miscellaneous compiler warnings
authorJason Stover <jhs@math.gcsu.edu>
Thu, 13 Oct 2005 19:58:42 +0000 (19:58 +0000)
committerJason Stover <jhs@math.gcsu.edu>
Thu, 13 Oct 2005 19:58:42 +0000 (19:58 +0000)
src/cat.c
src/regression.q

index 451ff3c0fbd3bf86ef8d19c648bfc61cec988442..afdb44ef7253216dee4c67017af8d763ed7ad0a5 100644 (file)
--- a/src/cat.c
+++ b/src/cat.c
@@ -65,8 +65,7 @@ cr_recoded_categorical_create (const struct variable *v)
   rc->v = v;
   rc->n_categories = 0;
   rc->n_allocated_categories = N_INITIAL_CATEGORIES;
-  rc->vals = xmalloc (N_INITIAL_CATEGORIES *
-                     sizeof (*rc->vals));
+  rc->vals = xmalloc (N_INITIAL_CATEGORIES * sizeof (*rc->vals));
 
   return rc;
 }
@@ -146,8 +145,8 @@ cr_value_update (struct recoded_categorical *rc, const union value *v)
       if (rc->n_categories >= rc->n_allocated_categories)
        {
          rc->n_allocated_categories *= 2;
-         rc->vals =  xrealloc (rc->vals, rc->n_allocated_categories
-                               * sizeof (*(rc->vals)));
+         rc->vals = xrealloc (rc->vals, rc->n_allocated_categories
+                              * sizeof (*(rc->vals)));
        }
       rc->vals[rc->n_categories] = *v;
       rc->n_categories++;
@@ -221,7 +220,7 @@ cr_subscript_to_value (const size_t s, struct recoded_categorical *cr)
   to the value v.
  */
 static gsl_vector_view
-cr_value_to_vector (const union value * v, struct recoded_categorical * cr)
+cr_value_to_vector (const union value *v, struct recoded_categorical *cr)
 {
   size_t row;
   row = cr_value_to_subscript (v, cr);
@@ -415,7 +414,7 @@ design_matrix_col_to_var (const struct design_matrix *dm, size_t col)
       dmv = dm->vars[i];
       if ((dmv.v)->index == index)
        {
-         return dmv.v;
+         return (struct variable *) dmv.v;
        }
     }
   return NULL;
index 9f65debe993b6c2aa236ed8d4e5080a34e573467..06f881b2485703387a1e037af4cd0b41b4b8aa4a 100644 (file)
@@ -69,38 +69,39 @@ static struct cmd_regression cmd;
  */
 size_t *indep_vars;
 
-static void run_regression( const struct casefile * );
+static void run_regression (const struct casefile *, void *);
 /* 
    STATISTICS subcommand output functions.
  */
 static void reg_stats_r (pspp_linreg_cache *);
 static void reg_stats_coeff (pspp_linreg_cache *);
 static void reg_stats_anova (pspp_linreg_cache *);
-static void reg_stats_outs(pspp_linreg_cache *);
+static void reg_stats_outs (pspp_linreg_cache *);
 static void reg_stats_zpp (pspp_linreg_cache *);
 static void reg_stats_label (pspp_linreg_cache *);
 static void reg_stats_sha (pspp_linreg_cache *);
 static void reg_stats_ci (pspp_linreg_cache *);
 static void reg_stats_f (pspp_linreg_cache *);
-static void reg_stats_bcov(pspp_linreg_cache *);
+static void reg_stats_bcov (pspp_linreg_cache *);
 static void reg_stats_ses (pspp_linreg_cache *);
 static void reg_stats_xtx (pspp_linreg_cache *);
-static void reg_stats_collin(pspp_linreg_cache *);
+static void reg_stats_collin (pspp_linreg_cache *);
 static void reg_stats_tol (pspp_linreg_cache *);
-static void reg_stats_selection(pspp_linreg_cache *);
-static void statistics_keyword_output ( void (*) (pspp_linreg_cache *), 
-                                       int, pspp_linreg_cache *);
+static void reg_stats_selection (pspp_linreg_cache *);
+static void statistics_keyword_output (void (*)(pspp_linreg_cache *),
+                                      int, pspp_linreg_cache *);
 
