*/
struct reg_trns
{
- int n_trns; /* Number of transformations. */
- int trns_id; /* Which trns is this one? */
- pspp_linreg_cache *c; /* Linear model for this trns. */
+ int n_trns; /* Number of transformations. */
+ int trns_id; /* Which trns is this one? */
+ pspp_linreg_cache *c; /* Linear model for this trns. */
};
/*
Variables used (both explanatory and response).
tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("t"));
tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("(Constant)"));
- coeff = c->coeff[0].estimate;
+ coeff = c->coeff[0]->estimate;
tab_float (t, 2, 1, 0, coeff, 10, 2);
std_err = sqrt (gsl_matrix_get (c->cov, 0, 0));
tab_float (t, 3, 1, 0, std_err, 10, 2);
tab_float (t, 6, 1, 0, pval, 10, 2);
for (j = 1; j <= c->n_indeps; j++)
{
- v = pspp_linreg_coeff_get_var (c->coeff + j, 0);
+ v = pspp_linreg_coeff_get_var (c->coeff[j], 0);
label = var_to_string (v);
/* Do not overwrite the variable's name. */
strncpy (tmp, label, MAX_STRING);
for that value.
*/
- val = pspp_linreg_coeff_get_value (c->coeff + j, v);
+ val = pspp_linreg_coeff_get_value (c->coeff[j], v);
val_s = value_to_string (val, v);
strncat (tmp, val_s, MAX_STRING);
}
/*
Regression coefficients.
*/
- coeff = c->coeff[j].estimate;
+ coeff = c->coeff[j]->estimate;
tab_float (t, 2, j + 1, 0, coeff, 10, 2);
/*
Standard error of the coefficients.
tab_text (t, 1, 1, TAB_CENTER | TAT_TITLE, _("Covariances"));
for (i = 1; i < c->n_coeffs; i++)
{
- const struct variable *v = pspp_linreg_coeff_get_var (c->coeff + i, 0);
+ const struct variable *v = pspp_linreg_coeff_get_var (c->coeff[i], 0);
label = var_to_string (v);
tab_text (t, 2, i, TAB_CENTER, label);
tab_text (t, i + 2, 0, TAB_CENTER, label);
statistics_keyword_output (reg_stats_tol, keywords[tol], c);
statistics_keyword_output (reg_stats_selection, keywords[selection], c);
}
+
/*
Free the transformation. Free its linear model if this
transformation is the last one.
*/
-static
-bool regression_trns_free (void *t_)
+static bool
+regression_trns_free (void *t_)
{
bool result = true;
struct reg_trns *t = t_;
return result;
}
+
/*
Gets the predicted values.
*/
union value *output = NULL;
const union value **vals = NULL;
struct variable **vars = NULL;
-
- assert (trns!= NULL);
+
+ assert (trns != NULL);
model = trns->c;
assert (model != NULL);
assert (model->depvar != NULL);
{
vals[i] = case_data (c, vars[i]->fv);
}
- output->f = (*model->predict) ((const struct variable **) vars,
- vals, model, n_vals);
+ output->f = (*model->predict) ((const struct variable **) vars,
+ vals, model, n_vals);
free (vals);
free (vars);
return TRNS_CONTINUE;
}
+
/*
Gets the residuals.
*/
const union value **vals = NULL;
const union value *obs = NULL;
struct variable **vars = NULL;
-
- assert (trns!= NULL);
+
+ assert (trns != NULL);
model = trns->c;
assert (model != NULL);
assert (model->depvar != NULL);
vals[i] = case_data (c, vars[i]->fv);
}
obs = case_data (c, model->depvar->fv);
- output->f = (*model->residual) ((const struct variable **) vars,
+ output->f = (*model->residual) ((const struct variable **) vars,
vals, obs, model, n_vals);
free (vals);
free (vars);
return TRNS_CONTINUE;
}
+
/*
Returns 0 if NAME is a duplicate of any existing variable name.
