#include <math/ts/innovations.h>
static void
-get_mean_variance (const gsl_matrix *data,
- struct innovations_estimate **est)
+get_mean (const gsl_matrix *data,
+ struct innovations_estimate **est)
{
size_t n;
for (n = 0; n < data->size2; n++)
{
- est[n]->n_obs = 2.0;
+ est[n]->n_obs = 0.0;
est[n]->mean = 0.0;
- est[n]->variance = 0.0;
}
for (i = 0; i < data->size1; i++)
{
tmp = gsl_matrix_get (data, i, n);
if (!gsl_isnan (tmp))
{
+ est[n]->n_obs += 1.0;
d = (tmp - est[n]->mean) / est[n]->n_obs;
est[n]->mean += d;
- est[n]->variance += est[n]->n_obs * est[n]->n_obs * d * d;
- est[n]->n_obs += 1.0;
}
}
}
- for (n = 0; n < data->size2; n++)
+}
+static void
+update_cov (struct innovations_estimate **est, gsl_vector_const_view x,
+ gsl_vector_const_view y, size_t lag)
+{
+ size_t j;
+ double xj;
+ double yj;
+
+ for (j = 0; j < x.vector.size; j++)
{
- /* Maximum likelihood estimate of the variance. */
- est[n]->variance /= est[n]->n_obs;
+ xj = gsl_vector_get (&x.vector, j);
+ yj = gsl_vector_get (&y.vector, j);
+ if (!gsl_isnan (xj))
+ {
+ if (!gsl_isnan (yj))
+ {
+ xj -= est[j]->mean;
+ yj -= est[j]->mean;
+ *(est[j]->cov + lag) += xj * yj;
+ }
+ }
}
}
-
static int
get_covariance (const gsl_matrix *data,
struct innovations_estimate **est, size_t max_lag)
size_t lag;
size_t j;
size_t i;
- double x;
- double y;
int rc = 1;
assert (data != NULL);
assert (est != NULL);
-
+
+ for (j = 0; j < data->size2; j++)
+ {
+ for (lag = 0; lag <= max_lag; lag++)
+ {
+ *(est[j]->cov + lag) = 0.0;
+ }
+ }
+ /*
+ The rows are in the outer loop because a gsl_matrix is stored in
+ row-major order.
+ */
for (i = 0; i < data->size1; i++)
{
- for (j = 0; j < data->size2; j++)
+ for (lag = 0; lag < max_lag && lag < data->size1 - i; lag++)
{
- x = gsl_matrix_get (data, i, j);
-
- if (!gsl_isnan (x))
- {
- x -= est[j]->mean;
- for (lag = 1; lag <= max_lag && lag < (data->size1 - i); lag++)
- {
- y = gsl_matrix_get (data, i + lag, j);
- if (!gsl_isnan (y))
- {
- y -= est[j]->mean;
- *(est[j]->cov + lag - 1) += y * x;
- est[j]->n_obs += 1.0;
- }
- }
- }
+ update_cov (est, gsl_matrix_const_row (data, i),
+ gsl_matrix_const_row (data, i + lag), lag);
}
}
for (j = 0; j < data->size2; j++)
{
- *(est[j]->cov + lag - 1) /= est[j]->n_obs;
+ for (lag = 0; lag <= max_lag; lag++)
+ {
+ *(est[j]->cov + lag) /= est[j]->n_obs;
+ }
}
return rc;
}
+
static double
innovations_convolve (double **theta, struct innovations_estimate *est,
int i, int j)
if (i < (size_t) est->max_lag)
{
- result = est->variance;
+ result = est->cov[0];
for (j = 0; j < i; j++)
{
k = i - j - 1;
}
static void
-innovations_struct_init (struct innovations_estimate *est, size_t lag)
+innovations_struct_init (struct innovations_estimate *est,
+ const struct design_matrix *dm,
+ size_t lag)
{
size_t j;
est->mean = 0.0;
- est->variance = 0.0;
- est->cov = xnmalloc (lag, sizeof (*est->cov));
+ /* COV[0] stores the lag 0 covariance (i.e., the variance), COV[1]
+ holds the lag-1 covariance, etc.
+ */
+ est->cov = xnmalloc (lag + 1, sizeof (*est->cov));
est->scale = xnmalloc (lag + 1, sizeof (*est->scale));
- est->coeff = xnmalloc (lag, sizeof (*est->coeff));
- est->max_lag = (double) lag;
- /* COV does not the variance (i.e., the lag 0 covariance). So COV[0]
- holds the lag 1 covariance, COV[i] holds the lag i+1 covariance. */
+ est->coeff = xnmalloc (lag, sizeof (*est->coeff)); /* No intercept. */
+
+ /*
+ The loop below is an unusual use of PSPP_COEFF_INIT(). In a
+ typical model, one column of a DESIGN_MATRIX has one
+ coefficient. But in a time-series model, one column has many
+ coefficients.
+ */
for (j = 0; j < lag; j++)
{
- est->coeff[j] = xmalloc (sizeof (*(est->coeff[j])));
+ pspp_coeff_init (est->coeff + j, dm);
}
+ est->max_lag = (double) lag;
}
struct innovations_estimate **
{
est[i] = xmalloc (sizeof *est[i]);
/* est[i]->variable = vars[i]; */
- innovations_struct_init (est[i], lag);
+ innovations_struct_init (est[i], dm, lag);
}
- get_mean_variance (dm->m, est);
+ get_mean (dm->m, est);
get_covariance (dm->m, est, lag);
get_coef (dm->m, est, lag);