3 * Copyright (C) 2004 Free Software Foundation, Inc.
4 * Written by Jason H. Stover.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * Invert the Beta distribution.
26 * Roger W. Abernathy and Robert P. Smith. "Applying Series Expansion
27 * to the Inverse Beta Distribution to Find Percentiles of the F-Distribution,"
28 * ACM Transactions on Mathematical Software, volume 19, number 4, December 1993,
31 * G.W. Hill and A.W. Davis. "Generalized asymptotic expansions of a
32 * Cornish-Fisher type," Annals of Mathematical Statistics, volume 39, number 8,
33 * August 1968, pages 1264-1273.
37 #include <gsl/gsl_math.h>
38 #include <gsl/gsl_errno.h>
39 #include <gsl/gsl_sf_gamma.h>
40 #include <gsl/gsl_cdf.h>
41 #include <gsl/gsl_randist.h>
42 #include "gsl-extras.h"
44 #define BETAINV_INIT_ERR .001
45 #define BETADISTINV_N_TERMS 3
46 #define BETADISTINV_MAXITER 20
49 s_bisect (double x, double y)
51 double result = GSL_MIN(x,y) + fabs(x - y) / 2.0;
55 new_guess_P ( double old_guess, double x, double y,
56 double prob, double a, double b)
62 p_hat = gsl_cdf_beta_P(old_guess, a, b);
65 end_point = GSL_MAX(x,y);
67 else if ( p_hat > prob )
69 end_point = GSL_MIN(x,y);
73 end_point = old_guess;
75 result = s_bisect(old_guess, end_point);
81 new_guess_Q ( double old_guess, double x, double y,
82 double prob, double a, double b)
88 q_hat = gsl_cdf_beta_Q(old_guess, a, b);
91 end_point = GSL_MAX(x,y);
93 else if ( q_hat < prob )
95 end_point = GSL_MIN(x,y);
99 end_point = old_guess;
101 result = s_bisect(old_guess, end_point);
107 * The get_corn_fish_* functions below return the first
108 * three terms of the Cornish-Fisher expansion
109 * without recursion. The recursive functions
110 * make the code more legible when higher order coefficients
111 * are used, but terms beyond the cubic do not
115 * Linear coefficient for the
116 * Cornish-Fisher expansion.
119 get_corn_fish_lin (const double x, const double a, const double b)
123 result = gsl_ran_beta_pdf (x, a, b);
126 result = 1.0 / result;
130 result = GSL_DBL_MAX;
136 * Quadratic coefficient for the
137 * Cornish-Fisher expansion.
140 get_corn_fish_quad (const double x, const double a, const double b)
149 gam_ab = gsl_sf_lngamma(a + b);
150 gam_a = gsl_sf_lngamma (a);
151 gam_b = gsl_sf_lngamma (b);
152 num = exp(2 * (gam_a + gam_b - gam_ab)) * (1 - a + x * (b + a - 2));
153 den = 2.0 * pow ( x, 2*a - 1 ) * pow ( 1 - x, 2 * b - 1 );
154 if ( fabs(den) > 0.0)
166 * The cubic term for the Cornish-Fisher expansion.
167 * Theoretically, use of this term should give a better approximation,
168 * but in practice inclusion of the cubic term worsens the
169 * iterative procedure in gsl_cdf_beta_Pinv and gsl_cdf_beta_Qinv
170 * for extreme values of p, a or b.
174 get_corn_fish_cube (const double x, const double a, const double b)
177 double am1 = a - 1.0;
178 double am2 = a - 2.0;
179 double apbm2 = a+b-2.0;
180 double apbm3 = a+b-3.0;
181 double apbm4 = a+b-4.0;
182 double ab1ab2 = am1 * am2;
187 num = (am1 - x * apbm2) * (am1 - x * apbm2);
188 tmp = ab1ab2 - x * (apbm2 * ( ab1ab2 * apbm4 + 1) + x * apbm2 * apbm3);
190 tmp = gsl_ran_beta_pdf(x,a,b);
191 den = 2.0 * x * x * (1 - x) * (1 - x) * pow(tmp,3.0);
192 if ( fabs(den) > 0.0)
205 * The Cornish-Fisher coefficients can be defined recursivley,
206 * starting with the nth derivative of s_psi = -f'(x)/f(x),
207 * where f is the beta density.
209 * The section below was commented out since
210 * the recursive generation of the coeficients did
211 * not improve the accuracy of the directly coded
212 * the first three coefficients.