 static void
-reg_stats_r (pspp_linreg_cache *c)
+reg_stats_r (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
+
 /*
   Table showing estimated regression coefficients.
  */
 static void
-reg_stats_coeff (pspp_linreg_cache *c)
+reg_stats_coeff (pspp_linreg_cache * c)
 {
   size_t i;
   size_t j;
@@ -113,14 +114,14 @@ reg_stats_coeff (pspp_linreg_cache *c)
   double beta;
   const char *label;
   struct tab_table *t;
-  
+
+  assert (c != NULL);
   n_rows = 2 + c->param_estimates->size;
   t = tab_create (n_cols, n_rows, 0);
   tab_headers (t, 2, 0, 1, 0);
-  tab_dim( t, tab_natural_dimensions);
-  tab_box ( t, TAL_2, TAL_2, -1, TAL_1, 0, 0,
-           n_cols - 1, n_rows - 1);
-  tab_hline (t, TAL_2, 0, n_cols - 1, 1 );
+  tab_dim (t, tab_natural_dimensions);
+  tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
+  tab_hline (t, TAL_2, 0, n_cols - 1, 1);
   tab_vline (t, TAL_2, 2, 0, n_rows - 1);
   tab_vline (t, TAL_0, 1, 0, 0);
 
@@ -130,83 +131,81 @@ reg_stats_coeff (pspp_linreg_cache *c)
   tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("t"));
   tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
   tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("(Constant)"));
-  coeff = gsl_vector_get ( c->param_estimates, 0);
-  tab_float ( t, 2, 1, 0, coeff, 10, 2 );
-  std_err = sqrt(gsl_matrix_get ( c->cov, 0, 0));
-  tab_float ( t, 3, 1, 0, std_err, 10, 2);
+  coeff = gsl_vector_get (c->param_estimates, 0);
+  tab_float (t, 2, 1, 0, coeff, 10, 2);
+  std_err = sqrt (gsl_matrix_get (c->cov, 0, 0));
+  tab_float (t, 3, 1, 0, std_err, 10, 2);
   beta = coeff / c->depvar_std;
-  tab_float ( t, 4, 1, 0, beta, 10, 2);
+  tab_float (t, 4, 1, 0, beta, 10, 2);
   t_stat = coeff / std_err;
-  tab_float ( t, 5, 1, 0, t_stat, 10, 2);
-  pval = 2 * gsl_cdf_tdist_Q ( fabs(t_stat), 1.0);
-  tab_float ( t, 6, 1, 0, pval, 10, 2);
-  for( j = 0; j < c->n_indeps; j++ )
+  tab_float (t, 5, 1, 0, t_stat, 10, 2);
+  pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
+  tab_float (t, 6, 1, 0, pval, 10, 2);
+  for (j = 0; j < c->n_indeps; j++)
     {
       i = indep_vars[j];
       struct variable *v = cmd.v_variables[i];
-      label = var_to_string(v);
-      tab_text ( t, 1, j + 2, TAB_CENTER, label);
+      label = var_to_string (v);
+      tab_text (t, 1, j + 2, TAB_CENTER, label);
       /*
-       Regression coefficients.
+         Regression coefficients.
        */
-      coeff = gsl_vector_get ( c->param_estimates, j+1 ); 
-      tab_float ( t, 2, j + 2, 0, coeff, 10, 2 );
+      coeff = gsl_vector_get (c->param_estimates, j + 1);
+      tab_float (t, 2, j + 2, 0, coeff, 10, 2);
       /*
-       Standard error of the coefficients.
+         Standard error of the coefficients.
        */
-      std_err = sqrt ( gsl_matrix_get ( c->cov, j+1, j+1 ));
-      tab_float ( t, 3, j + 2, 0, std_err, 10, 2 );
+      std_err = sqrt (gsl_matrix_get (c->cov, j + 1, j + 1));
+      tab_float (t, 3, j + 2, 0, std_err, 10, 2);
       /*
-       'Standardized' coefficient, i.e., regression coefficient
-       if all variables had unit variance.
+         'Standardized' coefficient, i.e., regression coefficient
+         if all variables had unit variance.
        */
-      beta = gsl_vector_get(c->indep_std, j+1);
+      beta = gsl_vector_get (c->indep_std, j + 1);
       beta *= coeff / c->depvar_std;
-      tab_float ( t, 4, j + 2, 0, beta, 10, 2);
+      tab_float (t, 4, j + 2, 0, beta, 10, 2);
 
