3 // PSPP - a program for statistical analysis.
4 // Copyright (C) 2005, 2006, 2009 Free Software Foundation, Inc.
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
19 operator NEG (x) = -x;
21 operator ADD (a, b) = a + b;
22 operator SUB (a, b) = a - b;
24 absorb_miss operator MUL (a, b)
25 = (a == 0. || b == 0. ? 0.
26 : a == SYSMIS || b == SYSMIS ? SYSMIS
29 absorb_miss operator DIV (a, b)
31 : a == SYSMIS || b == SYSMIS ? SYSMIS
34 absorb_miss operator POW (a, b)
35 = (a == SYSMIS ? (b == 0. ? 1. : a)
36 : b == SYSMIS ? (a == 0. ? 0. : SYSMIS)
37 : a == 0. && b <= 0. ? SYSMIS
40 absorb_miss boolean operator AND (boolean a, boolean b)
43 : b == SYSMIS ? SYSMIS
46 absorb_miss boolean operator OR (boolean a, boolean b)
49 : b == SYSMIS ? SYSMIS
52 boolean operator NOT (boolean a)
57 // Numeric relational operators.
58 boolean operator EQ (a, b) = a == b;
59 boolean operator GE (a, b) = a >= b;
60 boolean operator GT (a, b) = a > b;
61 boolean operator LE (a, b) = a <= b;
62 boolean operator LT (a, b) = a < b;
63 boolean operator NE (a, b) = a != b;
65 // String relational operators.
66 boolean operator EQ_STRING (string a, string b) = compare_string (&a, &b) == 0;
67 boolean operator GE_STRING (string a, string b) = compare_string (&a, &b) >= 0;
68 boolean operator GT_STRING (string a, string b) = compare_string (&a, &b) > 0;
69 boolean operator LE_STRING (string a, string b) = compare_string (&a, &b) <= 0;
70 boolean operator LT_STRING (string a, string b) = compare_string (&a, &b) < 0;
71 boolean operator NE_STRING (string a, string b) = compare_string (&a, &b) != 0;
74 function ABS (x) = fabs (x);
75 extension function ACOS (x >= -1 && x <= 1) = acos (x);
76 function ASIN (x >= -1 && x <= 1) = asin (x);
77 function ATAN (x) = atan (x);
78 extension function ARCOS (x >= -1 && x <= 1) = acos (x);
79 function ARSIN (x >= -1 && x <= 1) = asin (x);
80 function ARTAN (x) = atan (x);
81 function COS (x) = cos (x);
82 function EXP (x) = check_errno (exp (x));
83 function LG10(x) = check_errno (log10 (x));
84 function LN (x) = check_errno (log (x));
85 function LNGAMMA (x >= 0) = gsl_sf_lngamma (x);
86 function MOD10 (x) = fmod (x, 10);
87 function RND (x) = x >= 0. ? floor (x + .5) : -floor (-x + .5);
88 function SIN (x) = sin (x);
89 function SQRT (x >= 0) = sqrt (x);
90 function TAN (x) = check_errno (tan (x));
91 function TRUNC (x) = x >= 0. ? floor (x) : -floor (-x);
93 absorb_miss function MOD (n, d)
96 return n != SYSMIS ? fmod (n, d) : SYSMIS;
98 return n != 0. ? SYSMIS : 0.;
101 // N-ary numeric functions.
