1 /* PSPP - computes sample statistics.
2 Copyright (C) 1997-9, 2000 Free Software Foundation, Inc.
3 Written by Ben Pfaff <blp@gnu.org>.
5 This program is free software; you can redistribute it and/or
6 modify it under the terms of the GNU General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 This program is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "algorithm.h"
29 #include "dictionary.h"
42 /* Recursive descent parser in order of increasing precedence. */
43 typedef union any_node *parse_recursively_func (struct expression *);
44 static parse_recursively_func parse_or, parse_and, parse_not;
45 static parse_recursively_func parse_rel, parse_add, parse_mul;
46 static parse_recursively_func parse_neg, parse_exp;
47 static parse_recursively_func parse_primary;
48 static parse_recursively_func parse_vector_element, parse_function;
50 /* Utility functions. */
51 static struct expression *expr_create (struct dictionary *);
52 atom_type expr_node_returns (const union any_node *);
54 static const char *atom_type_name (atom_type);
55 static struct expression *finish_expression (union any_node *,
57 static bool type_check (struct expression *, union any_node **,
58 enum expr_type expected_type);
59 static union any_node *allocate_unary_variable (struct expression *,
62 /* Public functions. */
64 /* Parses an expression of the given TYPE.
65 If DICT is nonnull then variables and vectors within it may be
66 referenced within the expression; otherwise, the expression
67 must not reference any variables or vectors.
68 Returns the new expression if successful or a null pointer
71 expr_parse (struct dictionary *dict, enum expr_type type)
76 assert (type == EXPR_NUMBER || type == EXPR_STRING || type == EXPR_BOOLEAN);
78 e = expr_create (dict);
80 if (n != NULL && type_check (e, &n, type))
81 return finish_expression (expr_optimize (n, e), e);
89 /* Free expression E. */
91 expr_free (struct expression *e)
94 pool_destroy (e->expr_pool);
98 expr_parse_any (struct dictionary *dict, bool optimize)
101 struct expression *e;
103 e = expr_create (dict);
112 n = expr_optimize (n, e);
113 return finish_expression (n, e);
116 /* Finishing up expression building. */
118 /* Height of an expression's stacks. */
121 int number_height; /* Height of number stack. */
122 int string_height; /* Height of string stack. */
125 /* Stack heights used by different kinds of arguments. */
126 static const struct stack_heights on_number_stack = {1, 0};
127 static const struct stack_heights on_string_stack = {0, 1};
128 static const struct stack_heights not_on_stack = {0, 0};
130 /* Returns the stack heights used by an atom of the given
132 static const struct stack_heights *
133 atom_type_stack (atom_type type)
135 assert (is_atom (type));
141 return &on_number_stack;
144 return &on_string_stack;
154 return ¬_on_stack;
161 /* Measures the stack height needed for node N, supposing that
162 the stack height is initially *HEIGHT and updating *HEIGHT to
163 the final stack height. Updates *MAX, if necessary, to
164 reflect the maximum intermediate or final height. */
166 measure_stack (const union any_node *n,
167 struct stack_heights *height, struct stack_heights *max)
169 const struct stack_heights *return_height;
171 if (is_composite (n->type))
173 struct stack_heights args;
177 for (i = 0; i < n->composite.arg_cnt; i++)
178 measure_stack (n->composite.args[i], &args, max);
180 return_height = atom_type_stack (operations[n->type].returns);
183 return_height = atom_type_stack (n->type);
185 height->number_height += return_height->number_height;
186 height->string_height += return_height->string_height;
188 if (height->number_height > max->number_height)
189 max->number_height = height->number_height;
190 if (height->string_height > max->string_height)
191 max->string_height = height->string_height;
194 /* Allocates stacks within E sufficient for evaluating node N. */
196 allocate_stacks (union any_node *n, struct expression *e)
198 struct stack_heights initial = {0, 0};
199 struct stack_heights max = {0, 0};
201 measure_stack (n, &initial, &max);
202 e->number_stack = pool_alloc (e->expr_pool,
203 sizeof *e->number_stack * max.number_height);
