1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 1997-9, 2000, 2006, 2010 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include <data/case.h>
28 #include <data/dictionary.h>
29 #include <data/settings.h>
30 #include <data/variable.h>
31 #include <language/lexer/format-parser.h>
32 #include <language/lexer/lexer.h>
33 #include <language/lexer/variable-parser.h>
34 #include <libpspp/array.h>
35 #include <libpspp/assertion.h>
36 #include <libpspp/message.h>
37 #include <libpspp/misc.h>
38 #include <libpspp/pool.h>
39 #include <libpspp/str.h>
45 /* Recursive descent parser in order of increasing precedence. */
46 typedef union any_node *parse_recursively_func (struct lexer *, struct expression *);
47 static parse_recursively_func parse_or, parse_and, parse_not;
48 static parse_recursively_func parse_rel, parse_add, parse_mul;
49 static parse_recursively_func parse_neg, parse_exp;
50 static parse_recursively_func parse_primary;
51 static parse_recursively_func parse_vector_element, parse_function;
53 /* Utility functions. */
54 static struct expression *expr_create (struct dataset *ds);
55 atom_type expr_node_returns (const union any_node *);
57 static const char *atom_type_name (atom_type);
58 static struct expression *finish_expression (union any_node *,
60 static bool type_check (struct expression *, union any_node **,
61 enum expr_type expected_type);
62 static union any_node *allocate_unary_variable (struct expression *,
63 const struct variable *);
65 /* Public functions. */
67 /* Parses an expression of the given TYPE.
68 If DICT is nonnull then variables and vectors within it may be
69 referenced within the expression; otherwise, the expression
70 must not reference any variables or vectors.
71 Returns the new expression if successful or a null pointer
74 expr_parse (struct lexer *lexer, struct dataset *ds, enum expr_type type)
79 assert (type == EXPR_NUMBER || type == EXPR_STRING || type == EXPR_BOOLEAN);
82 n = parse_or (lexer, e);
83 if (n != NULL && type_check (e, &n, type))
84 return finish_expression (expr_optimize (n, e), e);
92 /* Parses and returns an expression of the given TYPE, as
93 expr_parse(), and sets up so that destroying POOL will free
94 the expression as well. */
96 expr_parse_pool (struct lexer *lexer,
101 struct expression *e = expr_parse (lexer, ds, type);
103 pool_add_subpool (pool, e->expr_pool);
107 /* Free expression E. */
109 expr_free (struct expression *e)
112 pool_destroy (e->expr_pool);
116 expr_parse_any (struct lexer *lexer, struct dataset *ds, bool optimize)
119 struct expression *e;
121 e = expr_create (ds);
122 n = parse_or (lexer, e);
130 n = expr_optimize (n, e);
131 return finish_expression (n, e);
134 /* Finishing up expression building. */
136 /* Height of an expression's stacks. */
139 int number_height; /* Height of number stack. */
140 int string_height; /* Height of string stack. */
143 /* Stack heights used by different kinds of arguments. */
144 static const struct stack_heights on_number_stack = {1, 0};
145 static const struct stack_heights on_string_stack = {0, 1};
146 static const struct stack_heights not_on_stack = {0, 0};
148 /* Returns the stack heights used by an atom of the given
150 static const struct stack_heights *
151 atom_type_stack (atom_type type)
153 assert (is_atom (type));
159 return &on_number_stack;
162 return &on_string_stack;
172 return ¬_on_stack;
179 /* Measures the stack height needed for node N, supposing that
180 the stack height is initially *HEIGHT and updating *HEIGHT to
181 the final stack height. Updates *MAX, if necessary, to
182 reflect the maximum intermediate or final height. */
184 measure_stack (const union any_node *n,
185 struct stack_heights *height, struct stack_heights *max)
187 const struct stack_heights *return_height;
189 if (is_composite (n->type))
191 struct stack_heights args;
195 for (i = 0; i < n->composite.arg_cnt; i++)
196 measure_stack (n->composite.args[i], &args, max);
198 return_height = atom_type_stack (operations[n->type].returns);
201 return_height = atom_type_stack (n->type);
203 height->number_height += return_height->number_height;
204 height->string_height += return_height->string_height;
206 if (height->number_height > max->number_height)
207 max->number_height = height->number_height;
208 if (height->string_height > max->string_height)
209 max->string_height = height->string_height;
212 /* Allocates stacks within E sufficient for evaluating node N. */
214 allocate_stacks (union any_node *n, struct expression *e)
216 struct stack_heights initial = {0, 0};