102 absorb_miss boolean function ANY (x != SYSMIS, a[n])
107 for (i = 0; i < n; i++)
110 else if (a[i] == SYSMIS)
113 return sysmis ? SYSMIS : 0.;
116 boolean function ANY (string x, string a[n])
120 for (i = 0; i < n; i++)
121 if (!compare_string (&x, &a[i]))
126 function CFVAR.2 (a[n])
128 double mean, variance;
130 moments_of_doubles (a, n, NULL, &mean, &variance, NULL, NULL);
132 if (mean == SYSMIS || mean == 0 || variance == SYSMIS)
135 return sqrt (variance) / mean;
138 function MAX.1 (a[n])
144 for (i = 0; i < n; i++)
145 if (a[i] != SYSMIS && a[i] > max)
150 string function MAX (string a[n])
152 struct substring *max;
156 for (i = 1; i < n; i++)
157 if (compare_string (&a[i], max) > 0)
162 function MEAN.1 (a[n])
165 moments_of_doubles (a, n, NULL, &mean, NULL, NULL, NULL);
169 function MIN.1 (a[n])
175 for (i = 0; i < n; i++)
176 if (a[i] != SYSMIS && a[i] < min)
181 string function MIN (string a[n])
183 struct substring *min;
187 for (i = 1; i < n; i++)
188 if (compare_string (&a[i], min) < 0)
193 absorb_miss function NMISS (a[n])
196 size_t missing_cnt = 0;
198 for (i = 0; i < n; i++)
199 missing_cnt += a[i] == SYSMIS;
203 absorb_miss function NVALID (a[n])
206 size_t valid_cnt = 0;
208 for (i = 0; i < n; i++)
209 valid_cnt += a[i] != SYSMIS;
213 absorb_miss boolean function RANGE (x != SYSMIS, a[n*2])
218 for (i = 0; i < n; i++)
221 double y = a[2 * i + 1];
222 if (w != SYSMIS && y != SYSMIS)
224 if (w <= x && x <= y)
230 return sysmis ? SYSMIS : 0.;
233 boolean function RANGE (string x, string a[n*2])
237 for (i = 0; i < n; i++)
239 struct substring *w = &a[2 * i];
240 struct substring *y = &a[2 * i + 1];
241 if (compare_string (w, &x) <= 0 && compare_string (&x, y) <= 0)
250 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
251 return sqrt (variance);
254 function SUM.1 (a[n])
260 for (i = 0; i < n; i++)
266 function VARIANCE.2 (a[n])
269 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
273 // Time construction & extraction functions.
274 function TIME.HMS (h, m, s)
276 if ((h > 0. || m > 0. || s > 0.) && (h < 0. || m < 0. || s < 0.))
278 msg (SW, _("TIME.HMS cannot mix positive and negative arguments."));
282 return H_S * h + MIN_S * m + s;
284 function TIME.DAYS (days) = days * DAY_S;
285 function CTIME.DAYS (time) = time / DAY_S;
286 function CTIME.HOURS (time) = time / H_S;
287 function CTIME.MINUTES (time) = time / MIN_S;
288 function CTIME.SECONDS (time) = time;
290 // Date construction functions.
291 function DATE.DMY (d, m, y) = expr_ymd_to_date (y, m, d);
292 function DATE.MDY (m, d, y) = expr_ymd_to_date (y, m, d);
293 function DATE.MOYR (m, y) = expr_ymd_to_date (y, m, 1);
294 function DATE.QYR (q, y) = expr_ymd_to_date (y, q * 3 - 2, 1);
295 function DATE.WKYR (w, y) = expr_wkyr_to_date (w, y);
296 function DATE.YRDAY (y, yday) = expr_yrday_to_date (y, yday);
297 function YRMODA (y, m, d) = expr_yrmoda (y, m, d);
299 // Date extraction functions.
300 function XDATE.TDAY (date) = floor (date / DAY_S);
301 function XDATE.HOUR (date) = fmod (floor (date / H_S), DAY_H);
302 function XDATE.MINUTE (date) = fmod (floor (date / H_MIN), H_MIN);
303 function XDATE.SECOND (date) = fmod (date, MIN_S);
304 function XDATE.DATE (date) = floor (date / DAY_S) * DAY_S;
305 function XDATE.TIME (date) = fmod (date, DAY_S);
307 function XDATE.JDAY (date >= DAY_S) = calendar_offset_to_yday (date / DAY_S);
308 function XDATE.MDAY (date >= DAY_S) = calendar_offset_to_mday (date / DAY_S);
309 function XDATE.MONTH (date >= DAY_S)
310 = calendar_offset_to_month (date / DAY_S);
311 function XDATE.QUARTER (date >= DAY_S)
312 = (calendar_offset_to_month (date / DAY_S) - 1) / 3 + 1;
313 function XDATE.WEEK (date >= DAY_S)
314 = (calendar_offset_to_yday (date / DAY_S) - 1) / 7 + 1;
315 function XDATE.WKDAY (date >= DAY_S) = calendar_offset_to_wday (date / DAY_S);
316 function XDATE.YEAR (date >= DAY_S) = calendar_offset_to_year (date / DAY_S);
318 // Date arithmetic functions.
