3 // PSPP - a program for statistical analysis.
4 // Copyright (C) 2005, 2006 Free Software Foundation, Inc.
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
19 operator NEG (x) = -x;
21 operator ADD (a, b) = a + b;
22 operator SUB (a, b) = a - b;
24 absorb_miss operator MUL (a, b)
25 = (a == 0. || b == 0. ? 0.
26 : a == SYSMIS || b == SYSMIS ? SYSMIS
29 absorb_miss operator DIV (a, b)
31 : a == SYSMIS || b == SYSMIS ? SYSMIS
34 absorb_miss operator POW (a, b)
35 = (a == SYSMIS ? (b == 0. ? 1. : a)
36 : b == SYSMIS ? (a == 0. ? 0. : SYSMIS)
37 : a == 0. && b <= 0. ? SYSMIS
40 absorb_miss boolean operator AND (boolean a, boolean b)
43 : b == SYSMIS ? SYSMIS
46 absorb_miss boolean operator OR (boolean a, boolean b)
49 : b == SYSMIS ? SYSMIS
52 boolean operator NOT (boolean a)
57 // Numeric relational operators.
58 boolean operator EQ (a, b) = a == b;
59 boolean operator GE (a, b) = a >= b;
60 boolean operator GT (a, b) = a > b;
61 boolean operator LE (a, b) = a <= b;
62 boolean operator LT (a, b) = a < b;
63 boolean operator NE (a, b) = a != b;
65 // String relational operators.
66 boolean operator EQ_STRING (string a, string b) = compare_string (&a, &b) == 0;
67 boolean operator GE_STRING (string a, string b) = compare_string (&a, &b) >= 0;
68 boolean operator GT_STRING (string a, string b) = compare_string (&a, &b) > 0;
69 boolean operator LE_STRING (string a, string b) = compare_string (&a, &b) <= 0;
70 boolean operator LT_STRING (string a, string b) = compare_string (&a, &b) < 0;
71 boolean operator NE_STRING (string a, string b) = compare_string (&a, &b) != 0;
74 function ABS (x) = fabs (x);
75 extension function ACOS (x >= -1 && x <= 1) = acos (x);
76 function ASIN (x >= -1 && x <= 1) = asin (x);
77 function ATAN (x) = atan (x);
78 extension function ARCOS (x >= -1 && x <= 1) = acos (x);
79 function ARSIN (x >= -1 && x <= 1) = asin (x);
80 function ARTAN (x) = atan (x);
81 function COS (x) = cos (x);
82 function EXP (x) = check_errno (exp (x));
83 function LG10(x) = check_errno (log10 (x));
84 function LN (x) = check_errno (log (x));
85 function LNGAMMA (x >= 0) = gsl_sf_lngamma (x);
86 function MOD10 (x) = fmod (x, 10);
87 function RND (x) = x >= 0. ? floor (x + .5) : -floor (-x + .5);
88 function SIN (x) = sin (x);
89 function SQRT (x >= 0) = sqrt (x);
90 function TAN (x) = check_errno (tan (x));
91 function TRUNC (x) = x >= 0. ? floor (x) : -floor (-x);
93 absorb_miss function MOD (n, d)
96 return n != SYSMIS ? fmod (n, d) : SYSMIS;
98 return n != 0. ? SYSMIS : 0.;
101 // N-ary numeric functions.
