1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2005, 2009 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 Find the least-squares estimate of b for the linear model:
22 where Y is an n-by-1 column vector, X is an n-by-p matrix of
23 independent variables, b is a p-by-1 vector of regression coefficients,
24 and Z is an n-by-1 normally-distributed random vector with independent
25 identically distributed components with mean 0.
27 This estimate is found via the sweep operator, which is a modification
28 of Gauss-Jordan pivoting.
33 Matrix Computations, third edition. GH Golub and CF Van Loan.
34 The Johns Hopkins University Press. 1996. ISBN 0-8018-5414-8.
36 Numerical Analysis for Statisticians. K Lange. Springer. 1999.
39 Numerical Linear Algebra for Applications in Statistics. JE Gentle.
40 Springer. 1998. ISBN 0-387-98542-5.
48 The matrix A will be overwritten. In ordinary uses of the sweep
49 operator, A will be the matrix
57 X refers to the design matrix and Y to the vector of dependent
58 observations. reg_sweep sweeps on the diagonal elements of
61 The matrix A is assumed to be symmetric, so the sweep operation is
62 performed only for the upper triangle of A.
64 LAST_COL is considered to be the final column in the augmented matrix,
65 that is, the column to the right of the '=' sign of the system.
69 reg_sweep (gsl_matrix * A, int last_col)
84 if (A->size1 == A->size2)
86 ordered_cols = malloc (A->size1 * sizeof (*ordered_cols));
87 for (i = 0; i < last_col; i++)
91 for (i = last_col + 1; i < A->size1; i++)
93 ordered_cols[i - 1] = i;
95 ordered_cols[A->size1 - 1] = last_col;
96 B = gsl_matrix_alloc (A->size1, A->size2);
97 for (k = 0; k < (A->size1 - 1); k++)
99 row_k = ordered_cols[k];
100 sweep_element = gsl_matrix_get (A, row_k, row_k);
101 if (fabs (sweep_element) > GSL_DBL_MIN)
103 tmp = -1.0 / sweep_element;
104 gsl_matrix_set (B, row_k, row_k, tmp);
106 Rows before current row k.
108 for (i = 0; i < k; i++)
110 row_i = ordered_cols[i];
111 for (j = i; j < A->size2; j++)
113 row_j = ordered_cols[j];
115 Use only the upper triangle of A.
119 tmp = gsl_matrix_get (A, row_i, row_j) -
120 gsl_matrix_get (A, row_i, row_k)
121 * gsl_matrix_get (A, row_j, row_k) / sweep_element;
122 gsl_matrix_set (B, row_i, row_j, tmp);
124 else if (row_j > row_k)
126 tmp = gsl_matrix_get (A, row_i, row_j) -
127 gsl_matrix_get (A, row_i, row_k)
128 * gsl_matrix_get (A, row_k, row_j) / sweep_element;
129 gsl_matrix_set (B, row_i, row_j, tmp);
133 tmp = gsl_matrix_get (A, row_i, row_k) / sweep_element;
134 gsl_matrix_set (B, row_i, row_j, tmp);
141 for (j = k + 1; j < A->size1; j++)
143 row_j = ordered_cols[j];
144 tmp = gsl_matrix_get (A, row_k, row_j) / sweep_element;
145 gsl_matrix_set (B, row_k, row_j, tmp);
148 Rows after the current row k.
150 for (i = k + 1; i < A->size1; i++)
152 row_i = ordered_cols[i];
153 for (j = i; j < A->size2; j++)
155 row_j = ordered_cols[j];
156 tmp = gsl_matrix_get (A, row_i, row_j) -
157 gsl_matrix_get (A, row_k, row_i)
158 * gsl_matrix_get (A, row_k, row_j) / sweep_element;
159 gsl_matrix_set (B, row_i, row_j, tmp);
163 for (i = 0; i < A->size1; i++)
164 for (j = i; j < A->size2; j++)
166 row_i = ordered_cols[i];
167 row_j = ordered_cols[j];
168 gsl_matrix_set (A, row_i, row_j, gsl_matrix_get (B, row_i, row_j));