3 // PSPP - computes sample statistics.
4 // Copyright (C) 2005, 2006 Free Software Foundation, Inc.
6 // This program is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU General Public License as
8 // published by the Free Software Foundation; either version 2 of the
9 // License, or (at your option) any later version.
11 // This program is distributed in the hope that it will be useful, but
12 // WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this program; if not, write to the Free Software
18 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 // 02110-1301, USA. */
21 operator NEG (x) = -x;
23 operator ADD (a, b) = a + b;
24 operator SUB (a, b) = a - b;
26 absorb_miss operator MUL (a, b)
27 = (a == 0. || b == 0. ? 0.
28 : a == SYSMIS || b == SYSMIS ? SYSMIS
31 absorb_miss operator DIV (a, b)
33 : a == SYSMIS || b == SYSMIS ? SYSMIS
36 absorb_miss operator POW (a, b)
37 = (a == SYSMIS ? (b == 0. ? 1. : a)
38 : b == SYSMIS ? (a == 0. ? 0. : SYSMIS)
39 : a == 0. && b <= 0. ? SYSMIS
42 absorb_miss boolean operator AND (boolean a, boolean b)
45 : b == SYSMIS ? SYSMIS
48 absorb_miss boolean operator OR (boolean a, boolean b)
51 : b == SYSMIS ? SYSMIS
54 boolean operator NOT (boolean a)
59 // Numeric relational operators.
60 boolean operator EQ (a, b) = a == b;
61 boolean operator GE (a, b) = a >= b;
62 boolean operator GT (a, b) = a > b;
63 boolean operator LE (a, b) = a <= b;
64 boolean operator LT (a, b) = a < b;
65 boolean operator NE (a, b) = a != b;
67 // String relational operators.
68 boolean operator EQ_STRING (string a, string b) = compare_string (&a, &b) == 0;
69 boolean operator GE_STRING (string a, string b) = compare_string (&a, &b) >= 0;
70 boolean operator GT_STRING (string a, string b) = compare_string (&a, &b) > 0;
71 boolean operator LE_STRING (string a, string b) = compare_string (&a, &b) <= 0;
72 boolean operator LT_STRING (string a, string b) = compare_string (&a, &b) < 0;
73 boolean operator NE_STRING (string a, string b) = compare_string (&a, &b) != 0;
76 function ABS (x) = fabs (x);
77 extension function ACOS (x >= -1 && x <= 1) = acos (x);
78 function ASIN (x >= -1 && x <= 1) = asin (x);
79 function ATAN (x) = atan (x);
80 extension function ARCOS (x >= -1 && x <= 1) = acos (x);
81 function ARSIN (x >= -1 && x <= 1) = asin (x);
82 function ARTAN (x) = atan (x);
83 function COS (x) = cos (x);
84 function EXP (x) = check_errno (exp (x));
85 function LG10(x) = check_errno (log10 (x));
86 function LN (x) = check_errno (log (x));
87 function LNGAMMA (x >= 0) = gsl_sf_lngamma (x);
88 function MOD10 (x) = fmod (x, 10);
89 function RND (x) = x >= 0. ? floor (x + .5) : -floor (-x + .5);
90 function SIN (x) = sin (x);
91 function SQRT (x >= 0) = sqrt (x);
92 function TAN (x) = check_errno (tan (x));
93 function TRUNC (x) = x >= 0. ? floor (x) : -floor (-x);
95 absorb_miss function MOD (n, d)
98 return n != SYSMIS ? fmod (n, d) : SYSMIS;
100 return n != 0. ? SYSMIS : 0.;
103 // N-ary numeric functions.