102 absorb_miss boolean function ANY (x != SYSMIS, a[n])
107 for (i = 0; i < n; i++)
110 else if (a[i] == SYSMIS)
113 return sysmis ? SYSMIS : 0.;
116 boolean function ANY (string x, string a[n])
120 for (i = 0; i < n; i++)
121 if (!compare_string (&x, &a[i]))
126 function CFVAR.2 (a[n])
128 double mean, variance;
130 moments_of_doubles (a, n, NULL, &mean, &variance, NULL, NULL);
132 if (mean == SYSMIS || mean == 0 || variance == SYSMIS)
135 return sqrt (variance) / mean;
138 function MAX.1 (a[n])
144 for (i = 0; i < n; i++)
145 if (a[i] != SYSMIS && a[i] > max)
150 string function MAX (string a[n])
152 struct substring *max;
156 for (i = 1; i < n; i++)
157 if (compare_string (&a[i], max) > 0)
162 function MEAN.1 (a[n])
165 moments_of_doubles (a, n, NULL, &mean, NULL, NULL, NULL);
169 function MIN.1 (a[n])
175 for (i = 0; i < n; i++)
176 if (a[i] != SYSMIS && a[i] < min)
181 string function MIN (string a[n])
183 struct substring *min;
187 for (i = 1; i < n; i++)
188 if (compare_string (&a[i], min) < 0)
193 absorb_miss function NMISS (a[n])
196 size_t missing_cnt = 0;
198 for (i = 0; i < n; i++)
199 missing_cnt += a[i] == SYSMIS;
203 absorb_miss function NVALID (a[n])
206 size_t valid_cnt = 0;
208 for (i = 0; i < n; i++)
209 valid_cnt += a[i] != SYSMIS;
213 absorb_miss boolean function RANGE (x != SYSMIS, a[n*2])
218 for (i = 0; i < n; i++)
221 double y = a[2 * i + 1];
222 if (w != SYSMIS && y != SYSMIS)
224 if (w <= x && x <= y)
230 return sysmis ? SYSMIS : 0.;
233 boolean function RANGE (string x, string a[n*2])
237 for (i = 0; i < n; i++)
239 struct substring *w = &a[2 * i];
240 struct substring *y = &a[2 * i + 1];
241 if (compare_string (w, &x) <= 0 && compare_string (&x, y) <= 0)
250 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
251 return sqrt (variance);
254 function SUM.1 (a[n])
260 for (i = 0; i < n; i++)
266 function VARIANCE.2 (a[n])
269 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
273 // Time construction & extraction functions.
274 function TIME.HMS (h, m, s)
276 if ((h > 0. || m > 0. || s > 0.) && (h < 0. || m < 0. || s < 0.))
278 msg (SW, _("TIME.HMS cannot mix positive and negative arguments."));
282 return H_S * h + MIN_S * m + s;
284 function TIME.DAYS (days) = days * DAY_S;
285 function CTIME.DAYS (time) = time / DAY_S;
286 function CTIME.HOURS (time) = time / H_S;
287 function CTIME.MINUTES (time) = time / MIN_S;
288 function CTIME.SECONDS (time) = time;
290 // Date construction functions.
291 function DATE.DMY (d, m, y) = expr_ymd_to_date (y, m, d);
292 function DATE.MDY (m, d, y) = expr_ymd_to_date (y, m, d);
293 function DATE.MOYR (m, y) = expr_ymd_to_date (y, m, 1);
294 function DATE.QYR (q, y) = expr_ymd_to_date (y, q * 3 - 2, 1);
295 function DATE.WKYR (w, y) = expr_wkyr_to_date (w, y);
296 function DATE.YRDAY (y, yday) = expr_yrday_to_date (y, yday);
297 function YRMODA (y, m, d) = expr_yrmoda (y, m, d);
299 // Date extraction functions.
300 function XDATE.TDAY (date) = floor (date / DAY_S);
301 function XDATE.HOUR (date) = fmod (floor (date / H_S), DAY_H);
302 function XDATE.MINUTE (date) = fmod (floor (date / H_MIN), H_MIN);
303 function XDATE.SECOND (date) = fmod (date, MIN_S);
304 function XDATE.DATE (date) = floor (date / DAY_S) * DAY_S;
305 function XDATE.TIME (date) = fmod (date, DAY_S);
307 function XDATE.JDAY (date >= DAY_S) = calendar_offset_to_yday (date / DAY_S);
308 function XDATE.MDAY (date >= DAY_S) = calendar_offset_to_mday (date / DAY_S);
309 function XDATE.MONTH (date >= DAY_S)
310 = calendar_offset_to_month (date / DAY_S);
311 function XDATE.QUARTER (date >= DAY_S)
312 = (calendar_offset_to_month (date / DAY_S) - 1) / 3 + 1;
313 function XDATE.WEEK (date >= DAY_S)
314 = (calendar_offset_to_yday (date / DAY_S) - 1) / 7 + 1;
315 function XDATE.WKDAY (date >= DAY_S) = calendar_offset_to_wday (date / DAY_S);
316 function XDATE.YEAR (date >= DAY_S) = calendar_offset_to_year (date / DAY_S);
318 // Date arithmetic functions.
