pspp_coeff_init (c->coeff, cov);
}
-/* Encode categorical variables.
- Returns number of valid cases. */
-static int
-data_pass_one (struct casereader *input,
- const struct variable **vars, size_t n_vars,
- struct moments_var **mom)
-{
- int n_data;
- struct ccase c;
- size_t i;
-
- for (i = 0; i < n_vars; i++)
- {
- mom[i] = xmalloc (sizeof (*mom[i]));
- mom[i]->v = vars[i];
- mom[i]->mean = xmalloc (sizeof (*mom[i]->mean));
- mom[i]->variance = xmalloc (sizeof (*mom[i]->mean));
- mom[i]->weight = xmalloc (sizeof (*mom[i]->weight));
- mom[i]->m = moments1_create (MOMENT_VARIANCE);
- if (var_is_alpha (vars[i]))
- cat_stored_values_create (vars[i]);
- }
-
- n_data = 0;
- for (; casereader_read (input, &c); case_destroy (&c))
- {
- /*
- The second condition ensures the program will run even if
- there is only one variable to act as both explanatory and
- response.
- */
- for (i = 0; i < n_vars; i++)
- {
- const union value *val = case_data (&c, vars[i]);
- if (var_is_alpha (vars[i]))
- cat_value_update (vars[i], val);
- else
- moments1_add (mom[i]->m, val->f, 1.0);
- }
- n_data++;
- }
- casereader_destroy (input);
- for (i = 0; i < n_vars; i++)
- {
- if (var_is_numeric (mom[i]->v))
- {
- moments1_calculate (mom[i]->m, mom[i]->weight, mom[i]->mean,
- mom[i]->variance, NULL, NULL);
- }
- }
-
- return n_data;
-}
static pspp_linreg_cache *
-fit_model (const struct design_matrix *cov, const struct moments1 **mom,
+fit_model (const struct covariance_matrix *cov,
const struct variable *dep_var,
const struct variable ** indep_vars,
size_t n_data, size_t n_indep)
{
pspp_linreg_cache *result = NULL;
result = pspp_linreg_cache_alloc (dep_var, indep_vars, n_data, n_indep);
- coeff_init (result, cov);
+ coeff_init (result, covariance_to_design (cov));
pspp_linreg_with_cov (cov, result);
return result;
size_t n_all_vars;
size_t n_data; /* Number of valid cases. */
struct casereader *reader;
- struct design_matrix *cov;
- struct hsh_table *cov_hash;
- struct moments1 **mom;
+ struct covariance_matrix *cov;
if (!casereader_peek (input, 0, &c))
{
all_vars[i + n_dependent] = cmd->v_by[i];
}
n_indep = cmd->n_by;
- mom = xnmalloc (n_all_vars, sizeof (*mom));
- for (i = 0; i < n_all_vars; i++)
- mom[i] = moments1_create (MOMENT_MEAN);
reader = casereader_clone (input);
reader = casereader_create_filter_missing (reader, indep_vars, n_indep,
if (var_is_alpha (all_vars[i]))
cat_stored_values_create (all_vars[i]);
- cov_hash = covariance_hsh_create (n_all_vars);
+ cov = covariance_matrix_init (n_all_vars, all_vars, ONE_PASS, PAIRWISE, MV_ANY);
reader = casereader_create_counter (reader, &row, -1);
for (; casereader_read (reader, &c); case_destroy (&c))
{
/*
Accumulate the covariance matrix.
