTWISE}, if @samp{y} and @samp{z} are
1982 separately nested with @samp{x}, instead of using a single @samp{>}
1983 operator, missing values revert to being considered on a
1984 variable-by-variable basis:
1985
1986 @example
1987 CTABLES /SMISSING LISTWISE /TABLE (y > x) + (z > x).
1988 @end example
1989 @psppoutput{ctables21}
1990
1991 @node CTABLES Computed Categories
1992 @subsection Computed Categories
1993
1994 @display
1995 @t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
1996 @end display
1997
1998 @dfn{Computed categories}, also called @dfn{postcomputes}, are
1999 categories created using arithmetic on categories obtained from the
2000 data.  The @code{PCOMPUTE} subcommand defines computed categories,
2001 which can then be used in two places: on @code{CATEGORIES} within an
2002 explicit category list (@pxref{CTABLES Explicit Category List}), and on
2003 the @code{PPROPERTIES} subcommand to define further properties for a
2004 given postcompute.
2005
2006 @code{PCOMPUTE} must precede the first @code{TABLE} command.  It is
2007 optional and it may be used any number of times to define multiple
2008 postcomputes.
2009
2010 Each @code{PCOMPUTE} defines one postcompute.  Its syntax consists of
2011 a name to identify the postcompute as a @pspp{} identifier prefixed by
2012 @samp{&}, followed by @samp{=} and a postcompute expression enclosed
2013 in @code{EXPR(@dots{})}.  A postcompute expression consists of:
2014
2015 @table @t
2016 @item [@i{category}]
2017 This form evaluates to the summary statistic for @i{category}, e.g.@:
2018 @code{[1]} evaluates to the value of the summary statistic associated
2019 with category 1.  The @i{category} may be a number, a quoted string,
2020 or a quoted time or date value.  All of the categories for a given
2021 postcompute must have the same form.  The category must appear in all
2022 the @code{CATEGORIES} list in which the postcompute is used.
2023
2024 @item [@i{min} THRU @i{max}]
2025 @itemx [LO THRU @i{max}]
2026 @itemx [@i{min} THRU HI]
2027 @itemx MISSING
2028 @itemx OTHERNM
2029 These forms evaluate to the summary statistics for a category
2030 specified with the same syntax, as described in previous section
2031 (@pxref{CTABLES Explicit Category List}).  The category must appear in
2032 all the @code{CATEGORIES} list in which the postcompute is used.
2033
2034 @item SUBTOTAL
2035 The summary statistic for the subtotal category.  This form is allowed
2036 only if the @code{CATEGORIES} lists that include this postcompute have
2037 exactly one subtotal.
2038
2039 @item SUBTOTAL[@i{index}]
2040 The summary statistic for subtotal category @i{index}, where 1 is the
2041 first subtotal, 2 is the second, and so on.  This form may be used for
2042 @code{CATEGORIES} lists with any number of subtotals.
2043
2044 @item TOTAL
2045 The summary statistic for the total.  The @code{CATEGORIES} lsits that
2046 include this postcompute must have a total enabled.
2047
2048 @item @i{a} + @i{b}
2049 @itemx @i{a} - @i{b}
2050 @itemx @i{a} * @i{b}
2051 @itemx @i{a} / @i{b}
2052 @itemx @i{a} ** @i{b}
2053 These forms perform arithmetic on the values of postcompute
2054 expressions @i{a} and @i{b}.  The usual operator precedence rules
2055 apply.
2056
2057 @item @i{number}
2058 Numeric constants may be used in postcompute expressions.
2059
2060 @item (@i{a})
2061 Parentheses override operator precedence.
2062 @end table
2063
2064 A postcompute is not associated with any particular variable.
2065 Instead, it may be referenced within @code{CATEGORIES} for any
2066 suitable variable (e.g.@: only a string variable is suitable for a
2067 postcompute expression that refers to a string category, only a
2068 variable with subtotals for an expression that refers to subtotals,
2069 @dots{}).
2070
2071 Normally a named postcompute is defined only once, but if a later
2072 @code{PCOMPUTE} redefines a postcompute with the same name as an
2073 earlier one, the later one take precedence.
2074
2075 @c TODO example
2076
2077 @node CTABLES Computed Category Properties
2078 @subsection Computed Category Properties
2079
2080 @display
2081 @t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
2082     [@t{LABEL=}@i{string}]
2083     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
2084     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
2085 @end display
2086
2087 The @code{PPROPERTIES} subcommand, which must appear before
2088 @code{TABLE}, sets properties for one or more postcomputes defined on
2089 prior @code{PCOMPUTE} subcommands.  The subcommand syntax begins with
2090 the list of postcomputes, each prefixed with @samp{&} as specified on
2091 @code{PCOMPUTE}.
2092
2093 All of the settings on @code{PPROPERTIES} are optional.  Use
2094 @code{LABEL} to set the label shown for the postcomputes in table
2095 output.  The default label for a postcompute is the expression used to
2096 define it.
2097
2098 A postcompute always uses same summary functions as the variable whose
2099 categories contain it, but @code{FORMAT} allows control over the
2100 format used to display their values.  It takes a list of summary
2101 function names and format specifiers.
2102
2103 By default, or with @code{HIDESOURCECATS=NO}, categories referred to
2104 by computed categories are displayed like other categories.  Use
2105 @code{HIDESOURCECATS=YES} to hide them.
2106
2107 @c TODO example
2108
2109 @node CTABLES Effective Weight
2110 @subsection Effective Weight
2111
2112 @display
2113 @t{/WEIGHT VARIABLE=}@i{variable}
2114 @end display
2115
2116 The @code{WEIGHT} subcommand is optional and must appear before
2117 @code{TABLE}.  If it appears, it must name a numeric variable, known
2118 as the @dfn{effective weight} or @dfn{adjustment weight}.  The
2119 effective weight variable stands in for the dictionary's weight
2120 variable (@pxref{WEIGHT}), if any, in most calculations in
2121 @code{CTABLES}.  The only exceptions are the @code{COUNT},
2122 @code{TOTALN}, and @code{VALIDN} summary functions, which use the
2123 dictionary weight instead.
2124
2125 Weights obtained from the @pspp{} dictionary are rounded to the
2126 nearest integer at the case level.  Effective weights are not rounded.
2127 Regardless of the weighting source, @pspp{} does not analyze cases
2128 with zero, missing, or negative effective weights.
2129
2130 @node CTABLES Hiding Small Counts
2131 @subsection Hiding Small Counts
2132
2133 @display
2134 @t{/HIDESMALLCOUNTS COUNT=@i{count}}
2135 @end display
2136
2137 The @code{HIDESMALLCOUNTS} subcommand is optional.  If it specified,
2138 then count values in output tables less than the value of @i{count}
2139 are shown as @code{<@i{count}} instead of their true values.  The
2140 value of @i{count} must be an integer and must be at least 2.  Case
2141 weights are considered for deciding whether to hide a count.
2142
2143 @c TODO example
2144
2145 @node FACTOR
2146 @section FACTOR
2147
2148 @vindex FACTOR
2149 @cindex factor analysis
2150 @cindex principal components analysis
2151 @cindex principal axis factoring
2152 @cindex data reduction
2153
2154 @display
2155 FACTOR  @{
2156          VARIABLES=@var{var_list},
2157          MATRIX IN (@{CORR,COV@}=@{*,@var{file_spec}@})
2158         @}
2159
2160         [ /METHOD = @{CORRELATION, COVARIANCE@} ]
2161
2162         [ /ANALYSIS=@var{var_list} ]
2163
2164         [ /EXTRACTION=@{PC, PAF@}]
2165
2166         [ /ROTATION=@{VARIMAX, EQUAMAX, QUARTIMAX, PROMAX[(@var{k})], NOROTATE@}]
2167
2168         [ /PRINT=[INITIAL] [EXTRACTION] [ROTATION] [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [KMO] [AIC] [SIG] [ALL] [DEFAULT] ]
2169
2170         [ /PLOT=[EIGEN] ]
2171
2172         [ /FORMAT=[SORT] [BLANK(@var{n})] [DEFAULT] ]
2173
2174         [ /CRITERIA=[FACTORS(@var{n})] [MINEIGEN(@var{l})] [ITERATE(@var{m})] [ECONVERGE (@var{delta})] [DEFAULT] ]
2175
2176         [ /MISSING=[@{LISTWISE, PAIRWISE@}] [@{INCLUDE, EXCLUDE@}] ]
2177 @end display
2178
2179 The @cmd{FACTOR} command performs Factor Analysis or Principal Axis Factoring on a dataset.  It may be used to find
2180 common factors in the data or for data reduction purposes.
2181
2182 The @subcmd{VARIABLES} subcommand is required (unless the @subcmd{MATRIX IN}
2183 subcommand is used).
2184 It lists the variables which are to partake in the analysis.  (The @subcmd{ANALYSIS}
2185 subcommand may optionally further limit the variables that
2186 participate; it is useful primarily in conjunction with @subcmd{MATRIX IN}.)
2187
2188 If @subcmd{MATRIX IN} instead of @subcmd{VARIABLES} is specified, then the analysis
2189 is performed on a pre-prepared correlation or covariance matrix file instead of on
2190 individual data cases.  Typically the matrix file will have been generated by
2191 @cmd{MATRIX DATA} (@pxref{MATRIX DATA}) or provided by a third party.
