1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "libpspp/assertion.h"
25 #include "libpspp/hash-functions.h"
26 #include "libpspp/hmap.h"
27 #include "output/render.h"
28 #include "output/table.h"
30 #include "gl/minmax.h"
31 #include "gl/xalloc.h"
33 /* This file uses TABLE_HORZ and TABLE_VERT enough to warrant abbreviating. */
37 /* A layout for rendering a specific table on a specific device.
39 May represent the layout of an entire table presented to
40 render_page_create(), or a rectangular subregion of a table broken out using
41 render_page_next() to allow a table to be broken across multiple pages. */
44 const struct render_params *params; /* Parameters of the target device. */
45 struct table *table; /* Table rendered. */
48 /* Local copies of table->n and table->h, for convenience. */
50 int h[TABLE_N_AXES][2];
52 /* cp[H] represents x positions within the table.
54 cp[H][1] = the width of the leftmost vertical rule.
55 cp[H][2] = cp[H][1] + the width of the leftmost column.
56 cp[H][3] = cp[H][2] + the width of the second-from-left vertical rule.
58 cp[H][2 * nc] = x position of the rightmost vertical rule.
59 cp[H][2 * nc + 1] = total table width including all rules.
61 Similarly, cp[V] represents y positions within the table.
63 cp[V][1] = the height of the topmost horizontal rule.
64 cp[V][2] = cp[V][1] + the height of the topmost column.
65 cp[V][3] = cp[V][2] + the height of the second-from-top horizontal rule.
67 cp[V][2 * nr] = y position of the bottommost horizontal rule.
68 cp[V][2 * nr + 1] = total table height including all rules.
70 Rules and columns can have width or height 0, in which case consecutive
71 values in this array are equal. */
72 int *cp[TABLE_N_AXES];
74 /* render_break_next() can break a table such that some cells are not fully
75 contained within a render_page. This will happen if a cell is too wide
76 or two tall to fit on a single page, or if a cell spans multiple rows or
77 columns and the page only includes some of those rows or columns.
79 This hash table contains "struct render_overflow"s that represents each
80 such cell that doesn't completely fit on this page.
82 Each overflow cell borders at least one header edge of the table and may
83 border more. (A single table cell that is so large that it fills the
84 entire page can overflow on all four sides!) */
85 struct hmap overflows;
87 /* If a single column (or row) is too wide (or tall) to fit on a page
88 reasonably, then render_break_next() will split a single row or column
89 across multiple render_pages. This member indicates when this has
92 is_edge_cutoff[H][0] is true if pixels have been cut off the left side
93 of the leftmost column in this page, and false otherwise.
95 is_edge_cutoff[H][1] is true if pixels have been cut off the right side
96 of the rightmost column in this page, and false otherwise.
98 is_edge_cutoff[V][0] and is_edge_cutoff[V][1] are similar for the top
99 and bottom of the table.
101 The effect of is_edge_cutoff is to prevent rules along the edge in
102 question from being rendered.
104 When is_edge_cutoff is true for a given edge, the 'overflows' hmap will
105 contain a node for each cell along that edge. */
106 bool is_edge_cutoff[TABLE_N_AXES][2];
108 /* If part of a joined cell would be cut off by breaking a table along
109 'axis' at the rule with offset 'z' (where 0 <= z <= n[axis]), then
110 join_crossing[axis][z] is the thickness of the rule that would be cut
113 This is used to know to allocate extra space for breaking at such a
114 position, so that part of the cell's content is not lost.
116 This affects breaking a table only when headers are present. When
117 headers are not present, the rule's thickness is used for cell content,
118 so no part of the cell's content is lost (and in fact it is duplicated
119 across both pages). */
120 int *join_crossing[TABLE_N_AXES];
123 /* Returns the offset in struct render_page's cp[axis] array of the rule with
124 index RULE_IDX. That is, if RULE_IDX is 0, then the offset is that of the
125 leftmost or topmost rule; if RULE_IDX is 1, then the offset is that of the
126 next rule to the right (or below); and so on. */
128 rule_ofs (int rule_idx)
133 /* Returns the offset in struct render_page's cp[axis] array of the rule with
134 index RULE_IDX_R, which counts from the right side (or bottom) of the page
135 left (or up), according to whether AXIS is H or V, respectively. That is,
136 if RULE_IDX_R is 0, then the offset is that of the rightmost or bottommost
137 rule; if RULE_IDX is 1, then the offset is that of the next rule to the left
138 (or above); and so on. */
140 rule_ofs_r (const struct render_page *page, int axis, int rule_idx_r)
142 return (page->n[axis] - rule_idx_r) * 2;
145 /* Returns the offset in struct render_page's cp[axis] array of the cell with
146 index CELL_IDX. That is, if CELL_IDX is 0, then the offset is that of the
147 leftmost or topmost cell; if CELL_IDX is 1, then the offset is that of the
148 next cell to the right (or below); and so on. */
150 cell_ofs (int cell_idx)