319 no_abbrev function DATEDIFF (date2 >= DAY_S, date1 >= DAY_S, string unit)
320 = expr_date_difference (date1, date2, unit);
321 no_abbrev function DATESUM (date, quantity, string unit)
322 = expr_date_sum (date, quantity, unit, ss_cstr ("closest"));
323 no_abbrev function DATESUM (date, quantity, string unit, string method)
324 = expr_date_sum (date, quantity, unit, method);
328 string function CONCAT (string a[n])
331 struct substring dst;
334 dst = alloc_string (e, MAX_STRING);
336 for (i = 0; i < n; i++)
338 struct substring *src = &a[i];
341 copy_len = src->length;
342 if (dst.length + copy_len > MAX_STRING)
343 copy_len = MAX_STRING - dst.length;
344 memcpy (&dst.string[dst.length], src->string, copy_len);
345 dst.length += copy_len;
351 function INDEX (string haystack, string needle)
353 if (needle.length == 0)
357 int limit = haystack.length - needle.length + 1;
359 for (i = 1; i <= limit; i++)
360 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
366 function INDEX (string haystack, string needles, needle_len_d)
368 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
369 || (int) needle_len_d != needle_len_d
370 || needles.length == 0)
374 int needle_len = needle_len_d;
375 if (needle_len < 0 || needle_len > needles.length
376 || needles.length % needle_len != 0)
380 int limit = haystack.length - needle_len + 1;
382 for (i = 1; i <= limit; i++)
383 for (j = 0; j < needles.length; j += needle_len)
384 if (!memcmp (&haystack.string[i - 1], &needles.string[j],
393 function RINDEX (string haystack, string needle)
395 if (needle.length == 0)
399 int limit = haystack.length - needle.length + 1;
401 for (i = limit; i >= 1; i--)
402 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
408 function RINDEX (string haystack, string needles, needle_len_d)
410 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
411 || (int) needle_len_d != needle_len_d
412 || needles.length == 0)
416 int needle_len = needle_len_d;
417 if (needle_len < 0 || needle_len > needles.length
418 || needles.length % needle_len != 0)
422 int limit = haystack.length - needle_len + 1;
424 for (i = limit; i >= 1; i--)
425 for (j = 0; j < needles.length; j += needle_len)
426 if (!memcmp (&haystack.string[i - 1],
427 &needles.string[j], needle_len))
434 function LENGTH (string s)
439 string function LOWER (string s)
443 for (i = 0; i < s.length; i++)
444 s.string[i] = tolower ((unsigned char) s.string[i]);
448 function MBLEN.BYTE (string s, idx)
450 if (idx < 0 || idx >= s.length || (int) idx != idx)
456 string function UPCASE (string s)
460 for (i = 0; i < s.length; i++)
461 s.string[i] = toupper ((unsigned char) s.string[i]);
465 absorb_miss string function LPAD (string s, n)
468 if (n < 0 || n > MAX_STRING || (int) n != n)
470 else if (s.length >= n)
474 struct substring t = alloc_string (e, n);
475 memset (t.string, ' ', n - s.length);
476 memcpy (&t.string[(int) n - s.length], s.string, s.length);
481 absorb_miss string function LPAD (string s, n, string c)
484 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
486 else if (s.length >= n)
490 struct substring t = alloc_string (e, n);
491 memset (t.string, c.string[0], n - s.length);
492 memcpy (&t.string[(int) n - s.length], s.string, s.length);
497 absorb_miss string function RPAD (string s, n)
500 if (n < 0 || n > MAX_STRING || (int) n != n)
502 else if (s.length >= n)
506 struct substring t = alloc_string (e, n);
507 memcpy (t.string, s.string, s.length);
508 memset (&t.string[s.length], ' ', n - s.length);
513 absorb_miss string function RPAD (string s, n, string c)
516 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
518 else if (s.length >= n)
522 struct substring t = alloc_string (e, n);
