cmd->wv ? var_get_print_format (cmd->wv) : &F_8_0;
double n_total, mean;
- double df_corr = 0.0;
+ double df_corr = 1.0;
double mse = 0;
int f;
struct tab_table *t;
const int nc = 6;
- int nr = heading_rows + 4 + cmd->n_interactions;
+ int nr = heading_rows + 3 + cmd->n_interactions;
if (cmd->intercept)
- nr++;
+ nr += 2;
msg (MW, "GLM is experimental. Do not rely on these results.");
t = tab_create (nc, nr);
moments_calculate (ws->totals, &n_total, &mean, NULL, NULL, NULL);
- if (cmd->intercept)
- df_corr += 1.0;
-
df_corr += categoricals_df_total (ws->cats);
- mse = gsl_vector_get (ws->ssq, 0) / (n_total - df_corr);
-
r = heading_rows;
- tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Corrected Model"));
+ if (cmd->intercept)
+ tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Corrected Model"));
+ else
+ tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Model"));
r++;
+ mse = gsl_vector_get (ws->ssq, 0) / (n_total - df_corr);
+
+ const double intercept_ssq = pow2 (mean * n_total) / n_total;
+
+ double ssq_effects = 0.0;
if (cmd->intercept)
{
- const double intercept = pow2 (mean * n_total) / n_total;
const double df = 1.0;
- const double F = intercept / df / mse;
+ const double F = intercept_ssq / df / mse;
tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Intercept"));
- tab_double (t, 1, r, 0, intercept, NULL);
+ tab_double (t, 1, r, 0, intercept_ssq, NULL);
tab_double (t, 2, r, 0, 1.00, wfmt);
- tab_double (t, 3, r, 0, intercept / df, NULL);
+ tab_double (t, 3, r, 0, intercept_ssq / df, NULL);
tab_double (t, 4, r, 0, F, NULL);
tab_double (t, 5, r, 0, gsl_cdf_fdist_Q (F, df, n_total - df_corr),
NULL);
for (f = 0; f < cmd->n_interactions; ++f)
{
struct string str = DS_EMPTY_INITIALIZER;
- const double df = categoricals_df (ws->cats, f);
- const double ssq = gsl_vector_get (ws->ssq, f + 1);
+ double df = categoricals_df (ws->cats, f);
+
+ double ssq = gsl_vector_get (ws->ssq, f + 1);
+ ssq_effects += ssq;
+
+ if (! cmd->intercept)
+ {
+ df++;
+ ssq += intercept_ssq;
+ }
+
const double F = ssq / df / mse;
interaction_to_string (cmd->interactions[f], &str);
tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, ds_cstr (&str));
}
{
- /* Corrected Model */
- const double df = df_corr - 1.0;
- const double ssq = ws->total_ssq - gsl_vector_get (ws->ssq, 0);
+ /* Model / Corrected Model */
+ double df = df_corr;
+ double ssq = ws->total_ssq - gsl_vector_get (ws->ssq, 0);
+ if ( cmd->intercept )
+ df --;
+ else
+ ssq += intercept_ssq;
+
const double F = ssq / df / mse;
tab_double (t, 1, heading_rows, 0, ssq, NULL);
tab_double (t, 2, heading_rows, 0, df, wfmt);
tab_double (t, 3, r++, 0, mse, NULL);
}
+ {
+ tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Total"));
+ tab_double (t, 1, r, 0, ws->total_ssq + intercept_ssq, NULL);
+ tab_double (t, 2, r, 0, n_total, wfmt);
+
+ r++;
+ }
+
if (cmd->intercept)
{
- const double intercept = pow2 (mean * n_total) / n_total;
- const double ssq = intercept + ws->total_ssq;
-
- tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Total"));
- tab_double (t, 1, r, 0, ssq, NULL);
- tab_double (t, 2, r, 0, n_total, wfmt);
-
- r++;
+ tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Corrected Total"));
+ tab_double (t, 1, r, 0, ws->total_ssq, NULL);
+ tab_double (t, 2, r, 0, n_total - 1.0, wfmt);
}
- tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Corrected Total"));
-
-
- tab_double (t, 1, r, 0, ws->total_ssq, NULL);
- tab_double (t, 2, r, 0, n_total - 1.0, wfmt);
-
tab_submit (t);
}
])
AT_CLEANUP
+
+
+
+AT_SETUP([GLM excluded intercept])
+
+dnl The following example comes from
+dnl
+dnl Rudolf N. Cardinal
+dnl Graduate-level statistics for psychology and neuroscience
+dnl ANOVA in practice, and complex ANOVA designs
+dnl Version of 2 May 2004
+dnl
+dnl Downloaded from: http://egret.psychol.cam.ac.uk/psychology/graduate/Guide_to_ANOVA.pdf
+
+AT_DATA([intercept-exclude.sps], [dnl
+set format = F20.3.
+
+data list notable list /depvar * A *.
+begin data.
+10 1
+14 1
+8 1
+7 1
+2 1
+10 1
+1 1
+3 1
+2 1
+8.5 1
+14.29 2
+18.49 2
+12.46 2
+11.63 2
+6.66 2
+14.02 2
+5.66 2
+7.06 2
+6.37 2
+13.26 2
+end data.
+
+GLM depvar by A
+ /intercept = exclude
+ .
+
+
+GLM depvar by A
+ /intercept = include
+ .
+
+])
+
+AT_CHECK([pspp -O format=csv intercept-exclude.sps], [0],
+ [dnl
+warning: GLM is experimental. Do not rely on these results.
+
+Table: Tests of Between-Subjects Effects
+Source,Type III Sum of Squares,df,Mean Square,F,Sig.
+Model,1636.826,2,818.413,43.556,.000
+A,1636.826,2,818.413,43.556,.000
+Error,338.216,18,18.790,,
+Total,1975.042,20,,,
+
+warning: GLM is experimental. Do not rely on these results.
+
+Table: Tests of Between-Subjects Effects
+Source,Type III Sum of Squares,df,Mean Square,F,Sig.
+Corrected Model,98.568,1,98.568,5.246,.034
+Intercept,1538.258,1,1538.258,81.867,.000
+A,98.568,1,98.568,5.246,.034
+Error,338.216,18,18.790,,
+Total,1975.042,20,,,
+Corrected Total,436.784,19,,,
+])
+
+AT_CLEANUP
+