204 e->string_stack = pool_alloc (e->expr_pool,
205 sizeof *e->string_stack * max.string_height);
208 /* Finalizes expression E for evaluating node N. */
209 static struct expression *
210 finish_expression (union any_node *n, struct expression *e)
212 /* Allocate stacks. */
213 allocate_stacks (n, e);
215 /* Output postfix representation. */
218 /* The eval_pool might have been used for allocating strings
219 during optimization. We need to keep those strings around
220 for all subsequent evaluations, so start a new eval_pool. */
221 e->eval_pool = pool_create_subpool (e->expr_pool);
226 /* Verifies that expression E, whose root node is *N, can be
227 converted to type EXPECTED_TYPE, inserting a conversion at *N
228 if necessary. Returns true if successful, false on failure. */
230 type_check (struct expression *e,
231 union any_node **n, enum expr_type expected_type)
233 atom_type actual_type = expr_node_returns (*n);
235 switch (expected_type)
239 if (actual_type != OP_number && actual_type != OP_boolean)
241 msg (SE, _("Type mismatch: expression has %s type, "
242 "but a numeric value is required here."),
243 atom_type_name (actual_type));
246 if (actual_type == OP_number && expected_type == OP_boolean)
247 *n = expr_allocate_unary (e, OP_NUM_TO_BOOLEAN, *n);
251 if (actual_type != OP_string)
253 msg (SE, _("Type mismatch: expression has %s type, "
254 "but a string value is required here."),
255 atom_type_name (actual_type));
267 /* Recursive-descent expression parser. */
269 /* Considers whether *NODE may be coerced to type REQUIRED_TYPE.
270 Returns true if possible, false if disallowed.
272 If DO_COERCION is false, then *NODE is not modified and there
275 If DO_COERCION is true, we perform the coercion if possible,
276 modifying *NODE if necessary. If the coercion is not possible
277 then we free *NODE and set *NODE to a null pointer.
279 This function's interface is somewhat awkward. Use one of the
280 wrapper functions type_coercion(), type_coercion_assert(), or
281 is_coercible() instead. */
283 type_coercion_core (struct expression *e,
284 atom_type required_type,
285 union any_node **node,
286 const char *operator_name,
289 atom_type actual_type;
291 assert (!!do_coercion == (e != NULL));
294 /* Propagate error. Whatever caused the original error
295 already emitted an error message. */
299 actual_type = expr_node_returns (*node);
300 if (actual_type == required_type)
306 switch (required_type)
309 if (actual_type == OP_boolean)
311 /* To enforce strict typing rules, insert Boolean to
312 numeric "conversion". This conversion is a no-op,
313 so it will be removed later. */
315 *node = expr_allocate_unary (e, OP_BOOLEAN_TO_NUM, *node);
321 /* No coercion to string. */
325 if (actual_type == OP_number)
327 /* Convert numeric to boolean. */
329 *node = expr_allocate_unary (e, OP_NUM_TO_BOOLEAN, *node);
338 if ((*node)->type == OP_format
339 && check_input_specifier (&(*node)->format.f, false)
340 && check_specifier_type (&(*node)->format.f, NUMERIC, false))
343 (*node)->type = OP_ni_format;
349 if ((*node)->type == OP_format
350 && check_output_specifier (&(*node)->format.f, false)
351 && check_specifier_type (&(*node)->format.f, NUMERIC, false))
354 (*node)->type = OP_no_format;
360 if ((*node)->type == OP_NUM_VAR)
363 *node = (*node)->composite.args[0];
369 if ((*node)->type == OP_STR_VAR)
372 *node = (*node)->composite.args[0];
378 if ((*node)->type == OP_number
379 && floor ((*node)->number.n) == (*node)->number.n
380 && (*node)->number.n > 0 && (*node)->number.n < INT_MAX)
383 *node = expr_allocate_pos_int (e, (*node)->number.n);
394 msg (SE, _("Type mismatch while applying %s operator: "
395 "cannot convert %s to %s."),
397 atom_type_name (actual_type), atom_type_name (required_type));
403 /* Coerces *NODE to type REQUIRED_TYPE, and returns success. If
404 *NODE cannot be coerced to the desired type then we issue an
405 error message about operator OPERATOR_NAME and free *NODE. */
407 type_coercion (struct expression *e,
408 atom_type required_type, union any_node **node,
409 const char *operator_name)
411 return type_coercion_core (e, required_type, node, operator_name, true);
414 /* Coerces *NODE to type REQUIRED_TYPE.