104 absorb_miss boolean function ANY (x != SYSMIS, a[n])
109 for (i = 0; i < n; i++)
112 else if (a[i] == SYSMIS)
115 return sysmis ? SYSMIS : 0.;
118 boolean function ANY (string x, string a[n])
122 for (i = 0; i < n; i++)
123 if (!compare_string (&x, &a[i]))
128 function CFVAR.2 (a[n])
130 double mean, variance;
132 moments_of_doubles (a, n, NULL, &mean, &variance, NULL, NULL);
134 if (mean == SYSMIS || mean == 0 || variance == SYSMIS)
137 return sqrt (variance) / mean;
140 function MAX.1 (a[n])
146 for (i = 0; i < n; i++)
147 if (a[i] != SYSMIS && a[i] > max)
152 string function MAX (string a[n])
154 struct substring *max;
158 for (i = 1; i < n; i++)
159 if (compare_string (&a[i], max) > 0)
164 function MEAN.1 (a[n])
167 moments_of_doubles (a, n, NULL, &mean, NULL, NULL, NULL);
171 function MIN.1 (a[n])
177 for (i = 0; i < n; i++)
178 if (a[i] != SYSMIS && a[i] < min)
183 string function MIN (string a[n])
185 struct substring *min;
189 for (i = 1; i < n; i++)
190 if (compare_string (&a[i], min) < 0)
195 absorb_miss function NMISS (a[n])
198 size_t missing_cnt = 0;
200 for (i = 0; i < n; i++)
201 missing_cnt += a[i] == SYSMIS;
205 absorb_miss function NVALID (a[n])
208 size_t valid_cnt = 0;
210 for (i = 0; i < n; i++)
211 valid_cnt += a[i] != SYSMIS;
215 absorb_miss boolean function RANGE (x != SYSMIS, a[n*2])
220 for (i = 0; i < n; i++)
223 double y = a[2 * i + 1];
224 if (w != SYSMIS && y != SYSMIS)
226 if (w <= x && x <= y)
232 return sysmis ? SYSMIS : 0.;
235 boolean function RANGE (string x, string a[n*2])
239 for (i = 0; i < n; i++)
241 struct substring *w = &a[2 * i];
242 struct substring *y = &a[2 * i + 1];
243 if (compare_string (w, &x) <= 0 && compare_string (&x, y) <= 0)
252 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
253 return sqrt (variance);
256 function SUM.1 (a[n])
262 for (i = 0; i < n; i++)
268 function VARIANCE.2 (a[n])
271 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
275 // Time construction & extraction functions.
276 function TIME.HMS (h, m, s)
278 if ((h > 0. || m > 0. || s > 0.) && (h < 0. || m < 0. || s < 0.))
280 msg (SW, _("TIME.HMS cannot mix positive and negative arguments."));
284 return H_S * h + MIN_S * m + s;
286 function TIME.DAYS (days) = days * DAY_S;
287 function CTIME.DAYS (time) = time / DAY_S;
288 function CTIME.HOURS (time) = time / H_S;
289 function CTIME.MINUTES (time) = time / MIN_S;
290 function CTIME.SECONDS (time) = time;
292 // Date construction functions.
293 function DATE.DMY (d, m, y) = expr_ymd_to_date (y, m, d);
294 function DATE.MDY (m, d, y) = expr_ymd_to_date (y, m, d);
295 function DATE.MOYR (m, y) = expr_ymd_to_date (y, m, 1);
296 function DATE.QYR (q, y) = expr_ymd_to_date (y, q * 3 - 2, 1);
297 function DATE.WKYR (w, y) = expr_wkyr_to_date (w, y);
298 function DATE.YRDAY (y, yday) = expr_yrday_to_date (y, yday);
299 function YRMODA (y, m, d) = expr_yrmoda (y, m, d);
301 // Date extraction functions.
302 function XDATE.TDAY (date) = floor (date / DAY_S);
303 function XDATE.HOUR (date) = fmod (floor (date / H_S), DAY_H);
304 function XDATE.MINUTE (date) = fmod (floor (date / H_MIN), H_MIN);
305 function XDATE.SECOND (date) = fmod (date, MIN_S);
306 function XDATE.DATE (date) = floor (date / DAY_S) * DAY_S;
307 function XDATE.TIME (date) = fmod (date, DAY_S);
309 function XDATE.JDAY (date >= DAY_S) = calendar_offset_to_yday (date / DAY_S);
310 function XDATE.MDAY (date >= DAY_S) = calendar_offset_to_mday (date / DAY_S);
311 function XDATE.MONTH (date >= DAY_S)
312 = calendar_offset_to_month (date / DAY_S);
313 function XDATE.QUARTER (date >= DAY_S)
314 = (calendar_offset_to_month (date / DAY_S) - 1) / 3 + 1;
315 function XDATE.WEEK (date >= DAY_S)
316 = (calendar_offset_to_yday (date / DAY_S) - 1) / 7 + 1;
317 function XDATE.WKDAY (date >= DAY_S) = calendar_offset_to_wday (date / DAY_S);
318 function XDATE.YEAR (date >= DAY_S) = calendar_offset_to_year (date / DAY_S);
320 // Date arithmetic functions.
