1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "libpspp/assertion.h"
25 #include "libpspp/hash-functions.h"
26 #include "libpspp/hmap.h"
27 #include "output/render.h"
28 #include "output/table.h"
30 #include "gl/minmax.h"
31 #include "gl/xalloc.h"
33 /* This file uses TABLE_HORZ and TABLE_VERT enough to warrant abbreviating. */
37 /* A layout for rendering a specific table on a specific device.
39 May represent the layout of an entire table presented to
40 render_page_create(), or a rectangular subregion of a table broken out using
41 render_page_next() to allow a table to be broken across multiple pages. */
44 const struct render_params *params; /* Parameters of the target device. */
45 struct table *table; /* Table rendered. */
48 /* Local copies of table->n and table->h, for convenience. */
50 int h[TABLE_N_AXES][2];
52 /* cp[H] represents x positions within the table.
54 cp[H][1] = the width of the leftmost vertical rule.
55 cp[H][2] = cp[H][1] + the width of the leftmost column.
56 cp[H][3] = cp[H][2] + the width of the second-from-left vertical rule.
58 cp[H][2 * nc] = x position of the rightmost vertical rule.
59 cp[H][2 * nc + 1] = total table width including all rules.
61 Similarly, cp[V] represents y positions within the table.
63 cp[V][1] = the height of the topmost horizontal rule.
64 cp[V][2] = cp[V][1] + the height of the topmost column.
65 cp[V][3] = cp[V][2] + the height of the second-from-top horizontal rule.
67 cp[V][2 * nr] = y position of the bottommost horizontal rule.
68 cp[V][2 * nr + 1] = total table height including all rules.
70 Rules and columns can have width or height 0, in which case consecutive
71 values in this array are equal. */
72 int *cp[TABLE_N_AXES];
74 /* render_break_next() can break a table such that some cells are not fully
75 contained within a render_page. This will happen if a cell is too wide
76 or two tall to fit on a single page, or if a cell spans multiple rows or
77 columns and the page only includes some of those rows or columns.
79 This hash table contains "struct render_overflow"s that represents each
80 such cell that doesn't completely fit on this page.
82 Each overflow cell borders at least one header edge of the table and may
83 border more. (A single table cell that is so large that it fills the
84 entire page can overflow on all four sides!) */
85 struct hmap overflows;
87 /* If a single column (or row) is too wide (or tall) to fit on a page
88 reasonably, then render_break_next() will split a single row or column
89 across multiple render_pages. This member indicates when this has
92 is_edge_cutoff[H][0] is true if pixels have been cut off the left side
93 of the leftmost column in this page, and false otherwise.
95 is_edge_cutoff[H][1] is true if pixels have been cut off the right side
96 of the rightmost column in this page, and false otherwise.
98 is_edge_cutoff[V][0] and is_edge_cutoff[V][1] are similar for the top
99 and bottom of the table.
101 The effect of is_edge_cutoff is to prevent rules along the edge in
102 question from being rendered.
104 When is_edge_cutoff is true for a given edge, the 'overflows' hmap will
105 contain a node for each cell along that edge. */
106 bool is_edge_cutoff[TABLE_N_AXES][2];
108 /* If part of a joined cell would be cut off by breaking a table along
109 'axis' at the rule with offset 'z' (where 0 <= z <= n[axis]), then
110 join_crossing[axis][z] is the thickness of the rule that would be cut
113 This is used to know to allocate extra space for breaking at such a
114 position, so that part of the cell's content is not lost.
116 This affects breaking a table only when headers are present. When
117 headers are not present, the rule's thickness is used for cell content,
118 so no part of the cell's content is lost (and in fact it is duplicated
119 across both pages). */
120 int *join_crossing[TABLE_N_AXES];
123 /* Returns the offset in struct render_page's cp[axis] array of the rule with
124 index RULE_IDX. That is, if RULE_IDX is 0, then the offset is that of the
125 leftmost or topmost rule; if RULE_IDX is 1, then the offset is that of the
126 next rule to the right (or below); and so on. */
128 rule_ofs (int rule_idx)
133 /* Returns the offset in struct render_page's cp[axis] array of the rule with
134 index RULE_IDX_R, which counts from the right side (or bottom) of the page
135 left (or up), according to whether AXIS is H or V, respectively. That is,
136 if RULE_IDX_R is 0, then the offset is that of the rightmost or bottommost
137 rule; if RULE_IDX is 1, then the offset is that of the next rule to the left
138 (or above); and so on. */
140 rule_ofs_r (const struct render_page *page, int axis, int rule_idx_r)
142 return (page->n[axis] - rule_idx_r) * 2;
145 /* Returns the offset in struct render_page's cp[axis] array of the cell with
146 index CELL_IDX. That is, if CELL_IDX is 0, then the offset is that of the
147 leftmost or topmost cell; if CELL_IDX is 1, then the offset is that of the
148 next cell to the right (or below); and so on. */
150 cell_ofs (int cell_idx)
152 return cell_idx * 2 + 1;
155 /* Returns the width of PAGE along AXIS from OFS0 to OFS1, exclusive. */
157 axis_width (const struct render_page *page, int axis, int ofs0, int ofs1)
159 return page->cp[axis][ofs1] - page->cp[axis][ofs0];
162 /* Returns the width of the headers in PAGE along AXIS. */
164 headers_width (const struct render_page *page, int axis)
166 int h0 = page->h[axis][0];
167 int w0 = axis_width (page, axis, rule_ofs (0), cell_ofs (h0));
168 int n = page->n[axis];
169 int h1 = page->h[axis][1];
170 int w1 = axis_width (page, axis, rule_ofs_r (page, axis, h1), cell_ofs (n));
174 /* Returns the width of cell X along AXIS in PAGE. */
176 cell_width (const struct render_page *page, int axis, int x)
178 return axis_width (page, axis, cell_ofs (x), cell_ofs (x) + 1);
181 /* Returns the width of cells X0 through X1, exclusive, along AXIS in PAGE. */
183 joined_width (const struct render_page *page, int axis, int x0, int x1)
185 return axis_width (page, axis, cell_ofs (x0), cell_ofs (x1) - 1);
188 /* Returns the width of the widest cell, excluding headers, along AXIS in
191 max_cell_width (const struct render_page *page, int axis)
193 int n = page->n[axis];
194 int x0 = page->h[axis][0];
195 int x1 = n - page->h[axis][1];
199 for (x = x0; x < x1; x++)
201 int w = cell_width (page, axis, x);
208 /* A cell that doesn't completely fit on the render_page. */
209 struct render_overflow
211 struct hmap_node node; /* In render_page's 'overflows' hmap. */
213 /* Occupied region of page.