415 Assert-fails if the coercion is disallowed. */
417 type_coercion_assert (struct expression *e,
418 atom_type required_type, union any_node **node)
420 int success = type_coercion_core (e, required_type, node, NULL, true);
424 /* Returns true if *NODE may be coerced to type REQUIRED_TYPE,
427 is_coercible (atom_type required_type, union any_node *const *node)
429 return type_coercion_core (NULL, required_type,
430 (union any_node **) node, NULL, false);
433 /* How to parse an operator. */
436 int token; /* Token representing operator. */
437 operation_type type; /* Operation type representing operation. */
438 const char *name; /* Name of operator. */
441 /* Attempts to match the current token against the tokens for the
442 OP_CNT operators in OPS[]. If successful, returns true
443 and, if OPERATOR is non-null, sets *OPERATOR to the operator.
444 On failure, returns false and, if OPERATOR is non-null, sets
445 *OPERATOR to a null pointer. */
447 match_operator (const struct operator ops[], size_t op_cnt,
448 const struct operator **operator)
450 const struct operator *op;
452 for (op = ops; op < ops + op_cnt; op++)
454 if (op->token == '-')
455 lex_negative_to_dash ();
456 if (lex_match (op->token))
458 if (operator != NULL)
463 if (operator != NULL)
469 check_operator (const struct operator *op, int arg_cnt, atom_type arg_type)
471 const struct operation *o;
475 o = &operations[op->type];
476 assert (o->arg_cnt == arg_cnt);
477 assert ((o->flags & OPF_ARRAY_OPERAND) == 0);
478 for (i = 0; i < arg_cnt; i++)
479 assert (o->args[i] == arg_type);
484 check_binary_operators (const struct operator ops[], size_t op_cnt,
489 for (i = 0; i < op_cnt; i++)
490 check_operator (&ops[i], 2, arg_type);
495 get_operand_type (const struct operator *op)
497 return operations[op->type].args[0];
500 /* Parses a chain of left-associative operator/operand pairs.
501 There are OP_CNT operators, specified in OPS[]. The
502 operators' operands must all be the same type. The next
503 higher level is parsed by PARSE_NEXT_LEVEL. If CHAIN_WARNING
504 is non-null, then it will be issued as a warning if more than
505 one operator/operand pair is parsed. */
506 static union any_node *
507 parse_binary_operators (struct expression *e, union any_node *node,
508 const struct operator ops[], size_t op_cnt,
509 parse_recursively_func *parse_next_level,
510 const char *chain_warning)
512 atom_type operand_type = get_operand_type (&ops[0]);
514 const struct operator *operator;
516 assert (check_binary_operators (ops, op_cnt, operand_type));
520 for (op_count = 0; match_operator (ops, op_cnt, &operator); op_count++)
524 /* Convert the left-hand side to type OPERAND_TYPE. */
525 if (!type_coercion (e, operand_type, &node, operator->name))
528 /* Parse the right-hand side and coerce to type
530 rhs = parse_next_level (e);
531 if (!type_coercion (e, operand_type, &rhs, operator->name))
533 node = expr_allocate_binary (e, operator->type, node, rhs);
536 if (op_count > 1 && chain_warning != NULL)
537 msg (SW, chain_warning);
542 static union any_node *
543 parse_inverting_unary_operator (struct expression *e,
544 const struct operator *op,
545 parse_recursively_func *parse_next_level)
547 union any_node *node;
550 check_operator (op, 1, get_operand_type (op));
553 while (match_operator (op, 1, NULL))
556 node = parse_next_level (e);
558 && type_coercion (e, get_operand_type (op), &node, op->name)
559 && op_count % 2 != 0)
560 return expr_allocate_unary (e, op->type, node);
565 /* Parses the OR level. */