217 struct stack_heights max = {0, 0};
219 measure_stack (n, &initial, &max);
220 e->number_stack = pool_alloc (e->expr_pool,
221 sizeof *e->number_stack * max.number_height);
222 e->string_stack = pool_alloc (e->expr_pool,
223 sizeof *e->string_stack * max.string_height);
226 /* Finalizes expression E for evaluating node N. */
227 static struct expression *
228 finish_expression (union any_node *n, struct expression *e)
230 /* Allocate stacks. */
231 allocate_stacks (n, e);
233 /* Output postfix representation. */
236 /* The eval_pool might have been used for allocating strings
237 during optimization. We need to keep those strings around
238 for all subsequent evaluations, so start a new eval_pool. */
239 e->eval_pool = pool_create_subpool (e->expr_pool);
244 /* Verifies that expression E, whose root node is *N, can be
245 converted to type EXPECTED_TYPE, inserting a conversion at *N
246 if necessary. Returns true if successful, false on failure. */
248 type_check (struct expression *e,
249 union any_node **n, enum expr_type expected_type)
251 atom_type actual_type = expr_node_returns (*n);
253 switch (expected_type)
257 if (actual_type != OP_number && actual_type != OP_boolean)
259 msg (SE, _("Type mismatch: expression has %s type, "
260 "but a numeric value is required here."),
261 atom_type_name (actual_type));
264 if (actual_type == OP_number && expected_type == OP_boolean)
265 *n = expr_allocate_unary (e, OP_NUM_TO_BOOLEAN, *n);
269 if (actual_type != OP_string)
271 msg (SE, _("Type mismatch: expression has %s type, "
272 "but a string value is required here."),
273 atom_type_name (actual_type));
285 /* Recursive-descent expression parser. */
287 /* Considers whether *NODE may be coerced to type REQUIRED_TYPE.
288 Returns true if possible, false if disallowed.
290 If DO_COERCION is false, then *NODE is not modified and there
293 If DO_COERCION is true, we perform the coercion if possible,
294 modifying *NODE if necessary. If the coercion is not possible
295 then we free *NODE and set *NODE to a null pointer.
297 This function's interface is somewhat awkward. Use one of the
298 wrapper functions type_coercion(), type_coercion_assert(), or
299 is_coercible() instead. */
301 type_coercion_core (struct expression *e,
302 atom_type required_type,
303 union any_node **node,
304 const char *operator_name,
307 atom_type actual_type;
309 assert (!!do_coercion == (e != NULL));
312 /* Propagate error. Whatever caused the original error
313 already emitted an error message. */
317 actual_type = expr_node_returns (*node);
318 if (actual_type == required_type)
324 switch (required_type)
327 if (actual_type == OP_boolean)
329 /* To enforce strict typing rules, insert Boolean to
330 numeric "conversion". This conversion is a no-op,
331 so it will be removed later. */
333 *node = expr_allocate_unary (e, OP_BOOLEAN_TO_NUM, *node);
339 /* No coercion to string. */
343 if (actual_type == OP_number)
345 /* Convert numeric to boolean. */
348 union any_node *op_name;
350 op_name = expr_allocate_string (e, ss_cstr (operator_name));
351 *node = expr_allocate_binary (e, OP_NUM_TO_BOOLEAN, *node,
363 if ((*node)->type == OP_format
364 && fmt_check_input (&(*node)->format.f)
365 && fmt_check_type_compat (&(*node)->format.f, VAL_NUMERIC))
369 (*node)->type = OP_ni_format;
377 if ((*node)->type == OP_format
378 && fmt_check_output (&(*node)->format.f)
379 && fmt_check_type_compat (&(*node)->format.f, VAL_NUMERIC))
383 (*node)->type = OP_no_format;
390 if ((*node)->type == OP_NUM_VAR)
393 *node = (*node)->composite.args[0];
399 if ((*node)->type == OP_STR_VAR)
402 *node = (*node)->composite.args[0];
408 if ((*node)->type == OP_NUM_VAR || (*node)->type == OP_STR_VAR)
411 *node = (*node)->composite.args[0];
417 if ((*node)->type == OP_number
418 && floor ((*node)->number.n) == (*node)->number.n
419 && (*node)->number.n > 0 && (*node)->number.n < INT_MAX)
422 *node = expr_allocate_pos_int (e, (*node)->number.n);
433 msg (SE, _("Type mismatch while applying %s operator: "
434 "cannot convert %s to %s."),
436 atom_type_name (actual_type), atom_type_name (required_type));
442 /* Coerces *NODE to type REQUIRED_TYPE, and returns success. If
443 *NODE cannot be coerced to the desired type then we issue an
444 error message about operator OPERATOR_NAME and free *NODE. */
446 type_coercion (struct expression *e,
447 atom_type required_type, union any_node **node,
448 const char *operator_name)
450 return type_coercion_core (e, required_type, node, operator_name, true);
453 /* Coerces *NODE to type REQUIRED_TYPE.