523 memcpy (t.string, s.string, s.length);
524 memset (&t.string[s.length], c.string[0], n - s.length);
529 string function LTRIM (string s)
531 while (s.length > 0 && s.string[0] == ' ')
539 string function LTRIM (string s, string c)
543 while (s.length > 0 && s.string[0] == c.string[0])
554 string function RTRIM (string s)
556 while (s.length > 0 && s.string[s.length - 1] == ' ')
561 string function RTRIM (string s, string c)
565 while (s.length > 0 && s.string[s.length - 1] == c.string[0])
573 function NUMBER (string s, ni_format f)
576 data_in (ss_head (s, f->w), LEGACY_NATIVE, f->type, f->d, 0, 0, NULL, &out, 0);
580 absorb_miss string function STRING (x, no_format f)
584 struct substring dst;
589 assert (!fmt_is_string (f->type));
590 s = data_out (&v, LEGACY_NATIVE, f);
591 dst = alloc_string (e, strlen (s));
592 strcpy (dst.string, s);
597 absorb_miss string function SUBSTR (string s, ofs)
600 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs)
601 return copy_string (e, &s.string[(int) ofs - 1], s.length - ofs + 1);
606 absorb_miss string function SUBSTR (string s, ofs, cnt)
609 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs
610 && cnt >= 1 && cnt <= INT_MAX && (int) cnt == cnt)
612 int cnt_max = s.length - (int) ofs + 1;
613 return copy_string (e, &s.string[(int) ofs - 1],
614 cnt <= cnt_max ? cnt : cnt_max);
620 absorb_miss no_opt no_abbrev string function VALUELABEL (var v)
624 const char *label = var_lookup_value_label (v, case_data (c, v));
626 return copy_string (e, label, strlen (label));
632 operator SQUARE (x) = x * x;
633 boolean operator NUM_TO_BOOLEAN (x)
635 if (x == 0. || x == 1. || x == SYSMIS)
639 msg (SE, _("A number being treated as a Boolean in an "
640 "expression was found to have a value other than "
641 "0 (false), 1 (true), or the system-missing value. "
642 "The result was forced to 0."));
647 operator BOOLEAN_TO_NUM (boolean x) = x;
649 // Beta distribution.
650 function PDF.BETA (x >= 0 && x <= 1, a > 0, b > 0)
651 = gsl_ran_beta_pdf (x, a, b);
652 function CDF.BETA (x >= 0 && x <= 1, a > 0, b > 0) = gsl_cdf_beta_P (x, a, b);
653 function IDF.BETA (P >= 0 && P <= 1, a > 0, b > 0)
654 = gsl_cdf_beta_Pinv (P, a, b);
655 no_opt function RV.BETA (a > 0, b > 0) = gsl_ran_beta (get_rng (), a, b);
656 function NCDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
657 = ncdf_beta (x, a, b, lambda);
658 function NPDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
659 = npdf_beta (x, a, b, lambda);
661 // Bivariate normal distribution.
662 function CDF.BVNOR (x0, x1, r >= -1 && r <= 1) = cdf_bvnor (x0, x1, r);
663 function PDF.BVNOR (x0, x1, r >= -1 && r <= 1)
664 = gsl_ran_bivariate_gaussian_pdf (x0, x1, 1, 1, r);
666 // Cauchy distribution.
667 function CDF.CAUCHY (x, a, b > 0) = gsl_cdf_cauchy_P ((x - a) / b, 1);
668 function IDF.CAUCHY (P > 0 && P < 1, a, b > 0)
669 = a + b * gsl_cdf_cauchy_Pinv (P, 1);
670 function PDF.CAUCHY (x, a, b > 0) = gsl_ran_cauchy_pdf ((x - a) / b, 1) / b;
671 no_opt function RV.CAUCHY (a, b > 0) = a + b * gsl_ran_cauchy (get_rng (), 1);
673 // Chi-square distribution.
674 function CDF.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_P (x, df);
675 function IDF.CHISQ (P >= 0 && P < 1, df > 0) = gsl_cdf_chisq_Pinv (P, df);
676 function PDF.CHISQ (x >= 0, df > 0) = gsl_ran_chisq_pdf (x, df);
677 no_opt function RV.CHISQ (df > 0) = gsl_ran_chisq (get_rng (), df);
678 function NCDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
679 function NPDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
680 function SIG.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_Q (x, df);
682 // Exponential distribution.