215 d[H][0] is the leftmost column.
216 d[H][1] is the rightmost column, plus 1.
217 d[V][0] is the top row.
218 d[V][1] is the bottom row, plus 1.
220 The cell in its original table might occupy a larger region. This
221 member reflects the size of the cell in the current render_page, after
222 trimming off any rows or columns due to page-breaking. */
225 /* The space that has been trimmed off the cell:
227 overflow[H][0]: space trimmed off its left side.
228 overflow[H][1]: space trimmed off its right side.
229 overflow[V][0]: space trimmed off its top.
230 overflow[V][1]: space trimmed off its bottom.
232 During rendering, this information is used to position the rendered
233 portion of the cell within the available space.
235 When a cell is rendered, sometimes it is permitted to spill over into
236 space that is ordinarily reserved for rules. Either way, this space is
237 still included in overflow values.
239 Suppose, for example, that a cell that joins 2 columns has a width of 60
240 pixels and content "abcdef", that the 2 columns that it joins have
241 widths of 20 and 30 pixels, respectively, and that therefore the rule
242 between the two joined columns has a width of 10 (20 + 10 + 30 = 60).
243 It might render like this, if each character is 10x10, and showing a few
244 extra table cells for context:
252 If this render_page is broken at the rule that separates "gh" from
253 "ijk", then the page that contains the left side of the "abcdef" cell
254 will have overflow[H][1] of 10 + 30 = 40 for its portion of the cell,
255 and the page that contains the right side of the cell will have
256 overflow[H][0] of 20 + 10 = 30. The two resulting pages would look like
274 int overflow[TABLE_N_AXES][2];
277 /* Returns a hash value for (X,Y). */
279 hash_overflow (int x, int y)
281 return hash_int (x + (y << 16), 0);
284 /* Searches PAGE's set of render_overflow for one whose top-left cell is
285 (X,Y). Returns it, if there is one, otherwise a null pointer. */
286 static const struct render_overflow *
287 find_overflow (const struct render_page *page, int x, int y)
289 if (!hmap_is_empty (&page->overflows))
291 const struct render_overflow *of;
293 HMAP_FOR_EACH_WITH_HASH (of, struct render_overflow, node,
294 hash_overflow (x, y), &page->overflows)
295 if (x == of->d[H] && y == of->d[V])
302 /* Row or column dimensions. Used to figure the size of a table in
303 render_page_create() and discarded after that. */
306 /* Width without considering rows (or columns) that span more than one (or
310 /* Width taking spanned rows (or columns) into consideration. */
314 /* Modifies the 'width' members of the N elements of ROWS so that their sum,
315 when added to rule widths RULES[1] through RULES[N - 1] inclusive, is at
318 distribute_spanned_width (int width,
319 struct render_row *rows, const int *rules, int n)
325 /* Sum up the unspanned widths of the N rows for use as weights. */
327 for (x = 0; x < n; x++)
328 total_unspanned += rows[x].unspanned;
329 for (x = 0; x < n - 1; x++)
330 total_unspanned += rules[x + 1];
331 if (total_unspanned >= width)
334 /* The algorithm used here is based on the following description from HTML 4:
336 For cells that span multiple columns, a simple approach consists of
337 apportioning the min/max widths evenly to each of the constituent
338 columns. A slightly more complex approach is to use the min/max
339 widths of unspanned cells to weight how spanned widths are
340 apportioned. Experiments suggest that a blend of the two approaches
341 gives good results for a wide range of tables.
