1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2011, 2012 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include <gsl/gsl_matrix.h>
20 #include <gsl/gsl_permutation.h>
21 #include <gsl/gsl_sort_vector.h>
22 #include <gsl/gsl_statistics.h>
27 #include "data/case.h"
28 #include "data/casegrouper.h"
29 #include "data/casereader.h"
30 #include "data/casewriter.h"
31 #include "data/dataset.h"
32 #include "data/dictionary.h"
33 #include "data/format.h"
34 #include "data/missing-values.h"
35 #include "language/command.h"
36 #include "language/lexer/lexer.h"
37 #include "language/lexer/variable-parser.h"
38 #include "libpspp/message.h"
39 #include "libpspp/misc.h"
40 #include "libpspp/str.h"
41 #include "math/random.h"
42 #include "output/tab.h"
43 #include "output/text-item.h"
46 #define _(msgid) gettext (msgid)
47 #define N_(msgid) msgid
58 const struct variable **vars;
61 int ngroups; /* Number of group. (Given by the user) */
62 int maxiter; /* Maximum iterations (Given by the user) */
64 const struct variable *wv; /* Weighting variable. */
66 enum missing_type missing_type;
67 enum mv_class exclude;
70 /* Holds all of the information for the functions. int n, holds the number of
71 observation and its default value is -1. We set it in
72 kmeans_recalculate_centers in first invocation. */
75 gsl_matrix *centers; /* Centers for groups. */
76 gsl_vector_long *num_elements_groups;
78 casenumber n; /* Number of observations (default -1). */
80 int lastiter; /* Iteration where it found the solution. */
81 int trials; /* If not convergence, how many times has
83 gsl_matrix *initial_centers; /* Initial random centers. */
85 gsl_permutation *group_order; /* Group order for reporting. */
86 struct caseproto *proto;
87 struct casereader *index_rdr; /* Group ids for each case. */
90 static struct Kmeans *kmeans_create (const struct qc *qc);
92 static void kmeans_randomize_centers (struct Kmeans *kmeans, const struct qc *qc);
94 static int kmeans_get_nearest_group (struct Kmeans *kmeans, struct ccase *c, const struct qc *);
96 static void kmeans_recalculate_centers (struct Kmeans *kmeans, const struct casereader *reader, const struct qc *);
99 kmeans_calculate_indexes_and_check_convergence (struct Kmeans *kmeans, const struct casereader *reader, const struct qc *);
101 static void kmeans_order_groups (struct Kmeans *kmeans, const struct qc *);
103 static void kmeans_cluster (struct Kmeans *kmeans, struct casereader *reader, const struct qc *);
105 static void quick_cluster_show_centers (struct Kmeans *kmeans, bool initial, const struct qc *);
107 static void quick_cluster_show_number_cases (struct Kmeans *kmeans, const struct qc *);
109 static void quick_cluster_show_results (struct Kmeans *kmeans, const struct qc *);
111 int cmd_quick_cluster (struct lexer *lexer, struct dataset *ds);
113 static void kmeans_destroy (struct Kmeans *kmeans);
115 /* Creates and returns a struct of Kmeans with given casereader 'cs', parsed
116 variables 'variables', number of cases 'n', number of variables 'm', number
117 of clusters and amount of maximum iterations. */
118 static struct Kmeans *
119 kmeans_create (const struct qc *qc)
121 struct Kmeans *kmeans = xmalloc (sizeof (struct Kmeans));
122 kmeans->centers = gsl_matrix_alloc (qc->ngroups, qc->n_vars);
123 kmeans->num_elements_groups = gsl_vector_long_alloc (qc->ngroups);
125 kmeans->lastiter = 0;
127 kmeans->group_order = gsl_permutation_alloc (kmeans->centers->size1);
