--- /dev/null
+/* PSPP - linear regression.
+ Copyright (C) 2005 Free Software Foundation, Inc.
+ Written by Jason H Stover <jason@sakla.net>.
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_cdf.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include "alloc.h"
+#include "case.h"
+#include "dictionary.h"
+#include "file-handle.h"
+#include "command.h"
+#include "lexer.h"
+#include "tab.h"
+#include "var.h"
+#include "vfm.h"
+#include "casefile.h"
+#include <linreg/pspp_linreg.h>
+#include "cat.h"
+/* (headers) */
+
+
+/* (specification)
+ "REGRESSION" (regression_):
+ *variables=varlist;
+ statistics[st_]=r,
+ coeff,
+ anova,
+ outs,
+ zpp,
+ label,
+ sha,
+ ci,
+ bcov,
+ ses,
+ xtx,
+ collin,
+ tol,
+ selection,
+ f,
+ defaults,
+ all;
+ ^dependent=varlist;
+ ^method=enter.
+*/
+/* (declarations) */
+/* (functions) */
+static struct cmd_regression cmd;
+
+/*
+ Array holding the subscripts of the independent variables.
+ */
+size_t *indep_vars;
+
+static void run_regression( const struct casefile * );
+/*
+ STATISTICS subcommand output functions.
+ */
+static void reg_stats_r (pspp_linreg_cache *);
+static void reg_stats_coeff (pspp_linreg_cache *);
+static void reg_stats_anova (pspp_linreg_cache *);
+static void reg_stats_outs(pspp_linreg_cache *);
+static void reg_stats_zpp (pspp_linreg_cache *);
+static void reg_stats_label (pspp_linreg_cache *);
+static void reg_stats_sha (pspp_linreg_cache *);
+static void reg_stats_ci (pspp_linreg_cache *);
+static void reg_stats_f (pspp_linreg_cache *);
+static void reg_stats_bcov(pspp_linreg_cache *);
+static void reg_stats_ses (pspp_linreg_cache *);
+static void reg_stats_xtx (pspp_linreg_cache *);
+static void reg_stats_collin(pspp_linreg_cache *);
+static void reg_stats_tol (pspp_linreg_cache *);
+static void reg_stats_selection(pspp_linreg_cache *);
+static void statistics_keyword_output ( void (*) (pspp_linreg_cache *),
+ int, pspp_linreg_cache *);
+
+static void
+reg_stats_r (pspp_linreg_cache *c)
+{
+ return 0;
+}
+/*
+ Table showing estimated regression coefficients.
+ */
+static void
+reg_stats_coeff (pspp_linreg_cache *c)
+{
+ size_t i;
+ size_t j;
+ int n_cols = 7;
+ int n_rows;
+ double t_stat;
+ double pval;
+ double coeff;
+ double std_err;
+ double beta;
+ const char *label;
+ struct tab_table *t;
+
+ n_rows = 2 + c->param_estimates->size;
+ t = tab_create (n_cols, n_rows, 0);
+ tab_headers (t, 2, 0, 1, 0);
+ tab_dim( t, tab_natural_dimensions);
+ tab_box ( t, TAL_2, TAL_2, -1, TAL_1, 0, 0,
+ n_cols - 1, n_rows - 1);
+ tab_hline (t, TAL_2, 0, n_cols - 1, 1 );
+ tab_vline (t, TAL_2, 2, 0, n_rows - 1);
+ tab_vline (t, TAL_0, 1, 0, 0);
+
+ tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("B"));
+ tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Std. Error"));
+ tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Beta"));
+ tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("t"));
+ tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
+ tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("(Constant)"));
+ coeff = gsl_vector_get ( c->param_estimates, 0);
+ tab_float ( t, 2, 1, 0, coeff, 10, 2 );
+ std_err = sqrt(gsl_matrix_get ( c->cov, 0, 0));
+ tab_float ( t, 3, 1, 0, std_err, 10, 2);
+ beta = coeff / c->depvar_std;
+ tab_float ( t, 4, 1, 0, beta, 10, 2);
+ t_stat = coeff / std_err;
+ tab_float ( t, 5, 1, 0, t_stat, 10, 2);
+ pval = 2 * gsl_cdf_tdist_Q ( fabs(t_stat), 1.0);
+ tab_float ( t, 6, 1, 0, pval, 10, 2);
+ for( j = 0; j < c->n_indeps; j++ )
+ {
+ i = indep_vars[j];
+ struct variable *v = cmd.v_variables[i];
+ label = var_to_string(v);
+ tab_text ( t, 1, j + 2, TAB_CENTER, label);
+ /*
+ Regression coefficients.