321 no_abbrev function DATEDIFF (date1 >= DAY_S, date2 >= DAY_S, string unit)
322 = expr_date_difference (date1, date2, unit);
323 no_abbrev function DATESUM (date, quantity, string unit)
324 = expr_date_sum (date, quantity, unit, ss_cstr ("closest"));
325 no_abbrev function DATESUM (date, quantity, string unit, string method)
326 = expr_date_sum (date, quantity, unit, method);
330 string function CONCAT (string a[n])
333 struct substring dst;
336 dst = alloc_string (e, MAX_STRING);
338 for (i = 0; i < n; i++)
340 struct substring *src = &a[i];
343 copy_len = src->length;
344 if (dst.length + copy_len > MAX_STRING)
345 copy_len = MAX_STRING - dst.length;
346 memcpy (&dst.string[dst.length], src->string, copy_len);
347 dst.length += copy_len;
353 function INDEX (string haystack, string needle)
355 if (needle.length == 0)
359 int limit = haystack.length - needle.length + 1;
361 for (i = 1; i <= limit; i++)
362 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
368 function INDEX (string haystack, string needles, needle_len_d)
370 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
371 || (int) needle_len_d != needle_len_d
372 || needles.length == 0)
376 int needle_len = needle_len_d;
377 if (needle_len < 0 || needle_len > needles.length
378 || needles.length % needle_len != 0)
382 int limit = haystack.length - needle_len + 1;
384 for (i = 1; i <= limit; i++)
385 for (j = 0; j < needles.length; j += needle_len)
386 if (!memcmp (&haystack.string[i - 1], &needles.string[j],
395 function RINDEX (string haystack, string needle)
397 if (needle.length == 0)
401 int limit = haystack.length - needle.length + 1;
403 for (i = limit; i >= 1; i--)
404 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
410 function RINDEX (string haystack, string needles, needle_len_d)
412 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
413 || (int) needle_len_d != needle_len_d
414 || needles.length == 0)
418 int needle_len = needle_len_d;
419 if (needle_len < 0 || needle_len > needles.length
420 || needles.length % needle_len != 0)
424 int limit = haystack.length - needle_len + 1;
426 for (i = limit; i >= 1; i--)
427 for (j = 0; j < needles.length; j += needle_len)
428 if (!memcmp (&haystack.string[i - 1],
429 &needles.string[j], needle_len))
436 function LENGTH (string s)
441 string function LOWER (string s)
445 for (i = 0; i < s.length; i++)
446 s.string[i] = tolower ((unsigned char) s.string[i]);
450 function MBLEN.BYTE (string s, idx)
452 if (idx < 0 || idx >= s.length || (int) idx != idx)
458 string function UPCASE (string s)
462 for (i = 0; i < s.length; i++)
463 s.string[i] = toupper ((unsigned char) s.string[i]);
467 absorb_miss string function LPAD (string s, n)
470 if (n < 0 || n > MAX_STRING || (int) n != n)
472 else if (s.length >= n)
476 struct substring t = alloc_string (e, n);
477 memset (t.string, ' ', n - s.length);
478 memcpy (&t.string[(int) n - s.length], s.string, s.length);
483 absorb_miss string function LPAD (string s, n, string c)
486 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
488 else if (s.length >= n)
492 struct substring t = alloc_string (e, n);
493 memset (t.string, c.string[0], n - s.length);
494 memcpy (&t.string[(int) n - s.length], s.string, s.length);
499 absorb_miss string function RPAD (string s, n)
502 if (n < 0 || n > MAX_STRING || (int) n != n)
504 else if (s.length >= n)
508 struct substring t = alloc_string (e, n);
509 memcpy (t.string, s.string, s.length);
510 memset (&t.string[s.length], ' ', n - s.length);
515 absorb_miss string function RPAD (string s, n, string c)
518 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
520 else if (s.length >= n)
