1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 1997-9, 2000 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include <libpspp/assertion.h>
24 #include <data/calendar.h>
25 #include <data/data-in.h>
26 #include <libpspp/message.h>
29 #include <libpspp/misc.h>
30 #include <libpspp/pool.h>
32 #include <libpspp/str.h>
33 #include <data/variable.h>
37 static union any_node *evaluate_tree (struct composite_node *,
39 static union any_node *optimize_tree (union any_node *, struct expression *);
42 expr_optimize (union any_node *node, struct expression *e)
44 int nonconst_cnt = 0; /* Number of nonconstant children. */
45 int sysmis_cnt = 0; /* Number of system-missing children. */
46 const struct operation *op;
47 struct composite_node *c;
50 /* We can't optimize an atom. */
51 if (is_atom (node->type))
54 /* Start by optimizing all the children. */
56 for (i = 0; i < c->arg_cnt; i++)
58 c->args[i] = expr_optimize (c->args[i], e);
59 if (c->args[i]->type == OP_number)
61 if (c->args[i]->number.n == SYSMIS)
65 if (!is_atom (c->args[i]->type))
69 op = &operations[c->type];
70 if (sysmis_cnt && (op->flags & OPF_ABSORB_MISS) == 0)
72 /* Most operations produce SYSMIS given any SYSMIS
74 assert (op->returns == OP_number || op->returns == OP_boolean);
75 if (op->returns == OP_number)
76 return expr_allocate_number (e, SYSMIS);
78 return expr_allocate_boolean (e, SYSMIS);
80 else if (!nonconst_cnt && (op->flags & OPF_NONOPTIMIZABLE) == 0)
82 /* Evaluate constant expressions. */
83 return evaluate_tree (&node->composite, e);
87 /* A few optimization possibilities are still left. */
88 return optimize_tree (node, e);
93 eq_double (union any_node *node, double n)
95 return node->type == OP_number && node->number.n == n;
98 static union any_node *
99 optimize_tree (union any_node *node, struct expression *e)
101 struct composite_node *n = &node->composite;
102 assert (is_composite (node->type));
104 /* If you add to these optimizations, please also add a
105 correctness test in tests/expressions/expressions.sh. */
107 /* x+0, x-0, 0+x => x. */
108 if ((n->type == OP_ADD || n->type == OP_SUB) && eq_double (n->args[1], 0.))
110 else if (n->type == OP_ADD && eq_double (n->args[0], 0.))
113 /* x*1, x/1, 1*x => x. */
114 else if ((n->type == OP_MUL || n->type == OP_DIV)
115 && eq_double (n->args[1], 1.))
117 else if (n->type == OP_MUL && eq_double (n->args[0], 1.))
120 /* 0*x, 0/x, x*0, MOD(0,x) => 0. */
121 else if (((n->type == OP_MUL || n->type == OP_DIV || n->type == OP_MOD_nn)
122 && eq_double (n->args[0], 0.))
123 || (n->type == OP_MUL && eq_double (n->args[1], 0.)))
124 return expr_allocate_number (e, 0.);
127 else if (n->type == OP_POW && eq_double (n->args[1], 1))
130 /* x**2 => SQUARE(x). */
131 else if (n->type == OP_POW && eq_double (n->args[1], 2))
132 return expr_allocate_unary (e, OP_SQUARE, n->args[0]);
134 /* Otherwise, nothing to do. */
139 static double get_number_arg (struct composite_node *, size_t arg_idx);
140 static double *get_number_args (struct composite_node *,
141 size_t arg_idx, size_t arg_cnt,
142 struct expression *);
143 static struct substring get_string_arg (struct composite_node *,
145 static struct substring *get_string_args (struct composite_node *,
146 size_t arg_idx, size_t arg_cnt,
147 struct expression *);
148 static const struct fmt_spec *get_format_arg (struct composite_node *,
151 static union any_node *
152 evaluate_tree (struct composite_node *node, struct expression *e)
156 #include "optimize.inc"
166 get_number_arg (struct composite_node *c, size_t arg_idx)
168 assert (arg_idx < c->arg_cnt);
169 assert (c->args[arg_idx]->type == OP_number
170 || c->args[arg_idx]->type == OP_boolean);