+ */
+ coeff = gsl_vector_get ( c->param_estimates, j+1 );
+ tab_float ( t, 2, j + 2, 0, coeff, 10, 2 );
+ /*
+ Standard error of the coefficients.
+ */
+ std_err = sqrt ( gsl_matrix_get ( c->cov, j+1, j+1 ));
+ tab_float ( t, 3, j + 2, 0, std_err, 10, 2 );
+ /*
+ 'Standardized' coefficient, i.e., regression coefficient
+ if all variables had unit variance.
+ */
+ beta = gsl_vector_get(c->indep_std, j+1);
+ beta *= coeff / c->depvar_std;
+ tab_float ( t, 4, j + 2, 0, beta, 10, 2);
+
+ /*
+ Test statistic for H0: coefficient is 0.
+ */
+ t_stat = coeff / std_err;
+ tab_float ( t, 5, j + 2, 0, t_stat, 10, 2);
+ /*
+ P values for the test statistic above.
+ */
+ pval = 2 * gsl_cdf_tdist_Q ( fabs(t_stat), 1.0 );
+ tab_float ( t, 6, j + 2, 0, pval, 10, 2);
+ }
+ tab_title (t, 0, _("Coefficients"));
+ tab_submit (t);
+}
+/*
+ Display the ANOVA table.
+ */
+static void
+reg_stats_anova (pspp_linreg_cache *c)
+{
+ int n_cols =7;
+ int n_rows = 4;
+ const double msm = c->ssm / c->dfm;
+ const double mse = c->sse / c->dfe;
+ const double F = msm / mse ;
+ const double pval = gsl_cdf_fdist_Q(F, c->dfm, c->dfe);
+
+ struct tab_table *t;
+
+ t = tab_create (n_cols,n_rows,0);
+ tab_headers (t, 2, 0, 1, 0);
+ tab_dim (t, tab_natural_dimensions);
+
+ tab_box (t,
+ TAL_2, TAL_2,
+ -1, TAL_1,
+ 0, 0,
+ n_cols - 1, n_rows - 1);
+
+ tab_hline (t, TAL_2, 0, n_cols - 1, 1 );
+ tab_vline (t, TAL_2, 2, 0, n_rows - 1);
+ tab_vline (t, TAL_0, 1, 0, 0);
+
+ tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Sum of Squares"));
+ tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("df"));
+ tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Mean Square"));
+ tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("F"));
+ tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
+
+ tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("Regression"));
+ tab_text (t, 1, 2, TAB_LEFT | TAT_TITLE, _("Residual"));
+ tab_text (t, 1, 3, TAB_LEFT | TAT_TITLE, _("Total"));
+
+ /* Sums of Squares */
+ tab_float (t, 2, 1, 0, c->ssm, 10, 2);
+ tab_float (t, 2, 3, 0, c->sst, 10, 2);
+ tab_float (t, 2, 2, 0, c->sse, 10, 2);
+
+
+ /* Degrees of freedom */
+ tab_float (t, 3, 1, 0, c->dfm, 4, 0);
+ tab_float (t, 3, 2, 0, c->dfe, 4, 0);
+ tab_float (t, 3, 3, 0, c->dft, 4, 0);
+
+ /* Mean Squares */
+
+ tab_float (t, 4, 1, TAB_RIGHT, msm, 8, 3);
+ tab_float (t, 4, 2, TAB_RIGHT, mse, 8, 3);
+
+ tab_float (t, 5, 1, 0, F, 8, 3);
+
+ tab_float (t, 6, 1, 0, pval, 8, 3);
+
+ tab_title (t, 0, _("ANOVA"));
+ tab_submit (t);
+}
+static void
+reg_stats_outs(pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_zpp (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_label (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_sha (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_ci (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_f (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_bcov(pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_ses (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_xtx (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_collin(pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_tol (pspp_linreg_cache *c)
+{
+ return 0;
+}
+static void
+reg_stats_selection(pspp_linreg_cache *c)
+{
+ return 0;
+}
+
+static void
+statistics_keyword_output ( void (*function) (pspp_linreg_cache *),
+ int keyword,
+ pspp_linreg_cache *c)
+{
+ if(keyword)
+ {
+ (*function)(c);
+ }
+}
+
+static void
+subcommand_statistics ( int *keywords,
+ pspp_linreg_cache *c)
+{
+ /*
+ The order here must match the order in which the STATISTICS
+ keywords appear in the specification section above.