343 We blend the two approaches half-and-half, except that we cannot use the
344 unspanned weights when 'total_unspanned' is 0 (because that would cause a
347 This implementation uses floating-point types and operators, but all the
348 values involved are integers. For integers smaller than 53 bits, this
349 should not lose any precision, and it should degrade gracefully for larger
352 The calculation we want to do is this:
355 w1 = width * (column's unspanned width) / (total unspanned width)
356 (column's width) = (w0 + w1) / 2
358 We implement it as a precise calculation in integers by multiplying w0 and
359 w1 by the common denominator of all three calculations (d), dividing that
360 out in the column width calculation, and then keeping the remainder for
363 (We actually compute the unspanned width of a column as twice the
364 unspanned width, plus the width of the rule on the left, plus the width of
365 the rule on the right. That way each rule contributes to both the cell on
366 its left and on its right.)
369 d1 = 2.0 * (total_unspanned > 0 ? total_unspanned : 1.0);
371 if (total_unspanned > 0)
374 for (x = 0; x < n; x++)
377 if (total_unspanned > 0)
379 double unspanned = rows[x].unspanned * 2.0;
381 unspanned += rules[x + 1];
383 unspanned += rules[x];
384 w += width * unspanned * d0;
387 rows[x].width = w / d;
388 w -= rows[x].width * d;
392 /* Initializes PAGE->cp[AXIS] from the row widths in ROWS and the rule widths
395 accumulate_row_widths (const struct render_page *page, enum table_axis axis,
396 const struct render_row *rows, const int *rules)
398 int n = page->n[axis];
404 for (z = 0; z < n; z++)
406 cp[1] = cp[0] + rules[z];
407 cp[2] = cp[1] + rows[z].width;
410 cp[1] = cp[0] + rules[n];
413 /* Returns the sum of widths of the N ROWS and N+1 RULES. */
415 calculate_table_width (int n, const struct render_row *rows, int *rules)
421 for (x = 0; x < n; x++)
422 width += rows[x].width;
423 for (x = 0; x <= n; x++)
429 /* Rendering utility functions. */
431 /* Returns the line style to use for drawing a rule of the given TYPE. */
432 static enum render_line_style
433 rule_to_render_type (unsigned char type)
439 return RENDER_LINE_NONE;
441 return RENDER_LINE_SINGLE;
443 return RENDER_LINE_DOUBLE;
449 /* Returns the width of the rule in TABLE that is at offset Z along axis A, if
450 rendered with PARAMS. */
452 measure_rule (const struct render_params *params, const struct table *table,
453 enum table_axis a, int z)
455 enum table_axis b = !a;
460 /* Determine all types of rules that are present, as a bitmap in 'rules'
461 where rule type 't' is present if bit 2**t is set. */
464 for (d[b] = 0; d[b] < table->n[b]; d[b]++)
465 rules |= 1u << table_get_rule (table, a, d[H], d[V]);
467 /* Calculate maximum width of the rules that are present. */
469 for (i = 0; i < N_LINES; i++)
470 if (rules & (1u << i))
471 width = MAX (width, params->line_widths[a][rule_to_render_type (i)]);
476 /* Allocates and returns a new render_page using PARAMS and TABLE. Allocates
477 space for all of the members of the new page, but the caller must initialize
478 the 'cp' member itself. */
479 static struct render_page *
480 render_page_allocate (const struct render_params *params,
483 struct render_page *page;
486 page = xmalloc (sizeof *page);
487 page->params = params;
490 page->n[H] = table->n[H];
491 page->n[V] = table->n[V];
492 page->h[H][0] = table->h[H][0];
493 page->h[H][1] = table->h[H][1];
494 page->h[V][0] = table->h[V][0];
495 page->h[V][1] = table->h[V][1];
497 for (i = 0; i < TABLE_N_AXES; i++)
499 page->cp[i] = xmalloc ((2 * page->n[i] + 2) * sizeof *page->cp[i]);
500 page->join_crossing[i] = xzalloc ((page->n[i] + 1) * sizeof *page->join_crossing[i]);
503 hmap_init (&page->overflows);
504 memset (page->is_edge_cutoff, 0, sizeof page->is_edge_cutoff);
509 /* Allocates and returns a new render_page for PARAMS and TABLE, initializing
510 cp[H] in the new page from ROWS and RULES. The caller must still initialize
512 static struct render_page *
513 create_page_with_exact_widths (const struct render_params *params,
515 const struct render_row *rows, int *rules)
517 struct render_page *page = render_page_allocate (params, table);
518 accumulate_row_widths (page, H, rows, rules);
522 /* Allocates and returns a new render_page for PARAMS and TABLE.