152 return cell_idx * 2 + 1;
155 /* Returns the width of PAGE along AXIS from OFS0 to OFS1, exclusive. */
157 axis_width (const struct render_page *page, int axis, int ofs0, int ofs1)
159 return page->cp[axis][ofs1] - page->cp[axis][ofs0];
162 /* Returns the width of the headers in PAGE along AXIS. */
164 headers_width (const struct render_page *page, int axis)
166 int h0 = page->h[axis][0];
167 int w0 = axis_width (page, axis, rule_ofs (0), cell_ofs (h0));
168 int n = page->n[axis];
169 int h1 = page->h[axis][1];
170 int w1 = axis_width (page, axis, rule_ofs_r (page, axis, h1), cell_ofs (n));
174 /* Returns the width of cell X along AXIS in PAGE. */
176 cell_width (const struct render_page *page, int axis, int x)
178 return axis_width (page, axis, cell_ofs (x), cell_ofs (x) + 1);
181 /* Returns the width of cells X0 through X1, exclusive, along AXIS in PAGE. */
183 joined_width (const struct render_page *page, int axis, int x0, int x1)
185 return axis_width (page, axis, cell_ofs (x0), cell_ofs (x1) - 1);
188 /* Returns the width of the widest cell, excluding headers, along AXIS in
191 max_cell_width (const struct render_page *page, int axis)
193 int n = page->n[axis];
194 int x0 = page->h[axis][0];
195 int x1 = n - page->h[axis][1];
199 for (x = x0; x < x1; x++)
201 int w = cell_width (page, axis, x);
208 /* A cell that doesn't completely fit on the render_page. */
209 struct render_overflow
211 struct hmap_node node; /* In render_page's 'overflows' hmap. */
213 /* Occupied region of page.
215 d[H][0] is the leftmost column.
216 d[H][1] is the rightmost column, plus 1.
217 d[V][0] is the top row.
218 d[V][1] is the bottom row, plus 1.
220 The cell in its original table might occupy a larger region. This
221 member reflects the size of the cell in the current render_page, after
222 trimming off any rows or columns due to page-breaking. */
225 /* The space that has been trimmed off the cell:
227 overflow[H][0]: space trimmed off its left side.
228 overflow[H][1]: space trimmed off its right side.
229 overflow[V][0]: space trimmed off its top.
230 overflow[V][1]: space trimmed off its bottom.
232 During rendering, this information is used to position the rendered
233 portion of the cell within the available space.
235 When a cell is rendered, sometimes it is permitted to spill over into
236 space that is ordinarily reserved for rules. Either way, this space is
237 still included in overflow values.
239 Suppose, for example, that a cell that joins 2 columns has a width of 60
240 pixels and content "abcdef", that the 2 columns that it joins have
241 widths of 20 and 30 pixels, respectively, and that therefore the rule
242 between the two joined columns has a width of 10 (20 + 10 + 30 = 60).
243 It might render like this, if each character is 10x10, and showing a few
244 extra table cells for context:
252 If this render_page is broken at the rule that separates "gh" from
253 "ijk", then the page that contains the left side of the "abcdef" cell
254 will have overflow[H][1] of 10 + 30 = 40 for its portion of the cell,
255 and the page that contains the right side of the cell will have
256 overflow[H][0] of 20 + 10 = 30. The two resulting pages would look like
274 int overflow[TABLE_N_AXES][2];
277 /* Returns a hash value for (X,Y). */
279 hash_overflow (int x, int y)
281 return hash_int (x + (y << 16), 0);
284 /* Searches PAGE's set of render_overflow for one whose top-left cell is
285 (X,Y). Returns it, if there is one, otherwise a null pointer. */
286 static const struct render_overflow *
287 find_overflow (const struct render_page *page, int x, int y)
289 if (!hmap_is_empty (&page->overflows))
291 const struct render_overflow *of;
293 HMAP_FOR_EACH_WITH_HASH (of, struct render_overflow, node,
294 hash_overflow (x, y), &page->overflows)
295 if (x == of->d[H] && y == of->d[V])
302 /* Row or column dimensions. Used to figure the size of a table in
303 render_page_create() and discarded after that. */
306 /* Width without considering rows (or columns) that span more than one (or
310 /* Width taking spanned rows (or columns) into consideration. */
314 /* Modifies the 'width' members of the N elements of ROWS so that their sum,
315 when added to rule widths RULES[1] through RULES[N - 1] inclusive, is at
318 distribute_spanned_width (int width,
319 struct render_row *rows, const int *rules, int n)
325 /* Sum up the unspanned widths of the N rows for use as weights. */
327 for (x = 0; x < n; x++)
328 total_unspanned += rows[x].unspanned;
329 for (x = 0; x < n - 1; x++)
330 total_unspanned += rules[x + 1];
331 if (total_unspanned >= width)
334 /* The algorithm used here is based on the following description from HTML 4:
336 For cells that span multiple columns, a simple approach consists of
337 apportioning the min/max widths evenly to each of the constituent
338 columns. A slightly more complex approach is to use the min/max
339 widths of unspanned cells to weight how spanned widths are
340 apportioned. Experiments suggest that a blend of the two approaches
341 gives good results for a wide range of tables.
