SYSTEM YV
APPLICATION
BINARY INTERFACE

Intel3860 Architecture
Processor Supplement

Fourth Edition

Copyright 00 1990-1996 The Santa Cruz Operation, Inc. All rights reserved.

Copyright 00 1990-1992 AT&T. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without the prior written permission of the copyright owner,
The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA. Copyright
infringement is a serious matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment
on the part of The Santa Cruz Operation, Inc.

scol UnixWareld is commercial computer software and, together with any related documentation, is
subject to the restrictions on US Government use as set forth below. If this procurement is for a DOD
agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of Rights in Technical Data and Computer Software
Clause at DFARS 252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal
Street, Santa Cruz, CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under
Government Contract No. (and Subcontract No. , if appropriate). It may not be
used, reproduced, or disclosed by the Government except as provided in paragraph (g)(3)(i) of FAR
Clause 52.227-14 alt 111 or as otherwise expressly stated in the contract. Contractor/Manufacturer is
The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

If any copyrighted software accompanies this publication, it is licensed to the End User only for use in
strict accordance with the End User License Agreement, which should be read carefully before
commencing use of the software.

ACKNOWLEDGEMENTS

"We acknowledge the contributions of the 880PEN Consortium Ltd., portions of whose System VV ABI
Implementation Guide for the M88000 Processor and the System V ABI M88000 Processor Networking
Supplement have been incorporated in this section of the ABI with permission."

TRADEMARKS

SCO, the SCO logo, The Santa Cruz Operation, and UnixWare are trademarks or registered trademarks
of The Santa Cruz Operation, Inc. in the USA and other countries. Intel386, Intel486, and Pentium are
trademarks of Intel Corporation. UNIX is a registered trademark in the USA and other countries,
licensed exclusively through X/Open Company Limited. Motif is a trademark of the Open Software
Foundation, Inc. NeWS is a registered trademark of Sun Microsystems, Inc. X11 and X Window System
are trademarks of Massachusetts Institute of Technology. All other brand and product names are or
may be trademarks of, and are used to identify products or services of, their respective owners.

DRAFT COPY
March 19, 1997
File: abi_386/copyright (Delta 44.3)
386:adm.book:sum

Page: 2

Contents

Table of Contents

Table of Contents

INTRODUCTION

SOFTWARE INSTALLATION

LOW-LEVEL SYSTEM INFORMATION
OBJECT FILES

PROGRAM LOADING AND DYNAMIC LINKING
LIBRARIES

DEVELOPMENT ENVIRONMENT

EXECUTION ENVIRONMENT

Index

1 INTRODUCTION
The Intel386 Architecture and the System V ABI 11
How to Use the Intel386 Architecture ABI Supplement 1-2

2 SOFTWARE INSTALLATION

Software Distribution Formats 2-1
3 LOW-LEVEL SYSTEM INFORMATION

Machine Interface 3-1

Function Calling Sequence 3-9

Operating System Interface 3-20

Coding Examples 3-34

Table of Contents i

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 3

OBJECT FILES

ELF Header 4-1

Sections 4-2

Symbol Table 4-3

Relocation 4-4
5 PROGRAM LOADING AND DYNAMIC

LINKING

Program Loading 5-1

Dynamic Linking 5-5
6 LIBRARIES

Shared Library Names 6-1

C Library 6-2

System Data Interfaces 6-5
7 DEVELOPMENT ENVIRONMENT

Development Commands 7-1

Software Packaging Tools 7-2
8 EXECUTION ENVIRONMENT

Application Environment 8-1
| N Index

Index IN-1

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 4

Table of Contents

Figures and Tables

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 3-30:
Figure 3-31:
Figure 3-32:
Figure 3-33:
Figure 3-34:
Figure 3-35:

Scalar Types

Structure Smaller Than a Word

No Padding

Internal Padding

Internal and Tail Padding

uni on Allocation

Bit-Field Ranges

Bit Numbering

Right-to-Left Allocation
Boundary Alignment
Storage Unit Sharing
uni on Allocation
Unnamed Bit-Fields
Processor Registers
Standard Stack Frame
Function Prologue
Function Epilogue
Stack Contents for Functions Returning st r uct / uni on
Function Prologue (Returning st r uct / uni on)
Function Epilogue
Integral and Pointer Arguments
Floating-Point Arguments
Structure and Union Arguments
Virtual Address Configuration
Conventional Segment Arrangements
_exit System Trap
Hardware Exceptions and Signals
Declaration for mai n
EFLAGS Register Fields
Floating-Point Control Word
Initial Process Stack
Auxiliary Vector
Auxiliary Vector Types, a_t ype
AT_FPHW values
Example Process Stack

Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 5

3-2

3-4
3-4
3-5
3-5

3-7
3-7
3-7
3-8

3-8

3-9

3-10
3-13
3-14
3-15
3-16
3-16
3-17
3-18
3-18
3-20
3-22
3-24
3-25
3-26
3-27
3-27
3-28
3-30
3-30
3-32
3-33

Figure 3-36:
Figure 3-37:
Figure 3-38:
Figure 3-39:
Figure 3-40:
Figure 3-41:
Figure 3-42:
Figure 3-43:
Figure 3-44:
Figure 3-45:
Figure 3-46:
Figure 3-47:
Figure 3-48:
Figure 3-49:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:

Calculating Global Offset Table Address
Position-Independent Function Prologue
Absolute Data Access
Position-Independent Data Access
Position-Independent Static Data Access
Absolute Direct Function Call
Position-Independent Direct Function Call
Absolute Indirect Function Call
Position-Independent Indirect Function Call
Branch Instruction, All Models
Absolute swi t ch Code
Position-Independent swi t ch Code
C Stack Frame
Dynamic Stack Allocation

Intel386 Identification, e_i dent

Special Sections

Relocatable Fields

Relocation Types

Executable File

Program Header Segments

Process Image Segments

Example Shared Object Segment Addresses

Global Offset Table

Absolute Procedure Linkage Table

Position-Independent Procedure Linkage Table

Shared Library Names

| i bc Additional Required Entry Points

|'i bc, Support Routines

|'i bc, Global External Data Symbols

<ai 0. h>*

<assert. h>

<ctype. h>

<dirent. h>

<dl fcn. h>*
<elf.h>* Part 1 of 6
<elf.h>* Part 2 of 6
<elf.h>* Part 3 of 6
<elf.h>* Part 4 of 6
<elf.h>* Part 5 of 6
<elf.h>* Part 6 of 6
<errno. h>, Part 1 of 3
<errno. h>, Part 2 of 3
<errno. h>, Part 3 of 3
<fcntl. h>, Part 1 of 2
<fcntl . h>, Part 2 of 2

DRAFT COPY

March 19, 1997

File: abi_386/MasterToc (Delta 44.6)

386:adm.book:sum

Page: 6

3-36
3-37
3-37
3-38
3-39
3-39
3-40
3-40
3-40
3-41
3-41
3-42
3-43
3-45
4-1

5-4

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19

Table of Contents

Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:
Figure 6-25:
Figure 6-26:
Figure 6-27:
Figure 6-28:
Figure 6-29:
Figure 6-30:
Figure 6-31:
Figure 6-32:
Figure 6-33:
Figure 6-34:
Figure 6-35:
Figure 6-36:
Figure 6-37:
Figure 6-38:
Figure 6-39:
Figure 6-40:
Figure 6-41:
Figure 6-42:
Figure 6-43:
Figure 6-44:
Figure 6-45:
Figure 6-46:
Figure 6-47:
Figure 6-48:
Figure 6-49:
Figure 6-50:
Figure 6-51:
Figure 6-52:
Figure 6-53:
Figure 6-54:
Figure 6-55:
Figure 6-56:
Figure 6-57:
Figure 6-58:
Figure 6-59:
Figure 6-60:
Figure 6-61:
Figure 6-62:
Figure 6-63:
Figure 6-64:
Figure 6-65:

<fl oat . h>, Single-Precision
<f | oat . h>, Double-Precision

<f| oat . h>, Extended-Precision

<f m sg. h>, Part 1 of 2
<f m nsg. h>, Part 2 of 2
<f nmat ch. h>*

<ftw h>

<gl ob. h>*

<grp. h>

<i conv. h>*

<sys/ipc. h>

<l angi nf 0. h>, Part 1 of 2
<l angi nf 0. h>, Part 2 of 2
<limts. h> Partlof2
<limts. h> Part 2 of 2
<l ocal e. h>

<l wpsynch. h>*

<machl ock. h>*

<mat h. h>

<sys/ mman. h>

<sys/ mod. h>*

<sys/ nount . h>

<sys/ nsg. h>

<net confi g. h>, Part 1 of 2
<net confi g. h>, Part 2 of 2
<netdir. h>, Part1of 2
<netdir. h>, Part 2 of 2
<nl _types. h>

<sys/ param h>

<pol | . h>
<sys/priocntl.h>*
<sys/ procset . h>

<pwd. h>

<regex.h>* Part 1 of 2
<regex. h>* Part 2 of 2
<sys/ resource. h>

<rpc. h>, Part 1 of 16
<rpc. h>, Part 2 of 16
<rpc. h>, Part 3 of 16
<rpc. h>, Part 4 of 16
<rpc. h>, Part 5 of 16
<rpc. h>, Part 6 of 16
<rpc. h>, Part 7 of 16
<rpc. h>, Part 8 of 16
<rpc. h>, Part 9 of 16

Table of Contents

File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

DRAFT COPY
March 19, 1997

Page: 7

6-20
6-20
6-21
6-21
6-22
6-22
6-23
6-24
6-25
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-32
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57