683 function CDF.EXP (x >= 0, a > 0) = gsl_cdf_exponential_P (x, 1. / a);
684 function IDF.EXP (P >= 0 && P < 1, a > 0)
685 = gsl_cdf_exponential_Pinv (P, 1. / a);
686 function PDF.EXP (x >= 0, a > 0) = gsl_ran_exponential_pdf (x, 1. / a);
687 no_opt function RV.EXP (a > 0) = gsl_ran_exponential (get_rng (), 1. / a);
689 // Exponential power distribution.
690 extension function PDF.XPOWER (x, a > 0, b >= 0)
691 = gsl_ran_exppow_pdf (x, a, b);
692 no_opt extension function RV.XPOWER (a > 0, b >= 0)
693 = gsl_ran_exppow (get_rng (), a, b);
696 function CDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_P (x, df1, df2);
697 function IDF.F (P >= 0 && P < 1, df1 > 0, df2 > 0) = idf_fdist (P, df1, df2);
698 function PDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_ran_fdist_pdf (x, df1, df2);
699 no_opt function RV.F (df1 > 0, df2 > 0) = gsl_ran_fdist (get_rng (), df1, df2);
700 function NCDF.F (x >= 0, df1 > 0, df2 > 0, lambda >= 0) = unimplemented;
701 function NPDF.F (x >= 0, df1 > 0, df2 > 0, lmabda >= 0) = unimplemented;
702 function SIG.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_Q (x, df1, df2);
704 // Gamma distribution.
705 function CDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_cdf_gamma_P (x, a, 1. / b);
706 function IDF.GAMMA (P >= 0 && P <= 1, a > 0, b > 0)
707 = gsl_cdf_gamma_Pinv (P, a, 1. / b);
708 function PDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_ran_gamma_pdf (x, a, 1. / b);
709 no_opt function RV.GAMMA (a > 0, b > 0)
710 = gsl_ran_gamma (get_rng (), a, 1. / b);
712 // Half-normal distribution.
713 function CDF.HALFNRM (x, a, b > 0) = unimplemented;
714 function IDF.HALFNRM (P > 0 && P < 1, a, b > 0) = unimplemented;
715 function PDF.HALFNRM (x, a, b > 0) = unimplemented;
716 no_opt function RV.HALFNRM (a, b > 0) = unimplemented;
718 // Inverse Gaussian distribution.
719 function CDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
720 function IDF.IGAUSS (P >= 0 && P < 1, a > 0, b > 0) = unimplemented;
721 function PDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
722 no_opt function RV.IGAUSS (a > 0, b > 0) = unimplemented;
724 // Landau distribution.
725 extension function PDF.LANDAU (x) = gsl_ran_landau_pdf (x);
726 no_opt extension function RV.LANDAU () = gsl_ran_landau (get_rng ());
728 // Laplace distribution.
729 function CDF.LAPLACE (x, a, b > 0) = gsl_cdf_laplace_P ((x - a) / b, 1);
730 function IDF.LAPLACE (P > 0 && P < 1, a, b > 0)
731 = a + b * gsl_cdf_laplace_Pinv (P, 1);
732 function PDF.LAPLACE (x, a, b > 0) = gsl_ran_laplace_pdf ((x - a) / b, 1) / b;
733 no_opt function RV.LAPLACE (a, b > 0)
734 = a + b * gsl_ran_laplace (get_rng (), 1);
736 // Levy alpha-stable distribution.
737 no_opt extension function RV.LEVY (c, alpha > 0 && alpha <= 2)
738 = gsl_ran_levy (get_rng (), c, alpha);
740 // Levy skew alpha-stable distribution.
741 no_opt extension function RV.LVSKEW (c, alpha > 0 && alpha <= 2,
742 beta >= -1 && beta <= 1)
743 = gsl_ran_levy_skew (get_rng (), c, alpha, beta);
745 // Logistic distribution.
746 function CDF.LOGISTIC (x, a, b > 0) = gsl_cdf_logistic_P ((x - a) / b, 1);
747 function IDF.LOGISTIC (P > 0 && P < 1, a, b > 0)
748 = a + b * gsl_cdf_logistic_Pinv (P, 1);
749 function PDF.LOGISTIC (x, a, b > 0)
750 = gsl_ran_logistic_pdf ((x - a) / b, 1) / b;
751 no_opt function RV.LOGISTIC (a, b > 0)
752 = a + b * gsl_ran_logistic (get_rng (), 1);
754 // Lognormal distribution.
