1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 1997-9, 2000, 2006, 2009, 2010, 2011 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 - Pearson's R (but not Spearman!) is off a little.
20 - T values for Spearman's R and Pearson's R are wrong.
21 - How to calculate significance of symmetric and directional measures?
22 - Asymmetric ASEs and T values for lambda are wrong.
23 - ASE of Goodman and Kruskal's tau is not calculated.
24 - ASE of symmetric somers' d is wrong.
25 - Approx. T of uncertainty coefficient is wrong.
32 #include <gsl/gsl_cdf.h>
36 #include "data/case.h"
37 #include "data/casegrouper.h"
38 #include "data/casereader.h"
39 #include "data/data-out.h"
40 #include "data/dataset.h"
41 #include "data/dictionary.h"
42 #include "data/format.h"
43 #include "data/value-labels.h"
44 #include "data/variable.h"
45 #include "language/command.h"
46 #include "language/dictionary/split-file.h"
47 #include "language/lexer/lexer.h"
48 #include "language/lexer/variable-parser.h"
49 #include "libpspp/array.h"
50 #include "libpspp/assertion.h"
51 #include "libpspp/compiler.h"
52 #include "libpspp/hash-functions.h"
53 #include "libpspp/hmap.h"
54 #include "libpspp/hmapx.h"
55 #include "libpspp/message.h"
56 #include "libpspp/misc.h"
57 #include "libpspp/pool.h"
58 #include "libpspp/str.h"
59 #include "output/tab.h"
61 #include "gl/minmax.h"
62 #include "gl/xalloc.h"
66 #define _(msgid) gettext (msgid)
67 #define N_(msgid) msgid
75 missing=miss:!table/include/report;
76 +write[wr_]=none,cells,all;
77 +format=fmt:!labels/nolabels/novallabs,
80 tabl:!tables/notables,
83 +cells[cl_]=count,expected,row,column,total,residual,sresidual,
85 +statistics[st_]=chisq,phi,cc,lambda,uc,none,btau,ctau,risk,gamma,d,
91 /* Number of chi-square statistics. */
94 /* Number of symmetric statistics. */
97 /* Number of directional statistics. */
98 #define N_DIRECTIONAL 13
100 /* A single table entry for general mode. */
103 struct hmap_node node; /* Entry in hash table. */
104 double freq; /* Frequency count. */
105 union value values[1]; /* Values. */
109 table_entry_size (size_t n_values)
111 return (offsetof (struct table_entry, values)
112 + n_values * sizeof (union value));
115 /* Indexes into the 'vars' member of struct pivot_table and
116 struct crosstab member. */
119 ROW_VAR = 0, /* Row variable. */
120 COL_VAR = 1 /* Column variable. */
121 /* Higher indexes cause multiple tables to be output. */
124 /* A crosstabulation of 2 or more variables. */
127 struct fmt_spec weight_format; /* Format for weight variable. */
128 double missing; /* Weight of missing cases. */
130 /* Variables (2 or more). */
132 const struct variable **vars;
134 /* Constants (0 or more). */
136 const struct variable **const_vars;
137 union value *const_values;
141 struct table_entry **entries;
144 /* Column values, number of columns. */
148 /* Row values, number of rows. */
152 /* Number of statistically interesting columns/rows
153 (columns/rows with data in them). */
154 int ns_cols, ns_rows;
156 /* Matrix contents. */
157 double *mat; /* Matrix proper. */
158 double *row_tot; /* Row totals. */
159 double *col_tot; /* Column totals. */
160 double total; /* Grand total. */
163 /* Integer mode variable info. */
166 int min; /* Minimum value. */
167 int max; /* Maximum value + 1. */
168 int count; /* max - min. */
171 static inline struct var_range *
172 get_var_range (const struct variable *v)
174 return var_get_aux (v);
177 struct crosstabs_proc
179 const struct dictionary *dict;
180 enum { INTEGER, GENERAL } mode;
181 enum mv_class exclude;
184 struct fmt_spec weight_format;
186 /* Variables specifies on VARIABLES. */
187 const struct variable **variables;
191 struct pivot_table *pivots;
195 int n_cells; /* Number of cells requested. */
196 unsigned int cells; /* Bit k is 1 if cell k is requested. */
197 int a_cells[CRS_CL_count]; /* 0...n_cells-1 are the requested cells. */
200 unsigned int statistics; /* Bit k is 1 if statistic k is requested. */
202 bool descending; /* True if descending sort order is requested. */
205 static bool should_tabulate_case (const struct pivot_table *,
206 const struct ccase *, enum mv_class exclude);
207 static void tabulate_general_case (struct pivot_table *, const struct ccase *,
209 static void tabulate_integer_case (struct pivot_table *, const struct ccase *,
211 static void postcalc (struct crosstabs_proc *);
212 static void submit (struct pivot_table *, struct tab_table *);
214 /* Parses and executes the CROSSTABS procedure. */
216 cmd_crosstabs (struct lexer *lexer, struct dataset *ds)
218 const struct variable *wv = dict_get_weight (dataset_dict (ds));
219 struct crosstabs_proc proc;
220 struct casegrouper *grouper;
221 struct casereader *input, *group;
222 struct cmd_crosstabs cmd;
223 struct pivot_table *pt;
228 proc.dict = dataset_dict (ds);
229 proc.bad_warn = true;
230 proc.variables = NULL;
231 proc.n_variables = 0;
234 proc.descending = false;
235 proc.weight_format = wv ? *var_get_print_format (wv) : F_8_0;
237 if (!parse_crosstabs (lexer, ds, &cmd, &proc))
239 result = CMD_FAILURE;
243 proc.mode = proc.n_variables ? INTEGER : GENERAL;
246 proc.descending = cmd.val == CRS_DVALUE;
250 proc.cells = 1u << CRS_CL_COUNT;
251 else if (cmd.a_cells[CRS_CL_ALL])
252 proc.cells = UINT_MAX;
256 for (i = 0; i < CRS_CL_count; i++)
258 proc.cells |= 1u << i;
260 proc.cells = ((1u << CRS_CL_COUNT)
262 | (1u << CRS_CL_COLUMN)
263 | (1u << CRS_CL_TOTAL));
265 proc.cells &= ((1u << CRS_CL_count) - 1);
266 proc.cells &= ~((1u << CRS_CL_NONE) | (1u << CRS_CL_ALL));
268 for (i = 0; i < CRS_CL_count; i++)
269 if (proc.cells & (1u << i))
270 proc.a_cells[proc.n_cells++] = i;
273 if (cmd.a_statistics[CRS_ST_ALL])
274 proc.statistics = UINT_MAX;
275 else if (cmd.sbc_statistics)
280 for (i = 0; i < CRS_ST_count; i++)
281 if (cmd.a_statistics[i])
282 proc.statistics |= 1u << i;
283 if (proc.statistics == 0)
284 proc.statistics |= 1u << CRS_ST_CHISQ;
290 proc.exclude = (cmd.miss == CRS_TABLE ? MV_ANY
291 : cmd.miss == CRS_INCLUDE ? MV_SYSTEM
293 if (proc.mode == GENERAL && proc.mode == MV_NEVER)
295 msg (SE, _("Missing mode REPORT not allowed in general mode. "
296 "Assuming MISSING=TABLE."));
301 proc.pivot = cmd.pivot == CRS_PIVOT;
303 input = casereader_create_filter_weight (proc_open (ds), dataset_dict (ds),
305 grouper = casegrouper_create_splits (input, dataset_dict (ds));
306 while (casegrouper_get_next_group (grouper, &group))
310 /* Output SPLIT FILE variables. */
311 c = casereader_peek (group, 0);
314 output_split_file_values (ds, c);
318 /* Initialize hash tables. */
319 for (pt = &proc.pivots[0]; pt < &proc.pivots[proc.n_pivots]; pt++)
320 hmap_init (&pt->data);
323 for (; (c = casereader_read (group)) != NULL; case_unref (c))
324 for (pt = &proc.pivots[0]; pt < &proc.pivots[proc.n_pivots]; pt++)
326 double weight = dict_get_case_weight (dataset_dict (ds), c,
328 if (should_tabulate_case (pt, c, proc.exclude))
330 if (proc.mode == GENERAL)
331 tabulate_general_case (pt, c, weight);
333 tabulate_integer_case (pt, c, weight);
336 pt->missing += weight;
338 casereader_destroy (group);
343 ok = casegrouper_destroy (grouper);
344 ok = proc_commit (ds) && ok;
346 result = ok ? CMD_SUCCESS : CMD_CASCADING_FAILURE;
349 free (proc.variables);
350 for (pt = &proc.pivots[0]; pt < &proc.pivots[proc.n_pivots]; pt++)
353 free (pt->const_vars);
354 /* We must not call value_destroy on const_values because
355 it is a wild pointer; it never pointed to anything owned
358 The rest of the data was allocated and destroyed at a
359 lower level already. */
366 /* Parses the TABLES subcommand. */
368 crs_custom_tables (struct lexer *lexer, struct dataset *ds,
369 struct cmd_crosstabs *cmd UNUSED, void *proc_)
371 struct crosstabs_proc *proc = proc_;
372 struct const_var_set *var_set;
374 const struct variable ***by = NULL;
376 size_t *by_nvar = NULL;
381 /* Ensure that this is a TABLES subcommand. */
382 if (!lex_match_id (lexer, "TABLES")
383 && (lex_token (lexer) != T_ID ||
384 dict_lookup_var (dataset_dict (ds), lex_tokcstr (lexer)) == NULL)
385 && lex_token (lexer) != T_ALL)
387 lex_match (lexer, T_EQUALS);
389 if (proc->variables != NULL)
390 var_set = const_var_set_create_from_array (proc->variables,
393 var_set = const_var_set_create_from_dict (dataset_dict (ds));
394 assert (var_set != NULL);
398 by = xnrealloc (by, n_by + 1, sizeof *by);
399 by_nvar = xnrealloc (by_nvar, n_by + 1, sizeof *by_nvar);
400 if (!parse_const_var_set_vars (lexer, var_set, &by[n_by], &by_nvar[n_by],
401 PV_NO_DUPLICATE | PV_NO_SCRATCH))
403 if (xalloc_oversized (nx, by_nvar[n_by]))
405 msg (SE, _("Too many cross-tabulation variables or dimensions."));
411 if (!lex_match (lexer, T_BY))
415 lex_force_match (lexer, T_BY);
423 by_iter = xcalloc (n_by, sizeof *by_iter);
424 proc->pivots = xnrealloc (proc->pivots,
425 proc->n_pivots + nx, sizeof *proc->pivots);
426 for (i = 0; i < nx; i++)
428 struct pivot_table *pt = &proc->pivots[proc->n_pivots++];
431 pt->weight_format = proc->weight_format;
434 pt->vars = xmalloc (n_by * sizeof *pt->vars);
436 pt->const_vars = NULL;
437 pt->const_values = NULL;
439 for (j = 0; j < n_by; j++)
440 pt->vars[j] = by[j][by_iter[j]];
442 for (j = n_by - 1; j >= 0; j--)