*/
- covariance_accumulate (cov_hash, mom, &c, all_vars, n_all_vars);
+ covariance_matrix_accumulate (cov, &c);
n_data++;
}
- cov = covariance_accumulator_to_matrix (cov_hash, mom, all_vars, n_all_vars, n_data);
+ covariance_matrix_compute (cov);
- hsh_destroy (cov_hash);
for (i = 0; i < n_dependent; i++)
{
- model = fit_model (cov, mom, v_dependent[i], indep_vars, n_data, n_indep);
+ model = fit_model (cov, v_dependent[i], indep_vars, n_data, n_indep);
pspp_linreg_cache_free (model);
}
casereader_destroy (reader);
- for (i = 0; i < n_all_vars; i++)
- {
- moments1_destroy (mom[i]);
- }
- free (mom);
covariance_matrix_destroy (cov);
}
else
{
const struct variable *v1;
const struct variable *v2;
- double product;
const union value *val1;
const union value *val2;
+ double dot_product;
+ double sum1;
+ double sum2;
+ double ssize;
};
+
+
+struct covariance_matrix
+{
+ struct design_matrix *cov;
+ struct hsh_table *ca;
+ struct moments1 **m1;
+ struct moments **m;
+ const struct variable **v_variables;
+ size_t n_variables;
+ int n_pass;
+ int missing_handling;
+ enum mv_class missing_value;
+ void (*accumulate) (struct covariance_matrix *, const struct ccase *);
+ void (*update_moments) (struct covariance_matrix *, size_t, double);
+};
+
+static struct hsh_table *covariance_hsh_create (size_t);
static hsh_hash_func covariance_accumulator_hash;
-static unsigned int hash_numeric_alpha (const struct variable *, const struct variable *,
+static unsigned int hash_numeric_alpha (const struct variable *,
+ const struct variable *,
const union value *, size_t);
static hsh_compare_func covariance_accumulator_compare;
static hsh_free_func covariance_accumulator_free;
+static void update_moments1 (struct covariance_matrix *, size_t, double);
+static void update_moments2 (struct covariance_matrix *, size_t, double);
+static struct covariance_accumulator *get_new_covariance_accumulator (const
+ struct
+ variable
+ *,
+ const
+ struct
+ variable
+ *,
+ const
+ union
+ value *,
+ const
+ union
+ value
+ *);
+static void covariance_accumulate_listwise (struct covariance_matrix *,
+ const struct ccase *);
+static void covariance_accumulate_pairwise (struct covariance_matrix *,
+ const struct ccase *);
+
+struct covariance_matrix *
+covariance_matrix_init (size_t n_variables,
+ const struct variable *v_variables[], int n_pass,
+ int missing_handling, enum mv_class missing_value)
+{
+ size_t i;
+ struct covariance_matrix *result = NULL;
+
+ result = xmalloc (sizeof (*result));
+ result->cov = NULL;
+ result->ca = covariance_hsh_create (n_variables);
+ result->m = NULL;
+ result->m1 = NULL;
+ result->missing_handling = missing_handling;
+ result->missing_value = missing_value;
+ result->accumulate = (result->missing_handling == LISTWISE) ?
+ covariance_accumulate_listwise : covariance_accumulate_pairwise;
+ if (n_pass == ONE_PASS)
+ {
+ result->update_moments = update_moments1;
+ result->m1 = xnmalloc (n_variables, sizeof (*result->m1));
+ for (i = 0; i < n_variables; i++)
+ {
+ result->m1[i] = moments1_create (MOMENT_MEAN);
+ }
+ }
+ else
+ {
+ result->update_moments = update_moments2;
+ result->m = xnmalloc (n_variables, sizeof (*result->m));
+ for (i = 0; i < n_variables; i++)
+ {
+ result->m[i] = moments_create (MOMENT_MEAN);
+ }
+ }
+ result->v_variables = v_variables;
+ result->n_variables = n_variables;
+ result->n_pass = n_pass;
+
+ return result;
+}
/*
The covariances are stored in a DESIGN_MATRIX structure.