454 Assert-fails if the coercion is disallowed. */
456 type_coercion_assert (struct expression *e,
457 atom_type required_type, union any_node **node)
459 int success = type_coercion_core (e, required_type, node, NULL, true);
463 /* Returns true if *NODE may be coerced to type REQUIRED_TYPE,
466 is_coercible (atom_type required_type, union any_node *const *node)
468 return type_coercion_core (NULL, required_type,
469 (union any_node **) node, NULL, false);
472 /* Returns true if ACTUAL_TYPE is a kind of REQUIRED_TYPE, false
475 is_compatible (atom_type required_type, atom_type actual_type)
477 return (required_type == actual_type
478 || (required_type == OP_var
479 && (actual_type == OP_num_var || actual_type == OP_str_var)));
482 /* How to parse an operator. */
485 int token; /* Token representing operator. */
486 operation_type type; /* Operation type representing operation. */
487 const char *name; /* Name of operator. */
490 /* Attempts to match the current token against the tokens for the
491 OP_CNT operators in OPS[]. If successful, returns true
492 and, if OPERATOR is non-null, sets *OPERATOR to the operator.
493 On failure, returns false and, if OPERATOR is non-null, sets
494 *OPERATOR to a null pointer. */
496 match_operator (struct lexer *lexer, const struct operator ops[], size_t op_cnt,
497 const struct operator **operator)
499 const struct operator *op;
501 for (op = ops; op < ops + op_cnt; op++)
503 if (op->token == '-')
504 lex_negative_to_dash (lexer);
505 if (lex_match (lexer, op->token))
507 if (operator != NULL)
512 if (operator != NULL)
518 check_operator (const struct operator *op, int arg_cnt, atom_type arg_type)
520 const struct operation *o;
524 o = &operations[op->type];
525 assert (o->arg_cnt == arg_cnt);
526 assert ((o->flags & OPF_ARRAY_OPERAND) == 0);
527 for (i = 0; i < arg_cnt; i++)
528 assert (is_compatible (arg_type, o->args[i]));
533 check_binary_operators (const struct operator ops[], size_t op_cnt,
538 for (i = 0; i < op_cnt; i++)
539 check_operator (&ops[i], 2, arg_type);
544 get_operand_type (const struct operator *op)
546 return operations[op->type].args[0];
549 /* Parses a chain of left-associative operator/operand pairs.
550 There are OP_CNT operators, specified in OPS[]. The
551 operators' operands must all be the same type. The next
552 higher level is parsed by PARSE_NEXT_LEVEL. If CHAIN_WARNING
553 is non-null, then it will be issued as a warning if more than
554 one operator/operand pair is parsed. */
555 static union any_node *
556 parse_binary_operators (struct lexer *lexer, struct expression *e, union any_node *node,
557 const struct operator ops[], size_t op_cnt,
558 parse_recursively_func *parse_next_level,
559 const char *chain_warning)
561 atom_type operand_type = get_operand_type (&ops[0]);
563 const struct operator *operator;
565 assert (check_binary_operators (ops, op_cnt, operand_type));
569 for (op_count = 0; match_operator (lexer, ops, op_cnt, &operator); op_count++)
573 /* Convert the left-hand side to type OPERAND_TYPE. */
574 if (!type_coercion (e, operand_type, &node, operator->name))
577 /* Parse the right-hand side and coerce to type
579 rhs = parse_next_level (lexer, e);
580 if (!type_coercion (e, operand_type, &rhs, operator->name))
582 node = expr_allocate_binary (e, operator->type, node, rhs);
585 if (op_count > 1 && chain_warning != NULL)
586 msg (SW, "%s", chain_warning);
591 static union any_node *
592 parse_inverting_unary_operator (struct lexer *lexer, struct expression *e,
593 const struct operator *op,
594 parse_recursively_func *parse_next_level)
596 union any_node *node;
599 check_operator (op, 1, get_operand_type (op));
602 while (match_operator (lexer, op, 1, NULL))
605 node = parse_next_level (lexer, e);
607 && type_coercion (e, get_operand_type (op), &node, op->name)
608 && op_count % 2 != 0)
609 return expr_allocate_unary (e, op->type, node);
614 /* Parses the OR level. */
615 static union any_node *
616 parse_or (struct lexer *lexer, struct expression *e)
618 static const struct operator op =
619 { T_OR, OP_OR, "logical disjunction (\"OR\")" };
621 return parse_binary_operators (lexer, e, parse_and (lexer, e), &op, 1, parse_and, NULL);
624 /* Parses the AND level. */
625 static union any_node *
626 parse_and (struct lexer *lexer, struct expression *e)
628 static const struct operator op =
629 { T_AND, OP_AND, "logical conjunction (\"AND\")" };
631 return parse_binary_operators (lexer, e, parse_not (lexer, e),
632 &op, 1, parse_not, NULL);
635 /* Parses the NOT level. */
636 static union any_node *
637 parse_not (struct lexer *lexer, struct expression *e)
639 static const struct operator op
640 = { T_NOT, OP_NOT, "logical negation (\"NOT\")" };