755 function CDF.LNORMAL (x >= 0, m > 0, s > 0)
756 = gsl_cdf_lognormal_P (x, log (m), s);
757 function IDF.LNORMAL (P >= 0 && P < 1, m > 0, s > 0)
758 = gsl_cdf_lognormal_Pinv (P, log (m), s);
759 function PDF.LNORMAL (x >= 0, m > 0, s > 0)
760 = gsl_ran_lognormal_pdf (x, log (m), s);
761 no_opt function RV.LNORMAL (m > 0, s > 0)
762 = gsl_ran_lognormal (get_rng (), log (m), s);
764 // Normal distribution.
765 function CDF.NORMAL (x, u, s > 0) = gsl_cdf_gaussian_P (x - u, s);
766 function IDF.NORMAL (P > 0 && P < 1, u, s > 0)
767 = u + gsl_cdf_gaussian_Pinv (P, s);
768 function PDF.NORMAL (x, u, s > 0) = gsl_ran_gaussian_pdf ((x - u) / s, 1) / s;
769 no_opt function RV.NORMAL (u, s > 0) = u + gsl_ran_gaussian (get_rng (), s);
770 function CDFNORM (x) = gsl_cdf_ugaussian_P (x);
771 function PROBIT (P > 0 && P < 1) = gsl_cdf_ugaussian_Pinv (P);
772 no_opt function NORMAL (s > 0) = gsl_ran_gaussian (get_rng (), s);
774 // Normal tail distribution.
775 function PDF.NTAIL (x, a > 0, sigma > 0)
776 = gsl_ran_gaussian_tail_pdf (x, a, sigma);
777 no_opt function RV.NTAIL (a > 0, sigma > 0)
778 = gsl_ran_gaussian_tail (get_rng (), a, sigma);
780 // Pareto distribution.
781 function CDF.PARETO (x >= a, a > 0, b > 0) = gsl_cdf_pareto_P (x, b, a);
782 function IDF.PARETO (P >= 0 && P < 1, a > 0, b > 0)
783 = gsl_cdf_pareto_Pinv (P, b, a);
784 function PDF.PARETO (x >= a, a > 0, b > 0) = gsl_ran_pareto_pdf (x, b, a);
785 no_opt function RV.PARETO (a > 0, b > 0) = gsl_ran_pareto (get_rng (), b, a);
787 // Rayleigh distribution.
788 extension function CDF.RAYLEIGH (x, sigma > 0) = gsl_cdf_rayleigh_P (x, sigma);
789 extension function IDF.RAYLEIGH (P >= 0 && P <= 1, sigma > 0)
790 = gsl_cdf_rayleigh_Pinv (P, sigma);
791 extension function PDF.RAYLEIGH (x, sigma > 0)
792 = gsl_ran_rayleigh_pdf (x, sigma);
793 no_opt extension function RV.RAYLEIGH (sigma > 0)
794 = gsl_ran_rayleigh (get_rng (), sigma);
796 // Rayleigh tail distribution.
797 extension function PDF.RTAIL (x, a, sigma)
798 = gsl_ran_rayleigh_tail_pdf (x, a, sigma);
799 no_opt extension function RV.RTAIL (a, sigma)
800 = gsl_ran_rayleigh_tail (get_rng (), a, sigma);
802 // Studentized maximum modulus distribution.
803 function CDF.SMOD (x > 0, a >= 1, b >= 1) = unimplemented;
804 function IDF.SMOD (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
806 // Studentized range distribution.
807 function CDF.SRANGE (x > 0, a >= 1, b >= 1) = unimplemented;
808 function IDF.SRANGE (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
810 // Student t distribution.
811 function CDF.T (x, df > 0) = gsl_cdf_tdist_P (x, df);
812 function IDF.T (P > 0 && P < 1, df > 0) = gsl_cdf_tdist_Pinv (P, df);
813 function PDF.T (x, df > 0) = gsl_ran_tdist_pdf (x, df);
814 no_opt function RV.T (df > 0) = gsl_ran_tdist (get_rng (), df);
815 function NCDF.T (x, df > 0, nc) = unimplemented;
816 function NPDF.T (x, df > 0, nc) = unimplemented;
818 // Type-1 Gumbel distribution.