343 We blend the two approaches half-and-half, except that we cannot use the
344 unspanned weights when 'total_unspanned' is 0 (because that would cause a
347 This implementation uses floating-point types and operators, but all the
348 values involved are integers. For integers smaller than 53 bits, this
349 should not lose any precision, and it should degrade gracefully for larger
352 The calculation we want to do is this:
355 w1 = width * (column's unspanned width) / (total unspanned width)
356 (column's width) = (w0 + w1) / 2
358 We implement it as a precise calculation in integers by multiplying w0 and
359 w1 by the common denominator of all three calculations (d), dividing that
360 out in the column width calculation, and then keeping the remainder for
364 d1 = total_unspanned * 2.0;
366 if (total_unspanned > 0)
369 for (x = 0; x < n; x++)
372 if (total_unspanned > 0)
374 double unspanned = rows[x].unspanned * 2.0;
376 unspanned += rules[x + 1];
378 unspanned += rules[x];
379 w += width * unspanned * d0;
382 rows[x].width = w / d;
383 w -= rows[x].width * d;
387 /* Initializes PAGE->cp[AXIS] from the row widths in ROWS and the rule widths
390 accumulate_row_widths (const struct render_page *page, enum table_axis axis,
391 const struct render_row *rows, const int *rules)
393 int n = page->n[axis];
399 for (z = 0; z < n; z++)
401 cp[1] = cp[0] + rules[z];
402 cp[2] = cp[1] + rows[z].width;
405 cp[1] = cp[0] + rules[n];
408 /* Returns the sum of widths of the N ROWS and N+1 RULES. */
410 calculate_table_width (int n, const struct render_row *rows, int *rules)
416 for (x = 0; x < n; x++)
417 width += rows[x].width;
418 for (x = 0; x <= n; x++)
424 /* Rendering utility functions. */
426 /* Returns the line style to use for drawing a rule of the given TYPE. */
427 static enum render_line_style
428 rule_to_render_type (unsigned char type)
434 return RENDER_LINE_NONE;
436 return RENDER_LINE_SINGLE;
438 return RENDER_LINE_DOUBLE;
444 /* Returns the width of the rule in TABLE that is at offset Z along axis A, if
445 rendered with PARAMS. */
447 measure_rule (const struct render_params *params, const struct table *table,
448 enum table_axis a, int z)
450 enum table_axis b = !a;
455 /* Determine all types of rules that are present, as a bitmap in 'rules'
456 where rule type 't' is present if bit 2**t is set. */
459 for (d[b] = 0; d[b] < table->n[b]; d[b]++)
460 rules |= 1u << table_get_rule (table, a, d[H], d[V]);
462 /* Calculate maximum width of the rules that are present. */
464 for (i = 0; i < N_LINES; i++)
465 if (rules & (1u << i))
466 width = MAX (width, params->line_widths[a][rule_to_render_type (i)]);
471 /* Allocates and returns a new render_page using PARAMS and TABLE. Allocates
472 space for all of the members of the new page, but the caller must initialize
473 the 'cp' member itself. */
474 static struct render_page *
475 render_page_allocate (const struct render_params *params,
478 struct render_page *page;
481 page = xmalloc (sizeof *page);
482 page->params = params;
485 page->n[H] = table->n[H];
486 page->n[V] = table->n[V];
487 page->h[H][0] = table->h[H][0];
488 page->h[H][1] = table->h[H][1];
489 page->h[V][0] = table->h[V][0];
490 page->h[V][1] = table->h[V][1];
492 for (i = 0; i < TABLE_N_AXES; i++)
494 page->cp[i] = xmalloc ((2 * page->n[i] + 2) * sizeof *page->cp[i]);
495 page->join_crossing[i] = xzalloc ((page->n[i] + 1) * sizeof *page->join_crossing[i]);
498 hmap_init (&page->overflows);
499 memset (page->is_edge_cutoff, 0, sizeof page->is_edge_cutoff);
504 /* Allocates and returns a new render_page for PARAMS and TABLE, initializing
505 cp[H] in the new page from ROWS and RULES. The caller must still initialize
507 static struct render_page *
508 create_page_with_exact_widths (const struct render_params *params,
510 const struct render_row *rows, int *rules)
512 struct render_page *page = render_page_allocate (params, table);
513 accumulate_row_widths (page, H, rows, rules);
517 /* Allocates and returns a new render_page for PARAMS and TABLE.
