1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2005 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 Find the least-squares estimate of b for the linear model:
22 where Y is an n-by-1 column vector, X is an n-by-p matrix of
23 independent variables, b is a p-by-1 vector of regression coefficients,
24 and Z is an n-by-1 normally-distributed random vector with independent
25 identically distributed components with mean 0.
27 This estimate is found via the sweep operator, which is a modification
28 of Gauss-Jordan pivoting.
33 Matrix Computations, third edition. GH Golub and CF Van Loan.
34 The Johns Hopkins University Press. 1996. ISBN 0-8018-5414-8.
36 Numerical Analysis for Statisticians. K Lange. Springer. 1999.
39 Numerical Linear Algebra for Applications in Statistics. JE Gentle.
40 Springer. 1998. ISBN 0-387-98542-5.
46 The matrix A will be overwritten. In ordinary uses of the sweep
47 operator, A will be the matrix
55 X refers to the design matrix and Y to the vector of dependent
56 observations. reg_sweep sweeps on the diagonal elements of
59 The matrix A is assumed to be symmetric, so the sweep operation is
60 performed only for the upper triangle of A.
64 reg_sweep (gsl_matrix * A)
75 if (A->size1 == A->size2)
77 B = gsl_matrix_alloc (A->size1, A->size2);
78 for (k = 0; k < (A->size1 - 1); k++)
80 sweep_element = gsl_matrix_get (A, k, k);
81 if (fabs (sweep_element) > GSL_DBL_MIN)
83 tmp = -1.0 / sweep_element;
84 gsl_matrix_set (B, k, k, tmp);
86 Rows before current row k.
88 for (i = 0; i < k; i++)
90 for (j = i; j < A->size2; j++)
93 Use only the upper triangle of A.
97 tmp = gsl_matrix_get (A, i, j) -
98 gsl_matrix_get (A, i, k)
99 * gsl_matrix_get (A, j, k) / sweep_element;
100 gsl_matrix_set (B, i, j, tmp);
104 tmp = gsl_matrix_get (A, i, j) -
105 gsl_matrix_get (A, i, k)
106 * gsl_matrix_get (A, k, j) / sweep_element;
107 gsl_matrix_set (B, i, j, tmp);
111 tmp = gsl_matrix_get (A, i, k) / sweep_element;
112 gsl_matrix_set (B, i, j, tmp);
119 for (j = k + 1; j < A->size1; j++)
121 tmp = gsl_matrix_get (A, k, j) / sweep_element;
122 gsl_matrix_set (B, k, j, tmp);
125 Rows after the current row k.
127 for (i = k + 1; i < A->size1; i++)
129 for (j = i; j < A->size2; j++)
131 tmp = gsl_matrix_get (A, i, j) -
132 gsl_matrix_get (A, k, i)
133 * gsl_matrix_get (A, k, j) / sweep_element;
134 gsl_matrix_set (B, i, j, tmp);
138 for (i = 0; i < A->size1; i++)
139 for (j = i; j < A->size2; j++)
141 gsl_matrix_set (A, i, j, gsl_matrix_get (B, i, j));