524 struct substring t = alloc_string (e, n);
525 memcpy (t.string, s.string, s.length);
526 memset (&t.string[s.length], c.string[0], n - s.length);
531 string function LTRIM (string s)
533 while (s.length > 0 && s.string[0] == ' ')
541 string function LTRIM (string s, string c)
545 while (s.length > 0 && s.string[0] == c.string[0])
556 string function RTRIM (string s)
558 while (s.length > 0 && s.string[s.length - 1] == ' ')
563 string function RTRIM (string s, string c)
567 while (s.length > 0 && s.string[s.length - 1] == c.string[0])
575 function NUMBER (string s, ni_format f)
578 data_in (ss_head (s, f->w), f->type, f->d, 0, &out, 0);
582 absorb_miss string function STRING (x, no_format f)
586 struct substring dst;
589 dst = alloc_string (e, f->w);
590 assert (!fmt_is_string (f->type));
591 data_out (&v, f, dst.string);
595 absorb_miss string function SUBSTR (string s, ofs)
598 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs)
599 return copy_string (e, &s.string[(int) ofs - 1], s.length - ofs + 1);
604 absorb_miss string function SUBSTR (string s, ofs, cnt)
607 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs
608 && cnt >= 1 && cnt <= INT_MAX && (int) cnt == cnt)
610 int cnt_max = s.length - (int) ofs + 1;
611 return copy_string (e, &s.string[(int) ofs - 1],
612 cnt <= cnt_max ? cnt : cnt_max);
618 absorb_miss no_opt no_abbrev string function VALUELABEL (var v)
622 const char *label = var_lookup_value_label (v, case_data (c, v));
624 return copy_string (e, label, strlen (label));
630 operator SQUARE (x) = x * x;
631 boolean operator NUM_TO_BOOLEAN (x)
633 if (x == 0. || x == 1. || x == SYSMIS)
637 msg (SE, _("A number being treated as a Boolean in an "
638 "expression was found to have a value other than "
639 "0 (false), 1 (true), or the system-missing value. "
640 "The result was forced to 0."));
645 operator BOOLEAN_TO_NUM (boolean x) = x;
647 // Beta distribution.
648 function PDF.BETA (x >= 0 && x <= 1, a > 0, b > 0)
649 = gsl_ran_beta_pdf (x, a, b);
650 function CDF.BETA (x >= 0 && x <= 1, a > 0, b > 0) = gsl_cdf_beta_P (x, a, b);
651 function IDF.BETA (P >= 0 && P <= 1, a > 0, b > 0)
652 = gslextras_cdf_beta_Pinv (P, a, b);
653 no_opt function RV.BETA (a > 0, b > 0) = gsl_ran_beta (get_rng (), a, b);
654 function NCDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
655 = ncdf_beta (x, a, b, lambda);
656 function NPDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
657 = npdf_beta (x, a, b, lambda);
659 // Bivariate normal distribution.
660 function CDF.BVNOR (x0, x1, r >= -1 && r <= 1) = cdf_bvnor (x0, x1, r);
661 function PDF.BVNOR (x0, x1, r >= -1 && r <= 1)
662 = gsl_ran_bivariate_gaussian_pdf (x0, x1, 1, 1, r);
664 // Cauchy distribution.
665 function CDF.CAUCHY (x, a, b > 0) = gsl_cdf_cauchy_P ((x - a) / b, 1);
666 function IDF.CAUCHY (P > 0 && P < 1, a, b > 0)
667 = a + b * gsl_cdf_cauchy_Pinv (P, 1);
668 function PDF.CAUCHY (x, a, b > 0) = gsl_ran_cauchy_pdf ((x - a) / b, 1) / b;
669 no_opt function RV.CAUCHY (a, b > 0) = a + b * gsl_ran_cauchy (get_rng (), 1);
671 // Chi-square distribution.
672 function CDF.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_P (x, df);
673 function IDF.CHISQ (P >= 0 && P < 1, df > 0) = gsl_cdf_chisq_Pinv (P, df);
674 function PDF.CHISQ (x >= 0, df > 0) = gsl_ran_chisq_pdf (x, df);
675 no_opt function RV.CHISQ (df > 0) = gsl_ran_chisq (get_rng (), df);
676 function NCDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
677 function NPDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
678 function SIG.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_Q (x, df);
680 // Exponential distribution.