444 if (++by_iter[j] < by_nvar[j])
453 /* All return paths lead here. */
454 for (i = 0; i < n_by; i++)
459 const_var_set_destroy (var_set);
464 /* Parses the VARIABLES subcommand. */
466 crs_custom_variables (struct lexer *lexer, struct dataset *ds,
467 struct cmd_crosstabs *cmd UNUSED, void *proc_)
469 struct crosstabs_proc *proc = proc_;
472 msg (SE, _("VARIABLES must be specified before TABLES."));
476 lex_match (lexer, T_EQUALS);
480 size_t orig_nv = proc->n_variables;
485 if (!parse_variables_const (lexer, dataset_dict (ds),
486 &proc->variables, &proc->n_variables,
487 (PV_APPEND | PV_NUMERIC
488 | PV_NO_DUPLICATE | PV_NO_SCRATCH)))
491 if (!lex_force_match (lexer, T_LPAREN))
494 if (!lex_force_int (lexer))
496 min = lex_integer (lexer);
499 lex_match (lexer, T_COMMA);
501 if (!lex_force_int (lexer))
503 max = lex_integer (lexer);
506 msg (SE, _("Maximum value (%ld) less than minimum value (%ld)."),
512 if (!lex_force_match (lexer, T_RPAREN))
515 for (i = orig_nv; i < proc->n_variables; i++)
517 struct var_range *vr = xmalloc (sizeof *vr);
520 vr->count = max - min + 1;
521 var_attach_aux (proc->variables[i], vr, var_dtor_free);
524 if (lex_token (lexer) == T_SLASH)
531 free (proc->variables);
532 proc->variables = NULL;
533 proc->n_variables = 0;
537 /* Data file processing. */
540 should_tabulate_case (const struct pivot_table *pt, const struct ccase *c,
541 enum mv_class exclude)
544 for (j = 0; j < pt->n_vars; j++)
546 const struct variable *var = pt->vars[j];
547 struct var_range *range = get_var_range (var);
549 if (var_is_value_missing (var, case_data (c, var), exclude))
554 double num = case_num (c, var);
555 if (num < range->min || num > range->max)
563 tabulate_integer_case (struct pivot_table *pt, const struct ccase *c,
566 struct table_entry *te;
571 for (j = 0; j < pt->n_vars; j++)
573 /* Throw away fractional parts of values. */
574 hash = hash_int (case_num (c, pt->vars[j]), hash);
577 HMAP_FOR_EACH_WITH_HASH (te, struct table_entry, node, hash, &pt->data)
579 for (j = 0; j < pt->n_vars; j++)
580 if ((int) case_num (c, pt->vars[j]) != (int) te->values[j].f)
583 /* Found an existing entry. */
590 /* No existing entry. Create a new one. */
591 te = xmalloc (table_entry_size (pt->n_vars));
593 for (j = 0; j < pt->n_vars; j++)
594 te->values[j].f = (int) case_num (c, pt->vars[j]);
595 hmap_insert (&pt->data, &te->node, hash);
599 tabulate_general_case (struct pivot_table *pt, const struct ccase *c,
602 struct table_entry *te;
607 for (j = 0; j < pt->n_vars; j++)
609 const struct variable *var = pt->vars[j];
610 hash = value_hash (case_data (c, var), var_get_width (var), hash);
613 HMAP_FOR_EACH_WITH_HASH (te, struct table_entry, node, hash, &pt->data)
615 for (j = 0; j < pt->n_vars; j++)
617 const struct variable *var = pt->vars[j];
618 if (!value_equal (case_data (c, var), &te->values[j],
619 var_get_width (var)))
623 /* Found an existing entry. */
630 /* No existing entry. Create a new one. */
631 te = xmalloc (table_entry_size (pt->n_vars));
633 for (j = 0; j < pt->n_vars; j++)
635 const struct variable *var = pt->vars[j];
636 value_clone (&te->values[j], case_data (c, var), var_get_width (var));
638 hmap_insert (&pt->data, &te->node, hash);
641 /* Post-data reading calculations. */
643 static int compare_table_entry_vars_3way (const struct table_entry *a,
644 const struct table_entry *b,
645 const struct pivot_table *pt,
647 static int compare_table_entry_3way (const void *ap_, const void *bp_,
649 static int compare_table_entry_3way_inv (const void *ap_, const void *bp_,
652 static void enum_var_values (const struct pivot_table *, int var_idx,
653 union value **valuesp, int *n_values, bool descending);
654 static void output_pivot_table (struct crosstabs_proc *,
655 struct pivot_table *);
656 static void make_pivot_table_subset (struct pivot_table *pt,
657 size_t row0, size_t row1,
658 struct pivot_table *subset);
659 static void make_summary_table (struct crosstabs_proc *);
660 static bool find_crosstab (struct pivot_table *, size_t *row0p, size_t *row1p);
663 postcalc (struct crosstabs_proc *proc)
665 struct pivot_table *pt;
667 /* Convert hash tables into sorted arrays of entries. */
668 for (pt = &proc->pivots[0]; pt < &proc->pivots[proc->n_pivots]; pt++)
670 struct table_entry *e;
673 pt->n_entries = hmap_count (&pt->data);
674 pt->entries = xnmalloc (pt->n_entries, sizeof *pt->entries);
676 HMAP_FOR_EACH (e, struct table_entry, node, &pt->data)
677 pt->entries[i++] = e;
678 hmap_destroy (&pt->data);
680 sort (pt->entries, pt->n_entries, sizeof *pt->entries,
681 proc->descending ? compare_table_entry_3way_inv : compare_table_entry_3way,
685 make_summary_table (proc);
687 /* Output each pivot table. */
688 for (pt = &proc->pivots[0]; pt < &proc->pivots[proc->n_pivots]; pt++)
690 if (proc->pivot || pt->n_vars == 2)
691 output_pivot_table (proc, pt);
694 size_t row0 = 0, row1 = 0;
695 while (find_crosstab (pt, &row0, &row1))
697 struct pivot_table subset;
698 make_pivot_table_subset (pt, row0, row1, &subset);
699 output_pivot_table (proc, &subset);
704 /* Free output and prepare for next split file. */
705 for (pt = &proc->pivots[0]; pt < &proc->pivots[proc->n_pivots]; pt++)
711 /* Free only the members that were allocated in this
712 function. The other pointer members are either both
713 allocated and destroyed at a lower level (in
714 output_pivot_table), or both allocated and destroyed at
715 a higher level (in crs_custom_tables and free_proc,
717 for (i = 0; i < pt->n_entries; i++)
718 free (pt->entries[i]);
724 make_pivot_table_subset (struct pivot_table *pt, size_t row0, size_t row1,
725 struct pivot_table *subset)
730 assert (pt->n_consts == 0);
731 subset->missing = pt->missing;
733 subset->vars = pt->vars;
734 subset->n_consts = pt->n_vars - 2;
735 subset->const_vars = pt->vars + 2;
736 subset->const_values = &pt->entries[row0]->values[2];
738 subset->entries = &pt->entries[row0];
739 subset->n_entries = row1 - row0;
743 compare_table_entry_var_3way (const struct table_entry *a,
744 const struct table_entry *b,
745 const struct pivot_table *pt,
748 return value_compare_3way (&a->values[idx], &b->values[idx],
749 var_get_width (pt->vars[idx]));
753 compare_table_entry_vars_3way (const struct table_entry *a,
754 const struct table_entry *b,
755 const struct pivot_table *pt,
760 for (i = idx1 - 1; i >= idx0; i--)
762 int cmp = compare_table_entry_var_3way (a, b, pt, i);
769 /* Compare the struct table_entry at *AP to the one at *BP and
770 return a strcmp()-type result. */
772 compare_table_entry_3way (const void *ap_, const void *bp_, const void *pt_)
774 const struct table_entry *const *ap = ap_;
775 const struct table_entry *const *bp = bp_;
776 const struct table_entry *a = *ap;
777 const struct table_entry *b = *bp;
778 const struct pivot_table *pt = pt_;
781 cmp = compare_table_entry_vars_3way (a, b, pt, 2, pt->n_vars);
785 cmp = compare_table_entry_var_3way (a, b, pt, ROW_VAR);
789 return compare_table_entry_var_3way (a, b, pt, COL_VAR);
792 /* Inverted version of compare_table_entry_3way */
794 compare_table_entry_3way_inv (const void *ap_, const void *bp_, const void *pt_)
796 return -compare_table_entry_3way (ap_, bp_, pt_);
800 find_first_difference (const struct pivot_table *pt, size_t row)
803 return pt->n_vars - 1;
806 const struct table_entry *a = pt->entries[row];
807 const struct table_entry *b = pt->entries[row - 1];
810 for (col = pt->n_vars - 1; col >= 0; col--)
811 if (compare_table_entry_var_3way (a, b, pt, col))
817 /* Output a table summarizing the cases processed. */
819 make_summary_table (struct crosstabs_proc *proc)
821 struct tab_table *summary;
822 struct pivot_table *pt;
826 summary = tab_create (7, 3 + proc->n_pivots);
827 tab_title (summary, _("Summary."));
828 tab_headers (summary, 1, 0, 3, 0);
829 tab_joint_text (summary, 1, 0, 6, 0, TAB_CENTER, _("Cases"));
830 tab_joint_text (summary, 1, 1, 2, 1, TAB_CENTER, _("Valid"));
831 tab_joint_text (summary, 3, 1, 4, 1, TAB_CENTER, _("Missing"));
832 tab_joint_text (summary, 5, 1, 6, 1, TAB_CENTER, _("Total"));
833 tab_hline (summary, TAL_1, 1, 6, 1);
834 tab_hline (summary, TAL_1, 1, 6, 2);
835 tab_vline (summary, TAL_1, 3, 1, 1);
836 tab_vline (summary, TAL_1, 5, 1, 1);
837 for (i = 0; i < 3; i++)
839 tab_text (summary, 1 + i * 2, 2, TAB_RIGHT, _("N"));
840 tab_text (summary, 2 + i * 2, 2, TAB_RIGHT, _("Percent"));
842 tab_offset (summary, 0, 3);
844 ds_init_empty (&name);
845 for (pt = &proc->pivots[0]; pt < &proc->pivots[proc->n_pivots]; pt++)
851 tab_hline (summary, TAL_1, 0, 6, 0);
854 for (i = 0; i < pt->n_vars; i++)
857 ds_put_cstr (&name, " * ");
858 ds_put_cstr (&name, var_to_string (pt->vars[i]));
860 tab_text (summary, 0, 0, TAB_LEFT, ds_cstr (&name));
863 for (i = 0; i < pt->n_entries; i++)
864 valid += pt->entries[i]->freq;
869 for (i = 0; i < 3; i++)
871 tab_double (summary, i * 2 + 1, 0, TAB_RIGHT, n[i],
872 &proc->weight_format);
873 tab_text_format (summary, i * 2 + 2, 0, TAB_RIGHT, "%.1f%%",
877 tab_next_row (summary);
881 submit (NULL, summary);
886 static struct tab_table *create_crosstab_table (struct crosstabs_proc *,
887 struct pivot_table *);
888 static struct tab_table *create_chisq_table (struct pivot_table *);