566 static union any_node *
567 parse_or (struct expression *e)
569 static const struct operator op =
570 { T_OR, OP_OR, "logical disjunction (\"OR\")" };
572 return parse_binary_operators (e, parse_and (e), &op, 1, parse_and, NULL);
575 /* Parses the AND level. */
576 static union any_node *
577 parse_and (struct expression *e)
579 static const struct operator op =
580 { T_AND, OP_AND, "logical conjunction (\"AND\")" };
582 return parse_binary_operators (e, parse_not (e), &op, 1, parse_not, NULL);
585 /* Parses the NOT level. */
586 static union any_node *
587 parse_not (struct expression *e)
589 static const struct operator op
590 = { T_NOT, OP_NOT, "logical negation (\"NOT\")" };
591 return parse_inverting_unary_operator (e, &op, parse_rel);
594 /* Parse relational operators. */
595 static union any_node *
596 parse_rel (struct expression *e)
598 const char *chain_warning =
599 _("Chaining relational operators (e.g. \"a < b < c\") will "
600 "not produce the mathematically expected result. "
601 "Use the AND logical operator to fix the problem "
602 "(e.g. \"a < b AND b < c\"). "
603 "If chaining is really intended, parentheses will disable "
604 "this warning (e.g. \"(a < b) < c\".)");
606 union any_node *node = parse_add (e);
611 switch (expr_node_returns (node))
616 static const struct operator ops[] =
618 { '=', OP_EQ, "numeric equality (\"=\")" },
619 { T_EQ, OP_EQ, "numeric equality (\"EQ\")" },
620 { T_GE, OP_GE, "numeric greater-than-or-equal-to (\">=\")" },
621 { T_GT, OP_GT, "numeric greater than (\">\")" },
622 { T_LE, OP_LE, "numeric less-than-or-equal-to (\"<=\")" },
623 { T_LT, OP_LT, "numeric less than (\"<\")" },
624 { T_NE, OP_NE, "numeric inequality (\"<>\")" },
627 return parse_binary_operators (e, node, ops, sizeof ops / sizeof *ops,
628 parse_add, chain_warning);
633 static const struct operator ops[] =
635 { '=', OP_EQ_STRING, "string equality (\"=\")" },
636 { T_EQ, OP_EQ_STRING, "string equality (\"EQ\")" },
637 { T_GE, OP_GE_STRING, "string greater-than-or-equal-to (\">=\")" },
638 { T_GT, OP_GT_STRING, "string greater than (\">\")" },
639 { T_LE, OP_LE_STRING, "string less-than-or-equal-to (\"<=\")" },
640 { T_LT, OP_LT_STRING, "string less than (\"<\")" },
641 { T_NE, OP_NE_STRING, "string inequality (\"<>\")" },
644 return parse_binary_operators (e, node, ops, sizeof ops / sizeof *ops,
645 parse_add, chain_warning);
653 /* Parses the addition and subtraction level. */
654 static union any_node *
655 parse_add (struct expression *e)
657 static const struct operator ops[] =
659 { '+', OP_ADD, "addition (\"+\")" },
660 { '-', OP_SUB, "subtraction (\"-\")" },
663 return parse_binary_operators (e, parse_mul (e),
664 ops, sizeof ops / sizeof *ops,
668 /* Parses the multiplication and division level. */
669 static union any_node *
670 parse_mul (struct expression *e)
672 static const struct operator ops[] =
674 { '*', OP_MUL, "multiplication (\"*\")" },
675 { '/', OP_DIV, "division (\"/\")" },
678 return parse_binary_operators (e, parse_neg (e),
679 ops, sizeof ops / sizeof *ops,
683 /* Parses the unary minus level. */
684 static union any_node *
685 parse_neg (struct expression *e)
687 static const struct operator op = { '-', OP_NEG, "negation (\"-\")" };
688 return parse_inverting_unary_operator (e, &op, parse_exp);
691 static union any_node *
692 parse_exp (struct expression *e)
694 static const struct operator op =
695 { T_EXP, OP_POW, "exponentiation (\"**\")" };
697 const char *chain_warning =