Figure 6-66:
Figure 6-67:
Figure 6-68:
Figure 6-69:
Figure 6-70:
Figure 6-71:
Figure 6-72:
Figure 6-73:
Figure 6-74:
Figure 6-75:
Figure 6-76:
Figure 6-77:
Figure 6-78:
Figure 6-79:
Figure 6-80:
Figure 6-81:
Figure 6-82:
Figure 6-83:
Figure 6-84:
Figure 6-85:
Figure 6-86:
Figure 6-87:
Figure 6-88:
Figure 6-89:
Figure 6-90:
Figure 6-91:
Figure 6-92:
Figure 6-93:
Figure 6-94:
Figure 6-95:
Figure 6-96:
Figure 6-97:
Figure 6-98:
Figure 6-99:

Figure 6-100:
Figure 6-101:
Figure 6-102:
Figure 6-103:
Figure 6-104:
Figure 6-105:
Figure 6-106:
Figure 6-107:
Figure 6-108:
Figure 6-109:
Figure 6-110:

Vi

<rpc. h>, Part 10 of 16
<rpc. h>, Part 11 of 16
<rpc. h>, Part 12 of 16
<rpc. h>, Part 13 of 16
<rpc. h>, Part 14 of 16
<rpc. h>, Part 15 of 16
<r pc. h>, Part 16 of 16
<rtpriocntl.h>*
<sear ch. h>

<sys/ sem h>

<setj np. h>

<sys/ shm h>

<si gnal . h>, Part 1 of 3
<si gnal . h>, Part 2 of 3
<si gnal . h>, Part 3 of 3

<sys/siginfo. h> Part1of5
<sys/ si gi nfo. h>, Part 2 of 5
<sys/ si gi nf 0. h>, Part 3 of 5
<sys/si gi nfo. h>, Part 4 of 5
<sys/siginfo.h>* Part 5 of 5

<sys/stat.h>, Part 1 of 2
<sys/ stat. h>, Part 2 of 2
<sys/statvfs. h>
<stdarg. h>

<st ddef . h>

<stdi 0. h>, Part 1 of 2
<stdi 0. h>, Part 2 of 2
<stdlib. h>

<stropts. h>, Part 1 of 6
<stropts. h> Part2 of 6
<stropts. h> Part30f6
<stropts. h> Part4of 6
<stropts. h> Part5of6
<stropts. h>, Part 6 of 6

<synch. h>* Part 1 of 3
<synch. h>* Part 2 of 3
<synch. h>* Part 3 of 3

<sys/ sysi 86. h>

<term os. h>, Part 1 of 10
<t erm os. h>, Part 2 of 10
<t erm os. h>, Part 3 of 10
<t erm os. h>, Part 4 of 10
<term os. h>, Part 5 of 10
<t erm os. h>, Part 6 of 10
<term os. h>, Part 7 of 10

DRAFT COPY
March 19, 1997

File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 8

6-58
6-59
6-60
6-60
6-61
6-62
6-63
6-63
6-64
6-65
6-66
6-66
6-67
6-68
6-69
6-69
6-70
6-71
6-72
6-72
6-73
6-74
6-75
6-76
6-76
6-77
6-78
6-79
6-80
6-81
6-82
6-83
6-84
6-85
6-86
6-87
6-88
6-88
6-89
6-90
6-91
6-92
6-93
6-94
6-95

Table of Contents

Figure 6-111:
Figure 6-112:
Figure 6-113:
Figure 6-114:
Figure 6-115:
Figure 6-116:
Figure 6-117:
Figure 6-118:
Figure 6-119:
Figure 6-120:
Figure 6-121:
Figure 6-122:
Figure 6-123:
Figure 6-124:
Figure 6-125:
Figure 6-126:
Figure 6-127:
Figure 6-128:
Figure 6-129:
Figure 6-130:
Figure 6-131:
Figure 6-132:
Figure 6-133:
Figure 6-134:
Figure 6-135:
Figure 6-136:
Figure 6-137:
Figure 6-138:
Figure 6-139:
Figure 6-140:
Figure 6-141:
Figure 6-142:
Figure 6-143:
Figure 6-144:
Figure 6-145:
Figure 6-146:
Figure 6-147:
Figure 6-148:
Figure 6-149:
Figure 6-150:
Figure 6-151:
Figure 6-152:
Figure 6-153:
Figure 6-154:
Figure 6-155:

<t erm os. h>, Part 8 of 10

<t erm os. h>, Part 9 of 10

<t erm os. h>, Part 10 of 10
<thread. h>* Part 1 of 2
<thread. h>* Part 2 of 2
<sys/ticlts. h>
<sys/ticots. h>
<sys/ticotsord. h>
<tinme.h>*

<sys/tine. h>

<sys/times. h>

<ti user. h>, Error Return Values
<ti user. h>, Event Bitmasks
<tiuser. h>, Flags

<tiuser. h>, Service Types

<ti user. h>, Values for flags field in t_info structure

<tiuser.
<tiuser.

h>, Transport Interface Data Structures, 1 of 2
h>, Transport Interface Data Structures, 2 of 2

<ti user. h>, Structure Types
<ti user. h>, Fields of Structures

<tiuser. h>, Transport Interface States

<ti user. h>, User-level Events
<tspriocntl.h>*
<sys/types. h>

<ucont ext . h>, Part 1 of 2
<ucont ext . h>, Part 2 of 2
<sys/ ui 0. h>

<ulimt.h>

<uni st d. h>, Part 1 of 2

<uni st d. h>, Part 2 of 2
<utine. h>

<sys/ ut snarre. h>

<wait.h>

<wchar . h>

wctype. h>* Part 1 of 3
<wctype. h>* Part 2 of 3
<wctype. h>* Part 3 of 3
<wor dexp. h>*

<X11/ At om h>, Part 1 of 3
<X11/ At om h>, Part 2 of 3
<X11/ At om h>, Part 3 of 3
<X11/ Conposi te. h>

<X11/ Constraint. h>

<X11/ Core. h>

<X11/ cursorfont. h>, Part 1 of 3

Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 9

6-96

6-97

6-98

6-99

6-100
6-100
6-101
6-101
6-102
6-103
6-104
6-105
6-106
6-106
6-107
6-107
6-108
6-109
6-110
6-110
6-111
6-112
6-113
6-114
6-115
6-116
6-117
6-117
6-117
6-119
6-119
6-120
6-121
6-122
6-123
6-124
6-125
6-126
6-128
6-129
6-130
6-131
6-131
6-131
6-132

vii

Figure 6-156:
Figure 6-157:
Figure 6-158:
Figure 6-159:
Figure 6-160:
Figure 6-161:
Figure 6-162:
Figure 6-163:
Figure 6-164:
Figure 6-165:
Figure 6-166:
Figure 6-167:
Figure 6-168:
Figure 6-169:
Figure 6-170:
Figure 6-171:
Figure 6-172:
Figure 6-173:
Figure 6-174:
Figure 6-175:
Figure 6-176:
Figure 6-177:
Figure 6-178:
Figure 6-179:
Figure 6-180:
Figure 6-181:
Figure 6-182:
Figure 6-183:
Figure 6-184:
Figure 6-185:
Figure 6-186:
Figure 6-187:
Figure 6-188:
Figure 6-189:
Figure 6-190:
Figure 6-191:
Figure 6-192:
Figure 6-193:
Figure 6-194:
Figure 6-195:
Figure 6-196:
Figure 6-197:
Figure 6-198:
Figure 6-199:
Figure 6-200:

viii

<X11/ cursorfont. h>, Part 2 of 3
<X11/ cur sorfont . h>, Part 3 of 3

<X11/Intri
<X11/Intri
<X11/1Intri
<X11/Intri
<X11/Intri
<X11/Intri

nsi c. h>, Part 1 of 6
nsi c. h>, Part 2 of 6
nsi c. h>, Part 3 of 6
nsi c. h>, Part 4 of 6
nsi c. h>, Part5 of 6
nsi c. h>, Part 6 of 6

<X11/ oj ect . h>
<X11/ Rect Qvj . h>
<X11/ ext ensi ons/ shape. h>*

<X11/ Shel |

. h>

<X11/ Vendor . h>

<X11/ X. h>,
<X11/ X h>,
<X11/ X. h>,
<X11/ X h>,
<X11/ X. h>,
<X11/ X. h>,
<X11/ X. h>,
<X11/ X h>,
<X11/ X. h>,
<X11/ X h>,
<X11/ X. h>,
<X11/ X. h>,
<X11/ Xcrs
<X11/ Xcrrs
<X11/ Xcrs
<X11/ Xcrs
<X11/ Xcmrs
<X11/ A'i b.
<X11/ X i b.
<X11/ Xi b.
<X11/ X i b.
<X11/ X 'i b.
<X11/ X i b.
<X11/ Xi b.
<X11/ X i b.
<X11/ X i b.
<X11/ X'i b.
<X11/ X i b.
<X11/ X i b.
<X11/ X i b.
<X11/ X i b.
<X11/ X i b.