889 static struct tab_table *create_sym_table (struct pivot_table *);
890 static struct tab_table *create_risk_table (struct pivot_table *);
891 static struct tab_table *create_direct_table (struct pivot_table *);
892 static void display_dimensions (struct crosstabs_proc *, struct pivot_table *,
893 struct tab_table *, int first_difference);
894 static void display_crosstabulation (struct crosstabs_proc *,
895 struct pivot_table *,
897 static void display_chisq (struct pivot_table *, struct tab_table *,
898 bool *showed_fisher);
899 static void display_symmetric (struct crosstabs_proc *, struct pivot_table *,
901 static void display_risk (struct pivot_table *, struct tab_table *);
902 static void display_directional (struct crosstabs_proc *, struct pivot_table *,
904 static void table_value_missing (struct crosstabs_proc *proc,
905 struct tab_table *table, int c, int r,
906 unsigned char opt, const union value *v,
907 const struct variable *var);
908 static void delete_missing (struct pivot_table *);
909 static void build_matrix (struct pivot_table *);
911 /* Output pivot table PT in the context of PROC. */
913 output_pivot_table (struct crosstabs_proc *proc, struct pivot_table *pt)
915 struct tab_table *table = NULL; /* Crosstabulation table. */
916 struct tab_table *chisq = NULL; /* Chi-square table. */
917 bool showed_fisher = false;
918 struct tab_table *sym = NULL; /* Symmetric measures table. */
919 struct tab_table *risk = NULL; /* Risk estimate table. */
920 struct tab_table *direct = NULL; /* Directional measures table. */
923 enum_var_values (pt, COL_VAR, &pt->cols, &pt->n_cols, proc->descending);
930 ds_init_cstr (&vars, var_get_name (pt->vars[0]));
931 for (i = 1; i < pt->n_vars; i++)
932 ds_put_format (&vars, " * %s", var_get_name (pt->vars[i]));
934 /* TRANSLATORS: The %s here describes a crosstabulation. It takes the
935 form "var1 * var2 * var3 * ...". */
936 msg (SW, _("Crosstabulation %s contained no non-missing cases."),
944 table = create_crosstab_table (proc, pt);
945 if (proc->statistics & (1u << CRS_ST_CHISQ))
946 chisq = create_chisq_table (pt);
947 if (proc->statistics & ((1u << CRS_ST_PHI) | (1u << CRS_ST_CC)
948 | (1u << CRS_ST_BTAU) | (1u << CRS_ST_CTAU)
949 | (1u << CRS_ST_GAMMA) | (1u << CRS_ST_CORR)
950 | (1u << CRS_ST_KAPPA)))
951 sym = create_sym_table (pt);
952 if (proc->statistics & (1u << CRS_ST_RISK))
953 risk = create_risk_table (pt);
954 if (proc->statistics & ((1u << CRS_ST_LAMBDA) | (1u << CRS_ST_UC)
955 | (1u << CRS_ST_D) | (1u << CRS_ST_ETA)))
956 direct = create_direct_table (pt);
959 while (find_crosstab (pt, &row0, &row1))
961 struct pivot_table x;
962 int first_difference;
964 make_pivot_table_subset (pt, row0, row1, &x);
966 /* Find all the row variable values. */
967 enum_var_values (&x, ROW_VAR, &x.rows, &x.n_rows, proc->descending);
969 if (size_overflow_p (xtimes (xtimes (x.n_rows, x.n_cols),
972 x.row_tot = xmalloc (x.n_rows * sizeof *x.row_tot);
973 x.col_tot = xmalloc (x.n_cols * sizeof *x.col_tot);
974 x.mat = xmalloc (x.n_rows * x.n_cols * sizeof *x.mat);
976 /* Allocate table space for the matrix. */
978 && tab_row (table) + (x.n_rows + 1) * proc->n_cells > tab_nr (table))
979 tab_realloc (table, -1,
980 MAX (tab_nr (table) + (x.n_rows + 1) * proc->n_cells,
981 tab_nr (table) * pt->n_entries / x.n_entries));
985 /* Find the first variable that differs from the last subtable. */
986 first_difference = find_first_difference (pt, row0);
989 display_dimensions (proc, &x, table, first_difference);
990 display_crosstabulation (proc, &x, table);
993 if (proc->exclude == MV_NEVER)
998 display_dimensions (proc, &x, chisq, first_difference);
999 display_chisq (&x, chisq, &showed_fisher);
1003 display_dimensions (proc, &x, sym, first_difference);
1004 display_symmetric (proc, &x, sym);
1008 display_dimensions (proc, &x, risk, first_difference);
1009 display_risk (&x, risk);
1013 display_dimensions (proc, &x, direct, first_difference);
1014 display_directional (proc, &x, direct);
1017 /* Free the parts of x that are not owned by pt. In
1018 particular we must not free x.cols, which is the same as
1019 pt->cols, which is freed at the end of this function. */
1027 submit (NULL, table);
1032 tab_resize (chisq, 4 + (pt->n_vars - 2), -1);
1038 submit (pt, direct);
1044 build_matrix (struct pivot_table *x)
1046 const int col_var_width = var_get_width (x->vars[COL_VAR]);
1047 const int row_var_width = var_get_width (x->vars[ROW_VAR]);
1050 struct table_entry **p;
1054 for (p = x->entries; p < &x->entries[x->n_entries]; p++)
1056 const struct table_entry *te = *p;
1058 while (!value_equal (&x->rows[row], &te->values[ROW_VAR], row_var_width))
1060 for (; col < x->n_cols; col++)
1066 while (!value_equal (&x->cols[col], &te->values[COL_VAR], col_var_width))
1073 if (++col >= x->n_cols)
1079 while (mp < &x->mat[x->n_cols * x->n_rows])
1081 assert (mp == &x->mat[x->n_cols * x->n_rows]);
1083 /* Column totals, row totals, ns_rows. */
1085 for (col = 0; col < x->n_cols; col++)
1086 x->col_tot[col] = 0.0;
1087 for (row = 0; row < x->n_rows; row++)
1088 x->row_tot[row] = 0.0;
1090 for (row = 0; row < x->n_rows; row++)
1092 bool row_is_empty = true;
1093 for (col = 0; col < x->n_cols; col++)
1097 row_is_empty = false;
1098 x->col_tot[col] += *mp;
1099 x->row_tot[row] += *mp;
1106 assert (mp == &x->mat[x->n_cols * x->n_rows]);
1110 for (col = 0; col < x->n_cols; col++)
1111 for (row = 0; row < x->n_rows; row++)
1112 if (x->mat[col + row * x->n_cols] != 0.0)
1120 for (col = 0; col < x->n_cols; col++)
1121 x->total += x->col_tot[col];
1124 static struct tab_table *
1125 create_crosstab_table (struct crosstabs_proc *proc, struct pivot_table *pt)
1132 static const struct tuple names[] =
1134 {CRS_CL_COUNT, N_("count")},
1135 {CRS_CL_ROW, N_("row %")},
1136 {CRS_CL_COLUMN, N_("column %")},
1137 {CRS_CL_TOTAL, N_("total %")},
1138 {CRS_CL_EXPECTED, N_("expected")},
1139 {CRS_CL_RESIDUAL, N_("residual")},
1140 {CRS_CL_SRESIDUAL, N_("std. resid.")},
1141 {CRS_CL_ASRESIDUAL, N_("adj. resid.")},
1143 const int n_names = sizeof names / sizeof *names;
1144 const struct tuple *t;
1146 struct tab_table *table;
1147 struct string title;
1148 struct pivot_table x;
1152 make_pivot_table_subset (pt, 0, 0, &x);
1154 table = tab_create (x.n_consts + 1 + x.n_cols + 1,
1155 (x.n_entries / x.n_cols) * 3 / 2 * proc->n_cells + 10);
1156 tab_headers (table, x.n_consts + 1, 0, 2, 0);
1158 /* First header line. */
1159 tab_joint_text (table, x.n_consts + 1, 0,
1160 (x.n_consts + 1) + (x.n_cols - 1), 0,
1161 TAB_CENTER | TAT_TITLE, var_get_name (x.vars[COL_VAR]));
1163 tab_hline (table, TAL_1, x.n_consts + 1,
1164 x.n_consts + 2 + x.n_cols - 2, 1);
1166 /* Second header line. */
1167 for (i = 2; i < x.n_consts + 2; i++)
1168 tab_joint_text (table, x.n_consts + 2 - i - 1, 0,
1169 x.n_consts + 2 - i - 1, 1,
1170 TAB_RIGHT | TAT_TITLE, var_to_string (x.vars[i]));
1171 tab_text (table, x.n_consts + 2 - 2, 1, TAB_RIGHT | TAT_TITLE,
1172 var_get_name (x.vars[ROW_VAR]));
1173 for (i = 0; i < x.n_cols; i++)
1174 table_value_missing (proc, table, x.n_consts + 2 + i - 1, 1, TAB_RIGHT,
1175 &x.cols[i], x.vars[COL_VAR]);
1176 tab_text (table, x.n_consts + 2 + x.n_cols - 1, 1, TAB_CENTER, _("Total"));
1178 tab_hline (table, TAL_1, 0, x.n_consts + 2 + x.n_cols - 1, 2);
1179 tab_vline (table, TAL_1, x.n_consts + 2 + x.n_cols - 1, 0, 1);
1182 ds_init_empty (&title);
1183 for (i = 0; i < x.n_consts + 2; i++)
1186 ds_put_cstr (&title, " * ");
1187 ds_put_cstr (&title, var_get_name (x.vars[i]));
1189 for (i = 0; i < pt->n_consts; i++)
1191 const struct variable *var = pt->const_vars[i];
1194 ds_put_format (&title, ", %s=", var_get_name (var));
1196 /* Insert the formatted value of VAR without any leading spaces. */
1197 s = data_out (&pt->const_values[i], var_get_encoding (var),
1198 var_get_print_format (var));
1199 ds_put_cstr (&title, s + strspn (s, " "));
1203 ds_put_cstr (&title, " [");
1205 for (t = names; t < &names[n_names]; t++)
1206 if (proc->cells & (1u << t->value))
1209 ds_put_cstr (&title, ", ");
1210 ds_put_cstr (&title, gettext (t->name));
1212 ds_put_cstr (&title, "].");
1214 tab_title (table, "%s", ds_cstr (&title));
1215 ds_destroy (&title);
1217 tab_offset (table, 0, 2);
1221 static struct tab_table *
1222 create_chisq_table (struct pivot_table *pt)
1224 struct tab_table *chisq;
1226 chisq = tab_create (6 + (pt->n_vars - 2),
1227 pt->n_entries / pt->n_cols * 3 / 2 * N_CHISQ + 10);
1228 tab_headers (chisq, 1 + (pt->n_vars - 2), 0, 1, 0);
1230 tab_title (chisq, _("Chi-square tests."));
1232 tab_offset (chisq, pt->n_vars - 2, 0);
1233 tab_text (chisq, 0, 0, TAB_LEFT | TAT_TITLE, _("Statistic"));
1234 tab_text (chisq, 1, 0, TAB_RIGHT | TAT_TITLE, _("Value"));
1235 tab_text (chisq, 2, 0, TAB_RIGHT | TAT_TITLE, _("df"));
1236 tab_text (chisq, 3, 0, TAB_RIGHT | TAT_TITLE,
1237 _("Asymp. Sig. (2-tailed)"));
1238 tab_text_format (chisq, 4, 0, TAB_RIGHT | TAT_TITLE,
1239 _("Exact Sig. (%d-tailed)"), 2);
1240 tab_text_format (chisq, 5, 0, TAB_RIGHT | TAT_TITLE,
1241 _("Exact Sig. (%d-tailed)"), 1);
1242 tab_offset (chisq, 0, 1);
1247 /* Symmetric measures. */
1248 static struct tab_table *
1249 create_sym_table (struct pivot_table *pt)