       /*
-       Test statistic for H0: coefficient is 0.
+         Test statistic for H0: coefficient is 0.
        */
       t_stat = coeff / std_err;
-      tab_float ( t, 5, j + 2, 0, t_stat, 10, 2);
+      tab_float (t, 5, j + 2, 0, t_stat, 10, 2);
       /*
-       P values for the test statistic above.
+         P values for the test statistic above.
        */
-      pval = 2 * gsl_cdf_tdist_Q ( fabs(t_stat), 1.0 );
-      tab_float ( t, 6, j + 2, 0, pval, 10, 2);
+      pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
+      tab_float (t, 6, j + 2, 0, pval, 10, 2);
     }
   tab_title (t, 0, _("Coefficients"));
   tab_submit (t);
 }
+
 /*
   Display the ANOVA table.
  */
 static void
-reg_stats_anova (pspp_linreg_cache *c)
+reg_stats_anova (pspp_linreg_cache * c)
 {
-  int n_cols =7;
+  int n_cols = 7;
   int n_rows = 4;
   const double msm = c->ssm / c->dfm;
   const double mse = c->sse / c->dfe;
-  const double F = msm / mse ;
-  const double pval = gsl_cdf_fdist_Q(F, c->dfm, c->dfe);
+  const double F = msm / mse;
+  const double pval = gsl_cdf_fdist_Q (F, c->dfm, c->dfe);
 
   struct tab_table *t;
 
-  t = tab_create (n_cols,n_rows,0);
+  assert (c != NULL);
+  t = tab_create (n_cols, n_rows, 0);
   tab_headers (t, 2, 0, 1, 0);
   tab_dim (t, tab_natural_dimensions);
 
-  tab_box (t, 
-          TAL_2, TAL_2,
-          -1, TAL_1,
-          0, 0,
-          n_cols - 1, n_rows - 1);
+  tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
 
-  tab_hline (t, TAL_2, 0, n_cols - 1, 1 );
+  tab_hline (t, TAL_2, 0, n_cols - 1, 1);
   tab_vline (t, TAL_2, 2, 0, n_rows - 1);
   tab_vline (t, TAL_0, 1, 0, 0);
-  
+
   tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Sum of Squares"));
   tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("df"));
   tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Mean Square"));
@@ -229,142 +228,142 @@ reg_stats_anova (pspp_linreg_cache *c)
   tab_float (t, 3, 3, 0, c->dft, 4, 0);
 
   /* Mean Squares */
-  
+
   tab_float (t, 4, 1, TAB_RIGHT, msm, 8, 3);
   tab_float (t, 4, 2, TAB_RIGHT, mse, 8, 3);
 
-  tab_float (t, 5, 1, 0,  F, 8, 3);
-  
+  tab_float (t, 5, 1, 0, F, 8, 3);
+
   tab_float (t, 6, 1, 0, pval, 8, 3);
 
   tab_title (t, 0, _("ANOVA"));
   tab_submit (t);
 }
 static void
-reg_stats_outs(pspp_linreg_cache *c)
+reg_stats_outs (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_zpp (pspp_linreg_cache *c)
+reg_stats_zpp (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_label (pspp_linreg_cache *c)
+reg_stats_label (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_sha (pspp_linreg_cache *c)
+reg_stats_sha (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_ci (pspp_linreg_cache *c)
+reg_stats_ci (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_f (pspp_linreg_cache *c)
+reg_stats_f (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_bcov(pspp_linreg_cache *c)
+reg_stats_bcov (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_ses (pspp_linreg_cache *c)
+reg_stats_ses (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_xtx (pspp_linreg_cache *c)
+reg_stats_xtx (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_collin(pspp_linreg_cache *c)
+reg_stats_collin (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_tol (pspp_linreg_cache *c)
+reg_stats_tol (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 static void
-reg_stats_selection(pspp_linreg_cache *c)
+reg_stats_selection (pspp_linreg_cache * c)
 {
-  return 0;
+  assert (c != NULL);
 }
 