2192 If specified, @subcmd{MATRIX IN} must be followed by @samp{COV} or @samp{CORR},
2193 then by @samp{=} and @var{file_spec} all in parentheses.
2194 @var{file_spec} may either be an asterisk, which indicates the currently loaded
2195 dataset, or it may be a file name to be loaded. @xref{MATRIX DATA}, for the expected
2196 format of the file.
2197
2198 The @subcmd{/EXTRACTION} subcommand is used to specify the way in which factors
2199 (components) are extracted from the data.
2200 If @subcmd{PC} is specified, then Principal Components Analysis is used.
2201 If @subcmd{PAF} is specified, then Principal Axis Factoring is
2202 used. By default Principal Components Analysis is used.
2203
2204 The @subcmd{/ROTATION} subcommand is used to specify the method by which the
2205 extracted solution is rotated.  Three orthogonal rotation methods are available:
2206 @subcmd{VARIMAX} (which is the default), @subcmd{EQUAMAX}, and @subcmd{QUARTIMAX}.
2207 There is one oblique rotation method, @i{viz}: @subcmd{PROMAX}.
2208 Optionally you may enter the power of the promax rotation @var{k}, which must be enclosed in parentheses.
2209 The default value of @var{k} is 5.
2210 If you don't want any rotation to be performed, the word @subcmd{NOROTATE}
2211 prevents the command from performing any rotation on the data.
2212
2213 The @subcmd{/METHOD} subcommand should be used to determine whether the
2214 covariance matrix or the correlation matrix of the data is
2215 to be analysed.  By default, the correlation matrix is analysed.
2216
2217 The @subcmd{/PRINT} subcommand may be used to select which features of the analysis are reported:
2218
2219 @itemize
2220 @item @subcmd{UNIVARIATE}
2221       A table of mean values, standard deviations and total weights are printed.
2222 @item @subcmd{INITIAL}
2223       Initial communalities and eigenvalues are printed.
2224 @item @subcmd{EXTRACTION}
2225       Extracted communalities and eigenvalues are printed.
2226 @item @subcmd{ROTATION}
2227       Rotated communalities and eigenvalues are printed.
2228 @item @subcmd{CORRELATION}
2229       The correlation matrix is printed.
2230 @item @subcmd{COVARIANCE}
2231       The covariance matrix is printed.
2232 @item @subcmd{DET}
2233       The determinant of the correlation or covariance matrix is printed.
2234 @item @subcmd{AIC}
2235       The anti-image covariance and anti-image correlation matrices are printed.
2236 @item @subcmd{KMO}
2237       The Kaiser-Meyer-Olkin measure of sampling adequacy and the Bartlett test of sphericity is printed.
2238 @item @subcmd{SIG}
2239       The significance of the elements of correlation matrix is printed.
2240 @item @subcmd{ALL}
2241       All of the above are printed.
2242 @item @subcmd{DEFAULT}
2243       Identical to @subcmd{INITIAL} and @subcmd{EXTRACTION}.
2244 @end itemize
2245
2246 If @subcmd{/PLOT=EIGEN} is given, then a ``Scree'' plot of the eigenvalues is
2247 printed.  This can be useful for visualizing the factors and deciding
2248 which factors (components) should be retained.
2249
2250 The @subcmd{/FORMAT} subcommand determined how data are to be
2251 displayed in loading matrices.  If @subcmd{SORT} is specified, then
2252 the variables are sorted in descending order of significance.  If
2253 @subcmd{BLANK(@var{n})} is specified, then coefficients whose absolute
2254 value is less than @var{n} are not printed.  If the keyword
2255 @subcmd{DEFAULT} is specified, or if no @subcmd{/FORMAT} subcommand is
2256 specified, then no sorting is performed, and all coefficients are printed.
2257
2258 You can use the @subcmd{/CRITERIA} subcommand to specify how the number of
2259 extracted factors (components) are chosen.  If @subcmd{FACTORS(@var{n})} is
2260 specified, where @var{n} is an integer, then @var{n} factors are
2261 extracted.  Otherwise, the @subcmd{MINEIGEN} setting is used.
2262 @subcmd{MINEIGEN(@var{l})} requests that all factors whose eigenvalues
2263 are greater than or equal to @var{l} are extracted. The default value
2264 of @var{l} is 1. The @subcmd{ECONVERGE} setting has effect only when
2265 using iterative algorithms for factor extraction (such as Principal Axis
2266 Factoring).  @subcmd{ECONVERGE(@var{delta})} specifies that
2267 iteration should cease when the maximum absolute value of the
2268 communality estimate between one iteration and the previous is less
2269 than @var{delta}. The default value of @var{delta} is 0.001.
2270
2271 The @subcmd{ITERATE(@var{m})} may appear any number of times and is
2272 used for two different purposes. It is used to set the maximum number
2273 of iterations (@var{m}) for convergence and also to set the maximum
2274 number of iterations for rotation.
2275 Whether it affects convergence or rotation depends upon which
2276 subcommand follows the @subcmd{ITERATE} subcommand.
2277 If @subcmd{EXTRACTION} follows, it affects convergence.
2278 If @subcmd{ROTATION} follows, it affects rotation.
2279 If neither @subcmd{ROTATION} nor @subcmd{EXTRACTION} follow a
2280 @subcmd{ITERATE} subcommand, then the entire subcommand is ignored.
2281 The default value of @var{m} is 25.
2282
2283 The @cmd{MISSING} subcommand determines the handling of missing
2284 variables.  If @subcmd{INCLUDE} is set, then user-missing values are
2285 included in the calculations, but system-missing values are not.
2286 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2287 values are excluded as well as system-missing values.  This is the
2288 default. If @subcmd{LISTWISE} is set, then the entire case is excluded
2289 from analysis whenever any variable  specified in the @cmd{VARIABLES}
2290 subcommand contains a missing value.
2291
2292 If @subcmd{PAIRWISE} is set, then a case is considered missing only if
2293 either of the values  for the particular coefficient are missing.
2294 The default is @subcmd{LISTWISE}.
2295
2296 @node GLM
2297 @section GLM
2298
2299 @vindex GLM
2300 @cindex univariate analysis of variance
2301 @cindex fixed effects
2302 @cindex factorial anova
2303 @cindex analysis of variance
2304 @cindex ANOVA
2305
2306
2307 @display
2308 GLM @var{dependent_vars} BY @var{fixed_factors}
2309      [/METHOD = SSTYPE(@var{type})]
2310      [/DESIGN = @var{interaction_0} [@var{interaction_1} [... @var{interaction_n}]]]
2311      [/INTERCEPT = @{INCLUDE|EXCLUDE@}]
2312      [/MISSING = @{INCLUDE|EXCLUDE@}]
2313 @end display
2314
2315 The @cmd{GLM} procedure can be used for fixed effects factorial Anova.
2316
2317 The @var{dependent_vars} are the variables to be analysed.
2318 You may analyse several variables in the same command in which case they should all
2319 appear before the @code{BY} keyword.
2320
2321 The @var{fixed_factors} list must be one or more categorical variables.  Normally it
2322 does not make sense to enter a scalar variable in the @var{fixed_factors} and doing
2323 so may cause @pspp{} to do a lot of unnecessary processing.
2324
2325 The @subcmd{METHOD} subcommand is used to change the method for producing the sums of
2326 squares.  Available values of @var{type} are 1, 2 and 3.  The default is type 3.
2327
2328 You may specify a custom design using the @subcmd{DESIGN} subcommand.
2329 The design comprises a list of interactions where each interaction is a
2330 list of variables separated by a @samp{*}.  For example the command
2331 @display
2332 GLM subject BY sex age_group race
2333     /DESIGN = age_group sex group age_group*sex age_group*race
2334 @end display
2335 @noindent specifies the model @math{subject = age_group + sex + race + age_group*sex + age_group*race}.
2336 If no @subcmd{DESIGN} subcommand is specified, then the default is all possible combinations
2337 of the fixed factors.  That is to say
2338 @display
2339 GLM subject BY sex age_group race
2340 @end display
2341 implies the model
2342 @math{subject = age_group + sex + race + age_group*sex + age_group*race + sex*race + age_group*sex*race}.
2343
2344
2345 The @subcmd{MISSING} subcommand determines the handling of missing
2346 variables.
2347 If @subcmd{INCLUDE} is set then, for the purposes of GLM analysis,
2348 only system-missing values are considered
2349 to be missing; user-missing values are not regarded as missing.
2350 If @subcmd{EXCLUDE} is set, which is the default, then user-missing
2351 values are considered to be missing as well as system-missing values.
2352 A case for which any dependent variable or any factor
2353 variable has a missing value is excluded from the analysis.
2354
2355 @node LOGISTIC REGRESSION
2356 @section LOGISTIC REGRESSION
2357
2358 @vindex LOGISTIC REGRESSION
2359 @cindex logistic regression
2360 @cindex bivariate logistic regression
2361
2362 @display
2363 LOGISTIC REGRESSION [VARIABLES =] @var{dependent_var} WITH @var{predictors}
2364
2365      [/CATEGORICAL = @var{categorical_predictors}]
2366
2367      [@{/NOCONST | /ORIGIN | /NOORIGIN @}]
2368
2369      [/PRINT = [SUMMARY] [DEFAULT] [CI(@var{confidence})] [ALL]]
2370
2371      [/CRITERIA = [BCON(@var{min_delta})] [ITERATE(@var{max_interations})]
2372                   [LCON(@var{min_likelihood_delta})] [EPS(@var{min_epsilon})]
2373                   [CUT(@var{cut_point})]]
2374
2375      [/MISSING = @{INCLUDE|EXCLUDE@}]
2376 @end display
2377
2378 Bivariate Logistic Regression is used when you want to explain a dichotomous dependent
2379 variable in terms of one or more predictor variables.