1251 struct tab_table *sym;
1253 sym = tab_create (6 + (pt->n_vars - 2),
1254 pt->n_entries / pt->n_cols * 7 + 10);
1255 tab_headers (sym, 2 + (pt->n_vars - 2), 0, 1, 0);
1256 tab_title (sym, _("Symmetric measures."));
1258 tab_offset (sym, pt->n_vars - 2, 0);
1259 tab_text (sym, 0, 0, TAB_LEFT | TAT_TITLE, _("Category"));
1260 tab_text (sym, 1, 0, TAB_LEFT | TAT_TITLE, _("Statistic"));
1261 tab_text (sym, 2, 0, TAB_RIGHT | TAT_TITLE, _("Value"));
1262 tab_text (sym, 3, 0, TAB_RIGHT | TAT_TITLE, _("Asymp. Std. Error"));
1263 tab_text (sym, 4, 0, TAB_RIGHT | TAT_TITLE, _("Approx. T"));
1264 tab_text (sym, 5, 0, TAB_RIGHT | TAT_TITLE, _("Approx. Sig."));
1265 tab_offset (sym, 0, 1);
1270 /* Risk estimate. */
1271 static struct tab_table *
1272 create_risk_table (struct pivot_table *pt)
1274 struct tab_table *risk;
1276 risk = tab_create (4 + (pt->n_vars - 2), pt->n_entries / pt->n_cols * 4 + 10);
1277 tab_headers (risk, 1 + pt->n_vars - 2, 0, 2, 0);
1278 tab_title (risk, _("Risk estimate."));
1280 tab_offset (risk, pt->n_vars - 2, 0);
1281 tab_joint_text_format (risk, 2, 0, 3, 0, TAB_CENTER | TAT_TITLE,
1282 _("95%% Confidence Interval"));
1283 tab_text (risk, 0, 1, TAB_LEFT | TAT_TITLE, _("Statistic"));
1284 tab_text (risk, 1, 1, TAB_RIGHT | TAT_TITLE, _("Value"));
1285 tab_text (risk, 2, 1, TAB_RIGHT | TAT_TITLE, _("Lower"));
1286 tab_text (risk, 3, 1, TAB_RIGHT | TAT_TITLE, _("Upper"));
1287 tab_hline (risk, TAL_1, 2, 3, 1);
1288 tab_vline (risk, TAL_1, 2, 0, 1);
1289 tab_offset (risk, 0, 2);
1294 /* Directional measures. */
1295 static struct tab_table *
1296 create_direct_table (struct pivot_table *pt)
1298 struct tab_table *direct;
1300 direct = tab_create (7 + (pt->n_vars - 2),
1301 pt->n_entries / pt->n_cols * 7 + 10);
1302 tab_headers (direct, 3 + (pt->n_vars - 2), 0, 1, 0);
1303 tab_title (direct, _("Directional measures."));
1305 tab_offset (direct, pt->n_vars - 2, 0);
1306 tab_text (direct, 0, 0, TAB_LEFT | TAT_TITLE, _("Category"));
1307 tab_text (direct, 1, 0, TAB_LEFT | TAT_TITLE, _("Statistic"));
1308 tab_text (direct, 2, 0, TAB_LEFT | TAT_TITLE, _("Type"));
1309 tab_text (direct, 3, 0, TAB_RIGHT | TAT_TITLE, _("Value"));
1310 tab_text (direct, 4, 0, TAB_RIGHT | TAT_TITLE, _("Asymp. Std. Error"));
1311 tab_text (direct, 5, 0, TAB_RIGHT | TAT_TITLE, _("Approx. T"));
1312 tab_text (direct, 6, 0, TAB_RIGHT | TAT_TITLE, _("Approx. Sig."));
1313 tab_offset (direct, 0, 1);
1319 /* Delete missing rows and columns for statistical analysis when
1322 delete_missing (struct pivot_table *pt)
1326 for (r = 0; r < pt->n_rows; r++)
1327 if (var_is_num_missing (pt->vars[ROW_VAR], pt->rows[r].f, MV_USER))
1329 for (c = 0; c < pt->n_cols; c++)
1330 pt->mat[c + r * pt->n_cols] = 0.;
1335 for (c = 0; c < pt->n_cols; c++)
1336 if (var_is_num_missing (pt->vars[COL_VAR], pt->cols[c].f, MV_USER))
1338 for (r = 0; r < pt->n_rows; r++)
1339 pt->mat[c + r * pt->n_cols] = 0.;
1344 /* Prepare table T for submission, and submit it. */
1346 submit (struct pivot_table *pt, struct tab_table *t)
1353 tab_resize (t, -1, 0);
1354 if (tab_nr (t) == tab_t (t))
1356 table_unref (&t->table);
1359 tab_offset (t, 0, 0);
1361 for (i = 2; i < pt->n_vars; i++)
1362 tab_text (t, pt->n_vars - i - 1, 0, TAB_RIGHT | TAT_TITLE,
1363 var_to_string (pt->vars[i]));
1364 tab_box (t, TAL_2, TAL_2, -1, -1, 0, 0, tab_nc (t) - 1, tab_nr (t) - 1);
1365 tab_box (t, -1, -1, -1, TAL_1, tab_l (t), tab_t (t) - 1, tab_nc (t) - 1,
1367 tab_box (t, -1, -1, -1, TAL_GAP, 0, tab_t (t), tab_l (t) - 1,
1369 tab_vline (t, TAL_2, tab_l (t), 0, tab_nr (t) - 1);
1375 find_crosstab (struct pivot_table *pt, size_t *row0p, size_t *row1p)
1377 size_t row0 = *row1p;
1380 if (row0 >= pt->n_entries)
1383 for (row1 = row0 + 1; row1 < pt->n_entries; row1++)
1385 struct table_entry *a = pt->entries[row0];
1386 struct table_entry *b = pt->entries[row1];
1387 if (compare_table_entry_vars_3way (a, b, pt, 2, pt->n_vars) != 0)
1395 /* Compares `union value's A_ and B_ and returns a strcmp()-like
1396 result. WIDTH_ points to an int which is either 0 for a
1397 numeric value or a string width for a string value. */
1399 compare_value_3way (const void *a_, const void *b_, const void *width_)
1401 const union value *a = a_;
1402 const union value *b = b_;
1403 const int *width = width_;
1405 return value_compare_3way (a, b, *width);
1408 /* Inverted version of the above */
1410 compare_value_3way_inv (const void *a_, const void *b_, const void *width_)
1412 return -compare_value_3way (a_, b_, width_);
1416 /* Given an array of ENTRY_CNT table_entry structures starting at
1417 ENTRIES, creates a sorted list of the values that the variable
1418 with index VAR_IDX takes on. The values are returned as a
1419 malloc()'d array stored in *VALUES, with the number of values
1420 stored in *VALUE_CNT.
1423 enum_var_values (const struct pivot_table *pt, int var_idx,
1424 union value **valuesp, int *n_values, bool descending)
1426 const struct variable *var = pt->vars[var_idx];
1427 struct var_range *range = get_var_range (var);
1428 union value *values;
1433 values = *valuesp = xnmalloc (range->count, sizeof *values);
1434 *n_values = range->count;
1435 for (i = 0; i < range->count; i++)
1436 values[i].f = range->min + i;
1440 int width = var_get_width (var);
1441 struct hmapx_node *node;
1442 const union value *iter;
1446 for (i = 0; i < pt->n_entries; i++)
1448 const struct table_entry *te = pt->entries[i];
1449 const union value *value = &te->values[var_idx];
1450 size_t hash = value_hash (value, width, 0);
1452 HMAPX_FOR_EACH_WITH_HASH (iter, node, hash, &set)
1453 if (value_equal (iter, value, width))
1456 hmapx_insert (&set, (union value *) value, hash);
1461 *n_values = hmapx_count (&set);
1462 values = *valuesp = xnmalloc (*n_values, sizeof *values);
1464 HMAPX_FOR_EACH (iter, node, &set)
1465 values[i++] = *iter;
1466 hmapx_destroy (&set);
1468 sort (values, *n_values, sizeof *values,
1469 descending ? compare_value_3way_inv : compare_value_3way,
1474 /* Sets cell (C,R) in TABLE, with options OPT, to have a value taken
1475 from V, displayed with print format spec from variable VAR. When
1476 in REPORT missing-value mode, missing values have an M appended. */
1478 table_value_missing (struct crosstabs_proc *proc,
1479 struct tab_table *table, int c, int r, unsigned char opt,
1480 const union value *v, const struct variable *var)
1482 const char *label = var_lookup_value_label (var, v);
1484 tab_text (table, c, r, TAB_LEFT, label);
1487 const struct fmt_spec *print = var_get_print_format (var);
1488 if (proc->exclude == MV_NEVER && var_is_value_missing (var, v, MV_USER))
1490 char *s = data_out (v, dict_get_encoding (proc->dict), print);
1491 tab_text_format (table, c, r, opt, "%sM", s + strspn (s, " "));
1495 tab_value (table, c, r, opt, v, var, print);
1499 /* Draws a line across TABLE at the current row to indicate the most
1500 major dimension variable with index FIRST_DIFFERENCE out of N_VARS
1501 that changed, and puts the values that changed into the table. TB
1502 and PT must be the corresponding table_entry and crosstab,
1505 display_dimensions (struct crosstabs_proc *proc, struct pivot_table *pt,
1506 struct tab_table *table, int first_difference)
1508 tab_hline (table, TAL_1, pt->n_consts + pt->n_vars - first_difference - 1, tab_nc (table) - 1, 0);
1510 for (; first_difference >= 2; first_difference--)
1511 table_value_missing (proc, table, pt->n_consts + pt->n_vars - first_difference - 1, 0,
1512 TAB_RIGHT, &pt->entries[0]->values[first_difference],
1513 pt->vars[first_difference]);
1516 /* Put VALUE into cell (C,R) of TABLE, suffixed with character
1517 SUFFIX if nonzero. If MARK_MISSING is true the entry is
1518 additionally suffixed with a letter `M'. */
1520 format_cell_entry (struct tab_table *table, int c, int r, double value,
1521 char suffix, bool mark_missing, const struct dictionary *dict)
1523 const struct fmt_spec f = {FMT_F, 10, 1};
1530 s = data_out (&v, dict_get_encoding (dict), &f);
1534 suffixes[suffix_len++] = suffix;
1536 suffixes[suffix_len++] = 'M';
1537 suffixes[suffix_len] = '\0';
1539 tab_text_format (table, c, r, TAB_RIGHT, "%s%s",
1540 s + strspn (s, " "), suffixes);
1545 /* Displays the crosstabulation table. */
1547 display_crosstabulation (struct crosstabs_proc *proc, struct pivot_table *pt,
1548 struct tab_table *table)
1554 for (r = 0; r < pt->n_rows; r++)
1555 table_value_missing (proc, table, pt->n_consts + pt->n_vars - 2,
1556 r * proc->n_cells, TAB_RIGHT, &pt->rows[r],
1559 tab_text (table, pt->n_vars - 2, pt->n_rows * proc->n_cells,
1560 TAB_LEFT, _("Total"));
1562 /* Put in the actual cells. */
1564 tab_offset (table, pt->n_consts + pt->n_vars - 1, -1);
1565 for (r = 0; r < pt->n_rows; r++)
1567 if (proc->n_cells > 1)
1568 tab_hline (table, TAL_1, -1, pt->n_cols, 0);
1569 for (c = 0; c < pt->n_cols; c++)
1571 bool mark_missing = false;
1572 double expected_value = pt->row_tot[r] * pt->col_tot[c] / pt->total;
1573 if (proc->exclude == MV_NEVER
1574 && (var_is_num_missing (pt->vars[COL_VAR], pt->cols[c].f, MV_USER)
1575 || var_is_num_missing (pt->vars[ROW_VAR], pt->rows[r].f,
1577 mark_missing = true;
1578 for (i = 0; i < proc->n_cells; i++)
1583 switch (proc->a_cells[i])