Part 1 of 12
Part 2 of 12
Part 3 of 12
Part 4 of 12
Part 5 of 12
Part 6 of 12
Part 7 of 12
Part 8 of 12
Part 9 of 12
Part 10 of 12
Part 11 of 12
Part 12 of 12

.h> Part1of5
. h>, Part 2 of 5
. h>, Part 3 0of 5
. h>, Part 4 of 5
.h> Part5of 5

h>, Part 1 of 27
h>, Part 2 of 27
h>, Part 3 of 27
h>, Part 4 of 27
h>, Part 5 of 27
h>, Part 6 of 27
h>, Part 7 of 27
h>, Part 8 of 27
h>, Part 9 of 27
h>, Part 10 of 27
h>, Part 11 of 27
h>, Part 12 of 27
h>, Part 13 of 27
h>, Part 14 of 27
h>, Part 15 of 27

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 10

6-133
6-134
6-135
6-136
6-137
6-138
6-139
6-140
6-140
6-140
6-141
6-141
6-141
6-142
6-143
6-144
6-145
6-146
6-147
6-148
6-149
6-150
6-151
6-152
6-153
6-154
6-155
6-156
6-157
6-158
6-159
6-159
6-160
6-161
6-162
6-163
6-164
6-165
6-166
6-167
6-168
6-169
6-170
6-171
6-172

Table of Contents

Figure 6-201: <X11/ X i b. h>, Part 16 of 27 6-173
Figure 6-202: <X11/ X i b. h>, Part 17 of 27 6-174
Figure 6-203: <X11/ X i b. h>, Part 18 of 27 6-175
Figure 6-204: <X11/ X i b. h>, Part 19 of 27 6-176
Figure 6-205: <X11/ X i b. h>, Part 20 of 27 6-177
Figure 6-206: <X11/ X i b. h>, Part 21 of 27 6-178
Figure 6-207: <X11/ X i b. h>, Part 22 of 27 6-179
Figure 6-208: <X11/ X i b. h>, Part 23 of 27 6-180
Figure 6-209: <X11/ X i b. h>, Part 24 of 27 6-181
Figure 6-210: <X11/ X i b. h>, Part 25 of 27 6-182
Figure 6-211: <X11/ X i b. h>, Part 26 of 27 6-183
Figure 6-212: <X11/ X i b. h>, Part 27 of 27 6-184
Figure 6-213: <X11/ Xr esour ce. h>, Part 1 of 2 6-185
Figure 6-214: <X11/ Xr esour ce. h>, Part 2 of 2 6-186
Figure 6-215: <X11/ Xutil . h>, Part 1 of 5 6-187
Figure 6-216: <X11/ Xutil . h>, Part 2 of 5 6-188
Figure 6-217: <X11/ Xutil . h>, Part 3 of 5 6-189
Figure 6-218: <X11/ Xutil . h>, Part4 of 5 6-190
Figure 6-219: <X11/ Xutil.h>, Part5 of 5 6-191
Figure 6-220: <Xni Arr owB. h>* 6-193
Figure 6-221: <Xni Arr owBG h>* 6-193
Figure 6-222: <Xmi Bul | eti nB. h>* 6-193
Figure 6-223: <Xm CascadeB. h>* 6-193
Figure 6-224: <Xm CascadeBG h>* 6-194
Figure 6-225: <X Conmand. h>* 6-194
Figure 6-226: <Xm Qut Past e. h>* 6-195
Figure 6-227: <X D al 0gS. h>* 6-195
Figure 6-228: <Xm D spl ay. h>* 6-196
Figure 6-229: <Xm DragC. h>* Part 1 of 4 6-197
Figure 6-230: <Xm Dr agC. h>*, Part 2 of 4 6-198
Figure 6-231: <Xni Dr agC. h>*, Part 3 of 4 6-199
Figure 6-232: <Xni Dr agC. h>*, Part 4 of 4 6-200
Figure 6-233: <Xm Dr agl con. h>* 6-201
Figure 6-234: <Xmi Dr agOver S. h>* 6-201
Figure 6-235: <Xm Dr awi ngA. h>* 6-202
Figure 6-236: <Xni Dr awnB. h>* 6-202
Figure 6-237: <Xni Dr opSMyr . h>*, Part 1 of 2 6-203
Figure 6-238: <Xl DropSMyr . h>*, Part 2 of 2 6-204
Figure 6-239: <Xni Dr opTr ans. h>* 6-205
Figure 6-240: <Xm Fi | eSB. h>* 6-205
Figure 6-241: <Xni For m h>* 6-205
Figure 6-242: <Xni Fr ane. h>* 6-206
Figure 6-243: <Xni Label . h>* 6-206
Figure 6-244: <Xni Label G h>* 6-206
Figure 6-245: <Xm Li st. h>* 6-207
Table of Contents iX

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 11

Figure 6-246:
Figure 6-247:
Figure 6-248:
Figure 6-249:
Figure 6-250:
Figure 6-251:
Figure 6-252:
Figure 6-253:
Figure 6-254:
Figure 6-255:
Figure 6-256:
Figure 6-257:
Figure 6-258:
Figure 6-259:
Figure 6-260:
Figure 6-261:
Figure 6-262:
Figure 6-263:
Figure 6-264:
Figure 6-265:
Figure 6-266:
Figure 6-267:
Figure 6-268:
Figure 6-269:
Figure 6-270:
Figure 6-271:
Figure 6-272:
Figure 6-273:
Figure 6-274:
Figure 6-275:
Figure 6-276:
Figure 6-277:
Figure 6-278:
Figure 6-279:
Figure 6-280:
Figure 6-281:
Figure 6-282:
Figure 6-283:
Figure 6-284:
Figure 6-285:
Figure 6-286:
Figure 6-287:
Figure 6-288:
Figure 6-289:
Figure 6-290:

<Xr Mai nNW h>*

<X MenuShel | . h>*

<Xn MessageB. h>*

<M i M nPubl i c. h>* Part 1 of 3
<M m M nPubl i c. h>*, Part 2 of 3
<M i M nPubl i c. h>* Part 3 of 3
<Xl Mk i | . h>*, Part 1 of 3
<Xrmd Mk i | . h>* Part 2 of 3
<Xmi Mmmiki | . h>* Part 3 of 3
<Xni PanedW h>*

<Xm PushB. h>*

<Xm PushBG h>*

<X RepType. h>*

<X RowCol umm. h>*

<Xni Scal e. h>*

<Xmi Scr een. h>*

<Xni Scrol | Bar. h>*

<Xl Scr ol | edW h>*

<Xni Sel ect i oB. h>*

<Xni Separ at 0G h>*

<Xl Separ at or . h>*

<Xni Text . h>*

<Xml Text F. h>*

<Xn Toggl eB. h>*

<Xmi Toggl eBG h>*

<Xni Vendor S. h>*

<Xm Vi rt Keys. h>*, Part 1 of 2
<Xn Vi rt Keys. h>*, Part 2 of 2
<Xnml Xm h>*, Part 1 of 14

<Xl Xm h>*, Part 2 of 14

<X Xm h>*, Part 3 of 14

<Xml Xm h>*, Part 4 of 14

<Xm Xm h>*, Part 5 of 15

<X Xm h>*, Part 6 of 14

<Xml Xm h>*, Part 7 of 14

<Xl Xm h>*, Part 8 of 14

<X Xm h>* Part 9 of 14

<Xm Xm h>*, Part 10 of 14

<Xml Xm h>*, Part 11 of 14

<Xl Xm h>*, Part 12 of 14

<Xm Xm h>*, Part 13 of 14

<Xml Xm h>*, Part 14 of 14

<X Xnst r Def s. h>*, Part 1 of 34
<Xmi Xn$t r Def s. h>*, Part 2 of 34
<Xml Xn$t r Def s. h>*, Part 3 of 34

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 12

6-207
6-207
6-208
6-209
6-210
6-211
6-212
6-213
6-214
6-214
6-215
6-215
6-215
6-216
6-216
6-216
6-216
6-217
6-217
6-217
6-217
6-218
6-218
6-218
6-218
6-219
6-219
6-220
6-221
6-222
6-223
6-224
6-225
6-226
6-227
6-228
6-229
6-230
6-231
6-232
6-233
6-234
6-235
6-236
6-237

Table of Contents

Figure 6-291: <Xm Xn&t r Def s. h>*, Part 4 of 34 6-238
Figure 6-292: <Xml Xn&t r Def s. h>*, Part 5 of 34 6-239
Figure 6-293: <Xni Xntt r Def s. h>*, Part 6 of 34 6-240
Figure 6-294: <Xni Xn&t r Def s. h>*, Part 7 of 34 6-241
Figure 6-295: <Xml Xn&t r Def s. h>*, Part 8 of 34 6-242
Figure 6-296: <Xm Xngt r Def s. h>*, Part 9 of 34 6-243
Figure 6-297: <Xm Xngt r Def s. h>*, Part 10 of 34 6-244
Figure 6-298: <Xl Xn&t r Def s. h>*, Part 11 of 34 6-245
Figure 6-299: <Xl Xn&t r Def s. h>*, Part 12 of 34 6-246
Figure 6-300: <Xmi Xnst r Def s. h>*, Part 13 of 34 6-247
Figure 6-301: <Xm Xn&t r Def s. h>*, Part 14 of 34 6-248
Figure 6-302: <X Xn&t r Def s. h>*, Part 15 of 34 6-249
Figure 6-303: <X Xt r Def s. h>*, Part 16 of 34 6-250
Figure 6-304: <Xni XnBtr Def s. h>*, Part 17 of 34 6-251
Figure 6-305: <Xni Xn&t r Def s. h>*, Part 18 of 34 6-252
Figure 6-306: <Xl Xn&t r Def s. h>*, Part 19 of 34 6-253
Figure 6-307: <Xm Xn8t r Def s. h>*, Part 20 of 34 6-254
Figure 6-308: <Xm Xnstr Def s. h>*, Part 21 of 34 6-255
Figure 6-309: <Xmi Xn$t r Def s. h>*, Part 22 of 34 6-256
Figure 6-310: <Xl Xn&t r Def s. h>*, Part 23 of 34 6-257
Figure 6-311: <Xml Xn8t r Def s. h>*, Part 24 of 34 6-258
Figure 6-312: <Xm Xn&t r Def s. h>*, Part 25 of 34 6-259
Figure 6-313: <Xl Xn&t r Def s. h>*, Part 26 of 34 6-260
Figure 6-314: <Xl Xn&t r Def s. h>*, Part 27 of 34 6-261
Figure 6-315: <X Xn&t r Def s. h>*, Part 28 of 34 6-262
Figure 6-316: <Xmi XnBt r Def s. h>*, Part 29 of 34 6-263
Figure 6-317: <Xmi Xn&t r Def s. h>*, Part 30 of 34 6-264
Figure 6-318: <Xm Xn8t r Def s. h>*, Part 31 of 34 6-265
Figure 6-319: <Xm Xnst r Def s. h>*, Part 32 of 34 6-266
Figure 6-320: <Xm Xn&t r Def s. h>*, Part 33 of 34 6-267
Figure 6-321: <Xl Xn&t r Def s. h>*, Part 34 of 34 6-268
Figure 6-322: <netinet/in. h> 6-270
Figure 6-323: <netinet/ip. h> 6-271
Figure 6-324: <netinet/tcp. h> 6-271
Table of Contents Xi