319 no_abbrev function DATEDIFF (date2 >= DAY_S, date1 >= DAY_S, string unit)
320 = expr_date_difference (date1, date2, unit);
321 no_abbrev function DATESUM (date, quantity, string unit)
322 = expr_date_sum (date, quantity, unit, ss_cstr ("closest"));
323 no_abbrev function DATESUM (date, quantity, string unit, string method)
324 = expr_date_sum (date, quantity, unit, method);
328 string function CONCAT (string a[n])
331 struct substring dst;
334 dst = alloc_string (e, MAX_STRING);
336 for (i = 0; i < n; i++)
338 struct substring *src = &a[i];
341 copy_len = src->length;
342 if (dst.length + copy_len > MAX_STRING)
343 copy_len = MAX_STRING - dst.length;
344 memcpy (&dst.string[dst.length], src->string, copy_len);
345 dst.length += copy_len;
351 function INDEX (string haystack, string needle)
353 if (needle.length == 0)
357 int limit = haystack.length - needle.length + 1;
359 for (i = 1; i <= limit; i++)
360 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
366 function INDEX (string haystack, string needles, needle_len_d)
368 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
369 || (int) needle_len_d != needle_len_d
370 || needles.length == 0)
374 int needle_len = needle_len_d;
375 if (needle_len < 0 || needle_len > needles.length
376 || needles.length % needle_len != 0)
380 int limit = haystack.length - needle_len + 1;
382 for (i = 1; i <= limit; i++)
383 for (j = 0; j < needles.length; j += needle_len)
384 if (!memcmp (&haystack.string[i - 1], &needles.string[j],
393 function RINDEX (string haystack, string needle)
395 if (needle.length == 0)
399 int limit = haystack.length - needle.length + 1;
401 for (i = limit; i >= 1; i--)
402 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
408 function RINDEX (string haystack, string needles, needle_len_d)
410 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
411 || (int) needle_len_d != needle_len_d
412 || needles.length == 0)
416 int needle_len = needle_len_d;
417 if (needle_len < 0 || needle_len > needles.length
418 || needles.length % needle_len != 0)
422 int limit = haystack.length - needle_len + 1;
424 for (i = limit; i >= 1; i--)
425 for (j = 0; j < needles.length; j += needle_len)
426 if (!memcmp (&haystack.string[i - 1],
427 &needles.string[j], needle_len))
434 function LENGTH (string s)
439 string function LOWER (string s)
443 for (i = 0; i < s.length; i++)
444 s.string[i] = tolower ((unsigned char) s.string[i]);
448 function MBLEN.BYTE (string s, idx)
450 if (idx < 0 || idx >= s.length || (int) idx != idx)
456 string function UPCASE (string s)
460 for (i = 0; i < s.length; i++)
461 s.string[i] = toupper ((unsigned char) s.string[i]);
465 absorb_miss string function LPAD (string s, n)
468 if (n < 0 || n > MAX_STRING || (int) n != n)
470 else if (s.length >= n)
474 struct substring t = alloc_string (e, n);
475 memset (t.string, ' ', n - s.length);
476 memcpy (&t.string[(int) n - s.length], s.string, s.length);
481 absorb_miss string function LPAD (string s, n, string c)
484 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
486 else if (s.length >= n)
490 struct substring t = alloc_string (e, n);
491 memset (t.string, c.string[0], n - s.length);
492 memcpy (&t.string[(int) n - s.length], s.string, s.length);
497 absorb_miss string function RPAD (string s, n)
500 if (n < 0 || n > MAX_STRING || (int) n != n)
502 else if (s.length >= n)
506 struct substring t = alloc_string (e, n);
507 memcpy (t.string, s.string, s.length);
508 memset (&t.string[s.length], ' ', n - s.length);
513 absorb_miss string function RPAD (string s, n, string c)
516 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
518 else if (s.length >= n)