524 Initializes cp[H] in the new page by setting the width of each row 'i' to
525 somewhere between the minimum cell width ROW_MIN[i].width and the maximum
526 ROW_MAX[i].width. Sets the width of rules to those in RULES.
528 W_MIN is the sum of ROWS_MIN[].width.
530 W_MAX is the sum of ROWS_MAX[].width.
532 The caller must still initialize cp[V]. */
533 static struct render_page *
534 create_page_with_interpolated_widths (const struct render_params *params,
536 const struct render_row *rows_min,
537 const struct render_row *rows_max,
538 int w_min, int w_max, const int *rules)
540 /* This implementation uses floating-point types and operators, but all the
541 values involved are integers. For integers smaller than 53 bits, this
542 should not lose any precision, and it should degrade gracefully for larger
544 const int n = table->n[H];
545 const double avail = params->size[H] - w_min;
546 const double wanted = w_max - w_min;
547 struct render_page *page;
554 page = render_page_allocate (params, table);
558 w = (int) wanted / 2;
559 for (x = 0; x < n; x++)
563 w += avail * (rows_max[x].width - rows_min[x].width);
567 cph[1] = cph[0] + rules[x];
568 cph[2] = cph[1] + rows_min[x].width + extra;
571 cph[1] = cph[0] + rules[n];
573 assert (page->cp[H][n * 2 + 1] == params->size[H]);
579 set_join_crossings (struct render_page *page, enum table_axis axis,
580 const struct table_cell *cell, int *rules)
584 for (z = cell->d[axis][0] + 1; z <= cell->d[axis][1] - 1; z++)
585 page->join_crossing[axis][z] = rules[z];
588 /* Creates and returns a new render_page for rendering TABLE on a device
591 The new render_page will be suitable for rendering on a device whose page
592 size is PARAMS->size, but the caller is responsible for actually breaking it
593 up to fit on such a device, using the render_break abstraction. */
595 render_page_create (const struct render_params *params,
596 const struct table *table_)
598 struct render_page *page;
601 struct render_row *columns[2];
602 struct render_row *rows;
604 int *rules[TABLE_N_AXES];
608 enum table_axis axis;
610 table = table_ref (table_);
611 nc = table_nc (table);
612 nr = table_nr (table);
614 /* Figure out rule widths. */
615 for (axis = 0; axis < TABLE_N_AXES; axis++)
617 int n = table->n[axis] + 1;
620 rules[axis] = xnmalloc (n, sizeof *rules);
621 for (z = 0; z < n; z++)
622 rules[axis][z] = measure_rule (params, table, axis, z);
625 /* Calculate minimum and maximum widths of cells that do not
626 span multiple columns. */
627 for (i = 0; i < 2; i++)
628 columns[i] = xzalloc (nc * sizeof *columns[i]);
629 for (y = 0; y < nr; y++)
630 for (x = 0; x < nc; )
632 struct table_cell cell;
634 table_get_cell (table, x, y, &cell);
635 if (y == cell.d[V][0] && table_cell_colspan (&cell) == 1)
640 params->measure_cell_width (params->aux, &cell, &w[MIN], &w[MAX]);
641 for (i = 0; i < 2; i++)
642 if (columns[i][x].unspanned < w[i])
643 columns[i][x].unspanned = w[i];
646 table_cell_free (&cell);
649 /* Distribute widths of spanned columns. */
650 for (i = 0; i < 2; i++)
651 for (x = 0; x < nc; x++)
652 columns[i][x].width = columns[i][x].unspanned;
653 for (y = 0; y < nr; y++)
654 for (x = 0; x < nc; )
656 struct table_cell cell;
658 table_get_cell (table, x, y, &cell);
659 if (y == cell.d[V][0] && table_cell_colspan (&cell) > 1)
663 params->measure_cell_width (params->aux, &cell, &w[MIN], &w[MAX]);
664 for (i = 0; i < 2; i++)
665 distribute_spanned_width (w[i], &columns[i][cell.d[H][0]],
666 rules[H], table_cell_colspan (&cell));
669 table_cell_free (&cell);
672 /* Decide final column widths. */
673 for (i = 0; i < 2; i++)
674 table_widths[i] = calculate_table_width (table_nc (table),
675 columns[i], rules[H]);
676 if (table_widths[MAX] <= params->size[H])
678 /* Fits even with maximum widths. Use them. */
679 page = create_page_with_exact_widths (params, table, columns[MAX],
682 else if (table_widths[MIN] <= params->size[H])
684 /* Fits with minimum widths, so distribute the leftover space. */
685 page = create_page_with_interpolated_widths (
686 params, table, columns[MIN], columns[MAX],
687 table_widths[MIN], table_widths[MAX], rules[H]);
691 /* Doesn't fit even with minimum widths. Assign minimums for now, and
692 later we can break it horizontally into multiple pages. */
693 page = create_page_with_exact_widths (params, table, columns[MIN],