DRAFT COPY
March 19, 1997
File: abi_386/MasterToc (Delta 44.6)
386:adm.book:sum

Page: 13

1 INTRODUCTION

The Intel386 Architecture and the System V
ABI 1-1

How to Use the Intel386 Architecture ABI

Supplement 1-2
Evolution of the ABI Specification 1-2

Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/Cchapl (Delta 44.3)
386:adm.book:sum

Page: 14

The Intel386 Architecture and the System V ABI

The System V Application Binary Interface, or ABI, defines a system interface for
compiled application programs. Its purpose is to establish a standard binary
interface for application programs on systems that implement the interfaces
defined in the System V Interface Definition, Edition 4. This includes systems that
have implemented UnixWare[] 2.0.

This document is a supplement to the generic System V ABI, and it contains infor-
mation specific to System V implementations built on the Intel386 processor archi-
tecture. Together, these two specifications, the generic System V ABI and the
Intel386 Architecture System V ABI Supplement (hereafter referred to as the Intel386
ABI), constitute a complete System V Application Binary Interface specification for
systems that implement the processor architecture of the Intel386 microprocessors.

Note that, because the Intel486 and Pentium processor are compatible members of
the Intel386 architecture, this Intel386 ABI also applies to any system built with the
Intel486 or the Pentium processor chips.

The Intel386 Architecture and the System V ABI 1-1

DRAFT COPY
March 19, 1997
File: abi_386/chapl (Delta 44.5)
386:adm.book:sum

Page: 15

<L

How to Use the Intel386 Architecture ABI
Supplement

This document is a supplement to the generic System V ABI and contains informa-
tion referenced in the generic specification that may differ when System V is
implemented on different processors. Therefore, the generic ABI is the prime
reference document, and this supplement is provided to fill gaps in that
specification.

As with the System V ABI, this specification references other publicly-available
reference documents, especially the Intel 80386 Programmer’s Reference Manual. All
the information referenced by this supplement should be considered part of this
specification, and just as binding as the requirements and data explicitly included
here.

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address new
technology and market requirements, and will be reissued at intervals of approxi-
mately three years. Each new edition of the specification is likely to contain exten-
sions and additions that will increase the potential capabilities of applications that
are written to conform to the ABI.

As with the System V Interface Definition, the ABI will implement Level 1 and
Level 2 support for its constituent parts. Level 1 supportindicates that a portion
of the specification will continue to be supported indefinitely, while Level 2 sup-
port means that a portion of the specification may be withdrawn or altered after
the next edition of the ABI is made available. That is, a portion of the specification
moved to Level 2 support in an edition of the ABI specification will remain in
effect at least until the following edition of the specification is published.

These Level 1 and Level 2 classifications and qualifications apply to this Supple-
ment, as well as to the generic specification. All components of the ABI and of this
supplement have Level 1 support unless they are explicitly labelled as Level 2.

The following documents may be of interest to the reader of this specification:

m 486 MICROPROCESSOR Programmer’s Reference Manual (Intel Literature
order number 240486)

1-2 INTRODUCTION

DRAFT COPY
March 19, 1997
File: abi_386/chapl (Delta 44.5)
386:adm.book:sum

Page: 16

NOTE

80386 Programmer’s Reference Manual (Intel Literature order number 230985)

80387 Programmer’s Reference Manual (Intel Literature order number 231917)

UnixWare[d 2.0 Command Reference (a-1)

UnixWare[1 2.0 Command Reference (m-z)

UnixWare[1 2.0 Operating System API Reference: System Calls
UnixWare[1 2.0 Operating System API Reference: Library Functions
UnixWare[d 2.0 System Administration: Volumes | and 11

System V Interface Definition, Edition 4

Diffmarkings have been retained in the text of this book to indicate in which
revisions of System V certain modifications were made to the ABI.

A "G" character in the right hand margin indicates a change in the ABI made
in UNIX System V Release 4.2.

A "M" character in the right hand margin indicates a change in the ABI made
in UnixWare(2.0.

How to Use the Intel386 Architecture ABI Supplement

DRAFT COPY
March 19, 1997
File: abi_386/chapl (Delta 44.5)
386:adm.book:sum

Page: 17

2 SOFTWARE INSTALLATION

Software Distribution Formats
Physical Distribution Media
File System Formats

m s5 File System

m UFS File System

Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/Cchap2 (Delta 44.3)
386:adm.book:sum

Page: 18

2-1
2-1
2-1
2-1
2-3

Software Distribution Formats

Physical Distribution Media

Approved media for physical distribution of ABI-conforming software are listed

below. Inclusion of a particular medium on this list does not require an ABI-
conforming system to accept that medium. For example, a conforming system
may install all software through its network connection and accept none of the
listed media.

m 1.44MB 3 1/2" floppy disk: quad-density, double-sided, 80 tracks/side, 18

sectors/track, 512 bytes/sector.

m 1.2MB 5 1/4" floppy disk: quad-density, double-sided, 80 tracks/side, 15
sectors/track, 512 bytes/sector.

m 360KB 5 1/4" floppy disk: double-density, double-sided, 40 tracks/side, 9

sectors/track, 512 bytes/sector.
m 60 MB quarter-inch cartridge tape in QIC-24 format.
m CD-ROM optical disks.
m 150 MB quarter-inch tape.

The use of 360KB 5 1/4" floppy disk, and 60 MB quarter inch cartridge tape
as media for application distribution is moved to Level 2 as of January 1,
1993.

File System Formats

G

Every file system storage volume must conform to a supported format. Two for-

mats are supported: s5 and ufs.

s5 File System

The first physical block on the medium should be empty, and the second contains
the device’s superblock. The third contains an inode list, and remaining blocks on

the device contain data. The superblock has the following format:

Software Distribution Formats

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 19

2-1

f

#def i ne
#def i ne

IS
#defi ne

#defi ne
#def i ne
#defi ne

#defi ne
#def i ne
#def i ne
#def i ne

struct filsys {

N CFREE 50

N G NCD 100
u_short s_isize;
daddr _t s_fsize;
short s_nfree;
daddr _t s_free[N CFREE] ;
short S_ni node;
ushort _t s_inode[N AN ;
char s_fl ock;
char s_il ock;
char s_fnod;
char s_ronly;
time_t s_time;
short s_dinfo[4];
daddr_t s_tfree;
ushort _t s_tinode;
char s_fname[6] ;
char s_f pack] 6] ;
| ong s_fill[12];
| ong s_state;
| ong S_magi C;
| ong s_type;

FsMAQ C 0xf d187e20

Fslb 1

Fs2b 2

Fs4b 3

FsCKAY 0x7c269d38

FSACTIVE 0x5e72d8la

FsBAD 0xcb096f 43

FsBADBLK Oxbadbcl14b

N

)

s_type indicates the file system type. Currently, three types of file systems are sup-
ported: the original 512-byte logical block, the 1024-byte logical block, and the
2048-byte logical block. s_magic is used to distinguish the original 512-byte
oriented file systems from the newer file systems. If this field is not equal to the
magic number, f SMAQ C, the type is assumed to be f s1b, otherwise the s_type

field is used.

s_state indicates the state of the file system. A cleanly unmounted, undamaged file
system is indicated by the FSCKAY state. After a file system has been mounted for
update, the state changes to FSACTI VE.

2-2

SOFTWARE INSTALLATION

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 20

s_isize is the address of the first data block after the i-list; the i-list starts just after
the super-block, namely in block 2; thus the i-list is s_isize-2 blocks long.

s_fsize is the first block not potentially available for allocation to a file.

The free list for each volume is maintained as follows. The s_free array contains up
to 49 numbers of free blocks. s_free[0] is the block number of the head of a chain of
blocks constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the chain.

s_tfree is the total free blocks available in the file system.
s_ninode is the number of free i-numbers in the s_inode array.
s_tinode is the total free i-nodes available in the file system.

s_flock and s_ilock are flags maintained in the core copy of the file system. s_fmod is
a flag that indicates that the super-block has changed and should be copied to the
disk during the next periodic update of file system information.

s_ronly is a read-only flag to indicate write-protection.

s_time is the last time the super-block of the file system was changed, and is the
number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).

s_fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-node 1 is
reserved for future use. I-node 2 is reserved for the root directory of the file sys-
tem, but no other i-number has a built-in meaning. Each i-node represents one
file.