+ */
+ enum {r,
+ coeff,
+ anova,
+ outs,
+ zpp,
+ label,
+ sha,
+ ci,
+ bcov,
+ ses,
+ xtx,
+ collin,
+ tol,
+ selection,
+ f,
+ defaults,
+ all};
+ int i;
+ int d = 1;
+
+ if(keywords[all])
+ {
+ /*
+ Set everything but F.
+ */
+ for ( i = 0; i < f; i++)
+ {
+ *(keywords + i) = 1;
+ }
+ }
+ else
+ {
+ for ( i = 0; i < all; i++)
+ {
+ if(keywords[i])
+ {
+ d = 0;
+ }
+ }
+ /*
+ Default output: ANOVA table, parameter estimates,
+ and statistics for variables not entered into model,
+ if appropriate.
+ */
+ if(keywords[defaults] | d)
+ {
+ *(keywords + anova) = 1;
+ *(keywords + outs) = 1;
+ *(keywords + coeff) = 1;
+ *(keywords + r) = 1;
+ }
+ }
+ statistics_keyword_output ( reg_stats_r,
+ keywords[r], c );
+ statistics_keyword_output ( reg_stats_anova,
+ keywords[anova], c );
+ statistics_keyword_output ( reg_stats_coeff,
+ keywords[coeff], c );
+ statistics_keyword_output ( reg_stats_outs,
+ keywords[outs], c );
+ statistics_keyword_output ( reg_stats_zpp,
+ keywords[zpp], c );
+ statistics_keyword_output ( reg_stats_label,
+ keywords[label], c );
+ statistics_keyword_output ( reg_stats_sha,
+ keywords[sha], c );
+ statistics_keyword_output ( reg_stats_ci,
+ keywords[ci], c );
+ statistics_keyword_output ( reg_stats_f,
+ keywords[f], c );
+ statistics_keyword_output ( reg_stats_bcov,
+ keywords[bcov], c );
+ statistics_keyword_output ( reg_stats_ses,
+ keywords[ses], c );
+ statistics_keyword_output ( reg_stats_xtx,
+ keywords[xtx], c );
+ statistics_keyword_output ( reg_stats_collin,
+ keywords[collin], c );
+ statistics_keyword_output ( reg_stats_tol,
+ keywords[tol], c );
+ statistics_keyword_output ( reg_stats_selection,
+ keywords[selection], c );
+}
+
+int
+cmd_regression(void)
+{
+ if(!parse_regression(&cmd))
+ {
+ return CMD_FAILURE;
+ }
+ multipass_procedure_with_splits (run_regression, &cmd);
+
+ return CMD_SUCCESS;
+}
+/*
+ Is variable k one of the dependent variables?
+ */
+static int
+is_depvar ( size_t k)
+{
+ size_t j = 0;
+ for ( j = 0; j < cmd.n_dependent; j++)
+ {
+ /*
+ compare_var_names returns 0 if the variable
+ names match.