519 Initializes cp[H] in the new page by setting the width of each row 'i' to
520 somewhere between the minimum cell width ROW_MIN[i].width and the maximum
521 ROW_MAX[i].width. Sets the width of rules to those in RULES.
523 W_MIN is the sum of ROWS_MIN[].width.
525 W_MAX is the sum of ROWS_MAX[].width.
527 The caller must still initialize cp[V]. */
528 static struct render_page *
529 create_page_with_interpolated_widths (const struct render_params *params,
531 const struct render_row *rows_min,
532 const struct render_row *rows_max,
533 int w_min, int w_max, const int *rules)
535 /* This implementation uses floating-point types and operators, but all the
536 values involved are integers. For integers smaller than 53 bits, this
537 should not lose any precision, and it should degrade gracefully for larger
539 const int n = table->n[H];
540 const double avail = params->size[H] - w_min;
541 const double wanted = w_max - w_min;
542 struct render_page *page;
549 page = render_page_allocate (params, table);
553 w = (int) wanted / 2;
554 for (x = 0; x < n; x++)
558 w += avail * (rows_max[x].width - rows_min[x].width);
562 cph[1] = cph[0] + rules[x];
563 cph[2] = cph[1] + rows_min[x].width + extra;
566 cph[1] = cph[0] + rules[n];
568 assert (page->cp[H][n * 2 + 1] == params->size[H]);
574 set_join_crossings (struct render_page *page, enum table_axis axis,
575 const struct table_cell *cell, int *rules)
579 for (z = cell->d[axis][0] + 1; z <= cell->d[axis][1] - 1; z++)
580 page->join_crossing[axis][z] = rules[z];
583 /* Creates and returns a new render_page for rendering TABLE on a device
586 The new render_page will be suitable for rendering on a device whose page
587 size is PARAMS->size, but the caller is responsible for actually breaking it
588 up to fit on such a device, using the render_break abstraction. */
590 render_page_create (const struct render_params *params,
591 const struct table *table_)
593 struct render_page *page;
596 struct render_row *columns[2];
597 struct render_row *rows;
599 int *rules[TABLE_N_AXES];
603 enum table_axis axis;
605 table = table_ref (table_);
606 nc = table_nc (table);
607 nr = table_nr (table);
609 /* Figure out rule widths. */
610 for (axis = 0; axis < TABLE_N_AXES; axis++)
612 int n = table->n[axis] + 1;
615 rules[axis] = xnmalloc (n, sizeof *rules);
616 for (z = 0; z < n; z++)
617 rules[axis][z] = measure_rule (params, table, axis, z);
620 /* Calculate minimum and maximum widths of cells that do not
621 span multiple columns. */
622 for (i = 0; i < 2; i++)
623 columns[i] = xzalloc (nc * sizeof *columns[i]);
624 for (y = 0; y < nr; y++)
625 for (x = 0; x < nc; )
627 struct table_cell cell;
629 table_get_cell (table, x, y, &cell);
630 if (y == cell.d[V][0] && table_cell_colspan (&cell) == 1)
635 params->measure_cell_width (params->aux, &cell, &w[MIN], &w[MAX]);
636 for (i = 0; i < 2; i++)
637 if (columns[i][x].unspanned < w[i])
638 columns[i][x].unspanned = w[i];
641 table_cell_free (&cell);
644 /* Distribute widths of spanned columns. */
645 for (i = 0; i < 2; i++)
646 for (x = 0; x < nc; x++)
647 columns[i][x].width = columns[i][x].unspanned;
648 for (y = 0; y < nr; y++)
649 for (x = 0; x < nc; )
651 struct table_cell cell;
653 table_get_cell (table, x, y, &cell);
654 if (y == cell.d[V][0] && table_cell_colspan (&cell) > 1)
658 params->measure_cell_width (params->aux, &cell, &w[MIN], &w[MAX]);
659 for (i = 0; i < 2; i++)
660 distribute_spanned_width (w[i], &columns[i][cell.d[H][0]],
661 rules[H], table_cell_colspan (&cell));
664 table_cell_free (&cell);
667 /* Decide final column widths. */
668 for (i = 0; i < 2; i++)
669 table_widths[i] = calculate_table_width (table_nc (table),
670 columns[i], rules[H]);
671 if (table_widths[MAX] <= params->size[H])
673 /* Fits even with maximum widths. Use them. */
674 page = create_page_with_exact_widths (params, table, columns[MAX],
677 else if (table_widths[MIN] <= params->size[H])
679 /* Fits with minimum widths, so distribute the leftover space. */
680 page = create_page_with_interpolated_widths (
681 params, table, columns[MIN], columns[MAX],
682 table_widths[MIN], table_widths[MAX], rules[H]);
686 /* Doesn't fit even with minimum widths. Assign minimums for now, and
687 later we can break it horizontally into multiple pages. */
688 page = create_page_with_exact_widths (params, table, columns[MIN],
692 /* Calculate heights of cells that do not span multiple rows. */
693 rows = xzalloc (nr * sizeof *rows);
694 for (y = 0; y < nr; y++)
696 for (x = 0; x < nc; )
698 struct render_row *r = &rows[y];
699 struct table_cell cell;
701 table_get_cell (table, x, y, &cell);
702 if (y == cell.d[V][0])
704 if (table_cell_rowspan (&cell) == 1)
706 int w = joined_width (page, H, cell.d[H][0], cell.d[H][1]);
707 int h = params->measure_cell_height (params->aux, &cell, w);