UFS File System

In the UFS file system, the first physical block on the device should be empty, and
the second contains the superblock for the file system. Remaining blocks contain
data.

The ufs superblock contains an fs data structure. This structure, and other relevant
data objects are defined below.

Software Distribution Formats 2-3

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 21

s N

struct csum{
| ong cs_ndir;
| ong cs_nbfree;
| ong cs_nifree;
| ong cs_nffree;
H
struct fs {
struct fs *fs_link;
struct fs *fs_rlink;
daddr _t fs_sbl kno;
daddr _t fs_cbl kno;
daddr _t fs_i bl kno;
daddr _t fs_dbl kno;
1 ong fs_cgoffset;
l ong fs_cgnmask;
time_t fs_tineg;
I ong fs_size;
| ong fs_dsi ze;
| ong fs_ncg;
| ong fs_bsi ze;
| ong fs_fsize;
| ong fs_frag;
| ong fs_mnfree;
| ong fs_rotdel ay;
| ong fs_rps;
| ong fs_bmask;
I ong fs_fmask;
| ong fs_bshift;
l ong fs_fshift;
1 ong fs_maxconti g;
I ong f s_maxbpg;
1 ong fs_fragshift;
I ong fs_f sbt odb;
| ong fs_sbsi ze;
|l ong fs_csnask;
| ong fs_csshift;
| ong fs_nindir;
| ong fs_i nopb;
| ong fs_nspf;
| ong fs_optim
| ong fs_state;
| ong fs_sparecon[2] ;
I ong fs_id2];
daddr _t fs_csaddr;
l ong fs_cssi ze;
l ong fs_cgsi ze;
| ong fs_ntrak;
1 ong fs_nsect;
| ong fs_spc;
I ong fs_ncyl;

;N)

(continued on next page)

2-4 SOFTWARE INSTALLATION

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 22

b

b

#def i ne
#def i ne
#def i ne
#defi ne
#def i ne
#defi ne
#def i ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

o

| ong

I ong

| ong
struct
char
char
char
char
char

| ong
struct
| ong
short

l ong
u_char

csum

csum

struct cg {

struct cg
struct cg
time_t
|l ong
short
short

| ong
struct
| ong

| ong

| ong

| ong

I ong
short
char

I ong
u_char

csum

FS MA@ C

BBS ZE

SBS| ZE
BBLOK
SBLOK
UFSROOTI NO
LCSTFOUNDI NO

MAXI PG

M NBSI ZE
NAXCPG
NAXMNTLEN
MAXCSBUFS
FS CPTTI ME

fs_cpg;

fs_i pg;

fs_fpg;

fs_cstotal;

fs_f mod;

fs_cl ean;

fs_ronly;

fs_flags;

fs_fsmt [MAXWNTLEN ;
fs_cgrotor;

*fs_csp[MAXCSBUFS] ;
fs_cpc;

fs_post bl [MAXCPG [NRPCE] ;
fs_magi c;
fs_rothl[1];

*cg_link;

*cg_rlink;

cg_time;

cg_cgx;

cg_ncyl ;

cg_ni bl k;

cg_ndbl k;

cg_cs;

cg_rotor;

cg_frotor;

cg irotor;

cg_frsunf MAXFRAG ;
cg_bt ot [MAXCPG ;
cg_b[MAXCPG [NRPCH] ;
cg_i used[MAXI PG NBBY] ;
cg_nagi C;
cg_free[1];

0x011954

8192

8192
((daddr_t)(0))
((daddr _t) (BBLOCK + BBSI ZE / DEV_BSI ZE))
((ino_t)2)
(UFSRQOTI NO + 1)
8

2048

4096

32

512

32

0

)

Software Distribution Formats

(continued on next page)

2-5

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 23

#def i ne FS_CPTSPACE 1
#def i ne MAXBPC (SBSI ZE - sizeof (struct fs))
#define OG MAA C 0x090255

W The distribution of software in filesystem format is Level 2 as of January 1, G
1993.

2-6 SOFTWARE INSTALLATION

DRAFT COPY
March 19, 1997
File: abi_386/chap2 (Delta 44.3)
386:adm.book:sum

Page: 24

3 LOW-LEVEL SYSTEM
INFORMATION

Machine Interface 3-1
Processor Architecture 3-1
Data Representation 3-1
m Fundamental Types 3-2
m Aggregates and Unions 3-3
m Bit-Fields 3-6
Function Calling Sequence 3-9
Registers and the Stack Frame 3-9
Functions Returning Scalars or No Value 3-12
Functions Returning Structures or Unions 3-14
Integral and Pointer Arguments 3-17
Floating-Point Arguments 3-17
Structure and Union Arguments 3-18
Operating System Interface 3-20
Virtual Address Space 3-20
m Page Size 3-20
m Virtual Address Assignments 3-20
m Managing the Process Stack 3-22
m Coding Guidelines 3-23
Processor Execution Modes 3-24
Exception Interface 3-24
m Hardware Exception Types 3-24
m Software Trap Types 3-25
Process Initialization 3-26
m Special Registers 3-26
m Process Stack and Registers 3-28

Table of Contents i

DRAFT COPY
March 19, 1997
File: abi_386/Cchap3 (Delta 44.4)
386:adm.book:sum

Page: 25

Coding Examples 3-34

Code Model Overview 3-35
Position-Independent Function Prologue 3-36
Data Objects 3-37
Function Calls 3-39
Branching 3-41
C Stack Frame 3-43
Variable Argument List 3-44
Allocating Stack Space Dynamically 3-44

i Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/Cchap3 (Delta 44.4)
386:adm.book:sum

Page: 26

Machine Interface

Processor Architecture

The Intel 80386 Programmer’s Reference Manual (Intel Literature order number
230985) and the Intel 80387 Programmer’s Reference Manual (Intel Literature order
number 231917) together define the processor architecture. The architecture of the
combined Intel386/Intel 387 processors is hereafter referred to as the Intel386
architecture. Programs intended to execute directly on the processor use the
instruction set, instruction encodings, and instruction semantics of the architec-
ture. Three points deserve explicit mention.

m A program may assume all documented instructions exist.
m A program may assume all documented instructions work.
m A program may use only the instructions defined by the architecture.

In other words, from a program’s perspective, the execution environment provides a
complete and working implementation of the Intel386 architecture.

This does not imply that the underlying implementation provides all instructions
in hardware, only that the instructions perform the specified operations and pro-
duce the specified results. The ABI neither places performance constraints on sys-
tems nor specifies what instructions must be implemented in hardware. A
software emulation of the architecture could conform to the ABI.

Some processors might support the Intel386 architecture as a subset, providing
additional instructions or capabilities. Programs that use those capabilities expli-
citly do not conform to the Intel386 ABI. Executing those programs on machines
without the additional capabilities gives undefined behavior.

Data Representation

Within this specification, the term halfword refers to a 16-bit object, the term word
refers to a 32-bit object, and the term doubleword refers to a 64-bit object.

Machine Interface 3-1

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 27

Fundamental Types

Figure 3-1 shows the correspondence between ANSI C’s scalar types and the

processor’s.

Figure 3-1: Scalar Types

Alignment Intel386
Type C si zeof (bytes) Architecture

Uchar g 1 g 1 0. db

Esi gned char E E Eagne yte

Eunsi gned char 5 1 E 1 Eunsigned byte

Ushort 4 [} g

0. d short o 2 o 2 Osigned halfword

5Si gned shor 0 0 0

qunsi gned short g 2 o 2 unsigned halfword
Integral Oi nt [0 O

Usi gned int O O O

O O O .

0l ong o 4 o 4 nsigned word

si gned | ong 0 0 0

Oenum g g a

O e ; O O O

unsi gned int o 4 0 4 Ounsigned word
qunsigned long [O 0
. Cany-type * g g o .

Pointer Dany-type (*)() U 4 0 4 Eunagned word

Hfl oat H 4 H 4 Hsingle-precision (IEEE)
Floating-point Odoubl e 0 8 0 4 Odouble-precision (IEEE)

HI ong doubl e H 12 H 4 Hextended-precision (IEEE)

NOTE

3-2

The Intel386 architecture does not require doubleword alignment for double-
precision values. Nevertheless, for data structure compatibility with other Intel
architectures, compilers may provide a method to align double-precision
values on doubleword boundaries.

LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 28

A compiler that provides the doubleword alignment mentioned above can
generate code (data structures and function calling sequences) that do not
conform to the Intel386 ABI. Programs built with the doubleword alignment
facility can thus violate conformance to the Intel386 ABI. See “Aggregates
and Unions” below and “Function Calling Sequence” later in this chapter
for more information.

A null pointer (for all types) has the value zero.

The Intel386 architecture does not require all data access to be properly aligned.
For example, double-precision values occupy 1 doubleword (8-bytes), and their
natural alignment is a word boundary, meaning their addresses are multiples of 4.
Compilers should allocate independent data objects with the proper alignment;
examples include global arrays of double-precision variables, FORTRAN COVWON
blocks, and unconstrained stack objects. However, some language facilities (such
as FORTRAN EQU VALENCE statements) may create objects with only byte align-
ment. Consequently, arbitrary data accesses, such as pointers dereference or refer-
ence arguments, might or might not be properly aligned. Accessing misaligned
data will be slower than accessing properly aligned data, but otherwise there is no
difference.

Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned component. The size of any object, including aggregates and
unions, is always a multiple of the object’s alignment. An array uses the same
alignment as its elements. Structure and union objects can require padding to
meet size and alignment constraints. The contents of any padding is undefined.

m An entire structure or union object is aligned on the same boundary as its
most strictly aligned member.

m Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

m A structure’s size is increased, if necessary, to make it a multiple of the
alignment. This may require tail padding, depending on the last member.

Machine Interface 3-3

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 29

NOTE | padding.

ABI conformant code may not read or modify anything marked reserved or M

In the following examples, members’ byte offsets appear in the upper right

corners.

Figure 3-2: Structure Smaller Than a Word

struct {
char

|

C,

Byte aligned, si zeof is 1
0
c

Figure 3-3: No Padding

struct {
char
char
short
| ong
b

Seao

Word aligned, si zeof is 8

2 1 0
S d c

Figure 3-4: Internal Padding

struct {
char
short
b

C,
S,

Halfword aligned, si zeof is4

2 1 0
S pad c

LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997

File: abi_386/chap3 (Delta 44.6)

386:adm.book:sum

Page: 30

Figure 3-5: Internal and Tail Padding

struct { Word aligned, si zeof is 16
char ¢; 1 0
doubl e pad ¢
short s; d ¢
d 8
pad 14 s 12

NOTE

The Intel386 architecture does not require doubleword alignment for double-
precision values. Nevertheless, for data structure compatibility with other Intel
architectures, compilers may provide a method to align double-precision
values on doubleword boundaries.

word alignment facility would not conform to the Intel386 ABI, and they

A compiler that provides the doubleword alignment mentioned above would
arrange the preceding structure differently. Programs built with the double-

would not be data-compatible with conforming Intel386 programs.

Figure 3-6: uni on Allocation

uni on { Word aligned, si zeof is4
char c; 1 0
! ad c
short s; P
int i pad ’ s ’
. 0
J
Machine Interface 3-5
DRAFT COPY

March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 31

Bit-Fields

C struct and uni on definitions may have bit-fields, which define integral objects
with a specified number of bits.

Figure 3-7: Bit-Field Ranges

Bit-field Type Width w Range
si gned char U U-2w-lto2w-1-1
char U1t08 EO to2" -1
unsigned char n0to2" -1
si gned short 0 0-2""1to2" 1-1
short Ulto16 Hoto2" -1
unsi gned short - EO to2" -1
si gned i nt 0 0-2""lto2¥ 1-1
i nt O 00to2% -1
enum 01032 Ootoow-1
unsi gned i nt E EO to2" -1
si gned | ong 0 O-2%"1lto2v-1-1
| ong 0l1to32 O0to2% -1
unsigned long H Hoto2% -1

“Plain” bit-fields (that is, those neither si gned nor unsi gned) always have non-
negative values. Although they may have type char , short ,int, orl ong (which
can have negative values), these bit-fields have the same range as a bit-field of the
same size with the corresponding unsi gned type. Bit-fields obey the same size
and alignment rules as other structure and union members, with the following
additions:

m Bit-fields are allocated from right to left (least to most significant).

m A bit-field must entirely reside in a storage unit appropriate for its declared
type. Thus a bit-field never crosses its unit boundary.

m Bit-fields may share a storage unit with other st r uct / uni on members,
including members that are not bit-fields. Of course, st ruct members
occupy different parts of the storage unit.

m Unnamed bit-fields’ types do not affect the alignment of a structure or
union, although individual bit-fields’ member offsets obey the alignment
constraints.

3-6 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 32

The following examples show st ruct and uni on members’ byte offsets in the
upper right corners; bit numbers appear in the lower corners.

Figure 3-8: Bit Numbering

0x01020304 o0] 02 Y 03 | o4
31 24(23 16/15 8|7
Figure 3-9: Right-to-Left Allocation

struct { Word aligned, si zeof is4

i nt j:5;
! ad m k

i nt k: 6; 31 P 1817 11/10
i nt m7;

1

Figure 3-10: Boundary Alignment

struct { Word aligned, si zeof is 12
_short _s: 9; c 3 pad j
I nt 119 23 1817 98
char ¢; pad u pad
Short t9, 15 9|8 0[15 9|8

9

short u:9; pad
char d;

1

Machine Interface 3-7
DRAFT COPY

File:

March 19, 1997
abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 33

Figure 3-11: Storage Unit Sharing

struct { Halfword aligned, si zeof is 2
char C; s 1 c 0
short s:8; 15 8

b

Figure 3-12: uni on Allocation

uni on { Halfword aligned, si zeof is 2
char C; 1 0
' d
short s:8; pa ¢
b pad s
15 8|7 0

Figure 3-13: Unnamed Bit-Fields

struct { Byte aligned, si zeof is9
char C; 0 ! 0
i nt 1 0; '
char d; pad 9 ‘| pad d
short :9; 15 ol 0
char e; e
char :0;

As the examples show, i nt bit-fields (including si gned and unsi gned) pack
more densely than smaller base types. One can use char and short bit-fields to
force particular alignments, buti nt is generally more efficient.

3-8 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 34

Function Calling Sequence

This section discusses the standard function calling sequence, including stack
frame layout, register usage, parameter passing, and so on. The system libraries
described in Chapter 6 require this calling sequence.

NOTE

NOTE

The standard calling sequence requirements apply only to global functions.
Local functions that are not reachable from other compilation units may use
different conventions. Nonetheless, it is recommended that all functions use
the standard calling sequence when possible.

C programs follow the conventions given here. For specific information on the
implementation of C, see “Coding Examples” in this chapter.

Registers and the Stack Frame

The Intel386 architecture provides a number of registers. All the integer registers
and all the floating-point registers are global to all procedures in a running pro-

gram.

Brief register descriptions appear in Figure 3-14 more complete information
appears later.

Function Calling Sequence 3-9

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 35

Figure 3-14: Processor Registers

Type Name Usage

Uogax UReturn value
B%edx Upbividend register (divide operations)
vecx rCount register (shift and string operations)

%bx Local register variable

General O0%bp OStack frame pointer (optional)
Uoesi ULocal register variable
%edi Ul ocal register variable

n%esp Stack pointer

0%t (0) Ofloating-point stack top, return value
B%;t (1) Bfloating-point next to stack top

Floating-point
E%;t (7) Efloating-point stack bottom

In addition to registers, each function has a frame on the run-time stack. This
stack grows downward from high addresses. Figure 3-15 shows the stack frame
organization.

Figure 3-15: Standard Stack Frame

Position Contents Frame
4n+8(%bp) U argument word n g High addresses
O . Uprevious
O O
8(%bp) 5 argumentword 0 0
4(%bp) O return address O
0(Yebp) ﬁprevious %bp (optional) E
-4(%bp) unspecified pCurrent
O e O
0(%sp) H variable size H Low addresses

Several key points about the stack frame deserve mention.

m The stack is word aligned. Although the architecture does not require any
alignment of the stack, software convention and the operating system
requires that the stack be aligned on a word boundary.

3-10 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 36

G
G

m Argument words are pushed onto the stack in reverse order (that is, the
rightmost argument in C call syntax has the highest address), preserving the
stack’s word alignment. All incoming arguments appear on the stack, resid-
ing in the stack frame of the caller.

m An argument’s size is increased, if necessary, to make it a multiple of words.
This may require tail padding, depending on the size of the argument.

m Other areas depend on the compiler and the code being compiled. The stan-
dard calling sequence does not define a maximum stack frame size, nor does
it restrict how a language system uses the ““‘unspecified’” area of the stan-
dard stack frame.

All registers on the Intel386 are global and thus visible to both a calling and a
called function. Registers %ebp, %ebx, Yedi , %esi , and %esp “‘belong” to the cal-
ling function. In other words, a called function must preserve these registers’
values for its caller. Remaining registers ‘““belong’’ to the called function. If a cal-
ling function wants to preserve such a register value across a function call, it must
save the value in its local stack frame.

Some registers have assigned roles in the standard calling sequence:

%esp

%bp

Yeax

%bx

%si and %edi

The stack pointer holds the limit of the current stack frame, which
is the address of the stack’s bottom-most, valid word. At all
times, the stack pointer should point to a word-aligned area.

The frame pointer optionally holds a base address for the current
stack frame. Consequently, a function has registers pointing to
both ends of its frame. Incoming arguments reside in the previ-
ous frame, referenced as positive offsets from %bp, while local
variables reside in the current frame, referenced as negative
offsets from %&bp. A function must preserve this register’s value
for its caller.

Integral and pointer return values appear in %eax. A function that
returns a st ruct or uni on value places the address of the result
in %eax. Otherwise this is a scratch register.

As described below, this register serves as the global offset table
base register for position-independent code. For absolute code,
%bx serves as a local register and has no specified role in the
function calling sequence. In either case, a function must
preserve the register value for the caller.

These local registers have no specified role in the function calling
sequence. A function must preserve their values for the caller.

Function Calling Sequence 3-11

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 37

%ecx and Y%edx Scratch registers have no specified role in the standard calling
sequence. Functions do not have to preserve their values for the
caller.

%t (0) Floating-point return values appear on the top of the floating-
point register stack; there is no difference in the representation
of single- or double-precision values in floating-point registers.
If the function does not return a floating-point value, then this
register must be empty. This register must be empty before
entry to a function.

%t (1) through %t (7)
Floating-point scratch registers have no specified role in the stan-
dard calling sequence. These registers must be empty before
entry and upon exit from a function.