128 kmeans->initial_centers = NULL;
130 kmeans->proto = caseproto_create ();
131 kmeans->proto = caseproto_add_width (kmeans->proto, 0);
132 kmeans->index_rdr = NULL;
137 kmeans_destroy (struct Kmeans *kmeans)
139 gsl_matrix_free (kmeans->centers);
140 gsl_matrix_free (kmeans->initial_centers);
142 gsl_vector_long_free (kmeans->num_elements_groups);
144 gsl_permutation_free (kmeans->group_order);
146 caseproto_unref (kmeans->proto);
148 casereader_destroy (kmeans->index_rdr);
153 /* Creates random centers using randomly selected cases from the data. */
155 kmeans_randomize_centers (struct Kmeans *kmeans, const struct qc *qc)
158 for (i = 0; i < qc->ngroups; i++)
160 for (j = 0; j < qc->n_vars; j++)
164 gsl_matrix_set (kmeans->centers, i, j, 1);
168 gsl_matrix_set (kmeans->centers, i, j, 0);
172 /* If it is the first iteration, the variable kmeans->initial_centers is NULL
173 and it is created once for reporting issues. In SPSS, initial centers are
174 shown in the reports but in PSPP it is not shown now. I am leaving it
176 if (!kmeans->initial_centers)
178 kmeans->initial_centers = gsl_matrix_alloc (qc->ngroups, qc->n_vars);
179 gsl_matrix_memcpy (kmeans->initial_centers, kmeans->centers);
184 kmeans_get_nearest_group (struct Kmeans *kmeans, struct ccase *c, const struct qc *qc)
188 double mindist = INFINITY;
189 for (i = 0; i < qc->ngroups; i++)
192 for (j = 0; j < qc->n_vars; j++)
194 const union value *val = case_data (c, qc->vars[j]);
195 if ( var_is_value_missing (qc->vars[j], val, qc->exclude))
198 dist += pow2 (gsl_matrix_get (kmeans->centers, i, j) - val->f);
209 /* Re-calculate the cluster centers. */
211 kmeans_recalculate_centers (struct Kmeans *kmeans, const struct casereader *reader, const struct qc *qc)
217 struct casereader *cs = casereader_clone (reader);
218 struct casereader *cs_index = casereader_clone (kmeans->index_rdr);
220 gsl_matrix_set_all (kmeans->centers, 0.0);
221 for (; (c = casereader_read (cs)) != NULL; case_unref (c))
223 double weight = qc->wv ? case_data (c, qc->wv)->f : 1.0;
224 struct ccase *c_index = casereader_read (cs_index);
225 int index = case_data_idx (c_index, 0)->f;
226 for (v = 0; v < qc->n_vars; ++v)
228 const union value *val = case_data (c, qc->vars[v]);
229 double x = val->f * weight;
232 if ( var_is_value_missing (qc->vars[v], val, qc->exclude))
235 curval = gsl_matrix_get (kmeans->centers, index, v);
236 gsl_matrix_set (kmeans->centers, index, v, curval + x);
239 case_unref (c_index);
241 casereader_destroy (cs);
242 casereader_destroy (cs_index);
244 /* Getting number of cases */
248 /* We got sum of each center but we need averages.
249 We are dividing centers to numobs. This may be inefficient and
250 we should check it again. */
251 for (i = 0; i < qc->ngroups; i++)
253 casenumber numobs = kmeans->num_elements_groups->data[i];
254 for (j = 0; j < qc->n_vars; j++)
258 double *x = gsl_matrix_ptr (kmeans->centers, i, j);
263 gsl_matrix_set (kmeans->centers, i, j, 0);
269 /* The variable index in struct Kmeans holds integer values that represents the
270 current groups of cases. index[n]=a shows the nth case is belong to ath
271 cluster. This function calculates these indexes and returns the number of
272 different cases of the new and old index variables. If last two index
273 variables are equal, there is no any enhancement of clustering. */
275 kmeans_calculate_indexes_and_check_convergence (struct Kmeans *kmeans, const struct casereader *reader, const struct qc *qc)