2380
2381 The minimum command is
2382 @example
2383 LOGISTIC REGRESSION @var{y} WITH @var{x1} @var{x2} @dots{} @var{xn}.
2384 @end example
2385 Here, @var{y} is the dependent variable, which must be dichotomous and @var{x1} @dots{} @var{xn}
2386 are the predictor variables whose coefficients the procedure estimates.
2387
2388 By default, a constant term is included in the model.
2389 Hence, the full model is
2390 @math{
2391 {\bf y}
2392 = b_0 + b_1 {\bf x_1}
2393 + b_2 {\bf x_2}
2394 + \dots
2395 + b_n {\bf x_n}
2396 }
2397
2398 Predictor variables which are categorical in nature should be listed on the @subcmd{/CATEGORICAL} subcommand.
2399 Simple variables as well as interactions between variables may be listed here.
2400
2401 If you want a model without the constant term @math{b_0}, use the keyword @subcmd{/ORIGIN}.
2402 @subcmd{/NOCONST} is a synonym for @subcmd{/ORIGIN}.
2403
2404 An iterative Newton-Raphson procedure is used to fit the model.
2405 The @subcmd{/CRITERIA} subcommand is used to specify the stopping criteria of the procedure,
2406 and other parameters.
2407 The value of @var{cut_point} is used in the classification table.  It is the
2408 threshold above which predicted values are considered to be 1.  Values
2409 of @var{cut_point} must lie in the range [0,1].
2410 During iterations, if any one of the stopping criteria are satisfied, the procedure is
2411 considered complete.
2412 The stopping criteria are:
2413 @itemize
2414 @item The number of iterations exceeds @var{max_iterations}.
2415       The default value of @var{max_iterations} is 20.
2416 @item The change in the all coefficient estimates are less than @var{min_delta}.
2417 The default value of @var{min_delta} is 0.001.
2418 @item The magnitude of change in the likelihood estimate is less than @var{min_likelihood_delta}.
2419 The default value of @var{min_delta} is zero.
2420 This means that this criterion is disabled.
2421 @item The differential of the estimated probability for all cases is less than @var{min_epsilon}.
2422 In other words, the probabilities are close to zero or one.
2423 The default value of @var{min_epsilon} is 0.00000001.
2424 @end itemize
2425
2426
2427 The @subcmd{PRINT} subcommand controls the display of optional statistics.
2428 Currently there is one such option, @subcmd{CI}, which indicates that the
2429 confidence interval of the odds ratio should be displayed as well as its value.
2430 @subcmd{CI} should be followed by an integer in parentheses, to indicate the
2431 confidence level of the desired confidence interval.
2432
2433 The @subcmd{MISSING} subcommand determines the handling of missing
2434 variables.
2435 If @subcmd{INCLUDE} is set, then user-missing values are included in the
2436 calculations, but system-missing values are not.
2437 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2438 values are excluded as well as system-missing values.
2439 This is the default.
2440
2441 @node MEANS
2442 @section MEANS
2443
2444 @vindex MEANS
2445 @cindex means
2446
2447 @display
2448 MEANS [TABLES =]
2449       @{@var{var_list}@}
2450         [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]]
2451
2452       [ /@{@var{var_list}@}
2453          [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]] ]
2454
2455       [/CELLS = [MEAN] [COUNT] [STDDEV] [SEMEAN] [SUM] [MIN] [MAX] [RANGE]
2456         [VARIANCE] [KURT] [SEKURT]
2457         [SKEW] [SESKEW] [FIRST] [LAST]
2458         [HARMONIC] [GEOMETRIC]
2459         [DEFAULT]
2460         [ALL]
2461         [NONE] ]
2462
2463       [/MISSING = [INCLUDE] [DEPENDENT]]
2464 @end display
2465
2466 You can use the @cmd{MEANS} command to calculate the arithmetic mean and similar
2467 statistics, either for the dataset as a whole or for categories of data.
2468
2469 The simplest form of the command is
2470 @example
2471 MEANS @var{v}.
2472 @end example
2473 @noindent which calculates the mean, count and standard deviation for @var{v}.
2474 If you specify a grouping variable, for example
2475 @example
2476 MEANS @var{v} BY @var{g}.
2477 @end example
2478 @noindent then the means, counts and standard deviations for @var{v} after having
2479 been grouped by @var{g} are calculated.
2480 Instead of the mean, count and standard deviation, you could specify the statistics
2481 in which you are interested:
2482 @example
2483 MEANS @var{x} @var{y} BY @var{g}
2484       /CELLS = HARMONIC SUM MIN.
2485 @end example
2486 This example calculates the harmonic mean, the sum and the minimum values of @var{x} and @var{y}
2487 grouped by @var{g}.
2488
2489 The @subcmd{CELLS} subcommand specifies which statistics to calculate.  The available statistics
2490 are:
2491 @itemize
2492 @item @subcmd{MEAN}
2493 @cindex arithmetic mean
2494       The arithmetic mean.
2495 @item @subcmd{COUNT}
2496       The count of the values.
2497 @item @subcmd{STDDEV}
2498       The standard deviation.
2499 @item @subcmd{SEMEAN}
2500       The standard error of the mean.
2501 @item @subcmd{SUM}
2502       The sum of the values.
2503 @item @subcmd{MIN}
2504       The minimum value.
2505 @item @subcmd{MAX}
2506       The maximum value.
2507 @item @subcmd{RANGE}
2508       The difference between the maximum and minimum values.
2509 @item @subcmd{VARIANCE}
2510       The variance.
2511 @item @subcmd{FIRST}
2512       The first value in the category.
2513 @item @subcmd{LAST}
2514       The last value in the category.
2515 @item @subcmd{SKEW}
2516       The skewness.
2517 @item @subcmd{SESKEW}
2518       The standard error of the skewness.
2519 @item @subcmd{KURT}
2520       The kurtosis
2521 @item @subcmd{SEKURT}
2522       The standard error of the kurtosis.
2523 @item @subcmd{HARMONIC}
2524 @cindex harmonic mean
2525       The harmonic mean.
2526 @item @subcmd{GEOMETRIC}
2527 @cindex geometric mean
2528       The geometric mean.
2529 @end itemize
2530
2531 In addition, three special keywords are recognized:
2532 @itemize
2533 @item @subcmd{DEFAULT}
2534       This is the same as @subcmd{MEAN} @subcmd{COUNT} @subcmd{STDDEV}.
2535 @item @subcmd{ALL}
2536       All of the above statistics are calculated.
2537 @item @subcmd{NONE}
2538       No statistics are calculated (only a summary is shown).
2539 @end itemize
2540
2541
2542 More than one @dfn{table} can be specified in a single command.
2543 Each table is separated by a @samp{/}. For
2544 example
2545 @example
2546 MEANS TABLES =
2547       @var{c} @var{d} @var{e} BY @var{x}
2548       /@var{a} @var{b} BY @var{x} @var{y}
2549       /@var{f} BY @var{y} BY @var{z}.
2550 @end example
2551 has three tables (the @samp{TABLE =} is optional).
2552 The first table has three dependent variables @var{c}, @var{d} and @var{e}
2553 and a single categorical variable @var{x}.
2554 The second table has two dependent variables @var{a} and @var{b},
2555 and two categorical variables @var{x} and @var{y}.
2556 The third table has a single dependent variables @var{f}
2557 and a categorical variable formed by the combination of @var{y} and @var{z}.
2558
2559
2560 By default values are omitted from the analysis only if missing values
2561 (either system missing or user missing)
2562 for any of the variables directly involved in their calculation are
2563 encountered.
2564 This behaviour can be modified with the  @subcmd{/MISSING} subcommand.
2565 Three options are possible: @subcmd{TABLE}, @subcmd{INCLUDE} and @subcmd{DEPENDENT}.
2566
2567 @subcmd{/MISSING = INCLUDE} says that user missing values, either in the dependent
2568 variables or in the categorical variables should be taken at their face
2569 value, and not excluded.
2570
2571 @subcmd{/MISSING = DEPENDENT} says that user missing values, in the dependent
2572 variables should be taken at their face value, however cases which
2573 have user missing values for the categorical variables should be omitted
2574 from the calculation.
2575
2576 @subsection Example Means
2577
2578 The dataset in @file{repairs.sav} contains the mean time between failures (@exvar{mtbf})
2579 for a sample of artifacts produced by different factories and trialed under
2580 different operating conditions.
2581 Since there are four combinations of categorical variables, by simply looking
2582 at the list of data, it would be hard to how the scores vary for each category.
2583 @ref{means:ex} shows one way of tabulating the @exvar{mtbf} in a way which is
2584 easier to understand.