1589 v = *mp / pt->row_tot[r] * 100.;
1593 v = *mp / pt->col_tot[c] * 100.;
1597 v = *mp / pt->total * 100.;
1600 case CRS_CL_EXPECTED:
1603 case CRS_CL_RESIDUAL:
1604 v = *mp - expected_value;
1606 case CRS_CL_SRESIDUAL:
1607 v = (*mp - expected_value) / sqrt (expected_value);
1609 case CRS_CL_ASRESIDUAL:
1610 v = ((*mp - expected_value)
1611 / sqrt (expected_value
1612 * (1. - pt->row_tot[r] / pt->total)
1613 * (1. - pt->col_tot[c] / pt->total)));
1618 format_cell_entry (table, c, i, v, suffix, mark_missing, proc->dict);
1624 tab_offset (table, -1, tab_row (table) + proc->n_cells);
1628 tab_offset (table, -1, tab_row (table) - proc->n_cells * pt->n_rows);
1629 for (r = 0; r < pt->n_rows; r++)
1631 bool mark_missing = false;
1633 if (proc->exclude == MV_NEVER
1634 && var_is_num_missing (pt->vars[ROW_VAR], pt->rows[r].f, MV_USER))
1635 mark_missing = true;
1637 for (i = 0; i < proc->n_cells; i++)
1642 switch (proc->a_cells[i])
1652 v = pt->row_tot[r] / pt->total * 100.;
1656 v = pt->row_tot[r] / pt->total * 100.;
1659 case CRS_CL_EXPECTED:
1660 case CRS_CL_RESIDUAL:
1661 case CRS_CL_SRESIDUAL:
1662 case CRS_CL_ASRESIDUAL:
1669 format_cell_entry (table, pt->n_cols, 0, v, suffix, mark_missing, proc->dict);
1670 tab_next_row (table);
1674 /* Column totals, grand total. */
1676 if (proc->n_cells > 1)
1677 tab_hline (table, TAL_1, -1, pt->n_cols, 0);
1678 for (c = 0; c <= pt->n_cols; c++)
1680 double ct = c < pt->n_cols ? pt->col_tot[c] : pt->total;
1681 bool mark_missing = false;
1684 if (proc->exclude == MV_NEVER && c < pt->n_cols
1685 && var_is_num_missing (pt->vars[COL_VAR], pt->cols[c].f, MV_USER))
1686 mark_missing = true;
1688 for (i = 0; i < proc->n_cells; i++)
1693 switch (proc->a_cells[i])
1699 v = ct / pt->total * 100.;
1707 v = ct / pt->total * 100.;
1710 case CRS_CL_EXPECTED:
1711 case CRS_CL_RESIDUAL:
1712 case CRS_CL_SRESIDUAL:
1713 case CRS_CL_ASRESIDUAL:
1719 format_cell_entry (table, c, i, v, suffix, mark_missing, proc->dict);
1724 tab_offset (table, -1, tab_row (table) + last_row);
1725 tab_offset (table, 0, -1);
1728 static void calc_r (struct pivot_table *,
1729 double *PT, double *Y, double *, double *, double *);
1730 static void calc_chisq (struct pivot_table *,
1731 double[N_CHISQ], int[N_CHISQ], double *, double *);
1733 /* Display chi-square statistics. */
1735 display_chisq (struct pivot_table *pt, struct tab_table *chisq,
1736 bool *showed_fisher)
1738 static const char *chisq_stats[N_CHISQ] =
1740 N_("Pearson Chi-Square"),
1741 N_("Likelihood Ratio"),
1742 N_("Fisher's Exact Test"),
1743 N_("Continuity Correction"),
1744 N_("Linear-by-Linear Association"),
1746 double chisq_v[N_CHISQ];
1747 double fisher1, fisher2;
1752 calc_chisq (pt, chisq_v, df, &fisher1, &fisher2);
1754 tab_offset (chisq, pt->n_consts + pt->n_vars - 2, -1);
1756 for (i = 0; i < N_CHISQ; i++)
1758 if ((i != 2 && chisq_v[i] == SYSMIS)
1759 || (i == 2 && fisher1 == SYSMIS))
1762 tab_text (chisq, 0, 0, TAB_LEFT, gettext (chisq_stats[i]));
1765 tab_double (chisq, 1, 0, TAB_RIGHT, chisq_v[i], NULL);
1766 tab_double (chisq, 2, 0, TAB_RIGHT, df[i], &pt->weight_format);
1767 tab_double (chisq, 3, 0, TAB_RIGHT,
1768 gsl_cdf_chisq_Q (chisq_v[i], df[i]), NULL);
1772 *showed_fisher = true;
1773 tab_double (chisq, 4, 0, TAB_RIGHT, fisher2, NULL);
1774 tab_double (chisq, 5, 0, TAB_RIGHT, fisher1, NULL);
1776 tab_next_row (chisq);
1779 tab_text (chisq, 0, 0, TAB_LEFT, _("N of Valid Cases"));
1780 tab_double (chisq, 1, 0, TAB_RIGHT, pt->total, &pt->weight_format);
1781 tab_next_row (chisq);
1783 tab_offset (chisq, 0, -1);
1786 static int calc_symmetric (struct crosstabs_proc *, struct pivot_table *,
1787 double[N_SYMMETRIC], double[N_SYMMETRIC],
1788 double[N_SYMMETRIC],
1789 double[3], double[3], double[3]);
1791 /* Display symmetric measures. */
1793 display_symmetric (struct crosstabs_proc *proc, struct pivot_table *pt,
1794 struct tab_table *sym)
1796 static const char *categories[] =
1798 N_("Nominal by Nominal"),
1799 N_("Ordinal by Ordinal"),
1800 N_("Interval by Interval"),
1801 N_("Measure of Agreement"),
1804 static const char *stats[N_SYMMETRIC] =
1808 N_("Contingency Coefficient"),
1809 N_("Kendall's tau-b"),
1810 N_("Kendall's tau-c"),
1812 N_("Spearman Correlation"),
1817 static const int stats_categories[N_SYMMETRIC] =
1819 0, 0, 0, 1, 1, 1, 1, 2, 3,
1823 double sym_v[N_SYMMETRIC], sym_ase[N_SYMMETRIC], sym_t[N_SYMMETRIC];
1824 double somers_d_v[3], somers_d_ase[3], somers_d_t[3];
1827 if (!calc_symmetric (proc, pt, sym_v, sym_ase, sym_t,
1828 somers_d_v, somers_d_ase, somers_d_t))
1831 tab_offset (sym, pt->n_consts + pt->n_vars - 2, -1);
1833 for (i = 0; i < N_SYMMETRIC; i++)
1835 if (sym_v[i] == SYSMIS)
1838 if (stats_categories[i] != last_cat)
1840 last_cat = stats_categories[i];
1841 tab_text (sym, 0, 0, TAB_LEFT, gettext (categories[last_cat]));
1844 tab_text (sym, 1, 0, TAB_LEFT, gettext (stats[i]));
1845 tab_double (sym, 2, 0, TAB_RIGHT, sym_v[i], NULL);
1846 if (sym_ase[i] != SYSMIS)
1847 tab_double (sym, 3, 0, TAB_RIGHT, sym_ase[i], NULL);
1848 if (sym_t[i] != SYSMIS)
1849 tab_double (sym, 4, 0, TAB_RIGHT, sym_t[i], NULL);
1850 /*tab_double (sym, 5, 0, TAB_RIGHT, normal_sig (sym_v[i]), NULL);*/
1854 tab_text (sym, 0, 0, TAB_LEFT, _("N of Valid Cases"));
1855 tab_double (sym, 2, 0, TAB_RIGHT, pt->total, &pt->weight_format);
1858 tab_offset (sym, 0, -1);
1861 static int calc_risk (struct pivot_table *,
1862 double[], double[], double[], union value *);
1864 /* Display risk estimate. */
1866 display_risk (struct pivot_table *pt, struct tab_table *risk)
1869 double risk_v[3], lower[3], upper[3];
1873 if (!calc_risk (pt, risk_v, upper, lower, c))
1876 tab_offset (risk, pt->n_consts + pt->n_vars - 2, -1);
1878 for (i = 0; i < 3; i++)
1880 const struct variable *cv = pt->vars[COL_VAR];
1881 const struct variable *rv = pt->vars[ROW_VAR];
1882 int cvw = var_get_width (cv);
1883 int rvw = var_get_width (rv);
1885 if (risk_v[i] == SYSMIS)
1891 if (var_is_numeric (cv))
1892 sprintf (buf, _("Odds Ratio for %s (%g / %g)"),
1893 var_get_name (cv), c[0].f, c[1].f);
1895 sprintf (buf, _("Odds Ratio for %s (%.*s / %.*s)"),
1897 cvw, value_str (&c[0], cvw),
1898 cvw, value_str (&c[1], cvw));
1902 if (var_is_numeric (rv))
1903 sprintf (buf, _("For cohort %s = %g"),
1904 var_get_name (rv), pt->rows[i - 1].f);
1906 sprintf (buf, _("For cohort %s = %.*s"),
1908 rvw, value_str (&pt->rows[i - 1], rvw));
1912 tab_text (risk, 0, 0, TAB_LEFT, buf);
1913 tab_double (risk, 1, 0, TAB_RIGHT, risk_v[i], NULL);
1914 tab_double (risk, 2, 0, TAB_RIGHT, lower[i], NULL);
1915 tab_double (risk, 3, 0, TAB_RIGHT, upper[i], NULL);
1916 tab_next_row (risk);
1919 tab_text (risk, 0, 0, TAB_LEFT, _("N of Valid Cases"));
1920 tab_double (risk, 1, 0, TAB_RIGHT, pt->total, &pt->weight_format);
1921 tab_next_row (risk);
1923 tab_offset (risk, 0, -1);
1926 static int calc_directional (struct crosstabs_proc *, struct pivot_table *,
1927 double[N_DIRECTIONAL], double[N_DIRECTIONAL],
1928 double[N_DIRECTIONAL]);
1930 /* Display directional measures. */
1932 display_directional (struct crosstabs_proc *proc, struct pivot_table *pt,
1933 struct tab_table *direct)
1935 static const char *categories[] =
1937 N_("Nominal by Nominal"),
1938 N_("Ordinal by Ordinal"),
1939 N_("Nominal by Interval"),
1942 static const char *stats[] =
1945 N_("Goodman and Kruskal tau"),
1946 N_("Uncertainty Coefficient"),
1951 static const char *types[] =
1958 static const int stats_categories[N_DIRECTIONAL] =
1960 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2,
1963 static const int stats_stats[N_DIRECTIONAL] =
1965 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4,
1968 static const int stats_types[N_DIRECTIONAL] =
1970 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2,
1973 static const int *stats_lookup[] =
1980 static const char **stats_names[] =
1992 double direct_v[N_DIRECTIONAL];
1993 double direct_ase[N_DIRECTIONAL];
1994 double direct_t[N_DIRECTIONAL];
1998 if (!calc_directional (proc, pt, direct_v, direct_ase, direct_t))
2001 tab_offset (direct, pt->n_consts + pt->n_vars - 2, -1);
2003 for (i = 0; i < N_DIRECTIONAL; i++)
2005 if (direct_v[i] == SYSMIS)
2011 for (j = 0; j < 3; j++)
2012 if (last[j] != stats_lookup[j][i])
2015 tab_hline (direct, TAL_1, j, 6, 0);
2020 int k = last[j] = stats_lookup[j][i];
2025 string = var_get_name (pt->vars[0]);
2027 string = var_get_name (pt->vars[1]);
2029 tab_text_format (direct, j, 0, TAB_LEFT,
2030 gettext (stats_names[j][k]), string);
2035 tab_double (direct, 3, 0, TAB_RIGHT, direct_v[i], NULL);
2036 if (direct_ase[i] != SYSMIS)
2037 tab_double (direct, 4, 0, TAB_RIGHT, direct_ase[i], NULL);
2038 if (direct_t[i] != SYSMIS)
2039 tab_double (direct, 5, 0, TAB_RIGHT, direct_t[i], NULL);
2040 /*tab_double (direct, 6, 0, TAB_RIGHT, normal_sig (direct_v[i]), NULL);*/
2041 tab_next_row (direct);
2044 tab_offset (direct, 0, -1);
2047 /* Statistical calculations. */
2049 /* Returns the value of the gamma (factorial) function for an integer
2052 gamma_int (double pt)
2057 for (i = 2; i < pt; i++)
2062 /* Calculate P_r as specified in _SPSS Statistical Algorithms_,
2064 static inline double
2065 Pr (int a, int b, int c, int d)
2067 return (gamma_int (a + b + 1.) / gamma_int (a + 1.)