708 if (h > r->unspanned)
709 r->unspanned = r->width = h;
712 set_join_crossings (page, V, &cell, rules[V]);
714 if (table_cell_colspan (&cell) > 1)
715 set_join_crossings (page, H, &cell, rules[H]);
718 table_cell_free (&cell);
721 for (i = 0; i < 2; i++)
724 /* Distribute heights of spanned rows. */
725 for (y = 0; y < nr; y++)
726 for (x = 0; x < nc; )
728 struct table_cell cell;
730 table_get_cell (table, x, y, &cell);
731 if (y == cell.d[V][0] && table_cell_rowspan (&cell) > 1)
733 int w = joined_width (page, H, cell.d[H][0], cell.d[H][1]);
734 int h = params->measure_cell_height (params->aux, &cell, w);
735 distribute_spanned_width (h, &rows[cell.d[V][0]], rules[V],
736 table_cell_rowspan (&cell));
739 table_cell_free (&cell);
742 /* Decide final row heights. */
743 accumulate_row_widths (page, V, rows, rules[V]);
746 /* Measure headers. If they are "too big", get rid of them. */
747 for (axis = 0; axis < TABLE_N_AXES; axis++)
749 int hw = headers_width (page, axis);
750 if (hw * 2 >= page->params->size[axis]
751 || hw + max_cell_width (page, axis) > page->params->size[axis])
753 page->table = table_unshare (page->table);
754 page->table->h[axis][0] = page->table->h[axis][1] = 0;
755 page->h[axis][0] = page->h[axis][1] = 0;
765 /* Increases PAGE's reference count. */
767 render_page_ref (const struct render_page *page_)
769 struct render_page *page = CONST_CAST (struct render_page *, page_);
774 /* Decreases PAGE's reference count and destroys PAGE if this causes the
775 reference count to fall to zero. */
777 render_page_unref (struct render_page *page)
779 if (page != NULL && --page->ref_cnt == 0)
781 struct render_overflow *overflow, *next;
783 HMAP_FOR_EACH_SAFE (overflow, next, struct render_overflow, node,
786 hmap_destroy (&page->overflows);
788 table_unref (page->table);
795 /* Returns the size of PAGE along AXIS. (This might be larger than the page
796 size specified in the parameters passed to render_page_create(). Use a
797 render_break to break up a render_page into page-sized chunks.) */
799 render_page_get_size (const struct render_page *page, enum table_axis axis)
801 return page->cp[axis][page->n[axis] * 2 + 1];
804 /* Drawing render_pages. */
806 static enum render_line_style
807 get_rule (const struct render_page *page, enum table_axis axis,
808 const int d[TABLE_N_AXES])
810 return rule_to_render_type (table_get_rule (page->table,
811 axis, d[H] / 2, d[V] / 2));
821 render_rule (const struct render_page *page, const int d[TABLE_N_AXES])
823 enum render_line_style styles[TABLE_N_AXES][2];
826 for (a = 0; a < TABLE_N_AXES; a++)
828 enum table_axis b = !a;
830 styles[a][0] = styles[a][1] = RENDER_LINE_NONE;
833 || (page->is_edge_cutoff[a][0] && d[a] == 0)
834 || (page->is_edge_cutoff[a][1] && d[a] == page->n[a] * 2))
845 styles[a][0] = get_rule (page, a, e);
848 if (d[b] / 2 < page->table->n[b])
849 styles[a][1] = get_rule (page, a, d);
852 styles[a][0] = styles[a][1] = get_rule (page, a, d);
855 if (styles[H][0] != RENDER_LINE_NONE || styles[H][1] != RENDER_LINE_NONE
856 || styles[V][0] != RENDER_LINE_NONE || styles[V][1] != RENDER_LINE_NONE)
858 int bb[TABLE_N_AXES][2];
860 bb[H][0] = page->cp[H][d[H]];
861 bb[H][1] = page->cp[H][d[H] + 1];
862 bb[V][0] = page->cp[V][d[V]];
863 bb[V][1] = page->cp[V][d[V] + 1];
864 page->params->draw_line (page->params->aux, bb, styles);
869 render_cell (const struct render_page *page, const struct table_cell *cell)
871 const struct render_overflow *of;
872 int bb[TABLE_N_AXES][2];
873 int clip[TABLE_N_AXES][2];
875 bb[H][0] = clip[H][0] = page->cp[H][cell->d[H][0] * 2 + 1];
876 bb[H][1] = clip[H][1] = page->cp[H][cell->d[H][1] * 2];
877 bb[V][0] = clip[V][0] = page->cp[V][cell->d[V][0] * 2 + 1];
878 bb[V][1] = clip[V][1] = page->cp[V][cell->d[V][1] * 2];
880 of = find_overflow (page, cell->d[H][0], cell->d[V][0]);
883 enum table_axis axis;
885 for (axis = 0; axis < TABLE_N_AXES; axis++)
887 if (of->overflow[axis][0])
889 bb[axis][0] -= of->overflow[axis][0];
890 if (cell->d[axis][0] == 0)
891 clip[axis][0] = page->cp[axis][cell->d[axis][0] * 2];
893 if (of->overflow[axis][1])
895 bb[axis][1] += of->overflow[axis][1];
896 if (cell->d[axis][1] == page->n[axis])
897 clip[axis][1] = page->cp[axis][cell->d[axis][1] * 2 + 1];
902 page->params->draw_cell (page->params->aux, cell, bb, clip);
905 /* Draws the cells of PAGE indicated in BB. */
907 render_page_draw_cells (const struct render_page *page,
908 int bb[TABLE_N_AXES][2])
912 for (y = bb[V][0]; y < bb[V][1]; y++)
913 for (x = bb[H][0]; x < bb[H][1]; )
914 if (is_rule (x) || is_rule (y))
919 render_rule (page, d);
924 struct table_cell cell;
926 table_get_cell (page->table, x / 2, y / 2, &cell);
927 if (y == bb[V][0] || y / 2 == cell.d[V][0])
928 render_cell (page, &cell);