522 struct substring t = alloc_string (e, n);
523 memcpy (t.string, s.string, s.length);
524 memset (&t.string[s.length], c.string[0], n - s.length);
529 string function LTRIM (string s)
531 while (s.length > 0 && s.string[0] == ' ')
539 string function LTRIM (string s, string c)
543 while (s.length > 0 && s.string[0] == c.string[0])
554 string function RTRIM (string s)
556 while (s.length > 0 && s.string[s.length - 1] == ' ')
561 string function RTRIM (string s, string c)
565 while (s.length > 0 && s.string[s.length - 1] == c.string[0])
573 function NUMBER (string s, ni_format f)
576 data_in (ss_head (s, f->w), LEGACY_NATIVE, f->type, f->d, 0, 0, &out, 0);
580 absorb_miss string function STRING (x, no_format f)
584 struct substring dst;
587 dst = alloc_string (e, f->w);
588 assert (!fmt_is_string (f->type));
589 data_out (&v, f, dst.string);
593 absorb_miss string function SUBSTR (string s, ofs)
596 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs)
597 return copy_string (e, &s.string[(int) ofs - 1], s.length - ofs + 1);
602 absorb_miss string function SUBSTR (string s, ofs, cnt)
605 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs
606 && cnt >= 1 && cnt <= INT_MAX && (int) cnt == cnt)
608 int cnt_max = s.length - (int) ofs + 1;
609 return copy_string (e, &s.string[(int) ofs - 1],
610 cnt <= cnt_max ? cnt : cnt_max);
616 absorb_miss no_opt no_abbrev string function VALUELABEL (var v)
620 const char *label = var_lookup_value_label (v, case_data (c, v));
622 return copy_string (e, label, strlen (label));
628 operator SQUARE (x) = x * x;
629 boolean operator NUM_TO_BOOLEAN (x)
631 if (x == 0. || x == 1. || x == SYSMIS)
635 msg (SE, _("A number being treated as a Boolean in an "
636 "expression was found to have a value other than "
637 "0 (false), 1 (true), or the system-missing value. "
638 "The result was forced to 0."));
643 operator BOOLEAN_TO_NUM (boolean x) = x;
645 // Beta distribution.
646 function PDF.BETA (x >= 0 && x <= 1, a > 0, b > 0)
647 = gsl_ran_beta_pdf (x, a, b);
648 function CDF.BETA (x >= 0 && x <= 1, a > 0, b > 0) = gsl_cdf_beta_P (x, a, b);
649 function IDF.BETA (P >= 0 && P <= 1, a > 0, b > 0)
650 = gsl_cdf_beta_Pinv (P, a, b);
651 no_opt function RV.BETA (a > 0, b > 0) = gsl_ran_beta (get_rng (), a, b);
652 function NCDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
653 = ncdf_beta (x, a, b, lambda);
654 function NPDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
655 = npdf_beta (x, a, b, lambda);
657 // Bivariate normal distribution.
658 function CDF.BVNOR (x0, x1, r >= -1 && r <= 1) = cdf_bvnor (x0, x1, r);
659 function PDF.BVNOR (x0, x1, r >= -1 && r <= 1)
660 = gsl_ran_bivariate_gaussian_pdf (x0, x1, 1, 1, r);
662 // Cauchy distribution.
663 function CDF.CAUCHY (x, a, b > 0) = gsl_cdf_cauchy_P ((x - a) / b, 1);
664 function IDF.CAUCHY (P > 0 && P < 1, a, b > 0)
665 = a + b * gsl_cdf_cauchy_Pinv (P, 1);
666 function PDF.CAUCHY (x, a, b > 0) = gsl_ran_cauchy_pdf ((x - a) / b, 1) / b;
667 no_opt function RV.CAUCHY (a, b > 0) = a + b * gsl_ran_cauchy (get_rng (), 1);
669 // Chi-square distribution.
670 function CDF.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_P (x, df);
671 function IDF.CHISQ (P >= 0 && P < 1, df > 0) = gsl_cdf_chisq_Pinv (P, df);
672 function PDF.CHISQ (x >= 0, df > 0) = gsl_ran_chisq_pdf (x, df);
673 no_opt function RV.CHISQ (df > 0) = gsl_ran_chisq (get_rng (), df);
674 function NCDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
675 function NPDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
676 function SIG.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_Q (x, df);
678 // Exponential distribution.