2068 * gamma_int (c + d + 1.) / gamma_int (b + 1.)
2069 * gamma_int (a + c + 1.) / gamma_int (c + 1.)
2070 * gamma_int (b + d + 1.) / gamma_int (d + 1.)
2071 / gamma_int (a + b + c + d + 1.));
2074 /* Swap the contents of A and B. */
2076 swap (int *a, int *b)
2083 /* Calculate significance for Fisher's exact test as specified in
2084 _SPSS Statistical Algorithms_, Appendix 5. */
2086 calc_fisher (int a, int b, int c, int d, double *fisher1, double *fisher2)
2090 if (MIN (c, d) < MIN (a, b))
2091 swap (&a, &c), swap (&b, &d);
2092 if (MIN (b, d) < MIN (a, c))
2093 swap (&a, &b), swap (&c, &d);
2097 swap (&a, &b), swap (&c, &d);
2099 swap (&a, &c), swap (&b, &d);
2103 for (pt = 0; pt <= a; pt++)
2104 *fisher1 += Pr (a - pt, b + pt, c + pt, d - pt);
2106 *fisher2 = *fisher1;
2107 for (pt = 1; pt <= b; pt++)
2108 *fisher2 += Pr (a + pt, b - pt, c - pt, d + pt);
2111 /* Calculates chi-squares into CHISQ. MAT is a matrix with N_COLS
2112 columns with values COLS and N_ROWS rows with values ROWS. Values
2113 in the matrix sum to pt->total. */
2115 calc_chisq (struct pivot_table *pt,
2116 double chisq[N_CHISQ], int df[N_CHISQ],
2117 double *fisher1, double *fisher2)
2121 chisq[0] = chisq[1] = 0.;
2122 chisq[2] = chisq[3] = chisq[4] = SYSMIS;
2123 *fisher1 = *fisher2 = SYSMIS;
2125 df[0] = df[1] = (pt->ns_cols - 1) * (pt->ns_rows - 1);
2127 if (pt->ns_rows <= 1 || pt->ns_cols <= 1)
2129 chisq[0] = chisq[1] = SYSMIS;
2133 for (r = 0; r < pt->n_rows; r++)
2134 for (c = 0; c < pt->n_cols; c++)
2136 const double expected = pt->row_tot[r] * pt->col_tot[c] / pt->total;
2137 const double freq = pt->mat[pt->n_cols * r + c];
2138 const double residual = freq - expected;
2140 chisq[0] += residual * residual / expected;
2142 chisq[1] += freq * log (expected / freq);
2153 /* Calculate Yates and Fisher exact test. */
2154 if (pt->ns_cols == 2 && pt->ns_rows == 2)
2156 double f11, f12, f21, f22;
2162 for (i = j = 0; i < pt->n_cols; i++)
2163 if (pt->col_tot[i] != 0.)
2172 f11 = pt->mat[nz_cols[0]];
2173 f12 = pt->mat[nz_cols[1]];
2174 f21 = pt->mat[nz_cols[0] + pt->n_cols];
2175 f22 = pt->mat[nz_cols[1] + pt->n_cols];
2180 const double pt_ = fabs (f11 * f22 - f12 * f21) - 0.5 * pt->total;
2183 chisq[3] = (pt->total * pow2 (pt_)
2184 / (f11 + f12) / (f21 + f22)
2185 / (f11 + f21) / (f12 + f22));
2193 if (f11 < 5. || f12 < 5. || f21 < 5. || f22 < 5.)
2194 calc_fisher (f11 + .5, f12 + .5, f21 + .5, f22 + .5, fisher1, fisher2);
2197 /* Calculate Mantel-Haenszel. */
2198 if (var_is_numeric (pt->vars[ROW_VAR]) && var_is_numeric (pt->vars[COL_VAR]))
2200 double r, ase_0, ase_1;
2201 calc_r (pt, (double *) pt->rows, (double *) pt->cols, &r, &ase_0, &ase_1);
2203 chisq[4] = (pt->total - 1.) * r * r;
2208 /* Calculate the value of Pearson's r. r is stored into R, ase_1 into
2209 ASE_1, and ase_0 into ASE_0. The row and column values must be
2210 passed in PT and Y. */
2212 calc_r (struct pivot_table *pt,
2213 double *PT, double *Y, double *r, double *ase_0, double *ase_1)
2215 double SX, SY, S, T;
2217 double sum_XYf, sum_X2Y2f;
2218 double sum_Xr, sum_X2r;
2219 double sum_Yc, sum_Y2c;
2222 for (sum_X2Y2f = sum_XYf = 0., i = 0; i < pt->n_rows; i++)
2223 for (j = 0; j < pt->n_cols; j++)
2225 double fij = pt->mat[j + i * pt->n_cols];
2226 double product = PT[i] * Y[j];
2227 double temp = fij * product;
2229 sum_X2Y2f += temp * product;
2232 for (sum_Xr = sum_X2r = 0., i = 0; i < pt->n_rows; i++)
2234 sum_Xr += PT[i] * pt->row_tot[i];
2235 sum_X2r += pow2 (PT[i]) * pt->row_tot[i];
2237 Xbar = sum_Xr / pt->total;
2239 for (sum_Yc = sum_Y2c = 0., i = 0; i < pt->n_cols; i++)
2241 sum_Yc += Y[i] * pt->col_tot[i];
2242 sum_Y2c += Y[i] * Y[i] * pt->col_tot[i];
2244 Ybar = sum_Yc / pt->total;
2246 S = sum_XYf - sum_Xr * sum_Yc / pt->total;
2247 SX = sum_X2r - pow2 (sum_Xr) / pt->total;
2248 SY = sum_Y2c - pow2 (sum_Yc) / pt->total;
2251 *ase_0 = sqrt ((sum_X2Y2f - pow2 (sum_XYf) / pt->total) / (sum_X2r * sum_Y2c));
2256 for (s = c = 0., i = 0; i < pt->n_rows; i++)
2257 for (j = 0; j < pt->n_cols; j++)
2259 double Xresid, Yresid;
2262 Xresid = PT[i] - Xbar;
2263 Yresid = Y[j] - Ybar;
2264 temp = (T * Xresid * Yresid
2266 * (Xresid * Xresid * SY + Yresid * Yresid * SX)));
2267 y = pt->mat[j + i * pt->n_cols] * temp * temp - c;
2272 *ase_1 = sqrt (s) / (T * T);
2276 /* Calculate symmetric statistics and their asymptotic standard
2277 errors. Returns 0 if none could be calculated. */
2279 calc_symmetric (struct crosstabs_proc *proc, struct pivot_table *pt,
2280 double v[N_SYMMETRIC], double ase[N_SYMMETRIC],
2281 double t[N_SYMMETRIC],
2282 double somers_d_v[3], double somers_d_ase[3],
2283 double somers_d_t[3])
2287 q = MIN (pt->ns_rows, pt->ns_cols);
2291 for (i = 0; i < N_SYMMETRIC; i++)
2292 v[i] = ase[i] = t[i] = SYSMIS;
2294 /* Phi, Cramer's V, contingency coefficient. */
2295 if (proc->statistics & ((1u << CRS_ST_PHI) | (1u << CRS_ST_CC)))
2297 double Xp = 0.; /* Pearson chi-square. */
2300 for (r = 0; r < pt->n_rows; r++)
2301 for (c = 0; c < pt->n_cols; c++)
2303 const double expected = pt->row_tot[r] * pt->col_tot[c] / pt->total;
2304 const double freq = pt->mat[pt->n_cols * r + c];
2305 const double residual = freq - expected;
2307 Xp += residual * residual / expected;
2310 if (proc->statistics & (1u << CRS_ST_PHI))
2312 v[0] = sqrt (Xp / pt->total);
2313 v[1] = sqrt (Xp / (pt->total * (q - 1)));
2315 if (proc->statistics & (1u << CRS_ST_CC))
2316 v[2] = sqrt (Xp / (Xp + pt->total));
2319 if (proc->statistics & ((1u << CRS_ST_BTAU) | (1u << CRS_ST_CTAU)
2320 | (1u << CRS_ST_GAMMA) | (1u << CRS_ST_D)))
2325 double btau_cum, ctau_cum, gamma_cum, d_yx_cum, d_xy_cum;
2329 Dr = Dc = pow2 (pt->total);
2330 for (r = 0; r < pt->n_rows; r++)
2331 Dr -= pow2 (pt->row_tot[r]);
2332 for (c = 0; c < pt->n_cols; c++)
2333 Dc -= pow2 (pt->col_tot[c]);
2335 cum = xnmalloc (pt->n_cols * pt->n_rows, sizeof *cum);
2336 for (c = 0; c < pt->n_cols; c++)
2340 for (r = 0; r < pt->n_rows; r++)