698 _("The exponentiation operator (\"**\") is left-associative, "
699 "even though right-associative semantics are more useful. "
700 "That is, \"a**b**c\" equals \"(a**b)**c\", not as \"a**(b**c)\". "
701 "To disable this warning, insert parentheses.");
703 return parse_binary_operators (e, parse_primary (e), &op, 1,
704 parse_primary, chain_warning);
707 /* Parses system variables. */
708 static union any_node *
709 parse_sysvar (struct expression *e)
711 if (lex_match_id ("$CASENUM"))
712 return expr_allocate_nullary (e, OP_CASENUM);
713 else if (lex_match_id ("$DATE"))
715 static const char *months[12] =
717 "JAN", "FEB", "MAR", "APR", "MAY", "JUN",
718 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC",
724 time = localtime (&last_vfm_invocation);
725 sprintf (temp_buf, "%02d %s %02d", abs (time->tm_mday) % 100,
726 months[abs (time->tm_mon) % 12], abs (time->tm_year) % 100);
728 return expr_allocate_string_buffer (e, temp_buf, strlen (temp_buf));
730 else if (lex_match_id ("$TRUE"))
731 return expr_allocate_boolean (e, 1.0);
732 else if (lex_match_id ("$FALSE"))
733 return expr_allocate_boolean (e, 0.0);
734 else if (lex_match_id ("$SYSMIS"))
735 return expr_allocate_number (e, SYSMIS);
736 else if (lex_match_id ("$JDATE"))
738 struct tm *time = localtime (&last_vfm_invocation);
739 return expr_allocate_number (e, expr_ymd_to_ofs (time->tm_year + 1900,
743 else if (lex_match_id ("$TIME"))
745 struct tm *time = localtime (&last_vfm_invocation);
746 return expr_allocate_number (e,
747 expr_ymd_to_date (time->tm_year + 1900,
750 + time->tm_hour * 60 * 60.
754 else if (lex_match_id ("$LENGTH"))
755 return expr_allocate_number (e, get_viewlength ());
756 else if (lex_match_id ("$WIDTH"))
757 return expr_allocate_number (e, get_viewwidth ());
760 msg (SE, _("Unknown system variable %s."), tokid);
765 /* Parses numbers, varnames, etc. */
766 static union any_node *
767 parse_primary (struct expression *e)
772 if (lex_look_ahead () == '(')
774 /* An identifier followed by a left parenthesis may be
775 a vector element reference. If not, it's a function
777 if (e->dict != NULL && dict_lookup_vector (e->dict, tokid) != NULL)
778 return parse_vector_element (e);
780 return parse_function (e);
782 else if (tokid[0] == '$')
784 /* $ at the beginning indicates a system variable. */
785 return parse_sysvar (e);
787 else if (e->dict != NULL && dict_lookup_var (e->dict, tokid))
789 /* It looks like a user variable.
790 (It could be a format specifier, but we'll assume
791 it's a variable unless proven otherwise. */
792 return allocate_unary_variable (e, parse_dict_variable (e->dict));
796 /* Try to parse it as a format specifier. */
798 if (parse_format_specifier (&fmt, FMTP_SUPPRESS_ERRORS))
799 return expr_allocate_format (e, &fmt);
801 /* All attempts failed. */
802 msg (SE, _("Unknown identifier %s."), tokid);
810 union any_node *node = expr_allocate_number (e, tokval);
817 union any_node *node = expr_allocate_string_buffer (e, ds_c_str (&tokstr),
818 ds_length (&tokstr));
825 union any_node *node;
828 if (node != NULL && !lex_match (')'))
830 lex_error (_("expecting `)'"));
837 lex_error (_("in expression"));
842 static union any_node *
843 parse_vector_element (struct expression *e)
845 const struct vector *vector;
846 union any_node *element;
848 /* Find vector, skip token.
849 The caller must already have verified that the current token
850 is the name of a vector. */
851 vector = dict_lookup_vector (default_dict, tokid);
852 assert (vector != NULL);
855 /* Skip left parenthesis token.