679 function CDF.EXP (x >= 0, a > 0) = gsl_cdf_exponential_P (x, 1. / a);
680 function IDF.EXP (P >= 0 && P < 1, a > 0)
681 = gsl_cdf_exponential_Pinv (P, 1. / a);
682 function PDF.EXP (x >= 0, a > 0) = gsl_ran_exponential_pdf (x, 1. / a);
683 no_opt function RV.EXP (a > 0) = gsl_ran_exponential (get_rng (), 1. / a);
685 // Exponential power distribution.
686 extension function PDF.XPOWER (x, a > 0, b >= 0)
687 = gsl_ran_exppow_pdf (x, a, b);
688 no_opt extension function RV.XPOWER (a > 0, b >= 0)
689 = gsl_ran_exppow (get_rng (), a, b);
692 function CDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_P (x, df1, df2);
693 function IDF.F (P >= 0 && P < 1, df1 > 0, df2 > 0) = idf_fdist (P, df1, df2);
694 function PDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_ran_fdist_pdf (x, df1, df2);
695 no_opt function RV.F (df1 > 0, df2 > 0) = gsl_ran_fdist (get_rng (), df1, df2);
696 function NCDF.F (x >= 0, df1 > 0, df2 > 0, lambda >= 0) = unimplemented;
697 function NPDF.F (x >= 0, df1 > 0, df2 > 0, lmabda >= 0) = unimplemented;
698 function SIG.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_Q (x, df1, df2);
700 // Gamma distribution.
701 function CDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_cdf_gamma_P (x, a, 1. / b);
702 function IDF.GAMMA (P >= 0 && P <= 1, a > 0, b > 0)
703 = gsl_cdf_gamma_Pinv (P, a, 1. / b);
704 function PDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_ran_gamma_pdf (x, a, 1. / b);
705 no_opt function RV.GAMMA (a > 0, b > 0)
706 = gsl_ran_gamma (get_rng (), a, 1. / b);
708 // Half-normal distribution.
709 function CDF.HALFNRM (x, a, b > 0) = unimplemented;
710 function IDF.HALFNRM (P > 0 && P < 1, a, b > 0) = unimplemented;
711 function PDF.HALFNRM (x, a, b > 0) = unimplemented;
712 no_opt function RV.HALFNRM (a, b > 0) = unimplemented;
714 // Inverse Gaussian distribution.
715 function CDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
716 function IDF.IGAUSS (P >= 0 && P < 1, a > 0, b > 0) = unimplemented;
717 function PDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
718 no_opt function RV.IGAUSS (a > 0, b > 0) = unimplemented;
720 // Landau distribution.
721 extension function PDF.LANDAU (x) = gsl_ran_landau_pdf (x);
722 no_opt extension function RV.LANDAU () = gsl_ran_landau (get_rng ());
724 // Laplace distribution.
725 function CDF.LAPLACE (x, a, b > 0) = gsl_cdf_laplace_P ((x - a) / b, 1);
726 function IDF.LAPLACE (P > 0 && P < 1, a, b > 0)
727 = a + b * gsl_cdf_laplace_Pinv (P, 1);
728 function PDF.LAPLACE (x, a, b > 0) = gsl_ran_laplace_pdf ((x - a) / b, 1) / b;
729 no_opt function RV.LAPLACE (a, b > 0)
730 = a + b * gsl_ran_laplace (get_rng (), 1);
732 // Levy alpha-stable distribution.
733 no_opt extension function RV.LEVY (c, alpha > 0 && alpha <= 2)
734 = gsl_ran_levy (get_rng (), c, alpha);
736 // Levy skew alpha-stable distribution.
737 no_opt extension function RV.LVSKEW (c, alpha > 0 && alpha <= 2,
738 beta >= -1 && beta <= 1)
739 = gsl_ran_levy_skew (get_rng (), c, alpha, beta);
741 // Logistic distribution.
742 function CDF.LOGISTIC (x, a, b > 0) = gsl_cdf_logistic_P ((x - a) / b, 1);
743 function IDF.LOGISTIC (P > 0 && P < 1, a, b > 0)
744 = a + b * gsl_cdf_logistic_Pinv (P, 1);
745 function PDF.LOGISTIC (x, a, b > 0)
746 = gsl_ran_logistic_pdf ((x - a) / b, 1) / b;
747 no_opt function RV.LOGISTIC (a, b > 0)
748 = a + b * gsl_ran_logistic (get_rng (), 1);
750 // Lognormal distribution.