*/
return 1;
}
-static
-void reg_get_name (char name[LONG_NAME_LEN], const char prefix[LONG_NAME_LEN])
+static void
+reg_get_name (char name[LONG_NAME_LEN], const char prefix[LONG_NAME_LEN])
{
int i = 1;
snprintf (name, LONG_NAME_LEN, "%s%d", prefix, i);
- while (!try_name(name))
+ while (!try_name (name))
{
i++;
snprintf (name, LONG_NAME_LEN, "%s%d", prefix, i);
}
}
-static void
-reg_save_var (const char *prefix, trns_proc_func *f,
- pspp_linreg_cache *c, struct variable **v,
- int n_trns)
+static void
+reg_save_var (const char *prefix, trns_proc_func * f,
+ pspp_linreg_cache * c, struct variable **v, int n_trns)
{
static int trns_index = 1;
char name[LONG_NAME_LEN];
trns_index++;
}
static void
-subcommand_save (int save, pspp_linreg_cache **models)
+subcommand_save (int save, pspp_linreg_cache ** models)
{
pspp_linreg_cache **lc;
int n_trns = 0;
assert ((*lc)->depvar != NULL);
if (cmd.a_save[REGRESSION_SV_RESID])
{
- reg_save_var ("RES", regression_trns_resid_proc, *lc, &(*lc)->resid, n_trns);
+ reg_save_var ("RES", regression_trns_resid_proc, *lc,
+ &(*lc)->resid, n_trns);
}
if (cmd.a_save[REGRESSION_SV_PRED])
{
- reg_save_var ("PRED", regression_trns_pred_proc, *lc, &(*lc)->pred, n_trns);
+ reg_save_var ("PRED", regression_trns_pred_proc, *lc,
+ &(*lc)->pred, n_trns);
}
}
}
- else
+ else
{
for (lc = models; lc < models + cmd.n_dependent; lc++)
{
varlist = xnmalloc (c->n_indeps, sizeof (*varlist));
for (i = 1; i < c->n_indeps; i++) /* c->coeff[0] is the intercept. */
{
- coeff = c->coeff + i;
+ coeff = c->coeff[i];
v = pspp_linreg_coeff_get_var (coeff, 0);
if (v->type == ALPHA)
{
for (i = 0; i < n_vars; i++)
{
- coeff = c->coeff + i;
+ coeff = c->coeff[i];
fprintf (fp, "%s.name = \"%s\";\n\t", varlist[i]->name,
varlist[i]->name);
fprintf (fp, "%s.n_vals = %d;\n\t", varlist[i]->name,
fprintf (fp, "char *model_depvars[%d] = {", c->n_indeps);
for (i = 1; i < c->n_indeps; i++)
{
- coeff = c->coeff + i;
+ coeff = c->coeff[i];
v = pspp_linreg_coeff_get_var (coeff, 0);
fprintf (fp, "\"%s\",\n\t\t", v->name);
}
- coeff = c->coeff + i;
+ coeff = c->coeff[i];
v = pspp_linreg_coeff_get_var (coeff, 0);
fprintf (fp, "\"%s\"};\n\t", v->name);
}
{
int i;
const struct variable *v;
-
+
for (i = 1; i < c->n_coeffs; i++)
{
- v = pspp_linreg_coeff_get_var (c->coeff + i, 0);
+ v = pspp_linreg_coeff_get_var (c->coeff[i], 0);
if (v->type == ALPHA)
{
return 1;
int n_quantiles = 100;
double increment;
double tmp;
- struct pspp_linreg_coeff coeff;
+ struct pspp_linreg_coeff *coeff;
if (export)
{
for (i = 1; i < c->n_indeps; i++)
{
coeff = c->coeff[i];
- fprintf (fp, "%.15e,\n\t\t", coeff.estimate);
+ fprintf (fp, "%.15e,\n\t\t", coeff->estimate);
}
coeff = c->coeff[i];
- fprintf (fp, "%.15e};\n\t", coeff.estimate);
+ fprintf (fp, "%.15e};\n\t", coeff->estimate);
coeff = c->coeff[0];
- fprintf (fp, "double estimate = %.15e;\n\t", coeff.estimate);
+ fprintf (fp, "double estimate = %.15e;\n\t", coeff->estimate);
fprintf (fp, "int i;\n\tint j;\n\n\t");
fprintf (fp, "for (i = 0; i < %d; i++)\n\t", c->n_indeps);
fprintf (fp, "%s", reg_getvar);
is_depvar (size_t k, const struct variable *v)
{
/*
- compare_var_names returns 0 if the variable
- names match.