929 x = rule_ofs (cell.d[H][1]);
930 table_cell_free (&cell);
934 /* Renders PAGE, by calling the 'draw_line' and 'draw_cell' functions from the
935 render_params provided to render_page_create(). */
937 render_page_draw (const struct render_page *page)
939 int bb[TABLE_N_AXES][2];
942 bb[H][1] = page->n[H] * 2 + 1;
944 bb[V][1] = page->n[V] * 2 + 1;
946 render_page_draw_cells (page, bb);
949 /* Returns the greatest value i, 0 <= i < n, such that cp[i] <= x0. */
951 get_clip_min_extent (int x0, const int cp[], int n)
960 int middle = low + (high - low) / 2;
962 if (cp[middle] <= x0)
974 /* Returns the least value i, 0 <= i < n, such that cp[i + 1] >= x1. */
976 get_clip_max_extent (int x1, const int cp[], int n)
985 int middle = low + (high - low) / 2;
987 if (cp[middle] >= x1)
988 best = high = middle;
996 /* Renders the cells of PAGE that intersect (X,Y)-(X+W,Y+H), by calling the
997 'draw_line' and 'draw_cell' functions from the render_params provided to
998 render_page_create(). */
1000 render_page_draw_region (const struct render_page *page,
1001 int x, int y, int w, int h)
1003 int bb[TABLE_N_AXES][2];
1005 bb[H][0] = get_clip_min_extent (x, page->cp[H], page->n[H] * 2 + 1);
1006 bb[H][1] = get_clip_max_extent (x + w, page->cp[H], page->n[H] * 2 + 1);
1007 bb[V][0] = get_clip_min_extent (y, page->cp[V], page->n[V] * 2 + 1);
1008 bb[V][1] = get_clip_max_extent (y + h, page->cp[V], page->n[V] * 2 + 1);
1010 render_page_draw_cells (page, bb);
1013 /* Breaking up tables to fit on a page. */
1015 static int needed_size (const struct render_break *, int cell);
1016 static bool cell_is_breakable (const struct render_break *, int cell);
1017 static struct render_page *render_page_select (const struct render_page *,
1022 /* Initializes render_break B for breaking PAGE along AXIS.
1024 Ownership of PAGE is transferred to B. The caller must use
1025 render_page_ref() if it needs to keep a copy of PAGE. */
1027 render_break_init (struct render_break *b, struct render_page *page,
1028 enum table_axis axis)
1032 b->cell = page->h[axis][0];
1034 b->hw = headers_width (page, axis);
1037 /* Initializes B as a render_break structure for which
1038 render_break_has_next() always returns false. */
1040 render_break_init_empty (struct render_break *b)
1043 b->axis = TABLE_HORZ;
1049 /* Frees B and unrefs the render_page that it owns. */
1051 render_break_destroy (struct render_break *b)
1055 render_page_unref (b->page);
1060 /* Returns true if B still has cells that are yet to be returned,
1061 false if all of B's page has been processed. */
1063 render_break_has_next (const struct render_break *b)
1065 const struct render_page *page = b->page;
1066 enum table_axis axis = b->axis;
1068 return page != NULL && b->cell < page->n[axis] - page->h[axis][1];
1071 /* Returns the minimum SIZE argument that, if passed to render_break_next(),
1072 will avoid a null return value (if cells are still left). */
1074 render_break_next_size (const struct render_break *b)
1076 const struct render_page *page = b->page;
1077 enum table_axis axis = b->axis;
1079 return (!render_break_has_next (b) ? 0
1080 : !cell_is_breakable (b, b->cell) ? needed_size (b, b->cell + 1)
1081 : b->hw + page->params->font_size[axis]);
1084 /* Returns a new render_page that is up to SIZE pixels wide along B's axis.
1085 Returns a null pointer if B has already been completely broken up, or if
1086 SIZE is too small to reasonably render any cells. The latter will never
1087 happen if SIZE is at least as large as the page size passed to
1088 render_page_create() along B's axis. */
1089 struct render_page *
1090 render_break_next (struct render_break *b, int size)
1092 const struct render_page *page = b->page;
1093 enum table_axis axis = b->axis;
1094 struct render_page *subpage;
1097 if (!render_break_has_next (b))
1101 for (cell = b->cell; cell < page->n[axis] - page->h[axis][1]; cell++)
1102 if (needed_size (b, cell + 1) > size)
1104 if (!cell_is_breakable (b, cell))
1106 if (cell == b->cell)
1110 pixel = (cell == b->cell
1111 ? b->pixel + size - b->hw
1112 : size - needed_size (b, cell));
1116 subpage = render_page_select (page, axis, b->cell, b->pixel,
1117 pixel ? cell + 1 : cell,
1118 pixel ? cell_width (page, axis, cell) - pixel
1125 /* Returns the width that would be required along B's axis to render a page
1126 from B's current position up to but not including CELL. */
1128 needed_size (const struct render_break *b, int cell)
1130 const struct render_page *page = b->page;
1131 enum table_axis axis = b->axis;
1134 size = joined_width (page, axis, b->cell, cell) + b->hw - b->pixel;
1135 if (page->h[axis][0] && page->h[axis][1])
1136 size += page->join_crossing[axis][b->cell];
1141 /* Returns true if CELL along B's axis may be broken across a page boundary.