751 function CDF.LNORMAL (x >= 0, m > 0, s > 0)
752 = gsl_cdf_lognormal_P (x, log (m), s);
753 function IDF.LNORMAL (P >= 0 && P < 1, m > 0, s > 0)
754 = gsl_cdf_lognormal_Pinv (P, log (m), s);
755 function PDF.LNORMAL (x >= 0, m > 0, s > 0)
756 = gsl_ran_lognormal_pdf (x, log (m), s);
757 no_opt function RV.LNORMAL (m > 0, s > 0)
758 = gsl_ran_lognormal (get_rng (), log (m), s);
760 // Normal distribution.
761 function CDF.NORMAL (x, u, s > 0) = gsl_cdf_gaussian_P (x - u, s);
762 function IDF.NORMAL (P > 0 && P < 1, u, s > 0)
763 = u + gsl_cdf_gaussian_Pinv (P, s);
764 function PDF.NORMAL (x, u, s > 0) = gsl_ran_gaussian_pdf ((x - u) / s, 1) / s;
765 no_opt function RV.NORMAL (u, s > 0) = u + gsl_ran_gaussian (get_rng (), s);
766 function CDFNORM (x) = gsl_cdf_ugaussian_P (x);
767 function PROBIT (P > 0 && P < 1) = gsl_cdf_ugaussian_Pinv (P);
768 no_opt function NORMAL (s > 0) = gsl_ran_gaussian (get_rng (), s);
770 // Normal tail distribution.
771 function PDF.NTAIL (x, a > 0, sigma > 0)
772 = gsl_ran_gaussian_tail_pdf (x, a, sigma);
773 no_opt function RV.NTAIL (a > 0, sigma > 0)
774 = gsl_ran_gaussian_tail (get_rng (), a, sigma);
776 // Pareto distribution.
777 function CDF.PARETO (x >= a, a > 0, b > 0) = gsl_cdf_pareto_P (x, b, a);
778 function IDF.PARETO (P >= 0 && P < 1, a > 0, b > 0)
779 = gsl_cdf_pareto_Pinv (P, b, a);
780 function PDF.PARETO (x >= a, a > 0, b > 0) = gsl_ran_pareto_pdf (x, b, a);
781 no_opt function RV.PARETO (a > 0, b > 0) = gsl_ran_pareto (get_rng (), b, a);
783 // Rayleigh distribution.
784 extension function CDF.RAYLEIGH (x, sigma > 0) = gsl_cdf_rayleigh_P (x, sigma);
785 extension function IDF.RAYLEIGH (P >= 0 && P <= 1, sigma > 0)
786 = gsl_cdf_rayleigh_Pinv (P, sigma);
787 extension function PDF.RAYLEIGH (x, sigma > 0)
788 = gsl_ran_rayleigh_pdf (x, sigma);
789 no_opt extension function RV.RAYLEIGH (sigma > 0)
790 = gsl_ran_rayleigh (get_rng (), sigma);
792 // Rayleigh tail distribution.
793 extension function PDF.RTAIL (x, a, sigma)
794 = gsl_ran_rayleigh_tail_pdf (x, a, sigma);
795 no_opt extension function RV.RTAIL (a, sigma)
796 = gsl_ran_rayleigh_tail (get_rng (), a, sigma);
798 // Studentized maximum modulus distribution.
799 function CDF.SMOD (x > 0, a >= 1, b >= 1) = unimplemented;
800 function IDF.SMOD (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
802 // Studentized range distribution.
803 function CDF.SRANGE (x > 0, a >= 1, b >= 1) = unimplemented;
804 function IDF.SRANGE (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
806 // Student t distribution.
807 function CDF.T (x, df > 0) = gsl_cdf_tdist_P (x, df);
808 function IDF.T (P > 0 && P < 1, df > 0) = gsl_cdf_tdist_Pinv (P, df);
809 function PDF.T (x, df > 0) = gsl_ran_tdist_pdf (x, df);
810 no_opt function RV.T (df > 0) = gsl_ran_tdist (get_rng (), df);
811 function NCDF.T (x, df > 0, nc) = unimplemented;
812 function NPDF.T (x, df > 0, nc) = unimplemented;
814 // Type-1 Gumbel distribution.