2585
2586 @float Example, means:ex
2587 @psppsyntax {means.sps}
2588 @caption {Running @cmd{MEANS} on the @exvar{mtbf} score with categories @exvar{factory} and @exvar{environment}}
2589 @end float
2590
2591 The results are shown in @ref{means:res}.   The figures shown indicate the mean,
2592 standard deviation and number of samples in each category.
2593 These figures however do not indicate whether the results are statistically
2594 significant.  For that, you would need to use the procedures @cmd{ONEWAY}, @cmd{GLM} or
2595 @cmd{T-TEST} depending on the hypothesis being tested.
2596
2597 @float Result, means:res
2598 @psppoutput {means}
2599 @caption {The @exvar{mtbf} categorised by @exvar{factory} and @exvar{environment}}
2600 @end float
2601
2602 Note that there is no limit to the number of variables for which you can calculate
2603 statistics, nor to the number of categorical variables per layer, nor the number
2604 of layers.
2605 However, running @cmd{MEANS} on a large numbers of variables, or with categorical variables
2606 containing a large number of distinct values may result in an extremely large output, which
2607 will not be easy to interpret.
2608 So you should consider carefully which variables to select for participation in the analysis.
2609
2610 @node NPAR TESTS
2611 @section NPAR TESTS
2612
2613 @vindex NPAR TESTS
2614 @cindex nonparametric tests
2615
2616 @display
2617 NPAR TESTS
2618
2619      nonparametric test subcommands
2620      .
2621      .
2622      .
2623
2624      [ /STATISTICS=@{DESCRIPTIVES@} ]
2625
2626      [ /MISSING=@{ANALYSIS, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
2627
2628      [ /METHOD=EXACT [ TIMER [(@var{n})] ] ]
2629 @end display
2630
2631 @cmd{NPAR TESTS} performs nonparametric tests.
2632 Non parametric tests make very few assumptions about the distribution of the
2633 data.
2634 One or more tests may be specified by using the corresponding subcommand.
2635 If the @subcmd{/STATISTICS} subcommand is also specified, then summary statistics are
2636 produces for each variable that is the subject of any test.
2637
2638 Certain tests may take a long time to execute, if an exact figure is required.
2639 Therefore, by default asymptotic approximations are used unless the
2640 subcommand @subcmd{/METHOD=EXACT} is specified.
2641 Exact tests give more accurate results, but may take an unacceptably long
2642 time to perform.  If the @subcmd{TIMER} keyword is used, it sets a maximum time,
2643 after which the test is abandoned, and a warning message printed.
2644 The time, in minutes, should be specified in parentheses after the @subcmd{TIMER} keyword.
2645 If the @subcmd{TIMER} keyword is given without this figure, then a default value of 5 minutes
2646 is used.
2647
2648
2649 @menu
2650 * BINOMIAL::                Binomial Test
2651 * CHISQUARE::               Chi-square Test
2652 * COCHRAN::                 Cochran Q Test
2653 * FRIEDMAN::                Friedman Test
2654 * KENDALL::                 Kendall's W Test
2655 * KOLMOGOROV-SMIRNOV::      Kolmogorov Smirnov Test
2656 * KRUSKAL-WALLIS::          Kruskal-Wallis Test
2657 * MANN-WHITNEY::            Mann Whitney U Test
2658 * MCNEMAR::                 McNemar Test
2659 * MEDIAN::                  Median Test
2660 * RUNS::                    Runs Test
2661 * SIGN::                    The Sign Test
2662 * WILCOXON::                Wilcoxon Signed Ranks Test
2663 @end menu
2664
2665
2666 @node    BINOMIAL
2667 @subsection Binomial test
2668 @vindex BINOMIAL
2669 @cindex binomial test
2670
2671 @display
2672      [ /BINOMIAL[(@var{p})]=@var{var_list}[(@var{value1}[, @var{value2})] ] ]
2673 @end display
2674
2675 The @subcmd{/BINOMIAL} subcommand compares the observed distribution of a dichotomous
2676 variable with that of a binomial distribution.
2677 The variable @var{p} specifies the test proportion of the binomial
2678 distribution.
2679 The default value of 0.5 is assumed if @var{p} is omitted.
2680
2681 If a single value appears after the variable list, then that value is
2682 used as the threshold to partition the observed values. Values less
2683 than or equal to the threshold value form the first category.  Values
2684 greater than the threshold form the second category.
2685
2686 If two values appear after the variable list, then they are used
2687 as the values which a variable must take to be in the respective
2688 category.
2689 Cases for which a variable takes a value equal to neither of the specified
2690 values, take no part in the test for that variable.
2691
2692 If no values appear, then the variable must assume dichotomous
2693 values.
2694 If more than two distinct, non-missing values for a variable
2695 under test are encountered then an error occurs.
2696
2697 If the test proportion is equal to 0.5, then a two tailed test is
2698 reported.   For any other test proportion, a one tailed test is
2699 reported.
2700 For one tailed tests, if the test proportion is less than
2701 or equal to the observed proportion, then the significance of
2702 observing the observed proportion or more is reported.
2703 If the test proportion is more than the observed proportion, then the
2704 significance of observing the observed proportion or less is reported.
2705 That is to say, the test is always performed in the observed
2706 direction.
2707
2708 @pspp{} uses a very precise approximation to the gamma function to
2709 compute the binomial significance.  Thus, exact results are reported
2710 even for very large sample sizes.
2711
2712
2713 @node    CHISQUARE
2714 @subsection Chi-square Test
2715 @vindex CHISQUARE
2716 @cindex chi-square test
2717
2718
2719 @display
2720      [ /CHISQUARE=@var{var_list}[(@var{lo},@var{hi})] [/EXPECTED=@{EQUAL|@var{f1}, @var{f2} @dots{} @var{fn}@}] ]
2721 @end display
2722
2723
2724 The @subcmd{/CHISQUARE} subcommand produces a chi-square statistic for the differences
2725 between the expected and observed frequencies of the categories of a variable.
2726 Optionally, a range of values may appear after the variable list.
2727 If a range is given, then non integer values are truncated, and values
2728 outside the  specified range are excluded from the analysis.
2729
2730 The @subcmd{/EXPECTED} subcommand specifies the expected values of each
2731 category.
2732 There must be exactly one non-zero expected value, for each observed
2733 category, or the @subcmd{EQUAL} keyword must be specified.
2734 You may use the notation @subcmd{@var{n}*@var{f}} to specify @var{n}
2735 consecutive expected categories all taking a frequency of @var{f}.
2736 The frequencies given are proportions, not absolute frequencies.  The
2737 sum of the frequencies need not be 1.
2738 If no @subcmd{/EXPECTED} subcommand is given, then equal frequencies
2739 are expected.
2740
2741 @subsubsection Chi-square Example
2742
2743 A researcher wishes to investigate whether there are an equal number of
2744 persons of each sex in a population.   The sample chosen for invesigation
2745 is that from the @file {physiology.sav} dataset.   The null hypothesis for
2746 the test is that the population comprises an equal number of males and females.
2747 The analysis is performed as shown in @ref{chisquare:ex}.
2748
2749 @float Example, chisquare:ex
2750 @psppsyntax {chisquare.sps}
2751 @caption {Performing a chi-square test to check for equal distribution of sexes}
2752 @end float
2753
2754 There is only one test variable, @i{viz:} @exvar{sex}.  The other variables in the dataset
2755 are ignored.
2756
2757 @float Screenshot, chisquare:scr
2758 @psppimage {chisquare}
2759 @caption {Performing a chi-square test using the graphic user interface}
2760 @end float
2761
2762 In @ref{chisquare:res} the summary box shows that in the sample, there are more males
2763 than females.  However the significance of chi-square result is greater than 0.05
2764 --- the most commonly accepted p-value --- and therefore
2765 there is not enough evidence to reject the null hypothesis and one must conclude
2766 that the evidence does not indicate that there is an imbalance of the sexes
2767 in the population.
2768
2769 @float Result, chisquare:res
2770 @psppoutput {chisquare}
2771 @caption {The results of running a chi-square test on @exvar{sex}}
2772 @end float
2773
2774
2775 @node COCHRAN
2776 @subsection Cochran Q Test
2777 @vindex Cochran
2778 @cindex Cochran Q test
2779 @cindex Q, Cochran Q
2780
2781 @display
2782      [ /COCHRAN = @var{var_list} ]
2783 @end display
2784
2785 The Cochran Q test is used to test for differences between three or more groups.
2786 The data for @var{var_list} in all cases must assume exactly two
2787 distinct values (other than missing values).
2788
2789 The value of Q is displayed along with its Asymptotic significance
2790 based on a chi-square distribution.
2791
2792 @node FRIEDMAN
2793 @subsection Friedman Test
2794 @vindex FRIEDMAN
2795 @cindex Friedman test
2796
2797 @display
2798      [ /FRIEDMAN = @var{var_list} ]
2799 @end display
2800
2801 The Friedman test is used to test for differences between repeated measures when
2802 there is no indication that the distributions are normally distributed.
2803
2804 A list of variables which contain the measured data must be given.  The procedure
2805 prints the sum of ranks for each variable, the test statistic and its significance.
2806
2807 @node KENDALL
2808 @subsection Kendall's W Test
2809 @vindex KENDALL
2810 @cindex Kendall's W test
2811 @cindex coefficient of concordance
2812
2813 @display
2814      [ /KENDALL = @var{var_list} ]
2815 @end display
2816
2817 The Kendall test investigates whether an arbitrary number of related samples come from the
2818 same population.