681 function CDF.EXP (x >= 0, a > 0) = gsl_cdf_exponential_P (x, 1. / a);
682 function IDF.EXP (P >= 0 && P < 1, a > 0)
683 = gsl_cdf_exponential_Pinv (P, 1. / a);
684 function PDF.EXP (x >= 0, a > 0) = gsl_ran_exponential_pdf (x, 1. / a);
685 no_opt function RV.EXP (a > 0) = gsl_ran_exponential (get_rng (), 1. / a);
687 // Exponential power distribution.
688 extension function PDF.XPOWER (x, a > 0, b >= 0)
689 = gsl_ran_exppow_pdf (x, a, b);
690 no_opt extension function RV.XPOWER (a > 0, b >= 0)
691 = gsl_ran_exppow (get_rng (), a, b);
694 function CDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_P (x, df1, df2);
695 function IDF.F (P >= 0 && P < 1, df1 > 0, df2 > 0) = idf_fdist (P, df1, df2);
696 function PDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_ran_fdist_pdf (x, df1, df2);
697 no_opt function RV.F (df1 > 0, df2 > 0) = gsl_ran_fdist (get_rng (), df1, df2);
698 function NCDF.F (x >= 0, df1 > 0, df2 > 0, lambda >= 0) = unimplemented;
699 function NPDF.F (x >= 0, df1 > 0, df2 > 0, lmabda >= 0) = unimplemented;
700 function SIG.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_Q (x, df1, df2);
702 // Gamma distribution.
703 function CDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_cdf_gamma_P (x, a, 1. / b);
704 function IDF.GAMMA (P >= 0 && P <= 1, a > 0, b > 0)
705 = gsl_cdf_gamma_Pinv (P, a, 1. / b);
706 function PDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_ran_gamma_pdf (x, a, 1. / b);
707 no_opt function RV.GAMMA (a > 0, b > 0)
708 = gsl_ran_gamma (get_rng (), a, 1. / b);
710 // Half-normal distribution.
711 function CDF.HALFNRM (x, a, b > 0) = unimplemented;
712 function IDF.HALFNRM (P > 0 && P < 1, a, b > 0) = unimplemented;
713 function PDF.HALFNRM (x, a, b > 0) = unimplemented;
714 no_opt function RV.HALFNRM (a, b > 0) = unimplemented;
716 // Inverse Gaussian distribution.
717 function CDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
718 function IDF.IGAUSS (P >= 0 && P < 1, a > 0, b > 0) = unimplemented;
719 function PDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
720 no_opt function RV.IGAUSS (a > 0, b > 0) = unimplemented;
722 // Landau distribution.
723 extension function PDF.LANDAU (x) = gsl_ran_landau_pdf (x);
724 no_opt extension function RV.LANDAU () = gsl_ran_landau (get_rng ());
726 // Laplace distribution.
727 function CDF.LAPLACE (x, a, b > 0) = gsl_cdf_laplace_P ((x - a) / b, 1);
728 function IDF.LAPLACE (P > 0 && P < 1, a, b > 0)
729 = a + b * gsl_cdf_laplace_Pinv (P, 1);
730 function PDF.LAPLACE (x, a, b > 0) = gsl_ran_laplace_pdf ((x - a) / b, 1) / b;
731 no_opt function RV.LAPLACE (a, b > 0)
732 = a + b * gsl_ran_laplace (get_rng (), 1);
734 // Levy alpha-stable distribution.
735 no_opt extension function RV.LEVY (c, alpha > 0 && alpha <= 2)
736 = gsl_ran_levy (get_rng (), c, alpha);
738 // Levy skew alpha-stable distribution.
739 no_opt extension function RV.LVSKEW (c, alpha > 0 && alpha <= 2,
740 beta >= -1 && beta <= 1)
741 = gsl_ran_levy_skew (get_rng (), c, alpha, beta);
743 // Logistic distribution.
744 function CDF.LOGISTIC (x, a, b > 0) = gsl_cdf_logistic_P ((x - a) / b, 1);
745 function IDF.LOGISTIC (P > 0 && P < 1, a, b > 0)
746 = a + b * gsl_cdf_logistic_Pinv (P, 1);
747 function PDF.LOGISTIC (x, a, b > 0)
748 = gsl_ran_logistic_pdf ((x - a) / b, 1) / b;
749 no_opt function RV.LOGISTIC (a, b > 0)
750 = a + b * gsl_ran_logistic (get_rng (), 1);
752 // Lognormal distribution.