815 extension function CDF.T1G (x, a, b) = gsl_cdf_gumbel1_P (x, a, b);
816 extension function IDF.T1G (P >= 0 && P <= 1, a, b)
817 = gsl_cdf_gumbel1_P (P, a, b);
818 extension function PDF.T1G (x, a, b) = gsl_ran_gumbel1_pdf (x, a, b);
819 no_opt extension function RV.T1G (a, b) = gsl_ran_gumbel1 (get_rng (), a, b);
821 // Type-2 Gumbel distribution.
822 extension function CDF.T2G (x, a, b) = gsl_cdf_gumbel2_P (x, a, b);
823 extension function IDF.T2G (P >= 0 && P <= 1, a, b)
824 = gsl_cdf_gumbel2_P (P, a, b);
825 extension function PDF.T2G (x, a, b) = gsl_ran_gumbel2_pdf (x, a, b);
826 no_opt extension function RV.T2G (a, b) = gsl_ran_gumbel2 (get_rng (), a, b);
828 // Uniform distribution.
829 function CDF.UNIFORM (x <= b, a <= x, b) = gsl_cdf_flat_P (x, a, b);
830 function IDF.UNIFORM (P >= 0 && P <= 1, a <= b, b)
831 = gsl_cdf_flat_Pinv (P, a, b);
832 function PDF.UNIFORM (x <= b, a <= x, b) = gsl_ran_flat_pdf (x, a, b);
833 no_opt function RV.UNIFORM (a <= b, b) = gsl_ran_flat (get_rng (), a, b);
834 no_opt function UNIFORM (b >= 0) = gsl_ran_flat (get_rng (), 0, b);
836 // Weibull distribution.
837 function CDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_cdf_weibull_P (x, a, b);
838 function IDF.WEIBULL (P >= 0 && P < 1, a > 0, b > 0)
839 = gsl_cdf_weibull_Pinv (P, a, b);
840 function PDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_ran_weibull_pdf (x, a, b);
841 no_opt function RV.WEIBULL (a > 0, b > 0) = gsl_ran_weibull (get_rng (), a, b);
843 // Bernoulli distribution.
844 function CDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
846 function PDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
847 = gsl_ran_bernoulli_pdf (k, p);
848 no_opt function RV.BERNOULLI (p >= 0 && p <= 1)
849 = gsl_ran_bernoulli (get_rng (), p);
851 // Binomial distribution.
852 function CDF.BINOM (k, n > 0 && n == floor (n), p >= 0 && p <= 1)
853 = gsl_cdf_binomial_P (k, p, n);
854 function PDF.BINOM (k >= 0 && k == floor (k) && k <= n,
855 n > 0 && n == floor (n),
857 = gsl_ran_binomial_pdf (k, p, n);
858 no_opt function RV.BINOM (p > 0 && p == floor (p), n >= 0 && n <= 1)
859 = gsl_ran_binomial (get_rng (), p, n);
861 // Geometric distribution.
862 function CDF.GEOM (k >= 1 && k == floor (k), p >= 0 && p <= 1)
863 = gsl_cdf_geometric_P (k, p);
864 function PDF.GEOM (k >= 1 && k == floor (k),
866 = gsl_ran_geometric_pdf (k, p);
867 no_opt function RV.GEOM (p >= 0 && p <= 1) = gsl_ran_geometric (get_rng (), p);
869 // Hypergeometric distribution.
870 function CDF.HYPER (k >= 0 && k == floor (k) && k <= c,
871 a > 0 && a == floor (a),
872 b > 0 && b == floor (b) && b <= a,
873 c > 0 && c == floor (c) && c <= a)
874 = gsl_cdf_hypergeometric_P (k, c, a - c, b);
875 function PDF.HYPER (k >= 0 && k == floor (k) && k <= c,
876 a > 0 && a == floor (a),
877 b > 0 && b == floor (b) && b <= a,
878 c > 0 && c == floor (c) && c <= a)
879 = gsl_ran_hypergeometric_pdf (k, c, a - c, b);
880 no_opt function RV.HYPER (a > 0 && a == floor (a),
881 b > 0 && b == floor (b) && b <= a,
882 c > 0 && c == floor (c) && c <= a)
883 = gsl_ran_hypergeometric (get_rng (), c, a - c, b);
885 // Logarithmic distribution.