2819 It is identical to the Friedman test except that the additional statistic W, Kendall's Coefficient of Concordance is printed.
2820 It has the range [0,1] --- a value of zero indicates no agreement between the samples whereas a value of
2821 unity indicates complete agreement.
2822
2823
2824 @node KOLMOGOROV-SMIRNOV
2825 @subsection Kolmogorov-Smirnov Test
2826 @vindex KOLMOGOROV-SMIRNOV
2827 @vindex K-S
2828 @cindex Kolmogorov-Smirnov test
2829
2830 @display
2831      [ /KOLMOGOROV-SMIRNOV (@{NORMAL [@var{mu}, @var{sigma}], UNIFORM [@var{min}, @var{max}], POISSON [@var{lambda}], EXPONENTIAL [@var{scale}] @}) = @var{var_list} ]
2832 @end display
2833
2834 The one sample Kolmogorov-Smirnov subcommand is used to test whether or not a dataset is
2835 drawn from a particular distribution.  Four distributions are supported, @i{viz:}
2836 Normal, Uniform, Poisson and Exponential.
2837
2838 Ideally you should provide the parameters of the distribution against
2839 which you wish to test the data. For example, with the normal
2840 distribution  the mean (@var{mu})and standard deviation (@var{sigma})
2841 should be given; with the uniform distribution, the minimum
2842 (@var{min})and maximum (@var{max}) value should be provided.
2843 However, if the parameters are omitted they are imputed from the
2844 data.  Imputing the parameters reduces the power of the test so should
2845 be avoided if possible.
2846
2847 In the following example, two variables @var{score} and @var{age} are
2848 tested to see if they follow a normal distribution with a mean of 3.5
2849 and a standard deviation of 2.0.
2850 @example
2851   NPAR TESTS
2852         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score} @var{age}.
2853 @end example
2854 If the variables need to be tested against different distributions, then a separate
2855 subcommand must be used.  For example the following syntax tests @var{score} against
2856 a normal distribution with mean of 3.5 and standard deviation of 2.0 whilst @var{age}
2857 is tested against a normal distribution of mean 40 and standard deviation 1.5.
2858 @example
2859   NPAR TESTS
2860         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score}
2861         /KOLMOGOROV-SMIRNOV (normal 40 1.5) =  @var{age}.
2862 @end example
2863
2864 The abbreviated subcommand  @subcmd{K-S} may be used in place of @subcmd{KOLMOGOROV-SMIRNOV}.
2865
2866 @node KRUSKAL-WALLIS
2867 @subsection Kruskal-Wallis Test
2868 @vindex KRUSKAL-WALLIS
2869 @vindex K-W
2870 @cindex Kruskal-Wallis test
2871
2872 @display
2873      [ /KRUSKAL-WALLIS = @var{var_list} BY var (@var{lower}, @var{upper}) ]
2874 @end display
2875
2876 The Kruskal-Wallis test is used to compare data from an
2877 arbitrary number of populations.  It does not assume normality.
2878 The data to be compared are specified by @var{var_list}.
2879 The categorical variable determining the groups to which the
2880 data belongs is given by @var{var}. The limits @var{lower} and
2881 @var{upper} specify the valid range of @var{var}.
2882 If @var{upper} is smaller than @var{lower}, the PSPP will assume their values
2883 to be reversed. Any cases for which @var{var} falls outside
2884 [@var{lower}, @var{upper}] are ignored.
2885
2886 The mean rank of each group as well as the chi-squared value and
2887 significance of the test are printed.
2888 The abbreviated subcommand  @subcmd{K-W} may be used in place of
2889 @subcmd{KRUSKAL-WALLIS}.
2890
2891
2892 @node MANN-WHITNEY
2893 @subsection Mann-Whitney U Test
2894 @vindex MANN-WHITNEY
2895 @vindex M-W
2896 @cindex Mann-Whitney U test
2897 @cindex U, Mann-Whitney U
2898
2899 @display
2900      [ /MANN-WHITNEY = @var{var_list} BY var (@var{group1}, @var{group2}) ]
2901 @end display
2902
2903 The Mann-Whitney subcommand is used to test whether two groups of data
2904 come from different populations. The variables to be tested should be
2905 specified in @var{var_list} and the grouping variable, that determines
2906 to which group the test variables belong, in @var{var}.
2907 @var{Var} may be either a string or an alpha variable.
2908 @var{Group1} and @var{group2} specify the
2909 two values of @var{var} which determine the groups of the test data.
2910 Cases for which the @var{var} value is neither @var{group1} or
2911 @var{group2} are ignored.
2912
2913 The value of the Mann-Whitney U statistic, the Wilcoxon W, and the
2914 significance are printed.
2915 You may abbreviated the subcommand @subcmd{MANN-WHITNEY} to
2916 @subcmd{M-W}.
2917
2918
2919 @node MCNEMAR
2920 @subsection McNemar Test
2921 @vindex MCNEMAR
2922 @cindex McNemar test
2923
2924 @display
2925      [ /MCNEMAR @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
2926 @end display
2927
2928 Use McNemar's test to analyse the significance of the difference between
2929 pairs of correlated proportions.
2930
2931 If the @code{WITH} keyword is omitted, then tests for all
2932 combinations of the listed variables are performed.
2933 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
2934 is also given, then the number of variables preceding @code{WITH}
2935 must be the same as the number following it.
2936 In this case, tests for each respective pair of variables are
2937 performed.
2938 If the @code{WITH} keyword is given, but the
2939 @code{(PAIRED)} keyword is omitted, then tests for each combination
2940 of variable preceding @code{WITH} against variable following
2941 @code{WITH} are performed.
2942
2943 The data in each variable must be dichotomous.  If there are more
2944 than two distinct variables an error will occur and the test will
2945 not be run.
2946
2947 @node MEDIAN
2948 @subsection Median Test
2949 @vindex MEDIAN
2950 @cindex Median test
2951
2952 @display
2953      [ /MEDIAN [(@var{value})] = @var{var_list} BY @var{variable} (@var{value1}, @var{value2}) ]
2954 @end display
2955
2956 The median test is used to test whether independent samples come from
2957 populations with a common median.
2958 The median of the populations against which the samples are to be tested
2959 may be given in parentheses immediately after the
2960 @subcmd{/MEDIAN} subcommand.  If it is not given, the median is imputed from the
2961 union of all the samples.
2962
2963 The variables of the samples to be tested should immediately follow the @samp{=} sign. The
2964 keyword @code{BY} must come next, and then the grouping variable.  Two values
2965 in parentheses should follow.  If the first value is greater than the second,
2966 then a 2 sample test is performed using these two values to determine the groups.
2967 If however, the first variable is less than the second, then a @i{k} sample test is
2968 conducted and the group values used are all values encountered which lie in the
2969 range [@var{value1},@var{value2}].
2970
2971
2972 @node RUNS
2973 @subsection Runs Test
2974 @vindex RUNS
2975 @cindex runs test
2976
2977 @display
2978      [ /RUNS (@{MEAN, MEDIAN, MODE, @var{value}@})  = @var{var_list} ]
2979 @end display
2980
2981 The @subcmd{/RUNS} subcommand tests whether a data sequence is randomly ordered.
2982
2983 It works by examining the number of times a variable's value crosses a given threshold.
2984 The desired threshold must be specified within parentheses.
2985 It may either be specified as a number or as one of @subcmd{MEAN}, @subcmd{MEDIAN} or @subcmd{MODE}.
2986 Following the threshold specification comes the list of variables whose values are to be
2987 tested.
2988
2989 The subcommand shows the number of runs, the asymptotic significance based on the
2990 length of the data.
2991
2992 @node SIGN
2993 @subsection Sign Test
2994 @vindex SIGN
2995 @cindex sign test
2996
2997 @display
2998      [ /SIGN @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
2999 @end display
3000
3001 The @subcmd{/SIGN} subcommand tests for differences between medians of the
3002 variables listed.
3003 The test does not make any assumptions about the
3004 distribution of the data.
3005
3006 If the @code{WITH} keyword is omitted, then tests for all
3007 combinations of the listed variables are performed.
3008 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
3009 is also given, then the number of variables preceding @code{WITH}
3010 must be the same as the number following it.
3011 In this case, tests for each respective pair of variables are
3012 performed.
3013 If the @code{WITH} keyword is given, but the
3014 @code{(PAIRED)} keyword is omitted, then tests for each combination
3015 of variable preceding @code{WITH} against variable following
3016 @code{WITH} are performed.
3017
3018 @node WILCOXON
3019 @subsection Wilcoxon Matched Pairs Signed Ranks Test
3020 @vindex WILCOXON
3021 @cindex wilcoxon matched pairs signed ranks test
3022
3023 @display
3024      [ /WILCOXON @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
3025 @end display
3026
3027 The @subcmd{/WILCOXON} subcommand tests for differences between medians of the
3028 variables listed.
3029 The test does not make any assumptions about the variances of the samples.
3030 It does however assume that the distribution is symmetrical.
3031
3032 If the @subcmd{WITH} keyword is omitted, then tests for all
3033 combinations of the listed variables are performed.
3034 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
3035 is also given, then the number of variables preceding @subcmd{WITH}
3036 must be the same as the number following it.