*/
struct design_matrix *
-covariance_matrix_create (size_t n_variables, const struct variable *v_variables[])
+covariance_matrix_create (size_t n_variables,
+ const struct variable *v_variables[])
{
- return design_matrix_create (n_variables, v_variables, (size_t) n_variables);
+ return design_matrix_create (n_variables, v_variables,
+ (size_t) n_variables);
}
-void covariance_matrix_destroy (struct design_matrix *x)
+static void
+update_moments1 (struct covariance_matrix *cov, size_t i, double x)
{
- design_matrix_destroy (x);
+ assert (cov->m1 != NULL);
+ moments1_add (cov->m1[i], x, 1.0);
+}
+
+static void
+update_moments2 (struct covariance_matrix *cov, size_t i, double x)
+{
+ assert (cov->m != NULL);
+ moments_pass_one (cov->m[i], x, 1.0);
+}
+
+void
+covariance_matrix_destroy (struct covariance_matrix *cov)
+{
+ size_t i;
+
+ assert (cov != NULL);
+ design_matrix_destroy (cov->cov);
+ hsh_destroy (cov->ca);
+ if (cov->n_pass == ONE_PASS)
+ {
+ for (i = 0; i < cov->n_variables; i++)
+ {
+ moments1_destroy (cov->m1[i]);
+ }
+ free (cov->m1);
+ }
+ else
+ {
+ for (i = 0; i < cov->n_variables; i++)
+ {
+ moments_destroy (cov->m[i]);
+ }
+ free (cov->m);
+ }
}
/*
*/
static void
covariance_update_categorical_numeric (struct design_matrix *cov, double mean,
- size_t row,
- const struct variable *v2, double x, const union value *val2)
+ size_t row,
+ const struct variable *v2, double x,
+ const union value *val2)
{
size_t col;
double tmp;
-
+
assert (var_is_numeric (v2));
col = design_matrix_var_to_column (cov, v2);
double tmp;
const union value *tmp_val;
- col = design_matrix_var_to_column (cov, v);
+ col = design_matrix_var_to_column (cov, v);
for (i = 0; i < cat_get_n_categories (v) - 1; i++)
{
col += i;
gsl_matrix_set (cov->m, col, row, x * y + tmp);
}
}
+
/*
Call this function in the second data pass. The central moments are
MEAN1 and MEAN2. Any categorical variables should already have their
values summarized in in its OBS_VALS element.
*/
-void covariance_pass_two (struct design_matrix *cov, double mean1, double mean2,
- double ssize, const struct variable *v1,
- const struct variable *v2, const union value *val1, const union value *val2)
+void
+covariance_pass_two (struct design_matrix *cov, double mean1, double mean2,
+ double ssize, const struct variable *v1,
+ const struct variable *v2, const union value *val1,
+ const union value *val2)
{
size_t row;
size_t col;
}
if (var_is_numeric (v2))
{
- covariance_update_categorical_numeric (cov, mean2, row,
+ covariance_update_categorical_numeric (cov, mean2, row,
v2, x, val2);
}
else
else if (var_is_alpha (v2))
{
/*
- Reverse the orders of V1, V2, etc. and put ourselves back
- in the previous IF scope.
+ Reverse the orders of V1, V2, etc. and put ourselves back
+ in the previous IF scope.
*/
covariance_pass_two (cov, mean2, mean1, ssize, v2, v1, val2, val1);
}
else
{
/*
- Both variables are numeric.
- */
- row = design_matrix_var_to_column (cov, v1);
+ Both variables are numeric.
+ */
+ row = design_matrix_var_to_column (cov, v1);
col = design_matrix_var_to_column (cov, v2);
x = (val1->f - mean1) * (val2->f - mean2);
x += gsl_matrix_get (cov->m, col, row);
const union value *val_max;
/*
- Order everything by the variables' indices. This ensures we get the
- same key regardless of the order in which the variables are stored
- and passed around.
+ Order everything by the variables' indices. This ensures we get the
+ same key regardless of the order in which the variables are stored
+ and passed around.