279 struct casereader *cs = casereader_clone (reader);
281 /* A casewriter into which we will write the indexes. */
282 struct casewriter *index_wtr = autopaging_writer_create (kmeans->proto);
284 gsl_vector_long_set_all (kmeans->num_elements_groups, 0);
286 for (; (c = casereader_read (cs)) != NULL; case_unref (c))
288 /* A case to hold the new index. */
289 struct ccase *index_case_new = case_create (kmeans->proto);
290 int bestindex = kmeans_get_nearest_group (kmeans, c, qc);
291 double weight = qc->wv ? case_data (c, qc->wv)->f : 1.0;
292 assert (bestindex < kmeans->num_elements_groups->size);
293 kmeans->num_elements_groups->data[bestindex] += weight;
294 if (kmeans->index_rdr)
296 /* A case from which the old index will be read. */
297 struct ccase *index_case_old = NULL;
299 /* Read the case from the index casereader. */
300 index_case_old = casereader_read (kmeans->index_rdr);
302 /* Set totaldiff, using the old_index. */
303 totaldiff += abs (case_data_idx (index_case_old, 0)->f - bestindex);
305 /* We have no use for the old case anymore, so unref it. */
306 case_unref (index_case_old);
310 /* If this is the first run, then assume index is zero. */
311 totaldiff += bestindex;
314 /* Set the value of the new inde.x */
315 case_data_rw_idx (index_case_new, 0)->f = bestindex;
317 /* and write the new index to the casewriter */
318 casewriter_write (index_wtr, index_case_new);
320 casereader_destroy (cs);
321 /* We have now read through the entire index_rdr, so it's of no use
323 casereader_destroy (kmeans->index_rdr);
325 /* Convert the writer into a reader, ready for the next iteration to read */
326 kmeans->index_rdr = casewriter_make_reader (index_wtr);
332 kmeans_order_groups (struct Kmeans *kmeans, const struct qc *qc)
334 gsl_vector *v = gsl_vector_alloc (qc->ngroups);
335 gsl_matrix_get_col (v, kmeans->centers, 0);
336 gsl_sort_vector_index (kmeans->group_order, v);
341 Does iterations, checks convergency. */
343 kmeans_cluster (struct Kmeans *kmeans, struct casereader *reader, const struct qc *qc)
350 show_warning1 = true;
353 kmeans_randomize_centers (kmeans, qc);
354 for (kmeans->lastiter = 0; kmeans->lastiter < qc->maxiter;
357 diffs = kmeans_calculate_indexes_and_check_convergence (kmeans, reader, qc);
358 kmeans_recalculate_centers (kmeans, reader, qc);
359 if (show_warning1 && qc->ngroups > kmeans->n)
361 msg (MW, _("Number of clusters may not be larger than the number "
363 show_warning1 = false;
369 for (i = 0; i < qc->ngroups; i++)
371 if (kmeans->num_elements_groups->data[i] == 0)
374 if (kmeans->trials >= 3)
385 /* Reports centers of clusters.
386 Initial parameter is optional for future use.
387 If initial is true, initial cluster centers are reported. Otherwise,
388 resulted centers are reported. */
390 quick_cluster_show_centers (struct Kmeans *kmeans, bool initial, const struct qc *qc)
395 nc = qc->ngroups + 1;
397 t = tab_create (nc, nr);
398 tab_headers (t, 0, nc - 1, 0, 1);
402 tab_title (t, _("Final Cluster Centers"));
406 tab_title (t, _("Initial Cluster Centers"));
408 tab_box (t, TAL_2, TAL_2, TAL_0, TAL_1, 0, 0, nc - 1, nr - 1);
409 tab_joint_text (t, 1, 0, nc - 1, 0, TAB_CENTER, _("Cluster"));
410 tab_hline (t, TAL_1, 1, nc - 1, 2);
413 for (i = 0; i < qc->ngroups; i++)
415 tab_text_format (t, (i + 1), currow, TAB_CENTER, "%d", (i + 1));
418 tab_hline (t, TAL_1, 1, nc - 1, currow);
420 for (i = 0; i < qc->n_vars; i++)
422 tab_text (t, 0, currow + i, TAB_LEFT,