753 function CDF.LNORMAL (x >= 0, m > 0, s > 0)
754 = gsl_cdf_lognormal_P (x, log (m), s);
755 function IDF.LNORMAL (P >= 0 && P < 1, m > 0, s > 0)
756 = gsl_cdf_lognormal_Pinv (P, log (m), s);
757 function PDF.LNORMAL (x >= 0, m > 0, s > 0)
758 = gsl_ran_lognormal_pdf (x, log (m), s);
759 no_opt function RV.LNORMAL (m > 0, s > 0)
760 = gsl_ran_lognormal (get_rng (), log (m), s);
762 // Normal distribution.
763 function CDF.NORMAL (x, u, s > 0) = gsl_cdf_gaussian_P (x - u, s);
764 function IDF.NORMAL (P > 0 && P < 1, u, s > 0)
765 = u + gsl_cdf_gaussian_Pinv (P, s);
766 function PDF.NORMAL (x, u, s > 0) = gsl_ran_gaussian_pdf ((x - u) / s, 1) / s;
767 no_opt function RV.NORMAL (u, s > 0) = u + gsl_ran_gaussian (get_rng (), s);
768 function CDFNORM (x) = gsl_cdf_ugaussian_P (x);
769 function PROBIT (P > 0 && P < 1) = gsl_cdf_ugaussian_Pinv (P);
770 no_opt function NORMAL (s > 0) = gsl_ran_gaussian (get_rng (), s);
772 // Normal tail distribution.
773 function PDF.NTAIL (x, a > 0, sigma > 0)
774 = gsl_ran_gaussian_tail_pdf (x, a, sigma);
775 no_opt function RV.NTAIL (a > 0, sigma > 0)
776 = gsl_ran_gaussian_tail (get_rng (), a, sigma);
778 // Pareto distribution.
779 function CDF.PARETO (x >= a, a > 0, b > 0) = gsl_cdf_pareto_P (x, b, a);
780 function IDF.PARETO (P >= 0 && P < 1, a > 0, b > 0)
781 = gsl_cdf_pareto_Pinv (P, b, a);
782 function PDF.PARETO (x >= a, a > 0, b > 0) = gsl_ran_pareto_pdf (x, b, a);
783 no_opt function RV.PARETO (a > 0, b > 0) = gsl_ran_pareto (get_rng (), b, a);
785 // Rayleigh distribution.
786 extension function CDF.RAYLEIGH (x, sigma > 0) = gsl_cdf_rayleigh_P (x, sigma);
787 extension function IDF.RAYLEIGH (P >= 0 && P <= 1, sigma > 0)
788 = gsl_cdf_rayleigh_Pinv (P, sigma);
789 extension function PDF.RAYLEIGH (x, sigma > 0)
790 = gsl_ran_rayleigh_pdf (x, sigma);
791 no_opt extension function RV.RAYLEIGH (sigma > 0)
792 = gsl_ran_rayleigh (get_rng (), sigma);
794 // Rayleigh tail distribution.
795 extension function PDF.RTAIL (x, a, sigma)
796 = gsl_ran_rayleigh_tail_pdf (x, a, sigma);
797 no_opt extension function RV.RTAIL (a, sigma)
798 = gsl_ran_rayleigh_tail (get_rng (), a, sigma);
800 // Studentized maximum modulus distribution.
801 function CDF.SMOD (x > 0, a >= 1, b >= 1) = unimplemented;
802 function IDF.SMOD (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
804 // Studentized range distribution.
805 function CDF.SRANGE (x > 0, a >= 1, b >= 1) = unimplemented;
806 function IDF.SRANGE (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
808 // Student t distribution.
809 function CDF.T (x, df > 0) = gsl_cdf_tdist_P (x, df);
810 function IDF.T (P > 0 && P < 1, df > 0) = gsl_cdf_tdist_Pinv (P, df);
811 function PDF.T (x, df > 0) = gsl_ran_tdist_pdf (x, df);
812 no_opt function RV.T (df > 0) = gsl_ran_tdist (get_rng (), df);
813 function NCDF.T (x, df > 0, nc) = unimplemented;
814 function NPDF.T (x, df > 0, nc) = unimplemented;
816 // Type-1 Gumbel distribution.