856 The caller must have verified that the lookahead is a left
858 assert (token == '(');
861 element = parse_or (e);
862 if (!type_coercion (e, OP_number, &element, "vector indexing")
866 return expr_allocate_binary (e, (vector->var[0]->type == NUMERIC
867 ? OP_VEC_ELEM_NUM : OP_VEC_ELEM_STR),
868 element, expr_allocate_vector (e, vector));
871 /* Individual function parsing. */
873 struct operation operations[OP_first + OP_cnt] = {
878 word_matches (const char **test, const char **name)
880 size_t test_len = strcspn (*test, ".");
881 size_t name_len = strcspn (*name, ".");
882 if (test_len == name_len)
884 if (memcmp (*test, *name, test_len))
887 else if (test_len < 3 || test_len > name_len)
891 if (memcmp (*test, *name, test_len))
897 if (**test != **name)
909 compare_names (const char *test, const char *name)
913 if (!word_matches (&test, &name))
915 if (*name == '\0' && *test == '\0')
921 lookup_function_helper (const char *name,
922 int (*compare) (const char *test, const char *name),
923 const struct operation **first,
924 const struct operation **last)
928 for (f = operations + OP_function_first;
929 f <= operations + OP_function_last; f++)
930 if (!compare (name, f->name))
934 while (f <= operations + OP_function_last && !compare (name, f->name))
945 lookup_function (const char *name,
946 const struct operation **first,
947 const struct operation **last)
949 *first = *last = NULL;
950 return (lookup_function_helper (name, strcmp, first, last)
951 || lookup_function_helper (name, compare_names, first, last));
955 extract_min_valid (char *s)
957 char *p = strrchr (s, '.');
959 || p[1] < '0' || p[1] > '9'
960 || strspn (p + 1, "0123456789") != strlen (p + 1))
967 function_arg_type (const struct operation *f, size_t arg_idx)
969 assert (arg_idx < f->arg_cnt || (f->flags & OPF_ARRAY_OPERAND));
971 return f->args[arg_idx < f->arg_cnt ? arg_idx : f->arg_cnt - 1];
975 match_function (union any_node **args, int arg_cnt, const struct operation *f)
979 if (arg_cnt < f->arg_cnt
980 || (arg_cnt > f->arg_cnt && (f->flags & OPF_ARRAY_OPERAND) == 0)
981 || arg_cnt - (f->arg_cnt - 1) < f->array_min_elems)
984 for (i = 0; i < arg_cnt; i++)
985 if (!is_coercible (function_arg_type (f, i), &args[i]))
992 coerce_function_args (struct expression *e, const struct operation *f,
993 union any_node **args, size_t arg_cnt)
997 for (i = 0; i < arg_cnt; i++)
998 type_coercion_assert (e, function_arg_type (f, i), &args[i]);
1002 validate_function_args (const struct operation *f, int arg_cnt, int min_valid)
1004 int array_arg_cnt = arg_cnt - (f->arg_cnt - 1);
1005 if (array_arg_cnt < f->array_min_elems)
1007 msg (SE, _("%s must have at least %d arguments in list."),
1008 f->prototype, f->array_min_elems);
1012 if ((f->flags & OPF_ARRAY_OPERAND)
1013 && array_arg_cnt % f->array_granularity != 0)
1015 if (f->array_granularity == 2)
1016 msg (SE, _("%s must have even number of arguments in list."),
1019 msg (SE, _("%s must have multiple of %d arguments in list."),
1020 f->prototype, f->array_granularity);
1024 if (min_valid != -1)
1026 if (f->array_min_elems == 0)
1028 assert ((f->flags & OPF_MIN_VALID) == 0);
1029 msg (SE, _("%s function does not accept a minimum valid "
1030 "argument count."));
1035 assert (f->flags & OPF_MIN_VALID);
1036 if (array_arg_cnt < f->array_min_elems)
1038 msg (SE, _("%s requires at least %d valid arguments in list."),
1042 else if (min_valid > array_arg_cnt)
1044 msg (SE, _("With %s, "
1045 "using minimum valid argument count of %d "
1046 "does not make sense when passing only %d "
1047 "arguments in list."),
1048 f->prototype, min_valid, array_arg_cnt);