697 /* Calculate heights of cells that do not span multiple rows. */
698 rows = xzalloc (nr * sizeof *rows);
699 for (y = 0; y < nr; y++)
701 for (x = 0; x < nc; )
703 struct render_row *r = &rows[y];
704 struct table_cell cell;
706 table_get_cell (table, x, y, &cell);
707 if (y == cell.d[V][0])
709 if (table_cell_rowspan (&cell) == 1)
711 int w = joined_width (page, H, cell.d[H][0], cell.d[H][1]);
712 int h = params->measure_cell_height (params->aux, &cell, w);
713 if (h > r->unspanned)
714 r->unspanned = r->width = h;
717 set_join_crossings (page, V, &cell, rules[V]);
719 if (table_cell_colspan (&cell) > 1)
720 set_join_crossings (page, H, &cell, rules[H]);
723 table_cell_free (&cell);
726 for (i = 0; i < 2; i++)
729 /* Distribute heights of spanned rows. */
730 for (y = 0; y < nr; y++)
731 for (x = 0; x < nc; )
733 struct table_cell cell;
735 table_get_cell (table, x, y, &cell);
736 if (y == cell.d[V][0] && table_cell_rowspan (&cell) > 1)
738 int w = joined_width (page, H, cell.d[H][0], cell.d[H][1]);
739 int h = params->measure_cell_height (params->aux, &cell, w);
740 distribute_spanned_width (h, &rows[cell.d[V][0]], rules[V],
741 table_cell_rowspan (&cell));
744 table_cell_free (&cell);
747 /* Decide final row heights. */
748 accumulate_row_widths (page, V, rows, rules[V]);
751 /* Measure headers. If they are "too big", get rid of them. */
752 for (axis = 0; axis < TABLE_N_AXES; axis++)
754 int hw = headers_width (page, axis);
755 if (hw * 2 >= page->params->size[axis]
756 || hw + max_cell_width (page, axis) > page->params->size[axis])
758 page->table = table_unshare (page->table);
759 page->table->h[axis][0] = page->table->h[axis][1] = 0;
760 page->h[axis][0] = page->h[axis][1] = 0;
770 /* Increases PAGE's reference count. */
772 render_page_ref (const struct render_page *page_)
774 struct render_page *page = CONST_CAST (struct render_page *, page_);
779 /* Decreases PAGE's reference count and destroys PAGE if this causes the
780 reference count to fall to zero. */
782 render_page_unref (struct render_page *page)
784 if (page != NULL && --page->ref_cnt == 0)
787 struct render_overflow *overflow, *next;
789 HMAP_FOR_EACH_SAFE (overflow, next, struct render_overflow, node,
792 hmap_destroy (&page->overflows);
794 table_unref (page->table);
796 for (i = 0; i < TABLE_N_AXES; ++i)
798 free (page->join_crossing[i]);
806 /* Returns the size of PAGE along AXIS. (This might be larger than the page
807 size specified in the parameters passed to render_page_create(). Use a
808 render_break to break up a render_page into page-sized chunks.) */
810 render_page_get_size (const struct render_page *page, enum table_axis axis)
812 return page->cp[axis][page->n[axis] * 2 + 1];
815 /* Drawing render_pages. */
817 static enum render_line_style
818 get_rule (const struct render_page *page, enum table_axis axis,
819 const int d[TABLE_N_AXES])
821 return rule_to_render_type (table_get_rule (page->table,
822 axis, d[H] / 2, d[V] / 2));
832 render_rule (const struct render_page *page, const int d[TABLE_N_AXES])
834 enum render_line_style styles[TABLE_N_AXES][2];
837 for (a = 0; a < TABLE_N_AXES; a++)
839 enum table_axis b = !a;
841 styles[a][0] = styles[a][1] = RENDER_LINE_NONE;
844 || (page->is_edge_cutoff[a][0] && d[a] == 0)
845 || (page->is_edge_cutoff[a][1] && d[a] == page->n[a] * 2))
856 styles[a][0] = get_rule (page, a, e);
859 if (d[b] / 2 < page->table->n[b])
860 styles[a][1] = get_rule (page, a, d);
863 styles[a][0] = styles[a][1] = get_rule (page, a, d);
866 if (styles[H][0] != RENDER_LINE_NONE || styles[H][1] != RENDER_LINE_NONE
867 || styles[V][0] != RENDER_LINE_NONE || styles[V][1] != RENDER_LINE_NONE)
869 int bb[TABLE_N_AXES][2];
871 bb[H][0] = page->cp[H][d[H]];
872 bb[H][1] = page->cp[H][d[H] + 1];
873 bb[V][0] = page->cp[V][d[V]];
874 bb[V][1] = page->cp[V][d[V] + 1];
875 page->params->draw_line (page->params->aux, bb, styles);
880 render_cell (const struct render_page *page, const struct table_cell *cell)
882 const struct render_overflow *of;
883 int bb[TABLE_N_AXES][2];
884 int clip[TABLE_N_AXES][2];
886 bb[H][0] = clip[H][0] = page->cp[H][cell->d[H][0] * 2 + 1];
887 bb[H][1] = clip[H][1] = page->cp[H][cell->d[H][1] * 2];
888 bb[V][0] = clip[V][0] = page->cp[V][cell->d[V][0] * 2 + 1];
889 bb[V][1] = clip[V][1] = page->cp[V][cell->d[V][1] * 2];