171 return c->args[arg_idx]->number.n;
175 get_number_args (struct composite_node *c, size_t arg_idx, size_t arg_cnt,
176 struct expression *e)
181 d = pool_alloc (e->expr_pool, sizeof *d * arg_cnt);
182 for (i = 0; i < arg_cnt; i++)
183 d[i] = get_number_arg (c, i + arg_idx);
187 static struct substring
188 get_string_arg (struct composite_node *c, size_t arg_idx)
190 assert (arg_idx < c->arg_cnt);
191 assert (c->args[arg_idx]->type == OP_string);
192 return c->args[arg_idx]->string.s;
195 static struct substring *
196 get_string_args (struct composite_node *c, size_t arg_idx, size_t arg_cnt,
197 struct expression *e)
202 s = pool_alloc (e->expr_pool, sizeof *s * arg_cnt);
203 for (i = 0; i < arg_cnt; i++)
204 s[i] = get_string_arg (c, i + arg_idx);
208 static const struct fmt_spec *
209 get_format_arg (struct composite_node *c, size_t arg_idx)
211 assert (arg_idx < c->arg_cnt);
212 assert (c->args[arg_idx]->type == OP_ni_format
213 || c->args[arg_idx]->type == OP_no_format);
214 return &c->args[arg_idx]->format.f;
217 /* Expression flattening. */
219 static union operation_data *allocate_aux (struct expression *,
221 static void flatten_node (union any_node *, struct expression *);
224 emit_operation (struct expression *e, operation_type type)
226 allocate_aux (e, OP_operation)->operation = type;
230 emit_number (struct expression *e, double n)
232 allocate_aux (e, OP_number)->number = n;
236 emit_string (struct expression *e, struct substring s)
238 allocate_aux (e, OP_string)->string = s;
242 emit_format (struct expression *e, const struct fmt_spec *f)
244 allocate_aux (e, OP_format)->format = pool_clone (e->expr_pool,
249 emit_variable (struct expression *e, const struct variable *v)
251 allocate_aux (e, OP_variable)->variable = v;
255 emit_vector (struct expression *e, const struct vector *v)
257 allocate_aux (e, OP_vector)->vector = v;
261 emit_integer (struct expression *e, int i)
263 allocate_aux (e, OP_integer)->integer = i;
267 expr_flatten (union any_node *n, struct expression *e)
270 e->type = expr_node_returns (n);
271 emit_operation (e, (e->type == OP_string
272 ? OP_return_string : OP_return_number));
276 flatten_atom (union any_node *n, struct expression *e)
282 emit_operation (e, OP_number);
283 emit_number (e, n->number.n);
287 emit_operation (e, OP_string);
288 emit_string (e, n->string.s);
297 /* These are passed as aux data following the
307 flatten_composite (union any_node *n, struct expression *e)
309 const struct operation *op = &operations[n->type];
312 for (i = 0; i < n->composite.arg_cnt; i++)
313 flatten_node (n->composite.args[i], e);
315 if (n->type != OP_BOOLEAN_TO_NUM)
316 emit_operation (e, n->type);
318 for (i = 0; i < n->composite.arg_cnt; i++)
320 union any_node *arg = n->composite.args[i];
325 emit_variable (e, arg->variable.v);
329 emit_vector (e, arg->vector.v);
334 emit_format (e, &arg->format.f);
338 emit_integer (e, arg->integer.i);
347 if (op->flags & OPF_ARRAY_OPERAND)
348 emit_integer (e, n->composite.arg_cnt - op->arg_cnt + 1);
349 if (op->flags & OPF_MIN_VALID)
350 emit_integer (e, n->composite.min_valid);
354 flatten_node (union any_node *n, struct expression *e)
356 assert (is_operation (n->type));
358 if (is_atom (n->type))
360 else if (is_composite (n->type))
361 flatten_composite (n, e);
366 static union operation_data *
367 allocate_aux (struct expression *e, operation_type type)
369 if (e->op_cnt >= e->op_cap)
371 e->op_cap = (e->op_cap + 8) * 3 / 2;
372 e->ops = pool_realloc (e->expr_pool, e->ops, sizeof *e->ops * e->op_cap);
373 e->op_types = pool_realloc (e->expr_pool, e->op_types,
374 sizeof *e->op_types * e->op_cap);
377 e->op_types[e->op_cnt] = type;
378 return &e->ops[e->op_cnt++];