641 return parse_inverting_unary_operator (lexer, e, &op, parse_rel);
644 /* Parse relational operators. */
645 static union any_node *
646 parse_rel (struct lexer *lexer, struct expression *e)
648 const char *chain_warning =
649 _("Chaining relational operators (e.g. \"a < b < c\") will "
650 "not produce the mathematically expected result. "
651 "Use the AND logical operator to fix the problem "
652 "(e.g. \"a < b AND b < c\"). "
653 "If chaining is really intended, parentheses will disable "
654 "this warning (e.g. \"(a < b) < c\".)");
656 union any_node *node = parse_add (lexer, e);
661 switch (expr_node_returns (node))
666 static const struct operator ops[] =
668 { '=', OP_EQ, "numeric equality (\"=\")" },
669 { T_EQ, OP_EQ, "numeric equality (\"EQ\")" },
670 { T_GE, OP_GE, "numeric greater-than-or-equal-to (\">=\")" },
671 { T_GT, OP_GT, "numeric greater than (\">\")" },
672 { T_LE, OP_LE, "numeric less-than-or-equal-to (\"<=\")" },
673 { T_LT, OP_LT, "numeric less than (\"<\")" },
674 { T_NE, OP_NE, "numeric inequality (\"<>\")" },
677 return parse_binary_operators (lexer, e, node, ops,
678 sizeof ops / sizeof *ops,
679 parse_add, chain_warning);
684 static const struct operator ops[] =
686 { '=', OP_EQ_STRING, "string equality (\"=\")" },
687 { T_EQ, OP_EQ_STRING, "string equality (\"EQ\")" },
688 { T_GE, OP_GE_STRING, "string greater-than-or-equal-to (\">=\")" },
689 { T_GT, OP_GT_STRING, "string greater than (\">\")" },
690 { T_LE, OP_LE_STRING, "string less-than-or-equal-to (\"<=\")" },
691 { T_LT, OP_LT_STRING, "string less than (\"<\")" },
692 { T_NE, OP_NE_STRING, "string inequality (\"<>\")" },
695 return parse_binary_operators (lexer, e, node, ops,
696 sizeof ops / sizeof *ops,
697 parse_add, chain_warning);
705 /* Parses the addition and subtraction level. */
706 static union any_node *
707 parse_add (struct lexer *lexer, struct expression *e)
709 static const struct operator ops[] =
711 { '+', OP_ADD, "addition (\"+\")" },
712 { '-', OP_SUB, "subtraction (\"-\")" },
715 return parse_binary_operators (lexer, e, parse_mul (lexer, e),
716 ops, sizeof ops / sizeof *ops,
720 /* Parses the multiplication and division level. */
721 static union any_node *
722 parse_mul (struct lexer *lexer, struct expression *e)
724 static const struct operator ops[] =
726 { '*', OP_MUL, "multiplication (\"*\")" },
727 { '/', OP_DIV, "division (\"/\")" },
730 return parse_binary_operators (lexer, e, parse_neg (lexer, e),
731 ops, sizeof ops / sizeof *ops,
735 /* Parses the unary minus level. */
736 static union any_node *
737 parse_neg (struct lexer *lexer, struct expression *e)
739 static const struct operator op = { '-', OP_NEG, "negation (\"-\")" };
740 return parse_inverting_unary_operator (lexer, e, &op, parse_exp);
743 static union any_node *
744 parse_exp (struct lexer *lexer, struct expression *e)
746 static const struct operator op =
747 { T_EXP, OP_POW, "exponentiation (\"**\")" };
749 const char *chain_warning =
750 _("The exponentiation operator (\"**\") is left-associative, "
751 "even though right-associative semantics are more useful. "
752 "That is, \"a**b**c\" equals \"(a**b)**c\", not as \"a**(b**c)\". "
753 "To disable this warning, insert parentheses.");
755 return parse_binary_operators (lexer, e, parse_primary (lexer, e), &op, 1,
756 parse_primary, chain_warning);
759 /* Parses system variables. */
760 static union any_node *
761 parse_sysvar (struct lexer *lexer, struct expression *e)
763 if (lex_match_id (lexer, "$CASENUM"))
764 return expr_allocate_nullary (e, OP_CASENUM);
765 else if (lex_match_id (lexer, "$DATE"))
767 static const char *months[12] =
769 "JAN", "FEB", "MAR", "APR", "MAY", "JUN",
770 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC",
773 time_t last_proc_time = time_of_last_procedure (e->ds);
777 time = localtime (&last_proc_time);
778 sprintf (temp_buf, "%02d %s %02d", abs (time->tm_mday) % 100,
779 months[abs (time->tm_mon) % 12], abs (time->tm_year) % 100);
781 return expr_allocate_string_buffer (e, temp_buf, strlen (temp_buf));
783 else if (lex_match_id (lexer, "$TRUE"))
784 return expr_allocate_boolean (e, 1.0);
785 else if (lex_match_id (lexer, "$FALSE"))
786 return expr_allocate_boolean (e, 0.0);
787 else if (lex_match_id (lexer, "$SYSMIS"))
788 return expr_allocate_number (e, SYSMIS);
789 else if (lex_match_id (lexer, "$JDATE"))
791 time_t time = time_of_last_procedure (e->ds);
792 struct tm *tm = localtime (&time);
793 return expr_allocate_number (e, expr_ymd_to_ofs (tm->tm_year + 1900,
797 else if (lex_match_id (lexer, "$TIME"))
799 time_t time = time_of_last_procedure (e->ds);
800 struct tm *tm = localtime (&time);
801 return expr_allocate_number (e,
802 expr_ymd_to_date (tm->tm_year + 1900,
805 + tm->tm_hour * 60 * 60.