*/
- v_min = (var_get_dict_index (ca->v1) < var_get_dict_index (ca->v2)) ? ca->v1 : ca->v2;
+ v_min =
+ (var_get_dict_index (ca->v1) <
+ var_get_dict_index (ca->v2)) ? ca->v1 : ca->v2;
v_max = (ca->v1 == v_min) ? ca->v2 : ca->v1;
val_min = (v_min == ca->v1) ? ca->val1 : ca->val2;
if (var_is_alpha (v_max) && var_is_alpha (v_min))
{
unsigned int tmp;
- char *x = xnmalloc (1 + var_get_width (v_max) + var_get_width (v_min), sizeof (*x));
+ char *x =
+ xnmalloc (1 + var_get_width (v_max) + var_get_width (v_min),
+ sizeof (*x));
strncpy (x, val_max->s, var_get_width (v_max));
strncat (x, val_min->s, var_get_width (v_min));
- tmp = *n_vars * (*n_vars + 1 + idx_max)
- + idx_min
- + hsh_hash_string (x);
+ tmp = *n_vars * (*n_vars + 1 + idx_max) + idx_min + hsh_hash_string (x);
free (x);
return tmp;
}
in a single data pass. Call covariance_accumulate () for each case
in the data.
*/
-struct hsh_table *
+static struct hsh_table *
covariance_hsh_create (size_t n_vars)
{
- return hsh_create (n_vars * (n_vars + 1) / 2, covariance_accumulator_compare,
- covariance_accumulator_hash, covariance_accumulator_free, &n_vars);
+ return hsh_create (n_vars * n_vars, covariance_accumulator_compare,
+ covariance_accumulator_hash, covariance_accumulator_free,
+ &n_vars);
}
-static void
+static void
covariance_accumulator_free (void *c_, const void *aux UNUSED)
{
struct covariance_accumulator *c = c_;
assert (c != NULL);
free (c);
}
+
+/*
+ Hash comparison. Returns 0 for a match, or a non-zero int
+ otherwise. The sign of a non-zero return value *should* indicate the
+ position of C relative to the covariance_accumulator described by
+ the other arguments. But for now, it just returns 1 for any
+ non-match. This should be changed when someone figures out how to
+ compute a sensible sign for the return value.
+ */
static int
-match_nodes (const struct covariance_accumulator *c, const struct variable *v1,
- const struct variable *v2, const union value *val1,
- const union value *val2)
+match_nodes (const struct covariance_accumulator *c,
+ const struct variable *v1, const struct variable *v2,
+ const union value *val1, const union value *val2)
{
- if (var_get_dict_index (v1) == var_get_dict_index (c->v1) &&
- var_get_dict_index (v2) == var_get_dict_index (c->v2))
- {
- if (var_is_numeric (v1) && var_is_numeric (v2))
- {
- return 0;
- }
- if (var_is_numeric (v1) && var_is_alpha (v2))
- {
- if (compare_values (val2, c->val2, v2))
- {
- return 0;
- }
- }
- if (var_is_alpha (v1) && var_is_numeric (v2))
- {
- if (compare_values (val1, c->val1, v1))
- {
- return 0;
- }
- }
- if (var_is_alpha (v1) && var_is_alpha (v2))
- {
- if (compare_values (val1, c->val1, v1))
- {
- if (compare_values (val2, c->val2, v2))
- {
- return 0;
- }
- }
- }
- }
- else if (v2 == c->v1 && v1 == c->v2)
- {
- return -match_nodes (c, v2, v1, val2, val1);
- }
+ if (var_get_dict_index (v1) == var_get_dict_index (c->v1))
+ if (var_get_dict_index (v2) == var_get_dict_index (c->v2))
+ {
+ if (var_is_numeric (v1) && var_is_numeric (v2))
+ {
+ return 0;
+ }
+ if (var_is_numeric (v1) && var_is_alpha (v2))
+ {
+ if (compare_values (val2, c->val2, v2))
+ {
+ return 0;
+ }
+ }
+ if (var_is_alpha (v1) && var_is_numeric (v2))
+ {
+ if (compare_values (val1, c->val1, v1))
+ {
+ return 0;
+ }
+ }
+ if (var_is_alpha (v1) && var_is_alpha (v2))
+ {
+ if (compare_values (val1, c->val1, v1))
+ {
+ if (compare_values (val2, c->val2, v2))
+ {
+ return 0;
+ }
+ }
+ }
+ }
return 1;
}
a struct hsh_table in src/libpspp/hash.c.