3037 In this case, tests for each respective pair of variables are
3038 performed.
3039 If the @subcmd{WITH} keyword is given, but the
3040 @subcmd{(PAIRED)} keyword is omitted, then tests for each combination
3041 of variable preceding @subcmd{WITH} against variable following
3042 @subcmd{WITH} are performed.
3043
3044 @node T-TEST
3045 @section T-TEST
3046
3047 @vindex T-TEST
3048
3049 @display
3050 T-TEST
3051         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
3052         /CRITERIA=CI(@var{confidence})
3053
3054
3055 (One Sample mode.)
3056         TESTVAL=@var{test_value}
3057         /VARIABLES=@var{var_list}
3058
3059
3060 (Independent Samples mode.)
3061         GROUPS=var(@var{value1} [, @var{value2}])
3062         /VARIABLES=@var{var_list}
3063
3064
3065 (Paired Samples mode.)
3066         PAIRS=@var{var_list} [WITH @var{var_list} [(PAIRED)] ]
3067
3068 @end display
3069
3070
3071 The @cmd{T-TEST} procedure outputs tables used in testing hypotheses about
3072 means.
3073 It operates in one of three modes:
3074 @itemize
3075 @item One Sample mode.
3076 @item Independent Groups mode.
3077 @item Paired mode.
3078 @end itemize
3079
3080 @noindent
3081 Each of these modes are described in more detail below.
3082 There are two optional subcommands which are common to all modes.
3083
3084 The @cmd{/CRITERIA} subcommand tells @pspp{} the confidence interval used
3085 in the tests.  The default value is 0.95.
3086
3087
3088 The @cmd{MISSING} subcommand determines the handling of missing
3089 variables.
3090 If @subcmd{INCLUDE} is set, then user-missing values are included in the
3091 calculations, but system-missing values are not.
3092 If @subcmd{EXCLUDE} is set, which is the default, user-missing
3093 values are excluded as well as system-missing values.
3094 This is the default.
3095
3096 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
3097 whenever any variable  specified in the @subcmd{/VARIABLES}, @subcmd{/PAIRS} or
3098 @subcmd{/GROUPS} subcommands contains a missing value.
3099 If @subcmd{ANALYSIS} is set, then missing values are excluded only in the analysis for
3100 which they would be needed. This is the default.
3101
3102
3103 @menu
3104 * One Sample Mode::             Testing against a hypothesized mean
3105 * Independent Samples Mode::    Testing two independent groups for equal mean
3106 * Paired Samples Mode::         Testing two interdependent groups for equal mean
3107 @end menu
3108
3109 @node One Sample Mode
3110 @subsection One Sample Mode
3111
3112 The @subcmd{TESTVAL} subcommand invokes the One Sample mode.
3113 This mode is used to test a population mean against a hypothesized
3114 mean.
3115 The value given to the @subcmd{TESTVAL} subcommand is the value against
3116 which you wish to test.
3117 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
3118 tell @pspp{} which variables you wish to test.
3119
3120 @subsubsection Example - One Sample T-test
3121
3122 A researcher wishes to know whether the weight of persons in a population
3123 is different from the national average.
3124 The samples are drawn from the population under investigation and recorded
3125 in the file @file{physiology.sav}.
3126 From the Department of Health, she
3127 knows that the national average weight of healthy adults is 76.8kg.
3128 Accordingly the @subcmd{TESTVAL} is set to 76.8.
3129 The null hypothesis therefore is that the mean average weight of the
3130 population from which the sample was drawn is 76.8kg.
3131
3132 As previously noted (@pxref{Identifying incorrect data}), one
3133 sample in the dataset contains a weight value
3134 which is clearly incorrect.  So this is excluded from the analysis
3135 using the @cmd{SELECT} command.
3136
3137 @float Example, one-sample-t:ex
3138 @psppsyntax {one-sample-t.sps}
3139 @caption {Running a one sample T-Test after excluding all non-positive values}
3140 @end float
3141
3142 @float Screenshot, one-sample-t:scr
3143 @psppimage {one-sample-t}
3144 @caption {Using the One Sample T-Test dialog box to test @exvar{weight} for a mean of 76.8kg}
3145 @end float
3146
3147
3148 @ref{one-sample-t:res} shows that the mean of our sample differs from the test value
3149 by -1.40kg.  However the significance is very high (0.610).  So one cannot
3150 reject the null hypothesis, and must conclude there is not enough evidence
3151 to suggest that the mean weight of the persons in our population is different
3152 from 76.8kg.
3153
3154 @float Results, one-sample-t:res
3155 @psppoutput {one-sample-t}
3156 @caption {The results of a one sample T-test of @exvar{weight} using a test value of 76.8kg}
3157 @end float
3158
3159 @node Independent Samples Mode
3160 @subsection Independent Samples Mode
3161
3162 The @subcmd{GROUPS} subcommand invokes Independent Samples mode or
3163 `Groups' mode.
3164 This mode is used to test whether two groups of values have the
3165 same population mean.
3166 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
3167 tell @pspp{} the dependent variables you wish to test.
3168
3169 The variable given in the @subcmd{GROUPS} subcommand is the independent
3170 variable which determines to which group the samples belong.
3171 The values in parentheses are the specific values of the independent
3172 variable for each group.
3173 If the parentheses are omitted and no values are given, the default values
3174 of 1.0 and 2.0 are assumed.
3175
3176 If the independent variable is numeric,
3177 it is acceptable to specify only one value inside the parentheses.
3178 If you do this, cases where the independent variable is
3179 greater than or equal to this value belong to the first group, and cases
3180 less than this value belong to the second group.
3181 When using this form of the @subcmd{GROUPS} subcommand, missing values in
3182 the independent variable are excluded on a listwise basis, regardless
3183 of whether @subcmd{/MISSING=LISTWISE} was specified.
3184
3185 @subsubsection Example - Independent Samples T-test
3186
3187 A researcher wishes to know whether within a population, adult males
3188 are taller than adult females.
3189 The samples are drawn from the population under investigation and recorded
3190 in the file @file{physiology.sav}.
3191
3192 As previously noted (@pxref{Identifying incorrect data}), one
3193 sample in the dataset contains a height value
3194 which is clearly incorrect.  So this is excluded from the analysis
3195 using the @cmd{SELECT} command.
3196
3197
3198 @float Example, indepdendent-samples-t:ex
3199 @psppsyntax {independent-samples-t.sps}
3200 @caption {Running a independent samples T-Test after excluding all observations less than 200kg}
3201 @end float
3202
3203
3204 The null hypothesis is that both males and females are on average
3205 of equal height.
3206
3207 @float Screenshot, independent-samples-t:scr
3208 @psppimage {independent-samples-t}
3209 @caption {Using the Independent Sample T-test dialog, to test for differences of @exvar{height} between values of @exvar{sex}}
3210 @end float
3211
3212
3213 In this case, the grouping variable is @exvar{sex}, so this is entered
3214 as the variable for the @subcmd{GROUP} subcommand.  The group values are  0 (male) and
3215 1 (female).
3216
3217 If you are running the proceedure using syntax, then you need to enter
3218 the values corresponding to each group within parentheses.
3219 If you are using the graphic user interface, then you have to open
3220 the ``Define Groups'' dialog box and enter the values corresponding
3221 to each group as shown in @ref{define-groups-t:scr}.  If, as in this case, the dataset has defined value
3222 labels for the group variable, then you can enter them by label
3223 or by value.
3224
3225 @float Screenshot, define-groups-t:scr
3226 @psppimage {define-groups-t}
3227 @caption {Setting the values of the grouping variable for an Independent Samples T-test}
3228 @end float
3229
3230 From @ref{independent-samples-t:res}, one can clearly see that the @emph{sample} mean height
3231 is greater for males than for females.  However in order to see if this
3232 is a significant result, one must consult the T-Test table.
3233
3234 The T-Test table contains two rows; one for use if the variance of the samples
3235 in each group may be safely assumed to be equal, and the second row
3236 if the variances in each group may not be safely assumed to be equal.
3237
3238 In this case however, both rows show a 2-tailed significance less than 0.001 and
3239 one must therefore reject the null hypothesis and conclude that within
3240 the population the mean height of males and of females are unequal.
3241
3242 @float Result, independent-samples-t:res
3243 @psppoutput {independent-samples-t}
3244 @caption {The results of an independent samples T-test of @exvar{height} by @exvar{sex}}
3245 @end float
3246
3247 @node Paired Samples Mode
3248 @subsection Paired Samples Mode
3249
3250 The @cmd{PAIRS} subcommand introduces Paired Samples mode.
3251 Use this mode when repeated measures have been taken from the same
3252 samples.
3253 If the @subcmd{WITH} keyword is omitted, then tables for all
3254 combinations of variables given in the @cmd{PAIRS} subcommand are
3255 generated.
3256 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
3257 is also given, then the number of variables preceding @subcmd{WITH}
3258 must be the same as the number following it.
3259 In this case, tables for each respective pair of variables are
3260 generated.
3261 In the event that the @subcmd{WITH} keyword is given, but the
3262 @subcmd{(PAIRED)} keyword is omitted, then tables for each combination
3263 of variable preceding @subcmd{WITH} against variable following
3264 @subcmd{WITH} are generated.