809 else if (lex_match_id (lexer, "$LENGTH"))
810 return expr_allocate_number (e, settings_get_viewlength ());
811 else if (lex_match_id (lexer, "$WIDTH"))
812 return expr_allocate_number (e, settings_get_viewwidth ());
815 msg (SE, _("Unknown system variable %s."), lex_tokid (lexer));
820 /* Parses numbers, varnames, etc. */
821 static union any_node *
822 parse_primary (struct lexer *lexer, struct expression *e)
824 switch (lex_token (lexer))
827 if (lex_look_ahead (lexer) == '(')
829 /* An identifier followed by a left parenthesis may be
830 a vector element reference. If not, it's a function
832 if (e->ds != NULL && dict_lookup_vector (dataset_dict (e->ds), lex_tokid (lexer)) != NULL)
833 return parse_vector_element (lexer, e);
835 return parse_function (lexer, e);
837 else if (lex_tokid (lexer)[0] == '$')
839 /* $ at the beginning indicates a system variable. */
840 return parse_sysvar (lexer, e);
842 else if (e->ds != NULL && dict_lookup_var (dataset_dict (e->ds), lex_tokid (lexer)))
844 /* It looks like a user variable.
845 (It could be a format specifier, but we'll assume
846 it's a variable unless proven otherwise. */
847 return allocate_unary_variable (e, parse_variable (lexer, dataset_dict (e->ds)));
851 /* Try to parse it as a format specifier. */
856 ok = parse_format_specifier (lexer, &fmt);
860 return expr_allocate_format (e, &fmt);
862 /* All attempts failed. */
863 msg (SE, _("Unknown identifier %s."), lex_tokid (lexer));
871 union any_node *node = expr_allocate_number (e, lex_tokval (lexer) );
878 union any_node *node = expr_allocate_string_buffer (
879 e, ds_cstr (lex_tokstr (lexer) ), ds_length (lex_tokstr (lexer) ));
886 union any_node *node;
888 node = parse_or (lexer, e);
889 if (node != NULL && !lex_match (lexer, ')'))
891 lex_error (lexer, _("expecting `)'"));
898 lex_error (lexer, _("in expression"));
903 static union any_node *
904 parse_vector_element (struct lexer *lexer, struct expression *e)
906 const struct vector *vector;
907 union any_node *element;
909 /* Find vector, skip token.
910 The caller must already have verified that the current token
911 is the name of a vector. */
912 vector = dict_lookup_vector (dataset_dict (e->ds), lex_tokid (lexer));
913 assert (vector != NULL);
916 /* Skip left parenthesis token.