*/
static int
-covariance_accumulator_compare (const void *a1_, const void *a2_, const void *aux UNUSED)
+covariance_accumulator_compare (const void *a1_, const void *a2_,
+ const void *aux UNUSED)
{
- const struct covariance_accumulator *a1 = a1_;
- const struct covariance_accumulator *a2 = a2_;
+ const struct covariance_accumulator *a1 = a1_;
+ const struct covariance_accumulator *a2 = a2_;
if (a1 == NULL && a2 == NULL)
return 0;
}
static unsigned int
-hash_numeric_alpha (const struct variable *v1, const struct variable *v2,
+hash_numeric_alpha (const struct variable *v1, const struct variable *v2,
const union value *val, size_t n_vars)
{
unsigned int result = -1u;
static double
-update_product (const struct variable *v1, const struct variable *v2, const union value *val1,
- const union value *val2)
+update_product (const struct variable *v1, const struct variable *v2,
+ const union value *val1, const union value *val2)
{
assert (v1 != NULL);
assert (v2 != NULL);
}
return 0.0;
}
+static double
+update_sum (const struct variable *var, const union value *val)
+{
+ assert (var != NULL);
+ assert (val != NULL);
+ if (var_is_alpha (var))
+ {
+ return 1.0;
+ }
+ return val->f;
+}
+static struct covariance_accumulator *
+get_new_covariance_accumulator (const struct variable *v1,
+ const struct variable *v2,
+ const union value *val1,
+ const union value *val2)
+{
+ if ((v1 != NULL) && (v2 != NULL) && (val1 != NULL) && (val2 != NULL))
+ {
+ struct covariance_accumulator *ca;
+ ca = xmalloc (sizeof (*ca));
+ ca->v1 = v1;
+ ca->v2 = v2;
+ ca->val1 = val1;
+ ca->val2 = val2;
+ return ca;
+ }
+ return NULL;
+}
+
+static const struct variable **
+get_covariance_variables (const struct covariance_matrix *cov)
+{
+ return cov->v_variables;
+}
+
+static void
+update_hash_entry (struct hsh_table *c,
+ const struct variable *v1,
+ const struct variable *v2,
+ const union value *val1, const union value *val2)
+{
+ struct covariance_accumulator *ca;
+ struct covariance_accumulator *new_entry;
+
+
+ ca = get_new_covariance_accumulator (v1, v2, val1, val2);
+ ca->dot_product = update_product (ca->v1, ca->v2, ca->val1, ca->val2);
+ ca->sum1 = update_sum (ca->v1, ca->val1);
+ ca->sum2 = update_sum (ca->v2, ca->val2);
+ ca->ssize = 1.0;
+ new_entry = hsh_insert (c, ca);
+ if (new_entry != NULL)
+ {
+ new_entry->dot_product += ca->dot_product;
+ new_entry->ssize += 1.0;
+ new_entry->sum1 += ca->sum1;
+ new_entry->sum2 += ca->sum2;
+ /*
+ If DOT_PRODUCT is null, CA was not already in the hash
+ hable, so we don't free it because it was just inserted.
+ If DOT_PRODUCT was not null, CA is already in the hash table.
+ Unnecessary now, it must be freed here.
+ */
+ free (ca);
+ }
+}
+
/*
- Compute the covariance matrix in a single data-pass.
+ Compute the covariance matrix in a single data-pass. Cases with
+ missing values are dropped pairwise, in other words, only if one of
+ the two values necessary to accumulate the inner product is missing.
+
+ Do not call this function directly. Call it through the struct
+ covariance_matrix ACCUMULATE member function, for example,
+ cov->accumulate (cov, ccase).