 static void
-statistics_keyword_output ( void (*function) (pspp_linreg_cache *), 
-                           int keyword,
-                           pspp_linreg_cache *c)
+statistics_keyword_output (void (*function) (pspp_linreg_cache *),
+                          int keyword, pspp_linreg_cache * c)
 {
-  if(keyword)
+  if (keyword)
     {
-      (*function)(c);
+      (*function) (c);
     }
 }
 
 static void
-subcommand_statistics ( int *keywords,
-                       pspp_linreg_cache *c)
+subcommand_statistics (int *keywords, pspp_linreg_cache * c)
 {
   /* 
      The order here must match the order in which the STATISTICS 
      keywords appear in the specification section above.
    */
-  enum {r,
-       coeff,
-       anova,
-       outs,
-       zpp,
-       label,
-       sha,
-       ci,
-       bcov,
-       ses,
-       xtx,
-       collin,
-       tol,
-       selection,
-       f,
-       defaults,
-       all};
+  enum
+  { r,
+    coeff,
+    anova,
+    outs,
+    zpp,
+    label,
+    sha,
+    ci,
+    bcov,
+    ses,
+    xtx,
+    collin,
+    tol,
+    selection,
+    f,
+    defaults,
+    all
+  };
   int i;
   int d = 1;
-  
-  if(keywords[all])
+
+  if (keywords[all])
     {
       /*
-       Set everything but F.
+         Set everything but F.
        */
-      for ( i = 0; i < f; i++)
+      for (i = 0; i < f; i++)
        {
          *(keywords + i) = 1;
        }
     }
-  else 
+  else
     {
-      for ( i = 0; i < all; i++)
+      for (i = 0; i < all; i++)
        {
-         if(keywords[i])
+         if (keywords[i])
            {
              d = 0;
            }
        }
       /*
-       Default output: ANOVA table, parameter estimates,
-       and statistics for variables not entered into model,
-       if appropriate.
-      */
-      if(keywords[defaults] | d)
+         Default output: ANOVA table, parameter estimates,
+         and statistics for variables not entered into model,
+         if appropriate.
+       */
+      if (keywords[defaults] | d)
        {
          *(keywords + anova) = 1;
          *(keywords + outs) = 1;
@@ -372,42 +371,27 @@ subcommand_statistics ( int *keywords,
          *(keywords + r) = 1;
        }
     }
-  statistics_keyword_output ( reg_stats_r, 
-                             keywords[r], c );
-  statistics_keyword_output ( reg_stats_anova, 
-                             keywords[anova], c );
-  statistics_keyword_output ( reg_stats_coeff, 
-                             keywords[coeff], c );
-  statistics_keyword_output ( reg_stats_outs, 
-                             keywords[outs], c );
-  statistics_keyword_output ( reg_stats_zpp, 
-                             keywords[zpp], c );
-  statistics_keyword_output ( reg_stats_label, 
-                             keywords[label], c );
-  statistics_keyword_output ( reg_stats_sha, 
-                             keywords[sha], c );
-  statistics_keyword_output ( reg_stats_ci, 
-                             keywords[ci], c );
-  statistics_keyword_output ( reg_stats_f, 
-                             keywords[f], c );
-  statistics_keyword_output ( reg_stats_bcov, 
-                             keywords[bcov], c );
-  statistics_keyword_output ( reg_stats_ses, 
-                             keywords[ses], c );
-  statistics_keyword_output ( reg_stats_xtx, 
-                             keywords[xtx], c );
-  statistics_keyword_output ( reg_stats_collin, 
-                             keywords[collin], c );
-  statistics_keyword_output ( reg_stats_tol, 
-                             keywords[tol], c );
-  statistics_keyword_output ( reg_stats_selection, 
-                             keywords[selection], c );
+  statistics_keyword_output (reg_stats_r, keywords[r], c);
+  statistics_keyword_output (reg_stats_anova, keywords[anova], c);
+  statistics_keyword_output (reg_stats_coeff, keywords[coeff], c);
+  statistics_keyword_output (reg_stats_outs, keywords[outs], c);
+  statistics_keyword_output (reg_stats_zpp, keywords[zpp], c);
+  statistics_keyword_output (reg_stats_label, keywords[label], c);
+  statistics_keyword_output (reg_stats_sha, keywords[sha], c);
+  statistics_keyword_output (reg_stats_ci, keywords[ci], c);
+  statistics_keyword_output (reg_stats_f, keywords[f], c);
+  statistics_keyword_output (reg_stats_bcov, keywords[bcov], c);
+  statistics_keyword_output (reg_stats_ses, keywords[ses], c);
+  statistics_keyword_output (reg_stats_xtx, keywords[xtx], c);
+  statistics_keyword_output (reg_stats_collin, keywords[collin], c);
+  statistics_keyword_output (reg_stats_tol, keywords[tol], c);
+  statistics_keyword_output (reg_stats_selection, keywords[selection], c);
 }
 