917 The caller must have verified that the lookahead is a left
919 assert (lex_token (lexer) == '(');
922 element = parse_or (lexer, e);
923 if (!type_coercion (e, OP_number, &element, "vector indexing")
924 || !lex_match (lexer, ')'))
927 return expr_allocate_binary (e, (vector_get_type (vector) == VAL_NUMERIC
928 ? OP_VEC_ELEM_NUM : OP_VEC_ELEM_STR),
929 element, expr_allocate_vector (e, vector));
932 /* Individual function parsing. */
934 const struct operation operations[OP_first + OP_cnt] = {
939 word_matches (const char **test, const char **name)
941 size_t test_len = strcspn (*test, ".");
942 size_t name_len = strcspn (*name, ".");
943 if (test_len == name_len)
945 if (buf_compare_case (*test, *name, test_len))
948 else if (test_len < 3 || test_len > name_len)
952 if (buf_compare_case (*test, *name, test_len))
958 if (**test != **name)
970 compare_names (const char *test, const char *name, bool abbrev_ok)
977 if (!word_matches (&test, &name))
979 if (*name == '\0' && *test == '\0')
985 compare_strings (const char *test, const char *name, bool abbrev_ok UNUSED)
987 return strcasecmp (test, name);
991 lookup_function_helper (const char *name,
992 int (*compare) (const char *test, const char *name,
994 const struct operation **first,
995 const struct operation **last)
997 const struct operation *f;
999 for (f = operations + OP_function_first;
1000 f <= operations + OP_function_last; f++)
1001 if (!compare (name, f->name, !(f->flags & OPF_NO_ABBREV)))
1005 while (f <= operations + OP_function_last
1006 && !compare (name, f->name, !(f->flags & OPF_NO_ABBREV)))
1017 lookup_function (const char *name,
1018 const struct operation **first,
1019 const struct operation **last)
1021 *first = *last = NULL;
1022 return (lookup_function_helper (name, compare_strings, first, last)
1023 || lookup_function_helper (name, compare_names, first, last));
1027 extract_min_valid (char *s)
1029 char *p = strrchr (s, '.');
1031 || p[1] < '0' || p[1] > '9'
1032 || strspn (p + 1, "0123456789") != strlen (p + 1))
1035 return atoi (p + 1);
1039 function_arg_type (const struct operation *f, size_t arg_idx)
1041 assert (arg_idx < f->arg_cnt || (f->flags & OPF_ARRAY_OPERAND));
1043 return f->args[arg_idx < f->arg_cnt ? arg_idx : f->arg_cnt - 1];
1047 match_function (union any_node **args, int arg_cnt, const struct operation *f)
1051 if (arg_cnt < f->arg_cnt
1052 || (arg_cnt > f->arg_cnt && (f->flags & OPF_ARRAY_OPERAND) == 0)
1053 || arg_cnt - (f->arg_cnt - 1) < f->array_min_elems)
1056 for (i = 0; i < arg_cnt; i++)
1057 if (!is_coercible (function_arg_type (f, i), &args[i]))
1064 coerce_function_args (struct expression *e, const struct operation *f,
1065 union any_node **args, size_t arg_cnt)
1069 for (i = 0; i < arg_cnt; i++)
1070 type_coercion_assert (e, function_arg_type (f, i), &args[i]);
1074 validate_function_args (const struct operation *f, int arg_cnt, int min_valid)
1076 int array_arg_cnt = arg_cnt - (f->arg_cnt - 1);
1077 if (array_arg_cnt < f->array_min_elems)
1079 msg (SE, _("%s must have at least %d arguments in list."),
1080 f->prototype, f->array_min_elems);
1084 if ((f->flags & OPF_ARRAY_OPERAND)
1085 && array_arg_cnt % f->array_granularity != 0)
1087 if (f->array_granularity == 2)
1088 msg (SE, _("%s must have even number of arguments in list."),
1091 msg (SE, _("%s must have multiple of %d arguments in list."),
1092 f->prototype, f->array_granularity);
1096 if (min_valid != -1)
1098 if (f->array_min_elems == 0)
1100 assert ((f->flags & OPF_MIN_VALID) == 0);
1101 msg (SE, _("%s function does not accept a minimum valid "
1102 "argument count."), f->prototype);
1107 assert (f->flags & OPF_MIN_VALID);
1108 if (array_arg_cnt < f->array_min_elems)
1110 msg (SE, _("%s requires at least %d valid arguments in list."),
1111 f->prototype, f->array_min_elems);
1114 else if (min_valid > array_arg_cnt)
1116 msg (SE, _("With %s, "
1117 "using minimum valid argument count of %d "
1118 "does not make sense when passing only %d "
1119 "arguments in list."),
1120 f->prototype, min_valid, array_arg_cnt);
1130 add_arg (union any_node ***args, int *arg_cnt, int *arg_cap,
1131 union any_node *arg)
1133 if (*arg_cnt >= *arg_cap)
1136 *args = xrealloc (*args, sizeof **args * *arg_cap);
1139 (*args)[(*arg_cnt)++] = arg;