891 of = find_overflow (page, cell->d[H][0], cell->d[V][0]);
894 enum table_axis axis;
896 for (axis = 0; axis < TABLE_N_AXES; axis++)
898 if (of->overflow[axis][0])
900 bb[axis][0] -= of->overflow[axis][0];
901 if (cell->d[axis][0] == 0)
902 clip[axis][0] = page->cp[axis][cell->d[axis][0] * 2];
904 if (of->overflow[axis][1])
906 bb[axis][1] += of->overflow[axis][1];
907 if (cell->d[axis][1] == page->n[axis])
908 clip[axis][1] = page->cp[axis][cell->d[axis][1] * 2 + 1];
913 page->params->draw_cell (page->params->aux, cell, bb, clip);
916 /* Draws the cells of PAGE indicated in BB. */
918 render_page_draw_cells (const struct render_page *page,
919 int bb[TABLE_N_AXES][2])
923 for (y = bb[V][0]; y < bb[V][1]; y++)
924 for (x = bb[H][0]; x < bb[H][1]; )
925 if (is_rule (x) || is_rule (y))
930 render_rule (page, d);
935 struct table_cell cell;
937 table_get_cell (page->table, x / 2, y / 2, &cell);
938 if (y == bb[V][0] || y / 2 == cell.d[V][0])
939 render_cell (page, &cell);
940 x = rule_ofs (cell.d[H][1]);
941 table_cell_free (&cell);
945 /* Renders PAGE, by calling the 'draw_line' and 'draw_cell' functions from the
946 render_params provided to render_page_create(). */
948 render_page_draw (const struct render_page *page)
950 int bb[TABLE_N_AXES][2];
953 bb[H][1] = page->n[H] * 2 + 1;
955 bb[V][1] = page->n[V] * 2 + 1;
957 render_page_draw_cells (page, bb);
960 /* Returns the greatest value i, 0 <= i < n, such that cp[i] <= x0. */
962 get_clip_min_extent (int x0, const int cp[], int n)
971 int middle = low + (high - low) / 2;
973 if (cp[middle] <= x0)
985 /* Returns the least value i, 0 <= i < n, such that cp[i + 1] >= x1. */
987 get_clip_max_extent (int x1, const int cp[], int n)
996 int middle = low + (high - low) / 2;
998 if (cp[middle] >= x1)
999 best = high = middle;
1007 /* Renders the cells of PAGE that intersect (X,Y)-(X+W,Y+H), by calling the
1008 'draw_line' and 'draw_cell' functions from the render_params provided to
1009 render_page_create(). */
1011 render_page_draw_region (const struct render_page *page,
1012 int x, int y, int w, int h)
1014 int bb[TABLE_N_AXES][2];
1016 bb[H][0] = get_clip_min_extent (x, page->cp[H], page->n[H] * 2 + 1);
1017 bb[H][1] = get_clip_max_extent (x + w, page->cp[H], page->n[H] * 2 + 1);
1018 bb[V][0] = get_clip_min_extent (y, page->cp[V], page->n[V] * 2 + 1);
1019 bb[V][1] = get_clip_max_extent (y + h, page->cp[V], page->n[V] * 2 + 1);
1021 render_page_draw_cells (page, bb);
1024 /* Breaking up tables to fit on a page. */
1026 static int needed_size (const struct render_break *, int cell);
1027 static bool cell_is_breakable (const struct render_break *, int cell);
1028 static struct render_page *render_page_select (const struct render_page *,
1033 /* Initializes render_break B for breaking PAGE along AXIS.
1035 Ownership of PAGE is transferred to B. The caller must use
1036 render_page_ref() if it needs to keep a copy of PAGE. */
1038 render_break_init (struct render_break *b, struct render_page *page,
1039 enum table_axis axis)
1043 b->cell = page->h[axis][0];
1045 b->hw = headers_width (page, axis);
1048 /* Initializes B as a render_break structure for which
1049 render_break_has_next() always returns false. */
1051 render_break_init_empty (struct render_break *b)
1054 b->axis = TABLE_HORZ;
1060 /* Frees B and unrefs the render_page that it owns. */
1062 render_break_destroy (struct render_break *b)
1066 render_page_unref (b->page);
1071 /* Returns true if B still has cells that are yet to be returned,
1072 false if all of B's page has been processed. */
1074 render_break_has_next (const struct render_break *b)
1076 const struct render_page *page = b->page;
1077 enum table_axis axis = b->axis;
1079 return page != NULL && b->cell < page->n[axis] - page->h[axis][1];
1082 /* Returns the minimum SIZE argument that, if passed to render_break_next(),
1083 will avoid a null return value (if cells are still left). */
1085 render_break_next_size (const struct render_break *b)
1087 const struct render_page *page = b->page;
1088 enum table_axis axis = b->axis;
1090 return (!render_break_has_next (b) ? 0
1091 : !cell_is_breakable (b, b->cell) ? needed_size (b, b->cell + 1)
1092 : b->hw + page->params->font_size[axis]);
1095 /* Returns a new render_page that is up to SIZE pixels wide along B's axis.