1143 This is just a heuristic. Breaking cells across page boundaries can save
1144 space, but it looks ugly. */
1146 cell_is_breakable (const struct render_break *b, int cell)
1148 const struct render_page *page = b->page;
1149 enum table_axis axis = b->axis;
1151 return cell_width (page, axis, cell) > page->params->size[axis] / 2;
1154 /* render_page_select() and helpers. */
1156 struct render_page_selection
1158 const struct render_page *page; /* Page whose slice we are selecting. */
1159 struct render_page *subpage; /* New page under construction. */
1160 enum table_axis a; /* Axis of 'page' along which 'subpage' is a slice. */
1161 enum table_axis b; /* The opposite of 'a'. */
1162 int z0; /* First cell along 'a' being selected. */
1163 int z1; /* Last cell being selected, plus 1. */
1164 int p0; /* Number of pixels to trim off left side of z0. */
1165 int p1; /* Number of pixels to trim off right side of z1-1. */
1168 static void cell_to_subpage (struct render_page_selection *,
1169 const struct table_cell *,
1170 int subcell[TABLE_N_AXES]);
1171 static const struct render_overflow *find_overflow_for_cell (
1172 struct render_page_selection *, const struct table_cell *);
1173 static struct render_overflow *insert_overflow (struct render_page_selection *,
1174 const struct table_cell *);
1176 /* Creates and returns a new render_page whose contents are a subregion of
1177 PAGE's contents. The new render_page includes cells Z0 through Z1 along
1178 AXIS, plus any headers on AXIS.
1180 If P0 is nonzero, then it is a number of pixels to exclude from the left or
1181 top (according to AXIS) of cell Z0. Similarly, P1 is a number of pixels to
1182 exclude from the right or bottom of cell Z1 - 1. (P0 and P1 are used to
1183 render cells that are too large to fit on a single page.)
1185 The whole of axis !AXIS is included. (The caller may follow up with another
1186 call to render_page_select() to select on !AXIS to select on that axis as
1189 The caller retains ownership of PAGE, which is not modified. */
1190 static struct render_page *
1191 render_page_select (const struct render_page *page, enum table_axis axis,
1192 int z0, int p0, int z1, int p1)
1194 struct render_page_selection s;
1195 enum table_axis a = axis;
1196 enum table_axis b = !a;
1197 struct render_page *subpage;
1198 struct render_overflow *ro;
1204 /* Optimize case where all of PAGE is selected by just incrementing the
1206 if (z0 == page->h[a][0] && p0 == 0
1207 && z1 == page->n[a] - page->h[a][1] && p1 == 0)
1209 struct render_page *page_rw = (struct render_page *) page;
1214 /* Allocate subpage. */
1215 subpage = render_page_allocate (page->params,
1216 table_select_slice (
1217 table_ref (page->table),
1220 /* An edge is cut off if it was cut off in PAGE or if we're trimming pixels
1221 off that side of the page and there are no headers. */
1222 subpage->is_edge_cutoff[a][0] =
1223 subpage->h[a][0] == 0 && (p0 || (z0 == 0 && page->is_edge_cutoff[a][0]));
1224 subpage->is_edge_cutoff[a][1] =
1225 subpage->h[a][1] == 0 && (p1 || (z1 == page->n[a]
1226 && page->is_edge_cutoff[a][1]));
1227 subpage->is_edge_cutoff[b][0] = page->is_edge_cutoff[b][0];
1228 subpage->is_edge_cutoff[b][1] = page->is_edge_cutoff[b][1];
1230 /* Select join crossings from PAGE into subpage. */
1231 jc = subpage->join_crossing[a];
1232 for (z = 0; z < page->h[a][0]; z++)
1233 *jc++ = page->join_crossing[a][z];
1234 for (z = z0; z <= z1; z++)
1235 *jc++ = page->join_crossing[a][z];
1236 for (z = page->n[a] - page->h[a][1]; z < page->n[a]; z++)
1237 *jc++ = page->join_crossing[a][z];
1238 assert (jc == &subpage->join_crossing[a][subpage->n[a] + 1]);
1240 memcpy (subpage->join_crossing[b], page->join_crossing[b],
1241 (subpage->n[b] + 1) * sizeof **subpage->join_crossing);
1243 /* Select widths from PAGE into subpage. */
1245 dcp = subpage->cp[a];
1247 for (z = 0; z <= rule_ofs (subpage->h[a][0]); z++, dcp++)
1248 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1249 for (z = cell_ofs (z0); z <= cell_ofs (z1 - 1); z++, dcp++)