- */
+ compare_var_names returns 0 if the variable
+ names match.
+ */
if (!compare_var_names (v, v_variables[k], NULL))
return 1;
/* Parser for the variables sub command */
static int
-regression_custom_variables(struct cmd_regression *cmd UNUSED)
+regression_custom_variables (struct cmd_regression *cmd UNUSED)
{
- lex_match('=');
+ lex_match ('=');
if ((token != T_ID || dict_lookup_var (default_dict, tokid) == NULL)
&& token != T_ALL)
return 2;
-
- if (!parse_variables (default_dict, &v_variables, &n_variables,
- PV_NONE ))
+
+ if (!parse_variables (default_dict, &v_variables, &n_variables, PV_NONE))
{
free (v_variables);
return 0;
}
- assert(n_variables);
+ assert (n_variables);
return 1;
}
+
/*
Count the explanatory variables. The user may or may
not have specified a response variable in the syntax.
*/
-static
-int get_n_indep (const struct variable *v)
+static int
+get_n_indep (const struct variable *v)
{
int result;
int i = 0;
}
return result;
}
+
/*
Read from the active file. Identify the explanatory variables in
v_variables. Encode categorical variables. Drop cases with missing
values.
*/
-static
-int prepare_data (int n_data, int is_missing_case[],
- struct variable **indep_vars,
- struct variable *depvar,
- const struct casefile *cf)
+static int
+prepare_data (int n_data, int is_missing_case[],
+ struct variable **indep_vars,
+ struct variable *depvar, const struct casefile *cf)
{
int i;
int j;
assert (indep_vars != NULL);
j = 0;
for (i = 0; i < n_variables; i++)
- {
+ {
if (!is_depvar (i, depvar))
{
indep_vars[j] = v_variables[i];
if (v_variables[i]->type == ALPHA)
{
/* Make a place to hold the binary vectors
- corresponding to this variable's values. */
+ corresponding to this variable's values. */
cat_stored_values_create (v_variables[i]);
}
- n_data = mark_missing_cases (cf, v_variables[i], is_missing_case, n_data);
+ n_data =
+ mark_missing_cases (cf, v_variables[i], is_missing_case, n_data);
}
}
/*
- Mark missing cases for the dependent variable.
+ Mark missing cases for the dependent variable.
*/
n_data = mark_missing_cases (cf, depvar, is_missing_case, n_data);
return n_data;
}
+
static bool
run_regression (const struct ccase *first,
const struct casefile *cf, void *cmd_ UNUSED)
{
size_t i;
- size_t n_data = 0; /* Number of valide cases. */
- size_t n_cases; /* Number of cases. */
+ size_t n_data = 0; /* Number of valide cases. */
+ size_t n_cases; /* Number of cases. */
size_t row;
size_t case_num;
int n_indep = 0;
{
n_indep = get_n_indep ((const struct variable *) cmd.v_dependent[k]);
lopts.get_indep_mean_std = xnmalloc (n_indep, sizeof (int));
- indep_vars = xnmalloc (n_indep, sizeof *indep_vars);
+ indep_vars = xnmalloc (n_indep, sizeof *indep_vars);
assert (indep_vars != NULL);
for (i = 0; i < n_cases; i++)
{
is_missing_case[i] = 0;
}
- n_data = prepare_data (n_cases, is_missing_case, indep_vars,
- cmd.v_dependent[k],
+ n_data = prepare_data (n_cases, is_missing_case, indep_vars,
+ cmd.v_dependent[k],
(const struct casefile *) cf);
Y = gsl_vector_alloc (n_data);
for (i = 0; i < n_variables; ++i) /* Iterate over the
variables for the
current case.
- */
+ */
{
val = case_data (&c, v_variables[i]->fv);
/*
{
if (v_variables[i]->type == ALPHA)
{
- design_matrix_set_categorical (X, row, v_variables[i], val);
+ design_matrix_set_categorical (X, row,
+ v_variables[i], val);
}
else if (v_variables[i]->type == NUMERIC)
{
- design_matrix_set_numeric (X, row, v_variables[i], val);
+ design_matrix_set_numeric (X, row, v_variables[i],
+ val);
}
}
}