EFLAGS The flags register contains the system flags, such as the direction
flag and the carry flag. The direction flag must be set to the
“forward” (that is, zero) direction before entry and upon exit
from a function. Other user flags have no specified role in the
standard calling sequence and are not preserved.

Floating-Point Control Word
The Intel387 control word contains the floating-point flags, such
as the rounding mode and exception masking.

Signals can interrupt processes [see si gnal (BA_0OS)]. Functions called during sig-
nal handling have no unusual restrictions on their use of registers. Moreover, if a
signal handling function returns, the process resumes its original execution path
with registers restored to their original values. Thus, programs and compilers
may freely use all registers without the danger of signal handlers changing their
values.

Functions Returning Scalars or No Value

A function that returns an integral or pointer value places its result in register
Yeax.

A floating-point return value appears on the top of the Intel387 register stack. The
caller then must remove the value from the Intel387 stack, even if it doesn’t use the
value. Failure of either side to meet its obligations leads to undefined program
behavior. The standard calling sequence does not include any method to detect
such failures nor to detect return value type mismatches. Therefore the user must
declare all functions properly. There is no difference in the representation of

3-12 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 38

single-, double- or extended-precision values in floating-point registers.

Functions that return no value (also called procedures or voi d functions) put no
particular value in any register.

A cal | instruction pushes the address of the next instruction (the return address)
onto the stack. Ther et instruction pops the address off the stack and effectively
continues execution at the next instruction after the cal | instruction. A function
that returns a scalar or no value must preserve the caller’s registers as described
earlier. Additionally, the called function must remove the return address from the
stack, leaving the stack pointer (%esp) with the value it had before the cal |
instruction was executed.

To illustrate, the following function prologue allocates 80 bytes of local stack space
and saves the local registers %ebx, %esi , and %edi .

Figure 3-16: Function Prologue

prologue:
pushl %bp / save frame pointer
movl %sp, %bp [/ set new frame pointer
subl $80, Yesp / allocate stack space
pushl %edi | save | ocal register
pushl %esi | save | ocal register
pushl %bx | save | ocal register

An epilogue for the example that restores the state for the caller. This example
returns the value in %edi by moving it to %eax.

Function Calling Sequence 3-13

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 39

Figure 3-17: Function Epilogue

nmovl %di, %ax / set up return val ue

epilogue:
popl %bx | restore local register
popl %esi | restore local register
popl %di | restore local register
| eave | restore frame pointer
ret / pop return address

Although some functions can be optimized to eliminate the save and restore
NnoTe | of the frame pointer, the general case uses the standard prologue and epilo-
gue.

Sections below describe where arguments appear on the stack. The examples are
written as if the function prologue described above had been used.

Position-independent code uses the %&bx register to hold the address of the global
offset table. If a function needs the global offset table’s address, either directly or
indirectly, it is responsible for computing the value. See “*Coding Examples’ later
in this chapter and ““Dynamic Linking” in Chapter 5 for more information.

Functions Returning Structures or Unions

If a function returns a structure or union, then the caller provides space for the
return value and places its address on the stack as argument word zero. In effect,
this address becomes a ‘“‘hidden” first argument. Having the caller supply the
return object’s space allows re-entrancy.

Structures and unions in this context have fixed sizes. The ABI does not
NOTE | specify how to handle variable sized objects.

3-14 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 40

A function that returns a structure or union also sets %eax to the value of the origi-
nal address of the caller’s area before it returns. Thus when the caller receives
control again, the address of the returned object resides in register %eax and can
be used to access the object. Both the calling and the called functions must
cooperate to pass the return value successfully:

m The calling function must supply space for the return value and pass its
address in the stack frame;

m The called function must use the address from the frame and copy the
return value to the object so supplied;

m The called function must remove this address from the stack before return-
ing.

Failure of either side to meet its obligations leads to undefined program behavior.
The standard function calling sequence does not include any method to detect
such failures nor to detect structure and union type mismatches. Therefore the
user must declare all functions properly.

Figure 3-18 illustrates the stack contents when the function receives control (after
the cal | instruction) and when the calling function again receives control (after
theret instruction).

Figure 3-18: Stack Contents for Functions Returning st ruct/ uni on

Position Aftercal | Afterret Position
4n+4(Yesp) gargument word n Sargument word n g4n— 4(%esp)

0,
4(Y%esp) H value address undefined g

g
8]

0
O
0 o 00 e 0
8(%sp) pargumentwordl 5 pargumentword1l ~0(%esp)
O
O
H

0(%esp) E return address

To illustrate, the following function prologue allocates 80 bytes of local stack space
and saves the local registers %ebx, %esi , and %edi . Additionally, it removes the
“hidden’” argument from the stack and saves it in the highest word of the local
stack frame.

Function Calling Sequence 3-15

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 41

Figure 3-19: Function Prologue (Returning st ruct/ uni on)

prologue:

popl
xchgl

pushl
nov|
subl
pushl
pushl
pushl
nov|

%eax

%ax, 0(%sp)

%ebp

%esp, %bp
$80, %esp
%edi

%esi

%ebx

%eax, -4(%bp)

~

/
/
/
/
/
/
/

pop return address

swap return address

/ and return val ue address
save frame pointer

set new frame pointer

al locate | ocal space

save | ocal register

save | ocal register

save | ocal register

save return val ue address

An epilogue for the example that restores the state for the caller.

Figure 3-20: Function Epilogue

epilogue:

novl -4(%bp), %eax / set up return val ue
popl %bx /| restore local register
popl %esi /| restore local register
popl Y%edi /| restore local register
| eave / restore frane pointer
ret / pop return address

3-16 LOW-LEVEL SYSTEM INFORMATION

File:

DRAFT COPY
March 19, 1997
abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 42

Although some functions can be optimized to eliminate the save and restore
NnoTe | of the frame pointer, the general case uses the standard prologue and epilo-
gue.

Sections below describe where arguments appear on the stack. The examples are
written as if the function prologue described above had been used.

Position-independent code uses the %&bx register to hold the address of the global
offset table. If a function needs the global offset table’s address, either directly or
indirectly, it is responsible for computing the value. See ‘“Coding Examples’ later
in this chapter and ““Dynamic Linking” in Chapter 5 for more information.

Integral and Pointer Arguments

As mentioned, a function receives all its arguments through the stack; the last
argument is pushed first. In the standard calling sequence, the first argument is at
offset 8(%ebp) , the second argument is at offset 12(%&bp) , and so on. Functions
pass all integer-valued arguments as words, expanding or padding signed or
unsigned bytes and halfwords as needed.

Figure 3-21: Integral and Pointer Arguments

Call Argument Stack address

U 1 g 8(%bp)

9(1, 2, 3, 02 D 12(%bp)
(void *)0); 3 0 16(%bp)
O(void *)0 o 20(%bp)

Floating-Point Arguments

The stack also holds floating-point arguments: single-precision values use one
word, double-precision use two, and extended-precision use three. See “Coding
Examples’ for information about floating-point arguments and variable argument
lists. The example below uses only double-precision arguments. Single- and
extended-precision arguments behave as specified above.

Function Calling Sequence 3-17

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 43

Figure 3-22: Floating-Point Arguments

Call Argument Stack address

gword 0, 1.414 g 8(%ebp)
0,
h(1. 414, 1, Dword 1, 1.414 0 12(0/ebp)
.0t 0 16(%bp)
2.998e10) ;
Oword 0, 2.998e10 [20(%bp)
Hword 1, 2.998e10 B 24(%bp)

The Intel386 architecture does not require doubleword alignment for double-
NOTE | precision values. Nevertheless, for data structure compatibility with other Intel
architectures, compilers may provide a method to align double-precision

‘ values on doubleword boundaries.

A compiler that provides the doubleword alignment mentioned above would
have to maintain doubleword alignment for the stack. Moreover, the argu-
ments in the preceding example would appear in different positions. Pro-
grams built with the doubleword alignment facility would not conform to the
Intel386 ABI, and their function calling sequence would not be compatible
with conforming Intel386 programs.

Structure and Union Arguments

As described in the data representation section, structures and unions can have
byte, halfword, or word alignment, depending on the constituents. An
argument’s size is increased, if necessary, to make it a multiple of words. This
may require tail padding, depending on the size of the argument. To ensure that
data in the stack is properly aligned, the stack pointer should always point to a
word boundary. Structure and union arguments are pushed onto the stack in the
same manner as integral arguments, described above. This provides call-by-value
semantics, letting the called function modify its arguments without affecting the
calling function’s object.

3-18 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 44

Figure 3-23: Structure and Union Arguments

Call Argument Callee
U1 U 8(%bp)
(1, s): gword 0, s D12(%bp)
' " pgwordl, s ;16(%ebp
g - B c
Function Calling Sequence 3-19
DRAFT COPY

March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 45

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management
translates virtual addresses to physical addresses, hiding physical addressing and
letting a process run anywhere in the system’s real memory. Processes typically
begin with three logical segments, commonly called text, data, and stack. As
Chapter 5 describes, dynamic linking creates more segments during execution,
and a process can create additional segments for itself with system services.

Page Size

Memory is organized by pages, which are the system’s smallest units of memory
allocation. Page size can vary from one system to another, depending on the pro-
cessor, memory management unit and system configuration. Processes may call
sysconf (BA_OS) to determine the system’s current page size.