 int
-cmd_regression(void)
+cmd_regression (void)
 {
-  if(!parse_regression(&cmd))
+  if (!parse_regression (&cmd))
     {
       return CMD_FAILURE;
     }
@@ -415,28 +399,28 @@ cmd_regression(void)
 
   return CMD_SUCCESS;
 }
+
 /*
   Is variable k one of the dependent variables?
  */
 static int
-is_depvar ( size_t k)
+is_depvar (size_t k)
 {
   size_t j = 0;
-  for ( j = 0; j < cmd.n_dependent; j++)
+  for (j = 0; j < cmd.n_dependent; j++)
     {
       /*
-       compare_var_names returns 0 if the variable
-       names match.
+         compare_var_names returns 0 if the variable
+         names match.
        */
-      if (!compare_var_names( cmd.v_dependent[j], 
-                             cmd.v_variables[k], NULL))
+      if (!compare_var_names (cmd.v_dependent[j], cmd.v_variables[k], NULL))
        return 1;
     }
   return 0;
 }
 
 static void
-run_regression ( const struct casefile *cf )
+run_regression (const struct casefile *cf, void *cmd_)
 {
   size_t i;
   size_t k;
@@ -457,82 +441,84 @@ run_regression ( const struct casefile *cf )
 
   n_data = casefile_get_case_cnt (cf);
   n_indep = cmd.n_variables - cmd.n_dependent;
-  indep_vars = (size_t *) malloc ( n_indep * sizeof (*indep_vars));
+  indep_vars = (size_t *) malloc (n_indep * sizeof (*indep_vars));
 
   Y = gsl_vector_alloc (n_data);
   lopts.get_depvar_mean_std = 1;
-  lopts.get_indep_mean_std = (int *) malloc ( n_indep * sizeof (int));
-  
-  lcache = pspp_linreg_cache_alloc(n_data, n_indep);
-  lcache->indep_means = gsl_vector_alloc(n_indep);
-  lcache->indep_std = gsl_vector_alloc(n_indep);
+  lopts.get_indep_mean_std = (int *) malloc (n_indep * sizeof (int));
+
+  lcache = pspp_linreg_cache_alloc (n_data, n_indep);
+  lcache->indep_means = gsl_vector_alloc (n_indep);
+  lcache->indep_std = gsl_vector_alloc (n_indep);
 
   /*
-    Read from the active file. The first pass encodes categorical
-    variables.
+     Read from the active file. The first pass encodes categorical
+     variables.
    */
-  ca = cr_recoded_cat_ar_create ( cmd.n_variables, cmd.v_variables );
+  ca = cr_recoded_cat_ar_create (cmd.n_variables, cmd.v_variables);
   for (r = casefile_get_reader (cf);
-       casereader_read (r, &c ); case_destroy (&c))
+       casereader_read (r, &c); case_destroy (&c))
     {
       for (i = 0; i < ca->n_vars; i++)
        {
          v = (*(ca->a + i))->v;
-         val = case_data ( &c, v->fv );
-         cr_value_update ( *(ca->a + i), val);
+         val = case_data (&c, v->fv);
+         cr_value_update (*(ca->a + i), val);
        }
       n_data++;
     }
-  cr_create_value_matrices ( ca );
-  X = design_matrix_create ( n_indep, cmd.v_variables, 
-                            ca, n_data );
+  cr_create_value_matrices (ca);
+  X =
+    design_matrix_create (n_indep, (const struct variable **) cmd.v_variables,
+                         ca, n_data);
 