1143 put_invocation (struct string *s,
1144 const char *func_name, union any_node **args, size_t arg_cnt)
1148 ds_put_format (s, "%s(", func_name);
1149 for (i = 0; i < arg_cnt; i++)
1152 ds_put_cstr (s, ", ");
1153 ds_put_cstr (s, operations[expr_node_returns (args[i])].prototype);
1155 ds_put_char (s, ')');
1159 no_match (const char *func_name,
1160 union any_node **args, size_t arg_cnt,
1161 const struct operation *first, const struct operation *last)
1164 const struct operation *f;
1168 if (last - first == 1)
1170 ds_put_format (&s, _("Type mismatch invoking %s as "), first->prototype);
1171 put_invocation (&s, func_name, args, arg_cnt);
1175 ds_put_cstr (&s, _("Function invocation "));
1176 put_invocation (&s, func_name, args, arg_cnt);
1177 ds_put_cstr (&s, _(" does not match any known function. Candidates are:"));
1179 for (f = first; f < last; f++)
1180 ds_put_format (&s, "\n%s", f->prototype);
1182 ds_put_char (&s, '.');
1184 msg (SE, "%s", ds_cstr (&s));
1189 static union any_node *
1190 parse_function (struct lexer *lexer, struct expression *e)
1193 const struct operation *f, *first, *last;
1195 union any_node **args = NULL;
1199 struct string func_name;
1203 ds_init_string (&func_name, lex_tokstr (lexer));
1204 min_valid = extract_min_valid (ds_cstr (lex_tokstr (lexer)));
1205 if (!lookup_function (ds_cstr (lex_tokstr (lexer)), &first, &last))
1207 msg (SE, _("No function or vector named %s."), ds_cstr (lex_tokstr (lexer)));
1208 ds_destroy (&func_name);
1213 if (!lex_force_match (lexer, '('))
1215 ds_destroy (&func_name);
1220 arg_cnt = arg_cap = 0;
1221 if (lex_token (lexer) != ')')
1224 if (lex_token (lexer) == T_ID
1225 && toupper (lex_look_ahead (lexer)) == 'T')
1227 const struct variable **vars;
1231 if (!parse_variables_const (lexer, dataset_dict (e->ds), &vars, &var_cnt, PV_SINGLE))
1233 for (i = 0; i < var_cnt; i++)
1234 add_arg (&args, &arg_cnt, &arg_cap,
1235 allocate_unary_variable (e, vars[i]));
1240 union any_node *arg = parse_or (lexer, e);
1244 add_arg (&args, &arg_cnt, &arg_cap, arg);
1246 if (lex_match (lexer, ')'))
1248 else if (!lex_match (lexer, ','))
1250 lex_error (lexer, _("expecting `,' or `)' invoking %s function"),
1256 for (f = first; f < last; f++)
1257 if (match_function (args, arg_cnt, f))
1261 no_match (ds_cstr (&func_name), args, arg_cnt, first, last);
1265 coerce_function_args (e, f, args, arg_cnt);
1266 if (!validate_function_args (f, arg_cnt, min_valid))
1269 if ((f->flags & OPF_EXTENSION) && settings_get_syntax () == COMPATIBLE)
1270 msg (SW, _("%s is a PSPP extension."), f->prototype);
1271 if (f->flags & OPF_UNIMPLEMENTED)
1273 msg (SE, _("%s is not yet implemented."), f->prototype);
1276 if ((f->flags & OPF_PERM_ONLY) &&
1277 proc_in_temporary_transformations (e->ds))
1279 msg (SE, _("%s may not appear after TEMPORARY."), f->prototype);
1283 n = expr_allocate_composite (e, f - operations, args, arg_cnt);
1284 n->composite.min_valid = min_valid != -1 ? min_valid : f->array_min_elems;
1286 if (n->type == OP_LAG_Vn || n->type == OP_LAG_Vs)
1287 dataset_need_lag (e->ds, 1);
1288 else if (n->type == OP_LAG_Vnn || n->type == OP_LAG_Vsn)
1291 assert (n->composite.arg_cnt == 2);
1292 assert (n->composite.args[1]->type == OP_pos_int);
1293 n_before = n->composite.args[1]->integer.i;
1294 dataset_need_lag (e->ds, n_before);
1298 ds_destroy (&func_name);
1303 ds_destroy (&func_name);
1307 /* Utility functions. */
1309 static struct expression *
1310 expr_create (struct dataset *ds)
1312 struct pool *pool = pool_create ();
1313 struct expression *e = pool_alloc (pool, sizeof *e);
1314 e->expr_pool = pool;
1316 e->eval_pool = pool_create_subpool (e->expr_pool);
1319 e->op_cnt = e->op_cap = 0;
1324 expr_node_returns (const union any_node *n)
1327 assert (is_operation (n->type));
1328 if (is_atom (n->type))
1330 else if (is_composite (n->type))
1331 return operations[n->type].returns;
1337 atom_type_name (atom_type type)
1339 assert (is_atom (type));
1340 return operations[type].name;
1344 expr_allocate_nullary (struct expression *e, operation_type op)
1346 return expr_allocate_composite (e, op, NULL, 0);
1350 expr_allocate_unary (struct expression *e, operation_type op,
1351 union any_node *arg0)
1353 return expr_allocate_composite (e, op, &arg0, 1);