*/
-void
-covariance_accumulate (struct hsh_table *cov, struct moments1 **m,
- const struct ccase *ccase, const struct variable **vars,
- size_t n_vars)
+static void
+covariance_accumulate_pairwise (struct covariance_matrix *cov,
+ const struct ccase *ccase)
{
size_t i;
size_t j;
- const union value *val;
- struct covariance_accumulator *ca;
- struct covariance_accumulator *entry;
+ const union value *val1;
+ const union value *val2;
+ const struct variable **v_variables;
+
+ assert (cov != NULL);
+ assert (ccase != NULL);
- assert (m != NULL);
+ v_variables = get_covariance_variables (cov);
+ assert (v_variables != NULL);
- for (i = 0; i < n_vars; ++i)
+ for (i = 0; i < cov->n_variables; ++i)
{
- val = case_data (ccase, vars[i]);
- if (var_is_alpha (vars[i]))
- {
- cat_value_update (vars[i], val);
- }
- else
+ val1 = case_data (ccase, v_variables[i]);
+ if (!var_is_value_missing (v_variables[i], val1, cov->missing_value))
{
- moments1_add (m[i], val->f, 1.0);
- }
- for (j = i; j < n_vars; j++)
- {
- ca = xmalloc (sizeof (*ca));
- ca->v1 = vars[i];
- ca->v2 = vars[j];
- ca->val1 = val;
- ca->val2 = case_data (ccase, ca->v2);
- ca->product = update_product (ca->v1, ca->v2, ca->val1, ca->val2);
- entry = hsh_insert (cov, ca);
- if (entry != NULL)
+ cat_value_update (v_variables[i], val1);
+ if (var_is_alpha (v_variables[i]))
+ cov->update_moments (cov, i, val1->f);
+
+ for (j = i; j < cov->n_variables; j++)
{
- entry->product += ca->product;
- /*
- If ENTRY is null, CA was not already in the hash
- hable, so we don't free it because it was just inserted.
- If ENTRY was not null, CA is already in the hash table.
- Unnecessary now, it must be freed here.
- */
- free (ca);
+ val2 = case_data (ccase, v_variables[j]);
+ if (!var_is_value_missing
+ (v_variables[j], val2, cov->missing_value))
+ {
+ update_hash_entry (cov->ca, v_variables[i], v_variables[j],
+ val1, val2);
+ if (j != i)
+ update_hash_entry (cov->ca, v_variables[j],
+ v_variables[i], val2, val1);
+ }
}
}
}
}
-static void
-covariance_matrix_insert (struct design_matrix *cov, const struct variable *v1,
- const struct variable *v2, const union value *val1,
+/*
+ Compute the covariance matrix in a single data-pass. Cases with
+ missing values are dropped listwise. In other words, if one of the
+ values for any variable in a case is missing, the entire case is
+ skipped.
+
+ The caller must use a casefilter to remove the cases with missing
+ values before calling covariance_accumulate_listwise. This function
+ assumes that CCASE has already passed through this filter, and
+ contains no missing values.
+
+ Do not call this function directly. Call it through the struct
+ covariance_matrix ACCUMULATE member function, for example,
+ cov->accumulate (cov, ccase).
+ */
+static void
+covariance_accumulate_listwise (struct covariance_matrix *cov,
+ const struct ccase *ccase)
+{
+ size_t i;
+ size_t j;
+ const union value *val1;
+ const union value *val2;
+ const struct variable **v_variables;
+
+ assert (cov != NULL);
+ assert (ccase != NULL);
+
+ v_variables = get_covariance_variables (cov);
+ assert (v_variables != NULL);
+
+ for (i = 0; i < cov->n_variables; ++i)
+ {
+ val1 = case_data (ccase, v_variables[i]);
+ cat_value_update (v_variables[i], val1);
+ if (var_is_alpha (v_variables[i]))
+ cov->update_moments (cov, i, val1->f);
+
+ for (j = i; j < cov->n_variables; j++)
+ {
+ val2 = case_data (ccase, v_variables[j]);
+ update_hash_entry (cov->ca, v_variables[i], v_variables[j],
+ val1, val2);
+ if (j != i)
+ update_hash_entry (cov->ca, v_variables[j], v_variables[i],
+ val2, val1);
+ }
+ }
+}
+
+/*
+ Call this function during the data pass. Each case will be added to
+ a hash containing all values of the covariance matrix. After the
+ data have been passed, call covariance_matrix_compute to put the
+ values in the struct covariance_matrix.