   /*
-    The second pass creates the design matrix.
+     The second pass creates the design matrix.
    */
-  for(r2 = casefile_get_reader (cf);
-      casereader_read (r2, &c) ;
-      case_destroy (&c)) /* Iterate over the cases. */
+  for (r2 = casefile_get_reader (cf); casereader_read (r2, &c);
+       case_destroy (&c))
+    /* Iterate over the cases. */
     {
       k = 0;
-      row = casereader_cnum(r2) - 1;
-      for(i = 0; i < cmd.n_variables ; ++i) /* Iterate over the variables
-                                              for the current case. 
-                                            */
+      row = casereader_cnum (r2) - 1;
+      for (i = 0; i < cmd.n_variables; ++i)    /* Iterate over the variables
+                                                  for the current case. 
+                                                */
        {
          v = cmd.v_variables[i];
-         val = case_data ( &c, v->fv );
+         val = case_data (&c, v->fv);
          /*
-           Independent/dependent variable separation. The
-           'variables' subcommand specifies a varlist which contains
-           both dependent and independent variables. The dependent
-           variables are specified with the 'dependent'
-           subcommand. We need to separate the two.
+            Independent/dependent variable separation. The
+            'variables' subcommand specifies a varlist which contains
+            both dependent and independent variables. The dependent
+            variables are specified with the 'dependent'
+            subcommand. We need to separate the two.
           */
-         if(is_depvar(i))
+         if (is_depvar (i))
            {
-             if ( v->type == NUMERIC )
+             if (v->type == NUMERIC)
                {
-                 gsl_vector_set(Y, row, val->f);
+                 gsl_vector_set (Y, row, val->f);
                }
              else
                {
                  errno = EINVAL;
-                 fprintf( stderr, "%s:%d: Dependent variable should be numeric: %s\n",
-                          __FILE__,__LINE__,strerror(errno));
-                 err_cond_fail();
+                 fprintf (stderr,
+                          "%s:%d: Dependent variable should be numeric: %s\n",
+                          __FILE__, __LINE__, strerror (errno));
+                 err_cond_fail ();
                }
            }
          else
            {
-             if ( v->type == ALPHA )
+             if (v->type == ALPHA)
                {
-                 rc = cr_var_to_recoded_categorical ( v, ca );
-                 design_matrix_set_categorical ( X, row, v, val, rc);
+                 rc = cr_var_to_recoded_categorical (v, ca);
+                 design_matrix_set_categorical (X, row, v, val, rc);
                }
              else if (v->type == NUMERIC)
                {
-                 design_matrix_set_numeric ( X, row, v, val);
+                 design_matrix_set_numeric (X, row, v, val);
                }
 
              indep_vars[k] = i;
@@ -544,18 +530,18 @@ run_regression ( const struct casefile *cf )
   /* 
      Find the least-squares estimates and other statistics.
    */
-  pspp_linreg ( Y, X->m, &lopts, lcache );
-  subcommand_statistics ( &cmd.a_statistics, lcache );
-  gsl_vector_free(Y);
-  design_matrix_destroy(X);
-  pspp_linreg_cache_free(lcache);
-  free( lopts.get_indep_mean_std );
+  pspp_linreg ((const gsl_vector *) Y, X->m, &lopts, lcache);
+  subcommand_statistics (cmd.a_statistics, lcache);
+  gsl_vector_free (Y);
+  design_matrix_destroy (X);
+  pspp_linreg_cache_free (lcache);
+  free (lopts.get_indep_mean_std);
   free (indep_vars);
-  casereader_destroy(r);
+  casereader_destroy (r);
 }
+
 /*
   Local Variables:   
   mode: c
   End:
 */
-