819 extension function CDF.T1G (x, a, b) = gsl_cdf_gumbel1_P (x, a, b);
820 extension function IDF.T1G (P >= 0 && P <= 1, a, b)
821 = gsl_cdf_gumbel1_P (P, a, b);
822 extension function PDF.T1G (x, a, b) = gsl_ran_gumbel1_pdf (x, a, b);
823 no_opt extension function RV.T1G (a, b) = gsl_ran_gumbel1 (get_rng (), a, b);
825 // Type-2 Gumbel distribution.
826 extension function CDF.T2G (x, a, b) = gsl_cdf_gumbel2_P (x, a, b);
827 extension function IDF.T2G (P >= 0 && P <= 1, a, b)
828 = gsl_cdf_gumbel2_P (P, a, b);
829 extension function PDF.T2G (x, a, b) = gsl_ran_gumbel2_pdf (x, a, b);
830 no_opt extension function RV.T2G (a, b) = gsl_ran_gumbel2 (get_rng (), a, b);
832 // Uniform distribution.
833 function CDF.UNIFORM (x <= b, a <= x, b) = gsl_cdf_flat_P (x, a, b);
834 function IDF.UNIFORM (P >= 0 && P <= 1, a <= b, b)
835 = gsl_cdf_flat_Pinv (P, a, b);
836 function PDF.UNIFORM (x <= b, a <= x, b) = gsl_ran_flat_pdf (x, a, b);
837 no_opt function RV.UNIFORM (a <= b, b) = gsl_ran_flat (get_rng (), a, b);
838 no_opt function UNIFORM (b >= 0) = gsl_ran_flat (get_rng (), 0, b);
840 // Weibull distribution.
841 function CDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_cdf_weibull_P (x, a, b);
842 function IDF.WEIBULL (P >= 0 && P < 1, a > 0, b > 0)
843 = gsl_cdf_weibull_Pinv (P, a, b);
844 function PDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_ran_weibull_pdf (x, a, b);
845 no_opt function RV.WEIBULL (a > 0, b > 0) = gsl_ran_weibull (get_rng (), a, b);
847 // Bernoulli distribution.
848 function CDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
850 function PDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
851 = gsl_ran_bernoulli_pdf (k, p);
852 no_opt function RV.BERNOULLI (p >= 0 && p <= 1)
853 = gsl_ran_bernoulli (get_rng (), p);
855 // Binomial distribution.
856 function CDF.BINOM (k, n > 0 && n == floor (n), p >= 0 && p <= 1)
857 = gsl_cdf_binomial_P (k, p, n);
858 function PDF.BINOM (k >= 0 && k == floor (k) && k <= n,
859 n > 0 && n == floor (n),
861 = gsl_ran_binomial_pdf (k, p, n);
862 no_opt function RV.BINOM (p > 0 && p == floor (p), n >= 0 && n <= 1)
863 = gsl_ran_binomial (get_rng (), p, n);
865 // Geometric distribution.
866 function CDF.GEOM (k >= 1 && k == floor (k), p >= 0 && p <= 1)
867 = gsl_cdf_geometric_P (k, p);
868 function PDF.GEOM (k >= 1 && k == floor (k),
870 = gsl_ran_geometric_pdf (k, p);
871 no_opt function RV.GEOM (p >= 0 && p <= 1) = gsl_ran_geometric (get_rng (), p);
873 // Hypergeometric distribution.
874 function CDF.HYPER (k >= 0 && k == floor (k) && k <= c,
875 a > 0 && a == floor (a),
876 b > 0 && b == floor (b) && b <= a,
877 c > 0 && c == floor (c) && c <= a)
878 = gsl_cdf_hypergeometric_P (k, c, a - c, b);
879 function PDF.HYPER (k >= 0 && k == floor (k) && k <= c,
880 a > 0 && a == floor (a),
881 b > 0 && b == floor (b) && b <= a,
882 c > 0 && c == floor (c) && c <= a)
883 = gsl_ran_hypergeometric_pdf (k, c, a - c, b);
884 no_opt function RV.HYPER (a > 0 && a == floor (a),
885 b > 0 && b == floor (b) && b <= a,
886 c > 0 && c == floor (c) && c <= a)
887 = gsl_ran_hypergeometric (get_rng (), c, a - c, b);
889 // Logarithmic distribution.