216 s_d_psi (double x, double a, double b, int n)
219 double np1 = (double) n + 1;
222 double bm1 = b - 1.0;
223 double am1 = a - 1.0;
226 asgn = (n % 2) ? 1.0:-1.0;
227 bsgn = (n % 2) ? -1.0:1.0;
228 result = gsl_sf_gamma(np1) * ((bsgn * bm1 / (pow(mx, np1)))
229 + (asgn * am1 / (pow(x,np1))));
233 * nth derivative of a coefficient with respect
237 get_d_coeff ( double x, double a,
238 double b, double n, double k)
249 result = s_d_psi(x, a, b, k);
254 for (i = 0.0; i < (k+1); i++)
256 k_fac = gsl_sf_lngamma(k+1.0);
257 i_fac = gsl_sf_lngamma(i+1.0);
258 kmi_fac = gsl_sf_lngamma(k-i+1.0);
260 result += exp(k_fac - i_fac - kmi_fac)
261 * get_d_coeff( x, a, b, 2.0, i)
262 * get_d_coeff( x, a, b, (n - 1.0), (k - i));
264 result += get_d_coeff ( x, a, b, (n-1.0), (k+1.0));
270 * Cornish-Fisher coefficient.
273 get_corn_fish (double c, double x,
274 double a, double b, double n)
286 result = s_d_psi(x, a, b, 0);
290 dc = get_d_coeff(x, a, b, (n-1.0), 1.0);
291 c_prev = get_corn_fish(c, x, a, b, (n-1.0));
292 result = (n-1) * s_d_psi(x,a,b,0) * c_prev + dc;
299 gslextras_cdf_beta_Pinv ( const double p, const double a, const double b)
327 GSLEXTRAS_CDF_ERROR("p < 0", GSL_EDOM);
331 GSLEXTRAS_CDF_ERROR("p > 1",GSL_EDOM);
335 GSLEXTRAS_CDF_ERROR ("a < 0", GSL_EDOM );
339 GSLEXTRAS_CDF_ERROR ( "b < 0", GSL_EDOM );
350 if (p > (1.0 - GSL_DBL_EPSILON))
353 * When p is close to 1.0, the bisection
354 * works better with gsl_cdf_Q.
356 state = gslextras_cdf_beta_Qinv ( p, a, b);
357 result = 1.0 - state;
360 if (p < GSL_DBL_EPSILON )
363 * Start at a small value and rise until
364 * we are above the correct result. This
365 * avoids overflow. When p is very close to
366 * 0, an initial state value of a/(a+b) will
367 * cause the interpolating polynomial
371 beta_result = gsl_cdf_beta_P (upper, a, b);
372 while (beta_result < p)
376 beta_result = gsl_cdf_beta_P (upper, a, b);
378 state = (lower + upper) / 2.0;
383 * First guess is the expected value.
388 beta_result = gsl_cdf_beta_P (state, a, b);
390 err = beta_result - p;
393 while ( relerr > BETAINV_INIT_ERR)
395 tmp = new_guess_P ( state, lower, upper,
397 lower = ( tmp < state ) ? lower:state;
398 upper = ( tmp < state ) ? state:upper;
400 beta_result = gsl_cdf_beta_P (state, a, b);
401 err = p - beta_result;
409 * Use a second order Lagrange interpolating
410 * polynomial to get closer before switching to
411 * the iterative method.
413 p0 = gsl_cdf_beta_P (lower, a, b);
414 p1 = gsl_cdf_beta_P (state, a, b);
415 p2 = gsl_cdf_beta_P (upper, a, b);
416 if( p0 < p1 && p1 < p2)
418 frac1 = (p - p2) / (p0 - p1);
419 frac2 = (p - p1) / (p0 - p2);
420 frac3 = (p - p0) / (p1 - p2);
421 frac4 = (p - p0) * (p - p1) / ((p2 - p0) * (p2 - p1));
422 state = frac1 * (frac2 * lower - frac3 * state)
425 beta_result = gsl_cdf_beta_P( state, a, b);
426 err = p - beta_result;
429 if (relerr < min_err)
437 * Lagrange polynomial failed to reduce the error.
438 * This will happen with a very skewed beta density.
439 * Undo previous steps.
442 beta_result = gsl_cdf_beta_P(state,a,b);
443 err = p - beta_result;
452 * Newton-type iteration using the terms from the
453 * Cornish-Fisher expansion. If only the first term
454 * of the expansion is used, this is Newton's method.