1058 add_arg (union any_node ***args, int *arg_cnt, int *arg_cap,
1059 union any_node *arg)
1061 if (*arg_cnt >= *arg_cap)
1064 *args = xrealloc (*args, sizeof **args * *arg_cap);
1067 (*args)[(*arg_cnt)++] = arg;
1071 put_invocation (struct string *s,
1072 const char *func_name, union any_node **args, size_t arg_cnt)
1076 ds_printf (s, "%s(", func_name);
1077 for (i = 0; i < arg_cnt; i++)
1081 ds_puts (s, operations[expr_node_returns (args[i])].prototype);
1087 no_match (const char *func_name,
1088 union any_node **args, size_t arg_cnt,
1089 const struct operation *first, const struct operation *last)
1092 const struct operation *f;
1096 if (last - first == 1)
1098 ds_printf (&s, _("Type mismatch invoking %s as "), first->prototype);
1099 put_invocation (&s, func_name, args, arg_cnt);
1103 ds_puts (&s, _("Function invocation "));
1104 put_invocation (&s, func_name, args, arg_cnt);
1105 ds_puts (&s, _(" does not match any known function. Candidates are:"));
1107 for (f = first; f < last; f++)
1108 ds_printf (&s, "\n%s", f->prototype);
1112 msg (SE, "%s", ds_c_str (&s));
1117 static union any_node *
1118 parse_function (struct expression *e)
1121 const struct operation *f, *first, *last;
1123 union any_node **args = NULL;
1127 struct fixed_string func_name;
1131 ls_create (&func_name, ds_c_str (&tokstr));
1132 min_valid = extract_min_valid (ds_c_str (&tokstr));
1133 if (!lookup_function (ds_c_str (&tokstr), &first, &last))
1135 msg (SE, _("No function or vector named %s."), ds_c_str (&tokstr));
1136 ls_destroy (&func_name);
1141 if (!lex_force_match ('('))
1143 ls_destroy (&func_name);
1148 arg_cnt = arg_cap = 0;
1152 if (token == T_ID && lex_look_ahead () == 'T')
1154 struct variable **vars;
1158 if (!parse_variables (default_dict, &vars, &var_cnt, PV_SINGLE))
1160 for (i = 0; i < var_cnt; i++)
1161 add_arg (&args, &arg_cnt, &arg_cap,
1162 allocate_unary_variable (e, vars[i]));
1167 union any_node *arg = parse_or (e);
1171 add_arg (&args, &arg_cnt, &arg_cap, arg);
1173 if (lex_match (')'))
1175 else if (!lex_match (','))
1177 lex_error (_("expecting `,' or `)' invoking %s function"),
1183 for (f = first; f < last; f++)
1184 if (match_function (args, arg_cnt, f))
1188 no_match (ls_c_str (&func_name), args, arg_cnt, first, last);
1192 coerce_function_args (e, f, args, arg_cnt);
1193 if (!validate_function_args (f, arg_cnt, min_valid))
1196 if ((f->flags & OPF_EXTENSION) && get_syntax () == COMPATIBLE)
1197 msg (SW, _("%s is a PSPP extension."), f->prototype);
1198 if (f->flags & OPF_UNIMPLEMENTED)
1200 msg (SE, _("%s is not yet implemented."), f->prototype);
1204 n = expr_allocate_composite (e, f - operations, args, arg_cnt);
1205 n->composite.min_valid = min_valid != -1 ? min_valid : f->array_min_elems;
1207 if (n->type == OP_LAG_Vnn || n->type == OP_LAG_Vsn)
1210 assert (n->composite.arg_cnt == 2);
1211 assert (n->composite.args[1]->type == OP_pos_int);
1212 n_before = n->composite.args[1]->integer.i;
1213 if (n_before > n_lag)
1218 ls_destroy (&func_name);
1223 ls_destroy (&func_name);
1227 /* Utility functions. */
1229 static struct expression *
1230 expr_create (struct dictionary *dict)
1232 struct pool *pool = pool_create ();
1233 struct expression *e = pool_alloc (pool, sizeof *e);
1234 e->expr_pool = pool;
1236 e->eval_pool = pool_create_subpool (e->expr_pool);
1239 e->op_cnt = e->op_cap = 0;
1244 expr_node_returns (const union any_node *n)
1247 assert (is_operation (n->type));
1248 if (is_atom (n->type))
1250 else if (is_composite (n->type))
1251 return operations[n->type].returns;
1257 atom_type_name (atom_type type)
1259 assert (is_atom (type));
1260 return operations[type].name;