890 extension function PDF.LOG (k >= 1, p > 0 && p <= 1)
891 = gsl_ran_logarithmic_pdf (k, p);
892 no_opt extension function RV.LOG (p > 0 && p <= 1)
893 = gsl_ran_logarithmic (get_rng (), p);
895 // Negative binomial distribution.
896 function CDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
897 = gsl_cdf_negative_binomial_P (k, p, n);
898 function PDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
899 = gsl_ran_negative_binomial_pdf (k, p, n);
900 no_opt function RV.NEGBIN (n == floor (n), p > 0 && p <= 1)
901 = gsl_ran_negative_binomial (get_rng (), p, n);
903 // Poisson distribution.
904 function CDF.POISSON (k >= 0 && k == floor (k), mu > 0)
905 = gsl_cdf_poisson_P (k, mu);
906 function PDF.POISSON (k >= 0 && k == floor (k), mu > 0)
907 = gsl_ran_poisson_pdf (k, mu);
908 no_opt function RV.POISSON (mu > 0) = gsl_ran_poisson (get_rng (), mu);
911 absorb_miss boolean function MISSING (x) = x == SYSMIS || !finite (x);
912 absorb_miss boolean function SYSMIS (x) = x == SYSMIS || !finite (x);
913 no_opt boolean function SYSMIS (num_var v)
916 return case_num (c, v) == SYSMIS;
918 no_opt boolean function VALUE (num_var v)
921 return case_num (c, v);
924 no_opt operator VEC_ELEM_NUM (idx)
928 if (idx >= 1 && idx <= vector_get_var_cnt (v))
930 const struct variable *var = vector_get_var (v, (size_t) idx - 1);
931 double value = case_num (c, var);
932 return !var_is_num_missing (var, value, MV_USER) ? value : SYSMIS;
937 msg (SE, _("SYSMIS is not a valid index value for vector "
938 "%s. The result will be set to SYSMIS."),
939 vector_get_name (v));
941 msg (SE, _("%g is not a valid index value for vector %s. "
942 "The result will be set to SYSMIS."),
943 idx, vector_get_name (v));
948 absorb_miss no_opt string operator VEC_ELEM_STR (idx)
953 if (idx >= 1 && idx <= vector_get_var_cnt (v))
955 struct variable *var = vector_get_var (v, (size_t) idx - 1);
956 return copy_string (e, case_str (c, var), var_get_width (var));
961 msg (SE, _("SYSMIS is not a valid index value for vector "
962 "%s. The result will be set to the empty string."),
963 vector_get_name (v));
965 msg (SE, _("%g is not a valid index value for vector %s. "
966 "The result will be set to the empty string."),
967 idx, vector_get_name (v));
974 no_opt operator NUM_VAR ()
978 double d = case_num (c, v);
979 return !var_is_num_missing (v, d, MV_USER) ? d : SYSMIS;
982 no_opt string operator STR_VAR ()
987 struct substring s = alloc_string (e, var_get_width (v));
988 memcpy (s.string, case_str (c, v), var_get_width (v));
992 no_opt perm_only function LAG (num_var v, pos_int n_before)
995 const struct ccase *c = lagged_case (ds, n_before);
998 double x = case_num (c, v);
999 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1005 no_opt perm_only function LAG (num_var v)
1008 const struct ccase *c = lagged_case (ds, 1);
1011 double x = case_num (c, v);
1012 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1018 no_opt perm_only string function LAG (str_var v, pos_int n_before)
1022 const struct ccase *c = lagged_case (ds, n_before);
1024 return copy_string (e, case_str (c, v), var_get_width (v));
1026 return empty_string;
1029 no_opt perm_only string function LAG (str_var v)
1033 const struct ccase *c = lagged_case (ds, 1);
1035 return copy_string (e, case_str (c, v), var_get_width (v));
1037 return empty_string;
1040 no_opt operator NUM_SYS ()
1044 return case_num (c, v) == SYSMIS;
1047 no_opt operator NUM_VAL ()
1051 return case_num (c, v);
1054 no_opt operator CASENUM ()