817 extension function CDF.T1G (x, a, b) = gsl_cdf_gumbel1_P (x, a, b);
818 extension function IDF.T1G (P >= 0 && P <= 1, a, b)
819 = gsl_cdf_gumbel1_P (P, a, b);
820 extension function PDF.T1G (x, a, b) = gsl_ran_gumbel1_pdf (x, a, b);
821 no_opt extension function RV.T1G (a, b) = gsl_ran_gumbel1 (get_rng (), a, b);
823 // Type-2 Gumbel distribution.
824 extension function CDF.T2G (x, a, b) = gsl_cdf_gumbel2_P (x, a, b);
825 extension function IDF.T2G (P >= 0 && P <= 1, a, b)
826 = gsl_cdf_gumbel2_P (P, a, b);
827 extension function PDF.T2G (x, a, b) = gsl_ran_gumbel2_pdf (x, a, b);
828 no_opt extension function RV.T2G (a, b) = gsl_ran_gumbel2 (get_rng (), a, b);
830 // Uniform distribution.
831 function CDF.UNIFORM (x <= b, a <= x, b) = gsl_cdf_flat_P (x, a, b);
832 function IDF.UNIFORM (P >= 0 && P <= 1, a <= b, b)
833 = gsl_cdf_flat_Pinv (P, a, b);
834 function PDF.UNIFORM (x <= b, a <= x, b) = gsl_ran_flat_pdf (x, a, b);
835 no_opt function RV.UNIFORM (a <= b, b) = gsl_ran_flat (get_rng (), a, b);
836 no_opt function UNIFORM (b >= 0) = gsl_ran_flat (get_rng (), 0, b);
838 // Weibull distribution.
839 function CDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_cdf_weibull_P (x, a, b);
840 function IDF.WEIBULL (P >= 0 && P < 1, a > 0, b > 0)
841 = gsl_cdf_weibull_Pinv (P, a, b);
842 function PDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_ran_weibull_pdf (x, a, b);
843 no_opt function RV.WEIBULL (a > 0, b > 0) = gsl_ran_weibull (get_rng (), a, b);
845 // Bernoulli distribution.
846 function CDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
848 function PDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
849 = gsl_ran_bernoulli_pdf (k, p);
850 no_opt function RV.BERNOULLI (p >= 0 && p <= 1)
851 = gsl_ran_bernoulli (get_rng (), p);
853 // Binomial distribution.
854 function CDF.BINOM (k, n > 0 && n == floor (n), p >= 0 && p <= 1)
855 = gslextras_cdf_binomial_P (k, p, n);
856 function PDF.BINOM (k >= 0 && k == floor (k) && k <= n,
857 n > 0 && n == floor (n),
859 = gsl_ran_binomial_pdf (k, p, n);
860 no_opt function RV.BINOM (p > 0 && p == floor (p), n >= 0 && n <= 1)
861 = gsl_ran_binomial (get_rng (), p, n);
863 // Geometric distribution.
864 function CDF.GEOM (k >= 1 && k == floor (k), p >= 0 && p <= 1)
865 = gslextras_cdf_geometric_P (k, p);
866 function PDF.GEOM (k >= 1 && k == floor (k),
868 = gsl_ran_geometric_pdf (k, p);
869 no_opt function RV.GEOM (p >= 0 && p <= 1) = gsl_ran_geometric (get_rng (), p);
871 // Hypergeometric distribution.
872 function CDF.HYPER (k >= 0 && k == floor (k) && k <= c,
873 a > 0 && a == floor (a),
874 b > 0 && b == floor (b) && b <= a,
875 c > 0 && c == floor (c) && c <= a)
876 = gslextras_cdf_hypergeometric_P (k, c, a - c, b);
877 function PDF.HYPER (k >= 0 && k == floor (k) && k <= c,
878 a > 0 && a == floor (a),
879 b > 0 && b == floor (b) && b <= a,
880 c > 0 && c == floor (c) && c <= a)
881 = gsl_ran_hypergeometric_pdf (k, c, a - c, b);
882 no_opt function RV.HYPER (a > 0 && a == floor (a),
883 b > 0 && b == floor (b) && b <= a,
884 c > 0 && c == floor (c) && c <= a)
885 = gsl_ran_hypergeometric (get_rng (), c, a - c, b);
887 // Logarithmic distribution.