+ */
+void
+covariance_matrix_accumulate (struct covariance_matrix *cov,
+ const struct ccase *ccase)
+{
+ cov->accumulate (cov, ccase);
+}
+
+static void
+covariance_matrix_insert (struct design_matrix *cov,
+ const struct variable *v1,
+ const struct variable *v2, const union value *val1,
const union value *val2, double product)
{
size_t row;
{
i++;
tmp_val = cat_subscript_to_value (i, v1);
- }
+ }
col += i;
}
- }
+ }
else
{
if (var_is_numeric (v2))
}
}
gsl_matrix_set (cov->m, row, col, product);
- gsl_matrix_set (cov->m, col, row, product);
-}
-
-static double
-get_center (const struct variable *v, const union value *val,
- const struct variable **vars, const struct moments1 **m, size_t n_vars,
- size_t ssize)
-{
- size_t i = 0;
-
- while ((var_get_dict_index (vars[i]) != var_get_dict_index(v)) && (i < n_vars))
- {
- i++;
- }
- if (var_is_numeric (v))
- {
- double mean;
- moments1_calculate (m[i], NULL, &mean, NULL, NULL, NULL);
- return mean;
- }
- else
- {
- i = cat_value_find (v, val);
- return (cat_get_category_count (i, v) / ssize);
- }
- return 0.0;
}
-/*
- Subtract the product of the means.
- */
-static double
-center_entry (const struct covariance_accumulator *ca, const struct variable **vars,
- const struct moments1 **m, size_t n_vars, size_t ssize)
-{
- double m1;
- double m2;
- double result = 0.0;
-
- m1 = get_center (ca->v1, ca->val1, vars, m, n_vars, ssize);
- m2 = get_center (ca->v2, ca->val2, vars, m, n_vars, ssize);
- result = ca->product - ssize * m1 * m2;
- return result;
-}
-
-/*
- The first moments in M should be stored in the order corresponding
- to the order of VARS. So, for example, VARS[0] has its moments in
- M[0], VARS[1] has its moments in M[1], etc.
- */
-struct design_matrix *
-covariance_accumulator_to_matrix (struct hsh_table *cov, const struct moments1 **m,
- const struct variable **vars, size_t n_vars, size_t ssize)
+static struct design_matrix *
+covariance_accumulator_to_matrix (struct covariance_matrix *cov)
{
double tmp;
struct covariance_accumulator *entry;
struct design_matrix *result = NULL;
struct hsh_iterator iter;
-
- result = covariance_matrix_create (n_vars, vars);
- entry = hsh_first (cov, &iter);
-
+ result = covariance_matrix_create (cov->n_variables, cov->v_variables);
+
+ entry = hsh_first (cov->ca, &iter);
+
while (entry != NULL)
{
/*
- We compute the centered, un-normalized covariance matrix.
+ We compute the centered, un-normalized covariance matrix.
*/
- tmp = center_entry (entry, vars, m, n_vars, ssize);
+ tmp = entry->dot_product - entry->sum1 * entry->sum2 / entry->ssize;
covariance_matrix_insert (result, entry->v1, entry->v2, entry->val1,
entry->val2, tmp);
- entry = hsh_next (cov, &iter);
+ entry = hsh_next (cov->ca, &iter);
}
-
return result;
}
+
+/*
+ Call this function after passing the data.
+ */
+void
+covariance_matrix_compute (struct covariance_matrix *cov)
+{
+ if (cov->n_pass == ONE_PASS)
+ {
+ cov->cov = covariance_accumulator_to_matrix (cov);
+ }
+}
+
+struct design_matrix *
+covariance_to_design (const struct covariance_matrix *c)
+{
+ if (c != NULL)
+ {
+ return c->cov;
+ }
+ return NULL;
+}