886 extension function PDF.LOG (k >= 1, p > 0 && p <= 1)
887 = gsl_ran_logarithmic_pdf (k, p);
888 no_opt extension function RV.LOG (p > 0 && p <= 1)
889 = gsl_ran_logarithmic (get_rng (), p);
891 // Negative binomial distribution.
892 function CDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
893 = gsl_cdf_negative_binomial_P (k, p, n);
894 function PDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
895 = gsl_ran_negative_binomial_pdf (k, p, n);
896 no_opt function RV.NEGBIN (n == floor (n), p > 0 && p <= 1)
897 = gsl_ran_negative_binomial (get_rng (), p, n);
899 // Poisson distribution.
900 function CDF.POISSON (k >= 0 && k == floor (k), mu > 0)
901 = gsl_cdf_poisson_P (k, mu);
902 function PDF.POISSON (k >= 0 && k == floor (k), mu > 0)
903 = gsl_ran_poisson_pdf (k, mu);
904 no_opt function RV.POISSON (mu > 0) = gsl_ran_poisson (get_rng (), mu);
907 absorb_miss boolean function MISSING (x) = x == SYSMIS || !finite (x);
908 absorb_miss boolean function SYSMIS (x) = x == SYSMIS || !finite (x);
909 no_opt boolean function SYSMIS (num_var v)
912 return case_num (c, v) == SYSMIS;
914 no_opt boolean function VALUE (num_var v)
917 return case_num (c, v);
920 no_opt operator VEC_ELEM_NUM (idx)
924 if (idx >= 1 && idx <= vector_get_var_cnt (v))
926 const struct variable *var = vector_get_var (v, (size_t) idx - 1);
927 double value = case_num (c, var);
928 return !var_is_num_missing (var, value, MV_USER) ? value : SYSMIS;
933 msg (SE, _("SYSMIS is not a valid index value for vector "
934 "%s. The result will be set to SYSMIS."),
935 vector_get_name (v));
937 msg (SE, _("%g is not a valid index value for vector %s. "
938 "The result will be set to SYSMIS."),
939 idx, vector_get_name (v));
944 absorb_miss no_opt string operator VEC_ELEM_STR (idx)
949 if (idx >= 1 && idx <= vector_get_var_cnt (v))
951 struct variable *var = vector_get_var (v, (size_t) idx - 1);
952 return copy_string (e, case_str (c, var), var_get_width (var));
957 msg (SE, _("SYSMIS is not a valid index value for vector "
958 "%s. The result will be set to the empty string."),
959 vector_get_name (v));
961 msg (SE, _("%g is not a valid index value for vector %s. "
962 "The result will be set to the empty string."),
963 idx, vector_get_name (v));
970 no_opt operator NUM_VAR ()
974 double d = case_num (c, v);
975 return !var_is_num_missing (v, d, MV_USER) ? d : SYSMIS;
978 no_opt string operator STR_VAR ()
983 struct substring s = alloc_string (e, var_get_width (v));
984 memcpy (s.string, case_str (c, v), var_get_width (v));
988 no_opt perm_only function LAG (num_var v, pos_int n_before)
991 struct ccase *c = lagged_case (ds, n_before);
994 double x = case_num (c, v);
995 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1001 no_opt perm_only function LAG (num_var v)
1004 struct ccase *c = lagged_case (ds, 1);
1007 double x = case_num (c, v);
1008 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1014 no_opt perm_only string function LAG (str_var v, pos_int n_before)
1018 struct ccase *c = lagged_case (ds, n_before);
1020 return copy_string (e, case_str (c, v), var_get_width (v));
1022 return empty_string;
1025 no_opt perm_only string function LAG (str_var v)
1029 struct ccase *c = lagged_case (ds, 1);
1031 return copy_string (e, case_str (c, v), var_get_width (v));
1033 return empty_string;
1036 no_opt operator NUM_SYS ()
1040 return case_num (c, v) == SYSMIS;
1043 no_opt operator NUM_VAL ()
1047 return case_num (c, v);
1050 no_opt operator CASENUM ()