1264 expr_allocate_nullary (struct expression *e, operation_type op)
1266 return expr_allocate_composite (e, op, NULL, 0);
1270 expr_allocate_unary (struct expression *e, operation_type op,
1271 union any_node *arg0)
1273 return expr_allocate_composite (e, op, &arg0, 1);
1277 expr_allocate_binary (struct expression *e, operation_type op,
1278 union any_node *arg0, union any_node *arg1)
1280 union any_node *args[2];
1283 return expr_allocate_composite (e, op, args, 2);
1287 is_valid_node (union any_node *n)
1289 struct operation *op;
1293 assert (is_operation (n->type));
1294 op = &operations[n->type];
1296 if (!is_atom (n->type))
1298 struct composite_node *c = &n->composite;
1300 assert (is_composite (n->type));
1301 assert (c->arg_cnt >= op->arg_cnt);
1302 for (i = 0; i < op->arg_cnt; i++)
1303 assert (expr_node_returns (c->args[i]) == op->args[i]);
1304 if (c->arg_cnt > op->arg_cnt && !is_operator (n->type))
1306 assert (op->flags & OPF_ARRAY_OPERAND);
1307 for (i = 0; i < c->arg_cnt; i++)
1308 assert (operations[c->args[i]->type].returns
1309 == op->args[op->arg_cnt - 1]);
1317 expr_allocate_composite (struct expression *e, operation_type op,
1318 union any_node **args, size_t arg_cnt)
1323 n = pool_alloc (e->expr_pool, sizeof n->composite);
1325 n->composite.arg_cnt = arg_cnt;
1326 n->composite.args = pool_alloc (e->expr_pool,
1327 sizeof *n->composite.args * arg_cnt);
1328 for (i = 0; i < arg_cnt; i++)
1330 if (args[i] == NULL)
1332 n->composite.args[i] = args[i];
1334 memcpy (n->composite.args, args, sizeof *n->composite.args * arg_cnt);
1335 n->composite.min_valid = 0;
1336 assert (is_valid_node (n));
1341 expr_allocate_number (struct expression *e, double d)
1343 union any_node *n = pool_alloc (e->expr_pool, sizeof n->number);
1344 n->type = OP_number;
1350 expr_allocate_boolean (struct expression *e, double b)
1352 union any_node *n = pool_alloc (e->expr_pool, sizeof n->number);
1353 assert (b == 0.0 || b == 1.0 || b == SYSMIS);
1354 n->type = OP_boolean;
1360 expr_allocate_integer (struct expression *e, int i)
1362 union any_node *n = pool_alloc (e->expr_pool, sizeof n->integer);
1363 n->type = OP_integer;
1369 expr_allocate_pos_int (struct expression *e, int i)
1371 union any_node *n = pool_alloc (e->expr_pool, sizeof n->integer);
1373 n->type = OP_pos_int;
1379 expr_allocate_vector (struct expression *e, const struct vector *vector)
1381 union any_node *n = pool_alloc (e->expr_pool, sizeof n->vector);
1382 n->type = OP_vector;
1383 n->vector.v = vector;
1388 expr_allocate_string_buffer (struct expression *e,
1389 const char *string, size_t length)
1391 union any_node *n = pool_alloc (e->expr_pool, sizeof n->string);
1392 n->type = OP_string;
1395 n->string.s = copy_string (e, string, length);
1400 expr_allocate_string (struct expression *e, struct fixed_string s)
1402 union any_node *n = pool_alloc (e->expr_pool, sizeof n->string);
1403 n->type = OP_string;
1409 expr_allocate_variable (struct expression *e, struct variable *v)
1411 union any_node *n = pool_alloc (e->expr_pool, sizeof n->variable);
1412 n->type = v->type == NUMERIC ? OP_num_var : OP_str_var;
1418 expr_allocate_format (struct expression *e, const struct fmt_spec *format)
1420 union any_node *n = pool_alloc (e->expr_pool, sizeof n->format);
1421 n->type = OP_format;
1422 n->format.f = *format;
1426 /* Allocates a unary composite node that represents the value of
1427 variable V in expression E. */
1428 static union any_node *
1429 allocate_unary_variable (struct expression *e, struct variable *v)
1432 return expr_allocate_unary (e, v->type == NUMERIC ? OP_NUM_VAR : OP_STR_VAR,
1433 expr_allocate_variable (e, v));