1096 Returns a null pointer if B has already been completely broken up, or if
1097 SIZE is too small to reasonably render any cells. The latter will never
1098 happen if SIZE is at least as large as the page size passed to
1099 render_page_create() along B's axis. */
1100 struct render_page *
1101 render_break_next (struct render_break *b, int size)
1103 const struct render_page *page = b->page;
1104 enum table_axis axis = b->axis;
1105 struct render_page *subpage;
1108 if (!render_break_has_next (b))
1112 for (cell = b->cell; cell < page->n[axis] - page->h[axis][1]; cell++)
1113 if (needed_size (b, cell + 1) > size)
1115 if (!cell_is_breakable (b, cell))
1117 if (cell == b->cell)
1121 pixel = (cell == b->cell
1122 ? b->pixel + size - b->hw
1123 : size - needed_size (b, cell));
1127 subpage = render_page_select (page, axis, b->cell, b->pixel,
1128 pixel ? cell + 1 : cell,
1129 pixel ? cell_width (page, axis, cell) - pixel
1136 /* Returns the width that would be required along B's axis to render a page
1137 from B's current position up to but not including CELL. */
1139 needed_size (const struct render_break *b, int cell)
1141 const struct render_page *page = b->page;
1142 enum table_axis axis = b->axis;
1145 size = joined_width (page, axis, b->cell, cell) + b->hw - b->pixel;
1146 if (page->h[axis][0] && page->h[axis][1])
1147 size += page->join_crossing[axis][b->cell];
1152 /* Returns true if CELL along B's axis may be broken across a page boundary.
1154 This is just a heuristic. Breaking cells across page boundaries can save
1155 space, but it looks ugly. */
1157 cell_is_breakable (const struct render_break *b, int cell)
1159 const struct render_page *page = b->page;
1160 enum table_axis axis = b->axis;
1162 return cell_width (page, axis, cell) > page->params->size[axis] / 2;
1165 /* render_page_select() and helpers. */
1167 struct render_page_selection
1169 const struct render_page *page; /* Page whose slice we are selecting. */
1170 struct render_page *subpage; /* New page under construction. */
1171 enum table_axis a; /* Axis of 'page' along which 'subpage' is a slice. */
1172 enum table_axis b; /* The opposite of 'a'. */
1173 int z0; /* First cell along 'a' being selected. */
1174 int z1; /* Last cell being selected, plus 1. */
1175 int p0; /* Number of pixels to trim off left side of z0. */
1176 int p1; /* Number of pixels to trim off right side of z1-1. */
1179 static void cell_to_subpage (struct render_page_selection *,
1180 const struct table_cell *,
1181 int subcell[TABLE_N_AXES]);
1182 static const struct render_overflow *find_overflow_for_cell (
1183 struct render_page_selection *, const struct table_cell *);
1184 static struct render_overflow *insert_overflow (struct render_page_selection *,
1185 const struct table_cell *);
1187 /* Creates and returns a new render_page whose contents are a subregion of
1188 PAGE's contents. The new render_page includes cells Z0 through Z1 along
1189 AXIS, plus any headers on AXIS.
1191 If P0 is nonzero, then it is a number of pixels to exclude from the left or
1192 top (according to AXIS) of cell Z0. Similarly, P1 is a number of pixels to
1193 exclude from the right or bottom of cell Z1 - 1. (P0 and P1 are used to
1194 render cells that are too large to fit on a single page.)
1196 The whole of axis !AXIS is included. (The caller may follow up with another
1197 call to render_page_select() to select on !AXIS to select on that axis as
1200 The caller retains ownership of PAGE, which is not modified. */
1201 static struct render_page *
1202 render_page_select (const struct render_page *page, enum table_axis axis,
1203 int z0, int p0, int z1, int p1)
1205 struct render_page_selection s;
1206 enum table_axis a = axis;
1207 enum table_axis b = !a;
1208 struct render_page *subpage;
1209 struct render_overflow *ro;
1215 /* Optimize case where all of PAGE is selected by just incrementing the
1217 if (z0 == page->h[a][0] && p0 == 0
1218 && z1 == page->n[a] - page->h[a][1] && p1 == 0)
1220 struct render_page *page_rw = CONST_CAST (struct render_page *, page);
1225 /* Allocate subpage. */
1226 subpage = render_page_allocate (page->params,
1227 table_select_slice (
1228 table_ref (page->table),
1231 /* An edge is cut off if it was cut off in PAGE or if we're trimming pixels
1232 off that side of the page and there are no headers. */
1233 subpage->is_edge_cutoff[a][0] =
1234 subpage->h[a][0] == 0 && (p0 || (z0 == 0 && page->is_edge_cutoff[a][0]));
1235 subpage->is_edge_cutoff[a][1] =
1236 subpage->h[a][1] == 0 && (p1 || (z1 == page->n[a]
1237 && page->is_edge_cutoff[a][1]));
1238 subpage->is_edge_cutoff[b][0] = page->is_edge_cutoff[b][0];
1239 subpage->is_edge_cutoff[b][1] = page->is_edge_cutoff[b][1];
1241 /* Select join crossings from PAGE into subpage. */
1242 jc = subpage->join_crossing[a];
