#include <config.h>
+#include <libpspp/assertion.h>
#include <math/covariance.h>
#include <math/design-matrix.h>
#include <gsl/gsl_matrix.h>
CORR_LISTWISE /* Discard entire case if any variable is missing. */
};
+enum stats_opts
+ {
+ STATS_DESCRIPTIVES = 0x01,
+ STATS_XPROD = 0x02,
+ STATS_ALL = STATS_XPROD | STATS_DESCRIPTIVES
+ };
+
struct corr_opts
{
enum corr_missing_type missing_type;
bool sig; /* Flag significant values or not */
int tails; /* Report significance with how many tails ? */
+ enum stats_opts statistics;
const struct variable *wv; /* The weight variable (if any) */
};
+static void
+output_descriptives (const struct corr *corr, const gsl_matrix *means,
+ const gsl_matrix *vars, const gsl_matrix *ns)
+{
+ const int nr = corr->n_vars_total + 1;
+ const int nc = 4;
+ int c, r;
+
+ const int heading_columns = 1;
+ const int heading_rows = 1;
+
+ struct tab_table *t = tab_create (nc, nr, 0);
+ tab_title (t, _("Descriptive Statistics"));
+ tab_dim (t, tab_natural_dimensions, NULL);
+
+ tab_headers (t, heading_columns, 0, heading_rows, 0);
+
+ /* Outline the box */
+ tab_box (t,
+ TAL_2, TAL_2,
+ -1, -1,
+ 0, 0,
+ nc - 1, nr - 1);
+
+ /* Vertical lines */
+ tab_box (t,
+ -1, -1,
+ -1, TAL_1,
+ heading_columns, 0,
+ nc - 1, nr - 1);
+
+ tab_vline (t, TAL_2, heading_columns, 0, nr - 1);
+ tab_hline (t, TAL_1, 0, nc - 1, heading_rows);
+
+ tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("Mean"));
+ tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Std. Deviation"));
+ tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("N"));
+
+ for (r = 0 ; r < corr->n_vars_total ; ++r)
+ {
+ const struct variable *v = corr->vars[r];
+ tab_text (t, 0, r + heading_rows, TAB_LEFT | TAT_TITLE, var_to_string (v));
+
+ for (c = 1 ; c < nc ; ++c)
+ {
+ double x ;
+ double n;
+ switch (c)
+ {
+ case 1:
+ x = gsl_matrix_get (means, r, 0);
+ break;
+ case 2:
+ x = gsl_matrix_get (vars, r, 0);
+
+ /* Here we want to display the non-biased estimator */
+ n = gsl_matrix_get (ns, r, 0);
+ x *= n / (n -1);
+
+ x = sqrt (x);
+ break;
+ case 3:
+ x = gsl_matrix_get (ns, r, 0);
+ break;
+ default:
+ NOT_REACHED ();
+ };
+
+ tab_double (t, c, r + heading_rows, 0, x, NULL);
+ }
+ }
+
+ tab_submit (t);
+}
+
static void
output_correlation (const struct corr *corr, const struct corr_opts *opts,
const gsl_matrix *cm, const gsl_matrix *samples)
run_corr (struct casereader *r, const struct corr_opts *opts, const struct corr *corr)
{
struct ccase *c;
- const gsl_matrix *var_matrix;
- const gsl_matrix *samples_matrix;
+ const gsl_matrix *var_matrix, *samples_matrix, *mean_matrix;
const gsl_matrix *cov_matrix;
gsl_matrix *corr_matrix;
struct covariance *cov = covariance_create (corr->n_vars_total, corr->vars,
samples_matrix = covariance_moments (cov, MOMENT_NONE);
var_matrix = covariance_moments (cov, MOMENT_VARIANCE);
+ mean_matrix = covariance_moments (cov, MOMENT_MEAN);
corr_matrix = correlation_from_covariance (cov_matrix, var_matrix);
+ if ( opts->statistics & STATS_DESCRIPTIVES)
+ output_descriptives (corr, mean_matrix, var_matrix, samples_matrix);
+
output_correlation (corr, opts,
corr_matrix,
samples_matrix );
opts.tails = 2;
opts.sig = false;
opts.exclude = MV_ANY;
+ opts.statistics = 0;
/* Parse CORRELATIONS. */
while (lex_token (lexer) != '.')
goto error;
}
+ lex_match (lexer, ',');
+ }
+ }
+ else if (lex_match_id (lexer, "STATISTICS"))
+ {
+ lex_match (lexer, '=');
+ while (lex_token (lexer) != '.' && lex_token (lexer) != '/')
+ {
+ if ( lex_match_id (lexer, "DESCRIPTIVES"))
+ opts.statistics = STATS_DESCRIPTIVES;
+ else if (lex_match_id (lexer, "XPROD"))
+ opts.statistics = STATS_XPROD;
+ else
+ opts.statistics = STATS_ALL;
+
lex_match (lexer, ',');
}
}