2341 cum[c + r * pt->n_cols] = ct += pt->mat[c + r * pt->n_cols];
2350 for (i = 0; i < pt->n_rows; i++)
2354 for (j = 1; j < pt->n_cols; j++)
2355 Cij += pt->col_tot[j] - cum[j + i * pt->n_cols];
2358 for (j = 1; j < pt->n_cols; j++)
2359 Dij += cum[j + (i - 1) * pt->n_cols];
2363 double fij = pt->mat[j + i * pt->n_cols];
2367 if (++j == pt->n_cols)
2369 assert (j < pt->n_cols);
2371 Cij -= pt->col_tot[j] - cum[j + i * pt->n_cols];
2372 Dij += pt->col_tot[j - 1] - cum[j - 1 + i * pt->n_cols];
2376 Cij += cum[j - 1 + (i - 1) * pt->n_cols];
2377 Dij -= cum[j + (i - 1) * pt->n_cols];
2383 if (proc->statistics & (1u << CRS_ST_BTAU))
2384 v[3] = (P - Q) / sqrt (Dr * Dc);
2385 if (proc->statistics & (1u << CRS_ST_CTAU))
2386 v[4] = (q * (P - Q)) / (pow2 (pt->total) * (q - 1));
2387 if (proc->statistics & (1u << CRS_ST_GAMMA))
2388 v[5] = (P - Q) / (P + Q);
2390 /* ASE for tau-b, tau-c, gamma. Calculations could be
2391 eliminated here, at expense of memory. */
2396 btau_cum = ctau_cum = gamma_cum = d_yx_cum = d_xy_cum = 0.;
2397 for (i = 0; i < pt->n_rows; i++)
2401 for (j = 1; j < pt->n_cols; j++)
2402 Cij += pt->col_tot[j] - cum[j + i * pt->n_cols];
2405 for (j = 1; j < pt->n_cols; j++)
2406 Dij += cum[j + (i - 1) * pt->n_cols];
2410 double fij = pt->mat[j + i * pt->n_cols];
2412 if (proc->statistics & (1u << CRS_ST_BTAU))
2414 const double temp = (2. * sqrt (Dr * Dc) * (Cij - Dij)
2415 + v[3] * (pt->row_tot[i] * Dc
2416 + pt->col_tot[j] * Dr));
2417 btau_cum += fij * temp * temp;
2421 const double temp = Cij - Dij;
2422 ctau_cum += fij * temp * temp;
2425 if (proc->statistics & (1u << CRS_ST_GAMMA))
2427 const double temp = Q * Cij - P * Dij;
2428 gamma_cum += fij * temp * temp;
2431 if (proc->statistics & (1u << CRS_ST_D))
2433 d_yx_cum += fij * pow2 (Dr * (Cij - Dij)
2434 - (P - Q) * (pt->total - pt->row_tot[i]));
2435 d_xy_cum += fij * pow2 (Dc * (Dij - Cij)
2436 - (Q - P) * (pt->total - pt->col_tot[j]));
2439 if (++j == pt->n_cols)
2441 assert (j < pt->n_cols);
2443 Cij -= pt->col_tot[j] - cum[j + i * pt->n_cols];
2444 Dij += pt->col_tot[j - 1] - cum[j - 1 + i * pt->n_cols];
2448 Cij += cum[j - 1 + (i - 1) * pt->n_cols];
2449 Dij -= cum[j + (i - 1) * pt->n_cols];
2455 btau_var = ((btau_cum
2456 - (pt->total * pow2 (pt->total * (P - Q) / sqrt (Dr * Dc) * (Dr + Dc))))
2458 if (proc->statistics & (1u << CRS_ST_BTAU))
2460 ase[3] = sqrt (btau_var);
2461 t[3] = v[3] / (2 * sqrt ((ctau_cum - (P - Q) * (P - Q) / pt->total)
2464 if (proc->statistics & (1u << CRS_ST_CTAU))
2466 ase[4] = ((2 * q / ((q - 1) * pow2 (pt->total)))
2467 * sqrt (ctau_cum - (P - Q) * (P - Q) / pt->total));
2468 t[4] = v[4] / ase[4];
2470 if (proc->statistics & (1u << CRS_ST_GAMMA))
2472 ase[5] = ((4. / ((P + Q) * (P + Q))) * sqrt (gamma_cum));
2473 t[5] = v[5] / (2. / (P + Q)
2474 * sqrt (ctau_cum - (P - Q) * (P - Q) / pt->total));
2476 if (proc->statistics & (1u << CRS_ST_D))
2478 somers_d_v[0] = (P - Q) / (.5 * (Dc + Dr));
2479 somers_d_ase[0] = 2. * btau_var / (Dr + Dc) * sqrt (Dr * Dc);
2480 somers_d_t[0] = (somers_d_v[0]
2482 * sqrt (ctau_cum - pow2 (P - Q) / pt->total)));
2483 somers_d_v[1] = (P - Q) / Dc;
2484 somers_d_ase[1] = 2. / pow2 (Dc) * sqrt (d_xy_cum);
2485 somers_d_t[1] = (somers_d_v[1]
2487 * sqrt (ctau_cum - pow2 (P - Q) / pt->total)));
2488 somers_d_v[2] = (P - Q) / Dr;
2489 somers_d_ase[2] = 2. / pow2 (Dr) * sqrt (d_yx_cum);
2490 somers_d_t[2] = (somers_d_v[2]
2492 * sqrt (ctau_cum - pow2 (P - Q) / pt->total)));
2498 /* Spearman correlation, Pearson's r. */
2499 if (proc->statistics & (1u << CRS_ST_CORR))
2501 double *R = xmalloc (sizeof *R * pt->n_rows);
2502 double *C = xmalloc (sizeof *C * pt->n_cols);
2505 double y, t, c = 0., s = 0.;
2510 R[i] = s + (pt->row_tot[i] + 1.) / 2.;
2511 y = pt->row_tot[i] - c;
2515 if (++i == pt->n_rows)
2517 assert (i < pt->n_rows);
2522 double y, t, c = 0., s = 0.;
2527 C[j] = s + (pt->col_tot[j] + 1.) / 2;
2528 y = pt->col_tot[j] - c;
2532 if (++j == pt->n_cols)
2534 assert (j < pt->n_cols);
2538 calc_r (pt, R, C, &v[6], &t[6], &ase[6]);
2544 calc_r (pt, (double *) pt->rows, (double *) pt->cols, &v[7], &t[7], &ase[7]);
2548 /* Cohen's kappa. */
2549 if (proc->statistics & (1u << CRS_ST_KAPPA) && pt->ns_rows == pt->ns_cols)
2551 double sum_fii, sum_rici, sum_fiiri_ci, sum_fijri_ci2, sum_riciri_ci;
2554 for (sum_fii = sum_rici = sum_fiiri_ci = sum_riciri_ci = 0., i = j = 0;
2555 i < pt->ns_rows; i++, j++)
2559 while (pt->col_tot[j] == 0.)
2562 prod = pt->row_tot[i] * pt->col_tot[j];
2563 sum = pt->row_tot[i] + pt->col_tot[j];
2565 sum_fii += pt->mat[j + i * pt->n_cols];
2567 sum_fiiri_ci += pt->mat[j + i * pt->n_cols] * sum;
2568 sum_riciri_ci += prod * sum;
2570 for (sum_fijri_ci2 = 0., i = 0; i < pt->ns_rows; i++)
2571 for (j = 0; j < pt->ns_cols; j++)
2573 double sum = pt->row_tot[i] + pt->col_tot[j];
2574 sum_fijri_ci2 += pt->mat[j + i * pt->n_cols] * sum * sum;
2577 v[8] = (pt->total * sum_fii - sum_rici) / (pow2 (pt->total) - sum_rici);
2579 ase[8] = sqrt ((pow2 (pt->total) * sum_rici
2580 + sum_rici * sum_rici
2581 - pt->total * sum_riciri_ci)
2582 / (pt->total * (pow2 (pt->total) - sum_rici) * (pow2 (pt->total) - sum_rici)));
2584 t[8] = v[8] / sqrt (pt->total * (((sum_fii * (pt->total - sum_fii))
2585 / pow2 (pow2 (pt->total) - sum_rici))
2586 + ((2. * (pt->total - sum_fii)
2587 * (2. * sum_fii * sum_rici
2588 - pt->total * sum_fiiri_ci))
2589 / cube (pow2 (pt->total) - sum_rici))
2590 + (pow2 (pt->total - sum_fii)
2591 * (pt->total * sum_fijri_ci2 - 4.
2592 * sum_rici * sum_rici)
2593 / pow4 (pow2 (pt->total) - sum_rici))));
2595 t[8] = v[8] / ase[8];
2602 /* Calculate risk estimate. */
2604 calc_risk (struct pivot_table *pt,
2605 double *value, double *upper, double *lower, union value *c)
2607 double f11, f12, f21, f22;
2613 for (i = 0; i < 3; i++)
2614 value[i] = upper[i] = lower[i] = SYSMIS;
2617 if (pt->ns_rows != 2 || pt->ns_cols != 2)
2624 for (i = j = 0; i < pt->n_cols; i++)
2625 if (pt->col_tot[i] != 0.)