3265
3266
3267 @node ONEWAY
3268 @section ONEWAY
3269
3270 @vindex ONEWAY
3271 @cindex analysis of variance
3272 @cindex ANOVA
3273
3274 @display
3275 ONEWAY
3276         [/VARIABLES = ] @var{var_list} BY @var{var}
3277         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
3278         /CONTRAST= @var{value1} [, @var{value2}] ... [,@var{valueN}]
3279         /STATISTICS=@{DESCRIPTIVES,HOMOGENEITY@}
3280         /POSTHOC=@{BONFERRONI, GH, LSD, SCHEFFE, SIDAK, TUKEY, ALPHA ([@var{value}])@}
3281 @end display
3282
3283 The @cmd{ONEWAY} procedure performs a one-way analysis of variance of
3284 variables factored by a single independent variable.
3285 It is used to compare the means of a population
3286 divided into more than two groups.
3287
3288 The dependent variables to be analysed should be given in the @subcmd{VARIABLES}
3289 subcommand.
3290 The list of variables must be followed by the @subcmd{BY} keyword and
3291 the name of the independent (or factor) variable.
3292
3293 You can use the @subcmd{STATISTICS} subcommand to tell @pspp{} to display
3294 ancillary information.  The options accepted are:
3295 @itemize
3296 @item DESCRIPTIVES
3297 Displays descriptive statistics about the groups factored by the independent
3298 variable.
3299 @item HOMOGENEITY
3300 Displays the Levene test of Homogeneity of Variance for the
3301 variables and their groups.
3302 @end itemize
3303
3304 The @subcmd{CONTRAST} subcommand is used when you anticipate certain
3305 differences between the groups.
3306 The subcommand must be followed by a list of numerals which are the
3307 coefficients of the groups to be tested.
3308 The number of coefficients must correspond to the number of distinct
3309 groups (or values of the independent variable).
3310 If the total sum of the coefficients are not zero, then @pspp{} will
3311 display a warning, but will proceed with the analysis.
3312 The @subcmd{CONTRAST} subcommand may be given up to 10 times in order
3313 to specify different contrast tests.
3314 The @subcmd{MISSING} subcommand defines how missing values are handled.
3315 If @subcmd{LISTWISE} is specified then cases which have missing values for
3316 the independent variable or any dependent variable are ignored.
3317 If @subcmd{ANALYSIS} is specified, then cases are ignored if the independent
3318 variable is missing or if the dependent variable currently being
3319 analysed is missing.  The default is @subcmd{ANALYSIS}.
3320 A setting of @subcmd{EXCLUDE} means that variables whose values are
3321 user-missing are to be excluded from the analysis. A setting of
3322 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
3323
3324 Using the @code{POSTHOC} subcommand you can perform multiple
3325 pairwise comparisons on the data. The following comparison methods
3326 are available:
3327 @itemize
3328 @item @subcmd{LSD}
3329 Least Significant Difference.
3330 @item @subcmd{TUKEY}
3331 Tukey Honestly Significant Difference.
3332 @item @subcmd{BONFERRONI}
3333 Bonferroni test.
3334 @item @subcmd{SCHEFFE}
3335 Scheff@'e's test.
3336 @item @subcmd{SIDAK}
3337 Sidak test.
3338 @item @subcmd{GH}
3339 The Games-Howell test.
3340 @end itemize
3341
3342 @noindent
3343 Use the optional syntax @code{ALPHA(@var{value})} to indicate that
3344 @cmd{ONEWAY} should perform the posthoc tests at a confidence level of
3345 @var{value}.  If @code{ALPHA(@var{value})} is not specified, then the
3346 confidence level used is 0.05.
3347
3348 @node QUICK CLUSTER
3349 @section QUICK CLUSTER
3350 @vindex QUICK CLUSTER
3351
3352 @cindex K-means clustering
3353 @cindex clustering
3354
3355 @display
3356 QUICK CLUSTER @var{var_list}
3357       [/CRITERIA=CLUSTERS(@var{k}) [MXITER(@var{max_iter})] CONVERGE(@var{epsilon}) [NOINITIAL]]
3358       [/MISSING=@{EXCLUDE,INCLUDE@} @{LISTWISE, PAIRWISE@}]
3359       [/PRINT=@{INITIAL@} @{CLUSTER@}]
3360       [/SAVE[=[CLUSTER[(@var{membership_var})]] [DISTANCE[(@var{distance_var})]]]
3361 @end display
3362
3363 The @cmd{QUICK CLUSTER} command performs k-means clustering on the
3364 dataset.  This is useful when you wish to allocate cases into clusters
3365 of similar values and you already know the number of clusters.
3366
3367 The minimum specification is @samp{QUICK CLUSTER} followed by the names
3368 of the variables which contain the cluster data.  Normally you will also
3369 want to specify @subcmd{/CRITERIA=CLUSTERS(@var{k})} where @var{k} is the
3370 number of clusters.  If this is not specified, then @var{k} defaults to 2.
3371
3372 If you use @subcmd{/CRITERIA=NOINITIAL} then a naive algorithm to select
3373 the initial clusters is used.   This will provide for faster execution but
3374 less well separated initial clusters and hence possibly an inferior final
3375 result.
3376
3377
3378 @cmd{QUICK CLUSTER} uses an iterative algorithm to select the clusters centers.
3379 The subcommand  @subcmd{/CRITERIA=MXITER(@var{max_iter})} sets the maximum number of iterations.
3380 During classification, @pspp{} will continue iterating until until @var{max_iter}
3381 iterations have been done or the convergence criterion (see below) is fulfilled.
3382 The default value of @var{max_iter} is 2.
3383
3384 If however, you specify @subcmd{/CRITERIA=NOUPDATE} then after selecting the initial centers,
3385 no further update to the cluster centers is done.  In this case, @var{max_iter}, if specified.
3386 is ignored.
3387
3388 The subcommand  @subcmd{/CRITERIA=CONVERGE(@var{epsilon})} is used
3389 to set the convergence criterion.  The value of convergence criterion is  @var{epsilon}
3390 times the minimum distance between the @emph{initial} cluster centers.  Iteration stops when
3391 the  mean cluster distance between  one iteration and the next
3392 is less than the convergence criterion.  The default value of @var{epsilon} is zero.
3393
3394 The @subcmd{MISSING} subcommand determines the handling of missing variables.
3395 If @subcmd{INCLUDE} is set, then user-missing values are considered at their face
3396 value and not as missing values.
3397 If @subcmd{EXCLUDE} is set, which is the default, user-missing
3398 values are excluded as well as system-missing values.
3399
3400 If @subcmd{LISTWISE} is set, then the entire case is excluded from the analysis
3401 whenever any of the clustering variables contains a missing value.
3402 If @subcmd{PAIRWISE} is set, then a case is considered missing only if all the
3403 clustering variables contain missing values.  Otherwise it is clustered
3404 on the basis of the non-missing values.
3405 The default is @subcmd{LISTWISE}.
3406
3407 The @subcmd{PRINT} subcommand requests additional output to be printed.
3408 If @subcmd{INITIAL} is set, then the initial cluster memberships will
3409 be printed.
3410 If @subcmd{CLUSTER} is set, the cluster memberships of the individual
3411 cases are displayed (potentially generating lengthy output).
3412
3413 You can specify the subcommand @subcmd{SAVE} to ask that each case's cluster membership
3414 and the euclidean distance between the case and its cluster center be saved to
3415 a new variable in the active dataset.   To save the cluster membership use the
3416 @subcmd{CLUSTER} keyword and to save the distance use the @subcmd{DISTANCE} keyword.
3417 Each keyword may optionally be followed by a variable name in parentheses to specify
3418 the new variable which is to contain the saved parameter.  If no variable name is specified,
3419 then PSPP will create one.
3420
3421 @node RANK
3422 @section RANK
3423
3424 @vindex RANK
3425 @display
3426 RANK
3427         [VARIABLES=] @var{var_list} [@{A,D@}] [BY @var{var_list}]
3428         /TIES=@{MEAN,LOW,HIGH,CONDENSE@}
3429         /FRACTION=@{BLOM,TUKEY,VW,RANKIT@}
3430         /PRINT[=@{YES,NO@}
3431         /MISSING=@{EXCLUDE,INCLUDE@}
3432
3433         /RANK [INTO @var{var_list}]
3434         /NTILES(k) [INTO @var{var_list}]
3435         /NORMAL [INTO @var{var_list}]
3436         /PERCENT [INTO @var{var_list}]
3437         /RFRACTION [INTO @var{var_list}]
3438         /PROPORTION [INTO @var{var_list}]
3439         /N [INTO @var{var_list}]
3440         /SAVAGE [INTO @var{var_list}]
3441 @end display
3442
3443 The @cmd{RANK} command ranks variables and stores the results into new
3444 variables.
3445
3446 The @subcmd{VARIABLES} subcommand, which is mandatory, specifies one or
3447 more variables whose values are to be ranked.
3448 After each variable, @samp{A} or @samp{D} may appear, indicating that
3449 the variable is to be ranked in ascending or descending order.
3450 Ascending is the default.
3451 If a @subcmd{BY} keyword appears, it should be followed by a list of variables
3452 which are to serve as group variables.
3453 In this case, the cases are gathered into groups, and ranks calculated
3454 for each group.