456 while ( relerr > GSL_DBL_EPSILON && n_iter < BETADISTINV_MAXITER)
459 c1 = get_corn_fish_lin (state, a, b);
460 c2 = get_corn_fish_quad (state, a, b);
462 * The cubic term does not help, and can can
463 * harm the approximation for extreme values of
467 c3 = get_corn_fish_cube (state, a, b);
468 state += err * (c1 + (err / 2.0 ) * (c2 + c3 * err / 3.0));
470 state += err * (c1 + (c2 * err / 2.0 ));
472 * The section below which is commented out uses
473 * a recursive function to get the coefficients.
474 * The recursion makes coding higher-order terms
475 * easier, but did not improve the result beyond
476 * the use of three terms. Since explicitly coding
477 * those three terms in the get_corn_fish_* functions
478 * was not difficult, the recursion was abandoned.
482 for(i = 1.0; i < BETADISTINV_N_TERMS; i += 1.0)
485 coeff = get_corn_fish (coeff, prior_state, a, b, i);
486 state += coeff * pow(err, i) /
487 (i_fac * pow (gsl_ran_beta_pdf(prior_state,a,b), i));
490 beta_result = gsl_cdf_beta_P ( state, a, b );
491 err = p - beta_result;
494 if (relerr < min_err)
505 gslextras_cdf_beta_Qinv (double q, double a, double b)
533 GSLEXTRAS_CDF_ERROR("q < 0", GSL_EDOM);
537 GSLEXTRAS_CDF_ERROR("q > 1",GSL_EDOM);
541 GSLEXTRAS_CDF_ERROR ("a < 0", GSL_EDOM );
545 GSLEXTRAS_CDF_ERROR ( "b < 0", GSL_EDOM );
556 if ( q < GSL_DBL_EPSILON )
559 * When q is close to 0, the bisection
560 * and interpolation done in the rest of
561 * this routine will not give the correct
562 * value within double precision, so
563 * gsl_cdf_beta_Qinv is called instead.
565 state = gslextras_cdf_beta_Pinv ( q, a, b);
566 result = 1.0 - state;
569 if ( q > 1.0 - GSL_DBL_EPSILON )
572 * Make the initial guess close to 0.0.
575 beta_result = gsl_cdf_beta_Q ( upper, a, b);
576 while (beta_result > q )
580 beta_result = gsl_cdf_beta_Q ( upper, a, b);
582 state = (upper + lower) / 2.0;
586 /* Bisection to get an initial approximation.
587 * First guess is the expected value.
593 beta_result = gsl_cdf_beta_Q (state, a, b);
594 err = beta_result - q;
597 while ( relerr > BETAINV_INIT_ERR)
600 tmp = new_guess_Q ( state, lower, upper,
602 lower = ( tmp < state ) ? lower:state;
603 upper = ( tmp < state ) ? state:upper;
605 beta_result = gsl_cdf_beta_Q (state, a, b);
606 err = q - beta_result;
614 * Use a second order Lagrange interpolating
615 * polynomial to get closer before switching to
616 * the iterative method.
618 p0 = gsl_cdf_beta_Q (lower, a, b);
619 p1 = gsl_cdf_beta_Q (state, a, b);
620 p2 = gsl_cdf_beta_Q (upper, a, b);
621 if(p0 > p1 && p1 > p2)
623 frac1 = (q - p2) / (p0 - p1);
624 frac2 = (q - p1) / (p0 - p2);
625 frac3 = (q - p0) / (p1 - p2);
626 frac4 = (q - p0) * (q - p1) / ((p2 - p0) * (p2 - p1));
627 state = frac1 * (frac2 * lower - frac3 * state)
629 beta_result = gsl_cdf_beta_Q( state, a, b);
630 err = beta_result - q;
633 if (relerr < min_err)
641 * Lagrange polynomial failed to reduce the error.
642 * This will happen with a very skewed beta density.
643 * Undo previous steps.
646 beta_result = gsl_cdf_beta_P(state,a,b);
647 err = q - beta_result;
654 * Iteration using the terms from the
655 * Cornish-Fisher expansion. If only the first term
656 * of the expansion is used, this is Newton's method.
660 while ( relerr > GSL_DBL_EPSILON && n_iter < BETADISTINV_MAXITER)
663 c1 = get_corn_fish_lin (state, a, b);
664 c2 = get_corn_fish_quad (state, a, b);
666 * The cubic term does not help, and can harm
667 * the approximation for extreme values of p, a and b.
670 c3 = get_corn_fish_cube (state, a, b);
671 state += err * (c1 + (err / 2.0 ) * (c2 + c3 * err / 3.0));
673 state += err * (c1 + (c2 * err / 2.0 ));
674 beta_result = gsl_cdf_beta_Q ( state, a, b );
675 err = beta_result - q;
678 if (relerr < min_err)