1 /* Copyright (C) 1991, 1992 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
20 /* Modified 12/15/96 by Ben Pfaff for PSPP. */
27 /* Byte-wise swap two items of size SIZE. */
28 #define SWAP(a, b, size) \
31 register size_t __size = (size); \
32 register char *__a = (a), *__b = (b); \
38 } while (--__size > 0); \
41 /* Discontinue quicksort algorithm when partition gets below this size.
42 This particular magic number was chosen to work best on a Sun 4/260. */
45 /* Stack node declarations used to store unfulfilled partition obligations. */
53 /* The next 4 #defines implement a very fast in-line stack abstraction. */
54 #define STACK_SIZE (8 * sizeof(unsigned long int))
55 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
56 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
57 #define STACK_NOT_EMPTY (stack < top)
60 /* Order size using quicksort. This implementation incorporates
61 four optimizations discussed in Sedgewick:
63 1. Non-recursive, using an explicit stack of pointer that store the
64 next array partition to sort. To save time, this maximum amount
65 of space required to store an array of MAX_INT is allocated on the
66 stack. Assuming a 32-bit integer, this needs only 32 *
67 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
69 2. Chose the pivot element using a median-of-three decision tree.
70 This reduces the probability of selecting a bad pivot value and
71 eliminates certain extraneous comparisons.
73 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
74 insertion sort to order the MAX_THRESH items within each partition.
75 This is a big win, since insertion sort is faster for small, mostly
76 sorted array segements.
78 4. The larger of the two sub-partitions is always pushed onto the
79 stack first, with the algorithm then concentrating on the
80 smaller partition. This *guarantees* no more than log (n)
81 stack size is needed (actually O(1) in this case)! */
84 blp_quicksort (void *pbase, size_t total_elems, size_t size,
85 int (*cmp) (const void *, const void *),
92 register char *base_ptr = (char *) pbase;
94 /* Allocating SIZE bytes for a pivot buffer facilitates a better
95 algorithm below since we can do comparisons directly on the pivot. */
97 char *pivot_buffer = (char *) local_alloc (size);
99 char *pivot_buffer = temp_buf;
101 const size_t max_thresh = MAX_THRESH * size;
103 if (total_elems == 0)
105 /* Avoid lossage with unsigned arithmetic below. */
106 local_free (pivot_buffer);
110 if (total_elems > MAX_THRESH)
113 char *hi = &lo[size * (total_elems - 1)];
114 /* Largest size needed for 32-bit int!!! */
115 stack_node stack[STACK_SIZE];
116 stack_node *top = stack + 1;
118 while (STACK_NOT_EMPTY)
123 char *pivot = pivot_buffer;
125 /* Select median value from among LO, MID, and HI. Rearrange
126 LO and HI so the three values are sorted. This lowers the
127 probability of picking a pathological pivot value and
128 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
130 char *mid = lo + size * ((hi - lo) / size >> 1);
132 if ((*cmp) ((void *) mid, (void *) lo) < 0)
133 SWAP (mid, lo, size);
134 if ((*cmp) ((void *) hi, (void *) mid) < 0)
135 SWAP (mid, hi, size);
138 if ((*cmp) ((void *) mid, (void *) lo) < 0)
139 SWAP (mid, lo, size);
141 memcpy (pivot, mid, size);
142 pivot = pivot_buffer;
144 left_ptr = lo + size;
145 right_ptr = hi - size;
147 /* Here's the famous ``collapse the walls'' section of quicksort.
148 Gotta like those tight inner loops! They are the main reason
149 that this algorithm runs much faster than others. */
152 while ((*cmp) ((void *) left_ptr, (void *) pivot) < 0)
155 while ((*cmp) ((void *) pivot, (void *) right_ptr) < 0)
158 if (left_ptr < right_ptr)
160 SWAP (left_ptr, right_ptr, size);
164 else if (left_ptr == right_ptr)
171 while (left_ptr <= right_ptr);
173 /* Set up pointers for next iteration. First determine whether
174 left and right partitions are below the threshold size. If so,
175 ignore one or both. Otherwise, push the larger partition's
176 bounds on the stack and continue sorting the smaller one. */
178 if ((size_t) (right_ptr - lo) <= max_thresh)
180 if ((size_t) (hi - left_ptr) <= max_thresh)
181 /* Ignore both small partitions. */
184 /* Ignore small left partition. */
187 else if ((size_t) (hi - left_ptr) <= max_thresh)
188 /* Ignore small right partition. */
190 else if ((right_ptr - lo) > (hi - left_ptr))
192 /* Push larger left partition indices. */
193 PUSH (lo, right_ptr);
198 /* Push larger right partition indices. */
205 /* Once the BASE_PTR array is partially sorted by quicksort the rest
206 is completely sorted using insertion sort, since this is efficient
207 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
208 of the array to sort, and END_PTR points at the very last element in
209 the array (*not* one beyond it!). */
211 #define min(x, y) ((x) < (y) ? (x) : (y))
214 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
215 char *tmp_ptr = base_ptr;
216 char *thresh = min (end_ptr, base_ptr + max_thresh);
217 register char *run_ptr;
219 /* Find smallest element in first threshold and place it at the
220 array's beginning. This is the smallest array element,
221 and the operation speeds up insertion sort's inner loop. */
223 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
224 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
227 if (tmp_ptr != base_ptr)
228 SWAP (tmp_ptr, base_ptr, size);
230 /* Insertion sort, running from left-hand-side up to right-hand-side. */
232 run_ptr = base_ptr + size;
233 while ((run_ptr += size) <= end_ptr)
235 tmp_ptr = run_ptr - size;
236 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
240 if (tmp_ptr != run_ptr)
244 trav = run_ptr + size;
245 while (--trav >= run_ptr)
250 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)