1251 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1252 if (z == cell_ofs (z0))
1255 if (page->h[a][0] && page->h[a][1])
1256 dcp[1] += page->join_crossing[a][z / 2];
1258 if (z == cell_ofs (z1 - 1))
1261 for (z = rule_ofs_r (page, a, subpage->h[a][1]);
1262 z <= rule_ofs_r (page, a, 0); z++, dcp++)
1263 dcp[1] = dcp[0] + (scp[z + 1] - scp[z]);
1264 assert (dcp == &subpage->cp[a][2 * subpage->n[a] + 1]);
1266 for (z = 0; z < page->n[b] * 2 + 2; z++)
1267 subpage->cp[b][z] = page->cp[b][z];
1269 /* Add new overflows. */
1277 s.subpage = subpage;
1279 for (z = 0; z < page->n[b]; z++)
1281 struct table_cell cell;
1282 int d[TABLE_N_AXES];
1286 table_get_cell (page->table, d[H], d[V], &cell);
1287 if ((z == cell.d[b][0] && (p0 || cell.d[a][0] < z0))
1288 || (z == cell.d[b][1] - 1 && p1))
1290 ro = insert_overflow (&s, &cell);
1291 ro->overflow[a][0] += p0 + axis_width (page, a,
1292 cell_ofs (cell.d[a][0]),
1295 ro->overflow[a][1] += p1;
1296 if (page->h[a][0] && page->h[a][1])
1297 ro->overflow[a][0] -= page->join_crossing[a][cell.d[a][0] + 1];
1298 if (cell.d[a][1] > z1)
1299 ro->overflow[a][1] += axis_width (page, a, cell_ofs (z1),
1300 cell_ofs (cell.d[a][1]));
1302 table_cell_free (&cell);
1305 for (z = 0; z < page->n[b]; z++)
1307 struct table_cell cell;
1308 int d[TABLE_N_AXES];
1310 /* XXX need to handle p1 below */
1313 table_get_cell (page->table, d[H], d[V], &cell);
1314 if (z == cell.d[b][0] && cell.d[a][1] > z1
1315 && find_overflow_for_cell (&s, &cell) == NULL)
1317 ro = insert_overflow (&s, &cell);
1318 ro->overflow[a][1] += axis_width (page, a, cell_ofs (z1),
1319 cell_ofs (cell.d[a][1]));
1321 table_cell_free (&cell);
1324 /* Copy overflows from PAGE into subpage. */
1325 HMAP_FOR_EACH (ro, struct render_overflow, node, &page->overflows)
1327 struct table_cell cell;
1329 table_get_cell (page->table, ro->d[H], ro->d[V], &cell);
1330 if (cell.d[a][1] > z0 && cell.d[a][0] < z1
1331 && find_overflow_for_cell (&s, &cell) == NULL)
1332 insert_overflow (&s, &cell);
1333 table_cell_free (&cell);
1339 /* Given CELL, a table_cell within S->page, stores in SUBCELL the (x,y)
1340 coordinates of the top-left cell as it will appear in S->subpage.
1342 CELL must actually intersect the region of S->page that is being selected
1343 by render_page_select() or the results will not make any sense. */
1345 cell_to_subpage (struct render_page_selection *s,
1346 const struct table_cell *cell, int subcell[TABLE_N_AXES])
1348 enum table_axis a = s->a;
1349 enum table_axis b = s->b;
1350 int ha0 = s->subpage->h[a][0];
1352 subcell[a] = MAX (cell->d[a][0] - s->z0 + ha0, ha0);
1353 subcell[b] = cell->d[b][0];
1356 /* Given CELL, a table_cell within S->page, returns the render_overflow for
1357 that cell in S->subpage, if there is one, and a null pointer otherwise.
1359 CELL must actually intersect the region of S->page that is being selected
1360 by render_page_select() or the results will not make any sense. */
1361 static const struct render_overflow *
1362 find_overflow_for_cell (struct render_page_selection *s,
1363 const struct table_cell *cell)
1367 cell_to_subpage (s, cell, subcell);
1368 return find_overflow (s->subpage, subcell[H], subcell[V]);
1371 /* Given CELL, a table_cell within S->page, inserts a render_overflow for that
1372 cell in S->subpage (which must not already exist). Initializes the new
1373 render_overflow's 'overflow' member from the overflow for CELL in S->page,
1376 CELL must actually intersect the region of S->page that is being selected
1377 by render_page_select() or the results will not make any sense. */
1378 static struct render_overflow *
1379 insert_overflow (struct render_page_selection *s,
1380 const struct table_cell *cell)
1382 const struct render_overflow *old;
1383 struct render_overflow *of;
1385 of = xzalloc (sizeof *of);
1386 cell_to_subpage (s, cell, of->d);
1387 hmap_insert (&s->subpage->overflows, &of->node,
1388 hash_overflow (of->d[H], of->d[V]));
1390 old = find_overflow (s->page, cell->d[H][0], cell->d[V][0]);
1392 memcpy (of->overflow, old->overflow, sizeof of->overflow);