888 extension function PDF.LOG (k >= 1, p > 0 && p <= 1)
889 = gsl_ran_logarithmic_pdf (k, p);
890 no_opt extension function RV.LOG (p > 0 && p <= 1)
891 = gsl_ran_logarithmic (get_rng (), p);
893 // Negative binomial distribution.
894 function CDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
895 = gslextras_cdf_negative_binomial_P (k, p, n);
896 function PDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
897 = gsl_ran_negative_binomial_pdf (k, p, n);
898 no_opt function RV.NEGBIN (n == floor (n), p > 0 && p <= 1)
899 = gsl_ran_negative_binomial (get_rng (), p, n);
901 // Poisson distribution.
902 function CDF.POISSON (k >= 0 && k == floor (k), mu > 0)
903 = gslextras_cdf_poisson_P (k, mu);
904 function PDF.POISSON (k >= 0 && k == floor (k), mu > 0)
905 = gsl_ran_poisson_pdf (k, mu);
906 no_opt function RV.POISSON (mu > 0) = gsl_ran_poisson (get_rng (), mu);
909 absorb_miss boolean function MISSING (x) = x == SYSMIS || !finite (x);
910 absorb_miss boolean function SYSMIS (x) = x == SYSMIS || !finite (x);
911 no_opt boolean function SYSMIS (num_var v)
914 return case_num (c, v) == SYSMIS;
916 no_opt boolean function VALUE (num_var v)
919 return case_num (c, v);
922 no_opt operator VEC_ELEM_NUM (idx)
926 if (idx >= 1 && idx <= vector_get_var_cnt (v))
928 const struct variable *var = vector_get_var (v, (size_t) idx - 1);
929 double value = case_num (c, var);
930 return !var_is_num_user_missing (var, value) ? value : SYSMIS;
935 msg (SE, _("SYSMIS is not a valid index value for vector "
936 "%s. The result will be set to SYSMIS."),
937 vector_get_name (v));
939 msg (SE, _("%g is not a valid index value for vector %s. "
940 "The result will be set to SYSMIS."),
941 idx, vector_get_name (v));
946 absorb_miss no_opt string operator VEC_ELEM_STR (idx)
951 if (idx >= 1 && idx <= vector_get_var_cnt (v))
953 struct variable *var = vector_get_var (v, (size_t) idx - 1);
954 return copy_string (e, case_str (c, var), var_get_width (var));
959 msg (SE, _("SYSMIS is not a valid index value for vector "
960 "%s. The result will be set to the empty string."),
961 vector_get_name (v));
963 msg (SE, _("%g is not a valid index value for vector %s. "
964 "The result will be set to the empty string."),
965 idx, vector_get_name (v));
972 no_opt operator NUM_VAR ()
976 double d = case_num (c, v);
977 return !var_is_num_user_missing (v, d) ? d : SYSMIS;
980 no_opt string operator STR_VAR ()
985 struct substring s = alloc_string (e, var_get_width (v));
986 memcpy (s.string, case_str (c, v), var_get_width (v));
990 no_opt perm_only function LAG (num_var v, pos_int n_before)
993 struct ccase *c = lagged_case (ds, n_before);
996 double x = case_num (c, v);
997 return !var_is_num_user_missing (v, x) ? x : SYSMIS;
1003 no_opt perm_only function LAG (num_var v)
1006 struct ccase *c = lagged_case (ds, 1);
1009 double x = case_num (c, v);
1010 return !var_is_num_user_missing (v, x) ? x : SYSMIS;
1016 no_opt perm_only string function LAG (str_var v, pos_int n_before)
1020 struct ccase *c = lagged_case (ds, n_before);
1022 return copy_string (e, case_str (c, v), var_get_width (v));
1024 return empty_string;
1027 no_opt perm_only string function LAG (str_var v)
1031 struct ccase *c = lagged_case (ds, 1);
1033 return copy_string (e, case_str (c, v), var_get_width (v));
1035 return empty_string;
1038 no_opt operator NUM_SYS ()
1042 return case_num (c, v) == SYSMIS;
1045 no_opt operator NUM_VAL ()
1049 return case_num (c, v);
1052 no_opt operator CASENUM ()