3455
3456 The @subcmd{TIES} subcommand specifies how tied values are to be treated.  The
3457 default is to take the mean value of all the tied cases.
3458
3459 The @subcmd{FRACTION} subcommand specifies how proportional ranks are to be
3460 calculated.  This only has any effect if @subcmd{NORMAL} or @subcmd{PROPORTIONAL} rank
3461 functions are requested.
3462
3463 The @subcmd{PRINT} subcommand may be used to specify that a summary of the rank
3464 variables created should appear in the output.
3465
3466 The function subcommands are @subcmd{RANK}, @subcmd{NTILES}, @subcmd{NORMAL}, @subcmd{PERCENT}, @subcmd{RFRACTION},
3467 @subcmd{PROPORTION} and @subcmd{SAVAGE}.  Any number of function subcommands may appear.
3468 If none are given, then the default is RANK.
3469 The @subcmd{NTILES} subcommand must take an integer specifying the number of
3470 partitions into which values should be ranked.
3471 Each subcommand may be followed by the @subcmd{INTO} keyword and a list of
3472 variables which are the variables to be created and receive the rank
3473 scores.  There may be as many variables specified as there are
3474 variables named on the @subcmd{VARIABLES} subcommand.  If fewer are specified,
3475 then the variable names are automatically created.
3476
3477 The @subcmd{MISSING} subcommand determines how user missing values are to be
3478 treated. A setting of @subcmd{EXCLUDE} means that variables whose values are
3479 user-missing are to be excluded from the rank scores. A setting of
3480 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
3481
3482 @include regression.texi
3483
3484
3485 @node RELIABILITY
3486 @section RELIABILITY
3487
3488 @vindex RELIABILITY
3489 @display
3490 RELIABILITY
3491         /VARIABLES=@var{var_list}
3492         /SCALE (@var{name}) = @{@var{var_list}, ALL@}
3493         /MODEL=@{ALPHA, SPLIT[(@var{n})]@}
3494         /SUMMARY=@{TOTAL,ALL@}
3495         /MISSING=@{EXCLUDE,INCLUDE@}
3496 @end display
3497
3498 @cindex Cronbach's Alpha
3499 The @cmd{RELIABILITY} command performs reliability analysis on the data.
3500
3501 The @subcmd{VARIABLES} subcommand is required. It determines the set of variables
3502 upon which analysis is to be performed.
3503
3504 The @subcmd{SCALE} subcommand determines the  variables for which
3505 reliability is to be calculated.  If @subcmd{SCALE} is omitted, then analysis for
3506 all variables named in the @subcmd{VARIABLES} subcommand are used.
3507 Optionally, the @var{name} parameter may be specified to set a string name
3508 for the scale.
3509
3510 The @subcmd{MODEL} subcommand determines the type of analysis. If @subcmd{ALPHA} is specified,
3511 then Cronbach's Alpha is calculated for the scale.  If the model is @subcmd{SPLIT},
3512 then the variables  are divided into 2 subsets.  An optional parameter
3513 @var{n} may be given, to specify how many variables to be in the first subset.
3514 If @var{n} is omitted, then it defaults to one half of the variables in the
3515 scale, or one half minus one if there are an odd number of variables.
3516 The default model is @subcmd{ALPHA}.
3517
3518 By default, any cases with user missing, or system missing values for
3519 any variables given in the @subcmd{VARIABLES} subcommand are omitted
3520 from the analysis.  The @subcmd{MISSING} subcommand determines whether
3521 user missing values are included or excluded in the analysis.
3522
3523 The @subcmd{SUMMARY} subcommand determines the type of summary analysis to be performed.
3524 Currently there is only one type: @subcmd{SUMMARY=TOTAL}, which displays per-item
3525 analysis tested against the totals.
3526
3527 @subsection Example - Reliability
3528
3529 Before analysing the results of a survey -- particularly for a multiple choice survey --
3530 it is desireable to know whether the respondents have considered their answers
3531 or simply provided random answers.
3532
3533 In the following example the survey results from the file @file{hotel.sav} are used.
3534 All five survey questions are included in the reliability analysis.
3535 However, before running the analysis, the data must be preprocessed.
3536 An examination of the survey questions reveals that two questions, @i{viz:} v3 and v5
3537 are negatively worded, whereas the others are positively worded.
3538 All questions must be based upon the same scale for the analysis to be meaningful.
3539 One could use the @cmd{RECODE} command (@pxref{RECODE}), however a simpler way is
3540 to use @cmd{COMPUTE} (@pxref{COMPUTE}) and this is what is done in @ref{reliability:ex}.
3541
3542 @float Example, reliability:ex
3543 @psppsyntax {reliability.sps}
3544 @caption {Investigating the reliability of survey responses}
3545 @end float
3546
3547 In this case, all variables in the data set are used.  So we can use the special
3548 keyword @samp{ALL} (@pxref{BNF}).
3549
3550 @float Screenshot, reliability:src
3551 @psppimage {reliability}
3552 @caption {Reliability dialog box with all variables selected}
3553 @end float
3554
3555 @ref{reliability:res} shows that Cronbach's Alpha is 0.11  which is a value normally considered too
3556 low to indicate consistency within the data.  This is possibly due to the small number of
3557 survey questions.  The survey should be redesigned before serious use of the results are
3558 applied.
3559
3560 @float Result, reliability:res
3561 @psppoutput {reliability}
3562 @caption {The results of the reliability command on @file{hotel.sav}}
3563 @end float
3564
3565
3566 @node ROC
3567 @section ROC
3568
3569 @vindex ROC
3570 @cindex Receiver Operating Characteristic
3571 @cindex Area under curve
3572
3573 @display
3574 ROC     @var{var_list} BY @var{state_var} (@var{state_value})
3575         /PLOT = @{ CURVE [(REFERENCE)], NONE @}
3576         /PRINT = [ SE ] [ COORDINATES ]
3577         /CRITERIA = [ CUTOFF(@{INCLUDE,EXCLUDE@}) ]
3578           [ TESTPOS (@{LARGE,SMALL@}) ]
3579           [ CI (@var{confidence}) ]
3580           [ DISTRIBUTION (@{FREE, NEGEXPO @}) ]
3581         /MISSING=@{EXCLUDE,INCLUDE@}
3582 @end display
3583
3584
3585 The @cmd{ROC} command is used to plot the receiver operating characteristic curve
3586 of a dataset, and to estimate the area under the curve.
3587 This is useful for analysing the efficacy of a variable as a predictor of a state of nature.
3588
3589 The mandatory @var{var_list} is the list of predictor variables.
3590 The variable @var{state_var} is the variable whose values represent the actual states,
3591 and @var{state_value} is the value of this variable which represents the positive state.
3592
3593 The optional subcommand @subcmd{PLOT} is used to determine if and how the @subcmd{ROC} curve is drawn.
3594 The keyword @subcmd{CURVE} means that the @subcmd{ROC} curve should be drawn, and the optional keyword @subcmd{REFERENCE},
3595 which should be enclosed in parentheses, says that the diagonal reference line should be drawn.
3596 If the keyword @subcmd{NONE} is given, then no @subcmd{ROC} curve is drawn.
3597 By default, the curve is drawn with no reference line.
3598
3599 The optional subcommand @subcmd{PRINT} determines which additional
3600 tables should be printed.  Two additional tables are available.  The
3601 @subcmd{SE} keyword says that standard error of the area under the
3602 curve should be printed as well as the area itself.  In addition, a
3603 p-value for the null hypothesis that the area under the curve equals
3604 0.5 is printed.   The @subcmd{COORDINATES} keyword says that a
3605 table of coordinates of the @subcmd{ROC} curve should be printed.
3606
3607 The @subcmd{CRITERIA} subcommand has four optional parameters:
3608 @itemize @bullet
3609 @item The @subcmd{TESTPOS} parameter may be @subcmd{LARGE} or @subcmd{SMALL}.
3610 @subcmd{LARGE} is the default, and says that larger values in the predictor variables are to be
3611 considered positive.  @subcmd{SMALL} indicates that smaller values should be considered positive.
3612
3613 @item The @subcmd{CI} parameter specifies the confidence interval that should be printed.
3614 It has no effect if the @subcmd{SE} keyword in the @subcmd{PRINT} subcommand has not been given.
3615
3616 @item The @subcmd{DISTRIBUTION} parameter determines the method to be used when estimating the area
3617 under the curve.
3618 There are two possibilities, @i{viz}: @subcmd{FREE} and @subcmd{NEGEXPO}.
3619 The @subcmd{FREE} method uses a non-parametric estimate, and the @subcmd{NEGEXPO} method a bi-negative
3620 exponential distribution estimate.
3621 The @subcmd{NEGEXPO} method should only be used when the number of positive actual states is
3622 equal to the number of negative actual states.
3623 The default is @subcmd{FREE}.
3624
3625 @item The @subcmd{CUTOFF} parameter is for compatibility and is ignored.
3626 @end itemize
3627
3628 The @subcmd{MISSING} subcommand determines whether user missing values are to
3629 be included or excluded in the analysis.  The default behaviour is to
3630 exclude them.
3631 Cases are excluded on a listwise basis; if any of the variables in @var{var_list}
3632 or if the variable @var{state_var} is missing, then the entire case is
3633 excluded.
3634
3635 @c  LocalWords:  subcmd subcommand