1243 for (z = 0; z < page->h[a][0]; z++)
1244 *jc++ = page->join_crossing[a][z];
1245 for (z = z0; z <= z1; z++)
1246 *jc++ = page->join_crossing[a][z];
1247 for (z = page->n[a] - page->h[a][1]; z < page->n[a]; z++)
1248 *jc++ = page->join_crossing[a][z];
1249 assert (jc == &subpage->join_crossing[a][subpage->n[a] + 1]);
1251 memcpy (subpage->join_crossing[b], page->join_crossing[b],
1252 (subpage->n[b] + 1) * sizeof **subpage->join_crossing);
1254 /* Select widths from PAGE into subpage. */
1256 dcp = subpage->cp[a];
1258 for (z = 0; z <= rule_ofs (subpage->h[a][0]); z++, dcp++)
1259 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1260 for (z = cell_ofs (z0); z <= cell_ofs (z1 - 1); z++, dcp++)
1262 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1263 if (z == cell_ofs (z0))
1266 if (page->h[a][0] && page->h[a][1])
1267 dcp[1] += page->join_crossing[a][z / 2];
1269 if (z == cell_ofs (z1 - 1))
1272 for (z = rule_ofs_r (page, a, subpage->h[a][1]);
1273 z <= rule_ofs_r (page, a, 0); z++, dcp++)
1274 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1275 assert (dcp == &subpage->cp[a][2 * subpage->n[a] + 1]);
1277 for (z = 0; z < page->n[b] * 2 + 2; z++)
1278 subpage->cp[b][z] = page->cp[b][z];
1280 /* Add new overflows. */
1288 s.subpage = subpage;
1290 for (z = 0; z < page->n[b]; z++)
1292 struct table_cell cell;
1293 int d[TABLE_N_AXES];
1297 table_get_cell (page->table, d[H], d[V], &cell);
1298 if ((z == cell.d[b][0] && (p0 || cell.d[a][0] < z0))
1299 || (z == cell.d[b][1] - 1 && p1))
1301 ro = insert_overflow (&s, &cell);
1302 ro->overflow[a][0] += p0 + axis_width (page, a,
1303 cell_ofs (cell.d[a][0]),
1306 ro->overflow[a][1] += p1;
1307 if (page->h[a][0] && page->h[a][1])
1308 ro->overflow[a][0] -= page->join_crossing[a][cell.d[a][0] + 1];
1309 if (cell.d[a][1] > z1)
1310 ro->overflow[a][1] += axis_width (page, a, cell_ofs (z1),
1311 cell_ofs (cell.d[a][1]));
1313 table_cell_free (&cell);
1316 for (z = 0; z < page->n[b]; z++)
1318 struct table_cell cell;
1319 int d[TABLE_N_AXES];
1321 /* XXX need to handle p1 below */
1324 table_get_cell (page->table, d[H], d[V], &cell);
1325 if (z == cell.d[b][0] && cell.d[a][1] > z1
1326 && find_overflow_for_cell (&s, &cell) == NULL)
1328 ro = insert_overflow (&s, &cell);
1329 ro->overflow[a][1] += axis_width (page, a, cell_ofs (z1),
1330 cell_ofs (cell.d[a][1]));
1332 table_cell_free (&cell);
1335 /* Copy overflows from PAGE into subpage. */
1336 HMAP_FOR_EACH (ro, struct render_overflow, node, &page->overflows)
1338 struct table_cell cell;
1340 table_get_cell (page->table, ro->d[H], ro->d[V], &cell);
1341 if (cell.d[a][1] > z0 && cell.d[a][0] < z1
1342 && find_overflow_for_cell (&s, &cell) == NULL)
1343 insert_overflow (&s, &cell);
1344 table_cell_free (&cell);
1350 /* Given CELL, a table_cell within S->page, stores in SUBCELL the (x,y)
1351 coordinates of the top-left cell as it will appear in S->subpage.
1353 CELL must actually intersect the region of S->page that is being selected
1354 by render_page_select() or the results will not make any sense. */
1356 cell_to_subpage (struct render_page_selection *s,
1357 const struct table_cell *cell, int subcell[TABLE_N_AXES])
1359 enum table_axis a = s->a;
1360 enum table_axis b = s->b;
1361 int ha0 = s->subpage->h[a][0];
1363 subcell[a] = MAX (cell->d[a][0] - s->z0 + ha0, ha0);
1364 subcell[b] = cell->d[b][0];
1367 /* Given CELL, a table_cell within S->page, returns the render_overflow for
1368 that cell in S->subpage, if there is one, and a null pointer otherwise.
1370 CELL must actually intersect the region of S->page that is being selected
1371 by render_page_select() or the results will not make any sense. */
1372 static const struct render_overflow *
1373 find_overflow_for_cell (struct render_page_selection *s,
1374 const struct table_cell *cell)
1378 cell_to_subpage (s, cell, subcell);
1379 return find_overflow (s->subpage, subcell[H], subcell[V]);
1382 /* Given CELL, a table_cell within S->page, inserts a render_overflow for that
1383 cell in S->subpage (which must not already exist). Initializes the new
1384 render_overflow's 'overflow' member from the overflow for CELL in S->page,
1387 CELL must actually intersect the region of S->page that is being selected
1388 by render_page_select() or the results will not make any sense. */
1389 static struct render_overflow *
1390 insert_overflow (struct render_page_selection *s,
1391 const struct table_cell *cell)
1393 const struct render_overflow *old;
1394 struct render_overflow *of;
1396 of = xzalloc (sizeof *of);
1397 cell_to_subpage (s, cell, of->d);
1398 hmap_insert (&s->subpage->overflows, &of->node,
1399 hash_overflow (of->d[H], of->d[V]));
1401 old = find_overflow (s->page, cell->d[H][0], cell->d[V][0]);
1403 memcpy (of->overflow, old->overflow, sizeof of->overflow);