+ */
+ if (!compare_var_names( cmd.v_dependent[j],
+ cmd.v_variables[k], NULL))
+ return 1;
+ }
+ return 0;
+}
+
+static void
+run_regression ( const struct casefile *cf )
+{
+ size_t i;
+ size_t k;
+ size_t n_data = 0;
+ size_t row;
+ int n_indep;
+ const union value *val;
+ struct casereader *r;
+ struct casereader *r2;
+ struct ccase c;
+ const struct variable *v;
+ struct recoded_categorical_array *ca;
+ struct recoded_categorical *rc;
+ struct design_matrix *X;
+ gsl_vector *Y;
+ pspp_linreg_cache *lcache;
+ pspp_linreg_opts lopts;
+
+ n_data = casefile_get_case_cnt (cf);
+ n_indep = cmd.n_variables - cmd.n_dependent;
+ indep_vars = (size_t *) malloc ( n_indep * sizeof (*indep_vars));
+
+ Y = gsl_vector_alloc (n_data);
+ lopts.get_depvar_mean_std = 1;
+ lopts.get_indep_mean_std = (int *) malloc ( n_indep * sizeof (int));
+
+ lcache = pspp_linreg_cache_alloc(n_data, n_indep);
+ lcache->indep_means = gsl_vector_alloc(n_indep);
+ lcache->indep_std = gsl_vector_alloc(n_indep);
+
+ /*
+ Read from the active file. The first pass encodes categorical
+ variables.
+ */
+ ca = cr_recoded_cat_ar_create ( cmd.n_variables, cmd.v_variables );
+ for (r = casefile_get_reader (cf);
+ casereader_read (r, &c ); case_destroy (&c))
+ {
+ for (i = 0; i < ca->n_vars; i++)
+ {
+ v = (*(ca->a + i))->v;
+ val = case_data ( &c, v->fv );
+ cr_value_update ( *(ca->a + i), val);
+ }
+ n_data++;
+ }
+ cr_create_value_matrices ( ca );
+ X = design_matrix_create ( n_indep, cmd.v_variables,
+ ca, n_data );
+
+ /*
+ The second pass creates the design matrix.
+ */
+ for(r2 = casefile_get_reader (cf);
+ casereader_read (r2, &c) ;
+ case_destroy (&c)) /* Iterate over the cases. */
+ {
+ k = 0;
+ row = casereader_cnum(r2) - 1;
+ for(i = 0; i < cmd.n_variables ; ++i) /* Iterate over the variables
+ for the current case.
+ */
+ {
+ v = cmd.v_variables[i];
+ val = case_data ( &c, v->fv );
+ /*
+ Independent/dependent variable separation. The
+ 'variables' subcommand specifies a varlist which contains
+ both dependent and independent variables. The dependent
+ variables are specified with the 'dependent'
+ subcommand. We need to separate the two.
+ */
+ if(is_depvar(i))
+ {
+ if ( v->type == NUMERIC )
+ {
+ gsl_vector_set(Y, row, val->f);
+ }
+ else
+ {
+ errno = EINVAL;
+ fprintf( stderr, "%s:%d: Dependent variable should be numeric: %s\n",
+ __FILE__,__LINE__,strerror(errno));
+ err_cond_fail();
+ }
+ }
+ else
+ {
+ if ( v->type == ALPHA )
+ {
+ rc = cr_var_to_recoded_categorical ( v, ca );
+ design_matrix_set_categorical ( X, row, v, val, rc);
+ }
+ else if (v->type == NUMERIC)
+ {
+ design_matrix_set_numeric ( X, row, v, val);
+ }
+
+ indep_vars[k] = i;
+ k++;
+ lopts.get_indep_mean_std[i] = 1;
+ }
+ }
+ }
+ /*
+ Find the least-squares estimates and other statistics.
+ */
+ pspp_linreg ( Y, X->m, &lopts, lcache );
+ subcommand_statistics ( &cmd.a_statistics, lcache );
+ gsl_vector_free(Y);
+ design_matrix_destroy(X);
+ pspp_linreg_cache_free(lcache);
+ free( lopts.get_indep_mean_std );
+ free (indep_vars);
+ casereader_destroy(r);
+}
+/*
+ Local Variables:
+ mode: c
+ End:
+*/
+