423 var_to_string (qc->vars[i]));
426 for (i = 0; i < qc->ngroups; i++)
428 for (j = 0; j < qc->n_vars; j++)
432 tab_double (t, i + 1, j + 4, TAB_CENTER,
433 gsl_matrix_get (kmeans->centers,
434 kmeans->group_order->data[i], j),
435 var_get_print_format (qc->vars[j]));
439 tab_double (t, i + 1, j + 4, TAB_CENTER,
440 gsl_matrix_get (kmeans->initial_centers,
441 kmeans->group_order->data[i], j),
442 var_get_print_format (qc->vars[j]));
449 /* Reports number of cases of each single cluster. */
451 quick_cluster_show_number_cases (struct Kmeans *kmeans, const struct qc *qc)
458 nr = qc->ngroups + 1;
459 t = tab_create (nc, nr);
460 tab_headers (t, 0, nc - 1, 0, 0);
461 tab_title (t, _("Number of Cases in each Cluster"));
462 tab_box (t, TAL_2, TAL_2, TAL_0, TAL_1, 0, 0, nc - 1, nr - 1);
463 tab_text (t, 0, 0, TAB_LEFT, _("Cluster"));
466 for (i = 0; i < qc->ngroups; i++)
468 tab_text_format (t, 1, i, TAB_CENTER, "%d", (i + 1));
470 kmeans->num_elements_groups->data[kmeans->group_order->data[i]];
471 tab_text_format (t, 2, i, TAB_CENTER, "%d", numelem);
475 tab_text (t, 0, qc->ngroups, TAB_LEFT, _("Valid"));
476 tab_text_format (t, 2, qc->ngroups, TAB_LEFT, "%ld", total);
482 quick_cluster_show_results (struct Kmeans *kmeans, const struct qc *qc)
484 kmeans_order_groups (kmeans, qc);
485 /* Uncomment the line below for reporting initial centers. */
486 /* quick_cluster_show_centers (kmeans, true); */
487 quick_cluster_show_centers (kmeans, false, qc);
488 quick_cluster_show_number_cases (kmeans, qc);
492 cmd_quick_cluster (struct lexer *lexer, struct dataset *ds)
495 struct Kmeans *kmeans;
497 const struct dictionary *dict = dataset_dict (ds);
500 qc.missing_type = MISS_LISTWISE;
503 if (!parse_variables_const (lexer, dict, &qc.vars, &qc.n_vars,
504 PV_NO_DUPLICATE | PV_NUMERIC))
506 return (CMD_FAILURE);
509 while (lex_token (lexer) != T_ENDCMD)
511 lex_match (lexer, T_SLASH);
513 if (lex_match_id (lexer, "MISSING"))
515 lex_match (lexer, T_EQUALS);
516 while (lex_token (lexer) != T_ENDCMD
517 && lex_token (lexer) != T_SLASH)
519 if (lex_match_id (lexer, "LISTWISE") || lex_match_id (lexer, "DEFAULT"))
521 qc.missing_type = MISS_LISTWISE;
523 else if (lex_match_id (lexer, "PAIRWISE"))
525 qc.missing_type = MISS_PAIRWISE;
527 else if (lex_match_id (lexer, "INCLUDE"))
529 qc.exclude = MV_SYSTEM;
531 else if (lex_match_id (lexer, "EXCLUDE"))
539 else if (lex_match_id (lexer, "CRITERIA"))
541 lex_match (lexer, T_EQUALS);
542 while (lex_token (lexer) != T_ENDCMD
543 && lex_token (lexer) != T_SLASH)
545 if (lex_match_id (lexer, "CLUSTERS"))
547 if (lex_force_match (lexer, T_LPAREN))
549 lex_force_int (lexer);
550 qc.ngroups = lex_integer (lexer);
552 lex_force_match (lexer, T_RPAREN);
555 else if (lex_match_id (lexer, "MXITER"))
557 if (lex_force_match (lexer, T_LPAREN))
559 lex_force_int (lexer);
560 qc.maxiter = lex_integer (lexer);
562 lex_force_match (lexer, T_RPAREN);
571 qc.wv = dict_get_weight (dict);
574 struct casereader *group;
575 struct casegrouper *grouper = casegrouper_create_splits (proc_open (ds), dict);
577 while (casegrouper_get_next_group (grouper, &group))
579 if ( qc.missing_type == MISS_LISTWISE )
581 group = casereader_create_filter_missing (group, qc.vars, qc.n_vars,
586 kmeans = kmeans_create (&qc);
587 kmeans_cluster (kmeans, group, &qc);
588 quick_cluster_show_results (kmeans, &qc);
589 kmeans_destroy (kmeans);
590 casereader_destroy (group);
592 ok = casegrouper_destroy (grouper);
594 ok = proc_commit (ds) && ok;