1357 expr_allocate_binary (struct expression *e, operation_type op,
1358 union any_node *arg0, union any_node *arg1)
1360 union any_node *args[2];
1363 return expr_allocate_composite (e, op, args, 2);
1367 is_valid_node (union any_node *n)
1369 const struct operation *op;
1373 assert (is_operation (n->type));
1374 op = &operations[n->type];
1376 if (!is_atom (n->type))
1378 struct composite_node *c = &n->composite;
1380 assert (is_composite (n->type));
1381 assert (c->arg_cnt >= op->arg_cnt);
1382 for (i = 0; i < op->arg_cnt; i++)
1383 assert (is_compatible (op->args[i], expr_node_returns (c->args[i])));
1384 if (c->arg_cnt > op->arg_cnt && !is_operator (n->type))
1386 assert (op->flags & OPF_ARRAY_OPERAND);
1387 for (i = 0; i < c->arg_cnt; i++)
1388 assert (is_compatible (op->args[op->arg_cnt - 1],
1389 expr_node_returns (c->args[i])));
1397 expr_allocate_composite (struct expression *e, operation_type op,
1398 union any_node **args, size_t arg_cnt)
1403 n = pool_alloc (e->expr_pool, sizeof n->composite);
1405 n->composite.arg_cnt = arg_cnt;
1406 n->composite.args = pool_alloc (e->expr_pool,
1407 sizeof *n->composite.args * arg_cnt);
1408 for (i = 0; i < arg_cnt; i++)
1410 if (args[i] == NULL)
1412 n->composite.args[i] = args[i];
1414 memcpy (n->composite.args, args, sizeof *n->composite.args * arg_cnt);
1415 n->composite.min_valid = 0;
1416 assert (is_valid_node (n));
1421 expr_allocate_number (struct expression *e, double d)
1423 union any_node *n = pool_alloc (e->expr_pool, sizeof n->number);
1424 n->type = OP_number;
1430 expr_allocate_boolean (struct expression *e, double b)
1432 union any_node *n = pool_alloc (e->expr_pool, sizeof n->number);
1433 assert (b == 0.0 || b == 1.0 || b == SYSMIS);
1434 n->type = OP_boolean;
1440 expr_allocate_integer (struct expression *e, int i)
1442 union any_node *n = pool_alloc (e->expr_pool, sizeof n->integer);
1443 n->type = OP_integer;
1449 expr_allocate_pos_int (struct expression *e, int i)
1451 union any_node *n = pool_alloc (e->expr_pool, sizeof n->integer);
1453 n->type = OP_pos_int;
1459 expr_allocate_vector (struct expression *e, const struct vector *vector)
1461 union any_node *n = pool_alloc (e->expr_pool, sizeof n->vector);
1462 n->type = OP_vector;
1463 n->vector.v = vector;
1468 expr_allocate_string_buffer (struct expression *e,
1469 const char *string, size_t length)
1471 union any_node *n = pool_alloc (e->expr_pool, sizeof n->string);
1472 n->type = OP_string;
1473 if (length > MAX_STRING)
1474 length = MAX_STRING;
1475 n->string.s = copy_string (e, string, length);
1480 expr_allocate_string (struct expression *e, struct substring s)
1482 union any_node *n = pool_alloc (e->expr_pool, sizeof n->string);
1483 n->type = OP_string;
1489 expr_allocate_variable (struct expression *e, const struct variable *v)
1491 union any_node *n = pool_alloc (e->expr_pool, sizeof n->variable);
1492 n->type = var_is_numeric (v) ? OP_num_var : OP_str_var;
1498 expr_allocate_format (struct expression *e, const struct fmt_spec *format)
1500 union any_node *n = pool_alloc (e->expr_pool, sizeof n->format);
1501 n->type = OP_format;
1502 n->format.f = *format;
1506 /* Allocates a unary composite node that represents the value of
1507 variable V in expression E. */
1508 static union any_node *
1509 allocate_unary_variable (struct expression *e, const struct variable *v)
1512 return expr_allocate_unary (e, var_is_numeric (v) ? OP_NUM_VAR : OP_STR_VAR,
1513 expr_allocate_variable (e, v));
1516 /* Export function details to other modules. */
1518 /* Returns the operation structure for the function with the
1520 const struct operation *
1521 expr_get_function (size_t idx)
1523 assert (idx < OP_function_cnt);
1524 return &operations[OP_function_first + idx];
1527 /* Returns the number of expression functions. */
1529 expr_get_function_cnt (void)
1531 return OP_function_cnt;
1534 /* Returns the name of operation OP. */
1536 expr_operation_get_name (const struct operation *op)
1541 /* Returns the human-readable prototype for operation OP. */
1543 expr_operation_get_prototype (const struct operation *op)
1545 return op->prototype;
1548 /* Returns the number of arguments for operation OP. */
1550 expr_operation_get_arg_cnt (const struct operation *op)