2634 f11 = pt->mat[nz_cols[0]];
2635 f12 = pt->mat[nz_cols[1]];
2636 f21 = pt->mat[nz_cols[0] + pt->n_cols];
2637 f22 = pt->mat[nz_cols[1] + pt->n_cols];
2639 c[0] = pt->cols[nz_cols[0]];
2640 c[1] = pt->cols[nz_cols[1]];
2643 value[0] = (f11 * f22) / (f12 * f21);
2644 v = sqrt (1. / f11 + 1. / f12 + 1. / f21 + 1. / f22);
2645 lower[0] = value[0] * exp (-1.960 * v);
2646 upper[0] = value[0] * exp (1.960 * v);
2648 value[1] = (f11 * (f21 + f22)) / (f21 * (f11 + f12));
2649 v = sqrt ((f12 / (f11 * (f11 + f12)))
2650 + (f22 / (f21 * (f21 + f22))));
2651 lower[1] = value[1] * exp (-1.960 * v);
2652 upper[1] = value[1] * exp (1.960 * v);
2654 value[2] = (f12 * (f21 + f22)) / (f22 * (f11 + f12));
2655 v = sqrt ((f11 / (f12 * (f11 + f12)))
2656 + (f21 / (f22 * (f21 + f22))));
2657 lower[2] = value[2] * exp (-1.960 * v);
2658 upper[2] = value[2] * exp (1.960 * v);
2663 /* Calculate directional measures. */
2665 calc_directional (struct crosstabs_proc *proc, struct pivot_table *pt,
2666 double v[N_DIRECTIONAL], double ase[N_DIRECTIONAL],
2667 double t[N_DIRECTIONAL])
2672 for (i = 0; i < N_DIRECTIONAL; i++)
2673 v[i] = ase[i] = t[i] = SYSMIS;
2677 if (proc->statistics & (1u << CRS_ST_LAMBDA))
2679 double *fim = xnmalloc (pt->n_rows, sizeof *fim);
2680 int *fim_index = xnmalloc (pt->n_rows, sizeof *fim_index);
2681 double *fmj = xnmalloc (pt->n_cols, sizeof *fmj);
2682 int *fmj_index = xnmalloc (pt->n_cols, sizeof *fmj_index);
2683 double sum_fim, sum_fmj;
2685 int rm_index, cm_index;
2688 /* Find maximum for each row and their sum. */
2689 for (sum_fim = 0., i = 0; i < pt->n_rows; i++)
2691 double max = pt->mat[i * pt->n_cols];
2694 for (j = 1; j < pt->n_cols; j++)
2695 if (pt->mat[j + i * pt->n_cols] > max)
2697 max = pt->mat[j + i * pt->n_cols];
2701 sum_fim += fim[i] = max;
2702 fim_index[i] = index;
2705 /* Find maximum for each column. */
2706 for (sum_fmj = 0., j = 0; j < pt->n_cols; j++)
2708 double max = pt->mat[j];
2711 for (i = 1; i < pt->n_rows; i++)
2712 if (pt->mat[j + i * pt->n_cols] > max)
2714 max = pt->mat[j + i * pt->n_cols];
2718 sum_fmj += fmj[j] = max;
2719 fmj_index[j] = index;
2722 /* Find maximum row total. */
2723 rm = pt->row_tot[0];
2725 for (i = 1; i < pt->n_rows; i++)
2726 if (pt->row_tot[i] > rm)
2728 rm = pt->row_tot[i];
2732 /* Find maximum column total. */
2733 cm = pt->col_tot[0];
2735 for (j = 1; j < pt->n_cols; j++)
2736 if (pt->col_tot[j] > cm)
2738 cm = pt->col_tot[j];
2742 v[0] = (sum_fim + sum_fmj - cm - rm) / (2. * pt->total - rm - cm);
2743 v[1] = (sum_fmj - rm) / (pt->total - rm);
2744 v[2] = (sum_fim - cm) / (pt->total - cm);
2746 /* ASE1 for Y given PT. */
2750 for (accum = 0., i = 0; i < pt->n_rows; i++)
2751 for (j = 0; j < pt->n_cols; j++)
2753 const int deltaj = j == cm_index;
2754 accum += (pt->mat[j + i * pt->n_cols]
2755 * pow2 ((j == fim_index[i])
2760 ase[2] = sqrt (accum - pt->total * v[0]) / (pt->total - cm);
2763 /* ASE0 for Y given PT. */
2767 for (accum = 0., i = 0; i < pt->n_rows; i++)
2768 if (cm_index != fim_index[i])
2769 accum += (pt->mat[i * pt->n_cols + fim_index[i]]
2770 + pt->mat[i * pt->n_cols + cm_index]);
2771 t[2] = v[2] / (sqrt (accum - pow2 (sum_fim - cm) / pt->total) / (pt->total - cm));
2774 /* ASE1 for PT given Y. */
2778 for (accum = 0., i = 0; i < pt->n_rows; i++)
2779 for (j = 0; j < pt->n_cols; j++)
2781 const int deltaj = i == rm_index;
2782 accum += (pt->mat[j + i * pt->n_cols]
2783 * pow2 ((i == fmj_index[j])
2788 ase[1] = sqrt (accum - pt->total * v[0]) / (pt->total - rm);
2791 /* ASE0 for PT given Y. */
2795 for (accum = 0., j = 0; j < pt->n_cols; j++)
2796 if (rm_index != fmj_index[j])
2797 accum += (pt->mat[j + pt->n_cols * fmj_index[j]]
2798 + pt->mat[j + pt->n_cols * rm_index]);
2799 t[1] = v[1] / (sqrt (accum - pow2 (sum_fmj - rm) / pt->total) / (pt->total - rm));
2802 /* Symmetric ASE0 and ASE1. */
2807 for (accum0 = accum1 = 0., i = 0; i < pt->n_rows; i++)
2808 for (j = 0; j < pt->n_cols; j++)
2810 int temp0 = (fmj_index[j] == i) + (fim_index[i] == j);
2811 int temp1 = (i == rm_index) + (j == cm_index);
2812 accum0 += pt->mat[j + i * pt->n_cols] * pow2 (temp0 - temp1);
2813 accum1 += (pt->mat[j + i * pt->n_cols]
2814 * pow2 (temp0 + (v[0] - 1.) * temp1));
2816 ase[0] = sqrt (accum1 - 4. * pt->total * v[0] * v[0]) / (2. * pt->total - rm - cm);
2817 t[0] = v[0] / (sqrt (accum0 - pow2 ((sum_fim + sum_fmj - cm - rm) / pt->total))
2818 / (2. * pt->total - rm - cm));
2827 double sum_fij2_ri, sum_fij2_ci;
2828 double sum_ri2, sum_cj2;
2830 for (sum_fij2_ri = sum_fij2_ci = 0., i = 0; i < pt->n_rows; i++)
2831 for (j = 0; j < pt->n_cols; j++)
2833 double temp = pow2 (pt->mat[j + i * pt->n_cols]);
2834 sum_fij2_ri += temp / pt->row_tot[i];
2835 sum_fij2_ci += temp / pt->col_tot[j];
2838 for (sum_ri2 = 0., i = 0; i < pt->n_rows; i++)
2839 sum_ri2 += pow2 (pt->row_tot[i]);
2841 for (sum_cj2 = 0., j = 0; j < pt->n_cols; j++)
2842 sum_cj2 += pow2 (pt->col_tot[j]);
2844 v[3] = (pt->total * sum_fij2_ci - sum_ri2) / (pow2 (pt->total) - sum_ri2);
2845 v[4] = (pt->total * sum_fij2_ri - sum_cj2) / (pow2 (pt->total) - sum_cj2);
2849 if (proc->statistics & (1u << CRS_ST_UC))
2851 double UX, UY, UXY, P;
2852 double ase1_yx, ase1_xy, ase1_sym;
2855 for (UX = 0., i = 0; i < pt->n_rows; i++)
2856 if (pt->row_tot[i] > 0.)
2857 UX -= pt->row_tot[i] / pt->total * log (pt->row_tot[i] / pt->total);
2859 for (UY = 0., j = 0; j < pt->n_cols; j++)
2860 if (pt->col_tot[j] > 0.)
2861 UY -= pt->col_tot[j] / pt->total * log (pt->col_tot[j] / pt->total);
2863 for (UXY = P = 0., i = 0; i < pt->n_rows; i++)
2864 for (j = 0; j < pt->n_cols; j++)
2866 double entry = pt->mat[j + i * pt->n_cols];
2871 P += entry * pow2 (log (pt->col_tot[j] * pt->row_tot[i] / (pt->total * entry)));
2872 UXY -= entry / pt->total * log (entry / pt->total);
2875 for (ase1_yx = ase1_xy = ase1_sym = 0., i = 0; i < pt->n_rows; i++)
2876 for (j = 0; j < pt->n_cols; j++)
2878 double entry = pt->mat[j + i * pt->n_cols];
2883 ase1_yx += entry * pow2 (UY * log (entry / pt->row_tot[i])
2884 + (UX - UXY) * log (pt->col_tot[j] / pt->total));
2885 ase1_xy += entry * pow2 (UX * log (entry / pt->col_tot[j])
2886 + (UY - UXY) * log (pt->row_tot[i] / pt->total));
2887 ase1_sym += entry * pow2 ((UXY
2888 * log (pt->row_tot[i] * pt->col_tot[j] / pow2 (pt->total)))
2889 - (UX + UY) * log (entry / pt->total));
2892 v[5] = 2. * ((UX + UY - UXY) / (UX + UY));
2893 ase[5] = (2. / (pt->total * pow2 (UX + UY))) * sqrt (ase1_sym);
2894 t[5] = v[5] / ((2. / (pt->total * (UX + UY)))
2895 * sqrt (P - pow2 (UX + UY - UXY) / pt->total));
2897 v[6] = (UX + UY - UXY) / UX;
2898 ase[6] = sqrt (ase1_xy) / (pt->total * UX * UX);
2899 t[6] = v[6] / (sqrt (P - pt->total * pow2 (UX + UY - UXY)) / (pt->total * UX));
2901 v[7] = (UX + UY - UXY) / UY;
2902 ase[7] = sqrt (ase1_yx) / (pt->total * UY * UY);
2903 t[7] = v[7] / (sqrt (P - pt->total * pow2 (UX + UY - UXY)) / (pt->total * UY));
2907 if (proc->statistics & (1u << CRS_ST_D))
2909 double v_dummy[N_SYMMETRIC];
2910 double ase_dummy[N_SYMMETRIC];
2911 double t_dummy[N_SYMMETRIC];
2912 double somers_d_v[3];
2913 double somers_d_ase[3];
2914 double somers_d_t[3];
2916 if (calc_symmetric (proc, pt, v_dummy, ase_dummy, t_dummy,
2917 somers_d_v, somers_d_ase, somers_d_t))
2920 for (i = 0; i < 3; i++)
2922 v[8 + i] = somers_d_v[i];
2923 ase[8 + i] = somers_d_ase[i];
2924 t[8 + i] = somers_d_t[i];
2930 if (proc->statistics & (1u << CRS_ST_ETA))
2933 double sum_Xr, sum_X2r;
2937 for (sum_Xr = sum_X2r = 0., i = 0; i < pt->n_rows; i++)
2939 sum_Xr += pt->rows[i].f * pt->row_tot[i];
2940 sum_X2r += pow2 (pt->rows[i].f) * pt->row_tot[i];
2942 SX = sum_X2r - pow2 (sum_Xr) / pt->total;
2944 for (SXW = 0., j = 0; j < pt->n_cols; j++)
2948 for (cum = 0., i = 0; i < pt->n_rows; i++)
2950 SXW += pow2 (pt->rows[i].f) * pt->mat[j + i * pt->n_cols];
2951 cum += pt->rows[i].f * pt->mat[j + i * pt->n_cols];
2954 SXW -= cum * cum / pt->col_tot[j];
2956 v[11] = sqrt (1. - SXW / SX);
2960 double sum_Yc, sum_Y2c;
2964 for (sum_Yc = sum_Y2c = 0., i = 0; i < pt->n_cols; i++)
2966 sum_Yc += pt->cols[i].f * pt->col_tot[i];
2967 sum_Y2c += pow2 (pt->cols[i].f) * pt->col_tot[i];
2969 SY = sum_Y2c - sum_Yc * sum_Yc / pt->total;
2971 for (SYW = 0., i = 0; i < pt->n_rows; i++)
2975 for (cum = 0., j = 0; j < pt->n_cols; j++)
2977 SYW += pow2 (pt->cols[j].f) * pt->mat[j + i * pt->n_cols];
2978 cum += pt->cols[j].f * pt->mat[j + i * pt->n_cols];
2981 SYW -= cum * cum / pt->row_tot[i];
2983 v[12] = sqrt (1. - SYW / SY);