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available. In practice,
however, several factors limit the size of a process.

m The system reserves a configuration-dependent amount of virtual space.

m The system reserves a configuration dependent amount of space per pro-
cess.

m A process whose size exceeds the system’s available, combined physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute
processes that are bigger than physical memory, paging them to and from
secondary storage. Nonetheless, both physical memory and secondary
storage are shared resources. System load, which can vary from one pro-
gram execution to the next, affects the available amounts.

3-20 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 46

Figure 3-24: Virtual Address Configuration

Oxffffffff B Reserved gEnd of memory
a O
O O
O 0
a O
O O
a O
a] O
0x80000000 [Dynamic segments [
a O
a O
O O
0 o
0 [Process segments [Beginning of memory

Programs that dereference null pointers are erroneous. although an imple- G
mentation is not obliged to detect such erroneous behavior. Such pro- G
grams may or may not fail on a particular system. To enhance portability,
programmers are strongly cautioned not to rely on this behavior.

Process segments
Processes’ loadable segments and stack may begin at 0. The exact
addresses depend on the executable file format [see further infor-
mation below and in Chapters 4 and 5]. Processes can control the
amount of virtual memory allotted for stack space, as described
below.

Dynamic segments
A process’s dynamic segments reside below the reserved area.

Reserved A reserved area resides at the top of virtual space.

As the figure shows, the system reserves the high end of virtual address space,
with a process’s dynamic segments below that. Although the exact boundary
between the reserved area and a process depends on the system’s configuration,
the reserved area shall not consume more than 1 GB of the address space. Thus
the user virtual address range has a minimum upper bound of 0xc0000000.
Individual systems may reserve less space, increasing processes’ virtual memory
range.

Operating System Interface 3-21

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 47

Although applications may control their memory assignments, the typical
arrangement appears below.

Figure 3-25: Conventional Segment Arrangements

0 0

O 0

O O

O . 0

0x80000000 [jDynamic segments [J
ox7fffffff O O
O 0

O 0

O O

0 Data segment 0

O O

O O

O 0

O 0

0x8048000 [Textsegment 0
U stack segment U

O 0

O O

O 0

0 O 0

The process’s text segment resides at 0x8048000. The data segment follows
immediately, and dynamic segments occupy the higher range. When applications
let the system choose addresses for dynamic segments (including shared object
segments), it chooses high addresses. This leaves the “‘middle’ of the address
spectrum available for dynamic memory allocation with facilities such as

mal | oc (BA_0OS). Processes should not depend on finding their dynamic segments
at particular virtual addresses. Facilities exist to let the system choose dynamic
segment virtual addresses. The stack resides immediately below the text segment,
growing toward lower addresses. This arrangement provides a little over 128 MB
for the stack and about 2 GB for text and data.

Managing the Process Stack

Section “‘Process Initialization™ in this chapter describes the initial stack contents.
Stack addresses can change from one system to the next—even from one process
execution to the next on the same system. Processes, therefore, should not depend
on finding their stack at a particular virtual address.

3-22 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 48

A tunable configuration parameter controls the system maximum stack size. A
process also can use setrlimt (BA_OS), to set its own maximum stack size, up to
the system limit. On the Intel386, the stack segment has read and write permis-
sions.

Coding Guidelines

Operating system facilities, such as mmap (KE_OS), allow a process to establish
address mappings in two ways. First, the program can let the system choose an
address. Second, the program can force the system to use an address the program
supplies. This second alternative can cause application portability problems,
because the requested address might not always be available. Differences in vir-
tual address space can be particularly troublesome between different architec-
tures, but the same problems can arise within a single architecture.

Processes’ address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrli mt (BA_OS)], the data
segment [through nal | oc (BA_0S)], and the dynamic segment area [through

map (KE_OS)]. Changes in one area may affect the virtual addresses available for
another. Consequently, an address that is available in one process execution
might not be available in the next. A program that used mmap (KE_OS) to request a
mapping at a specific address thus could appear to work in some environments
and fail in others. For this reason, programs that wish to establish a mapping in
their address space should let the system choose the address.

Despite these warnings about requesting specific addresses, the facility is both
useful and can be used in a controlled manner. For example, a multiprocess appli-
cation might map several files into the address space of each process and build
relative pointers among the files’ data. This could be done by having each process
ask for a certain amount of memory at an address chosen by the system. After
each process receives its own, private address from the system, it would map the
desired files into memory, at specific addresses within the original area. This col-
lection of mappings could be at different addresses in each process but their rela-
tive positions would be fixed. Without the ability to ask for specific addresses, the
application could not build shared data structures, because the relative positions
for files in each process would be unpredictable.

Operating System Interface 3-23

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 49

Processor Execution Modes

Four execution modes exist in the Intel386 architecture: ring 3 (or user mode) and
three privileged rings. User processes run in user mode ring (the least privileged).
The operating system kernel runs in a privileged mode ring, although the ABI
does not specify which one. A program executes thel cal | instruction through a
system call gate to change execution modes, and thus the | cal | instruction pro-
vides the low-level interface to system calls. For the Intel386, one low-level inter-
face is defined: _exi t (BA_OS).

To ensure a process has a way to terminate itself, the system treats _exit as a spe-
cial case. The ABI does not specify the implementation of other system services.
Instead, programs should use the system libraries that Chapter 6 describes. Pro-
grams with other embedded | cal | instructions do not conform to the ABI.

Figure 3-26: _exit System Trap

.globl exit
_exit:

nmovl $1, Y%ax

lcall $7, $0

Exception Interface

As the Intel386 architecture manuals describe, the processor changes mode to han-
dle exceptions, which may be synchronous, floating-point/coprocessor, or asyn-
chronous. Synchronous and floating-point/coprocessor exceptions, being caused
by instruction execution, can be explicitly generated by a process. This section,
therefore, specifies those exception types with defined behavior. The Intel386
architecture classifies exceptions as faults, traps, and aborts. See the Intel 80386
Programmer’s Reference Manual for more information about their differences.

Hardware Exception Types

The operating system defines the following correspondence between hardware
exceptions and the signals specified by si gnal (BA_OS).

3-24 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 50

Figure 3-27: Hardware Exceptions and Signals

Number Exception Name Signal
0 Udivide error fault UsI GFPE
1 Dsingle step trap/fault BSI GTRAP
2 rjhonmaskable interrupt rjhone
3 breakpoint trap 0S| GTRAP
4 Ooverflow trap 0S| GSEGV
5 Ubounds check fault Usl Gseav
6 Uinvalid opcode fault BSI alLL
7 jno coprocessor fault S GFPE
8 jdouble fault abort [jnone
9 Ocoprocessor overrun abort Sl GSEGVY
10 Uinvalid TSS fault Unone
11 segment not present fault Bnone
12 jstack exception fault S GSEGY
13 general protection fault/abort S| GSEGV/
14 Opage fault 0S| GSEGV
15 U(reserved) 0
16 pjcoprocessor error fault BSI G-PE

other [J(unspecified) 0S @ LL

Floating-point instructions exist in the architecture, but they may be implemented
either in hardware (via the Intel387 chip) or in software (via the Intel387 emula-
tor). In the case of ‘““no coprocessor’” exception, if the Intel387 emulator is
configured into the kernel, the process receives no signal. Instead, the system
intercepts the exception, emulates the instruction, and returns control to the pro-
cess. A process receives Sl G-PE for the ““no coprocessor’ exception only when the
indicated floating-point instruction is illegal (invalid operands, and so on).

Software Trap Types

Because the i nt instruction generates traps, some hardware exceptions can be
generated by software. However, the i nt instruction generates only traps and not
faults; so it is not possible to match the exact hardware generated faults in
software.

Operating System Interface 3-25

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 51

Process Initialization

This section describes the machine state that exec (BA_OS) creates for ““infant”
processes, including argument passing, register usage, stack frame layout, and so
on. Programming language systems use this initial program state to establish a
standard environment for their application programs. As an example, a C pro-
gram begins executing at a function named rmai n, conventionally declared in the
following way.

Figure 3-28: Declaration for mai n

extern int main(int argc, char *argv[], char *envp[]);

Briefly, ar gc is a non-negative argument count; ar gv is an array of argument
strings, with ar gv[ar gc] ==0; and envp is an array of environment strings, also
terminated by a null pointer.

Although this section does not describe C program initialization, it gives the infor-
mation necessary to implement the call to mai n or to the entry point for a program
in any other language.

Special Registers

As the Intel386 architecture defines, several state registers control and monitor the
processor: the Machine Status Word register (MSW, also known as register %er 0),
EFLAGS register, the floating-point status register, and the floating-point control
register. Application programs cannot access the full EFLAGS register directly;
because they run in the processor’s user mode, and the instructions to write some
of the bits of the EFLAGS register are privileged. Nonetheless, a program has
access to many of the flags in the EFLAGS register. Flags identified with an ***”
below are not modifiable by a user mode process, they either have unspecified
values or do not affect user program behavior. At process initialization, the
EFLAGS register contains the following values.

3-26 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 52

Figure 3-29: EFLAGS Register Fields

Flag Value Note
CF Uunspecified UCarry flag
PF Dunspecif'ied gParity flag
AF runspecified SAuxiliary carry flag
ZF qunspecified [jZero flag
SF Ounspecified 0OSign flag
TF Uunspecified UTrap flag

IF* gunspecified
DF 0 0

OF unspecified

IOPL* Ounspecified
NT* Uunspecified
RF* unspecified
VM* Junspecified

Interrupt enable
Direction flag low to high
Overflow flag
0170 privilege level
UNested task
UResume flag
Virtual 8086 mode

The Intel386 architecture defines floating-point instructions, and those instructions
work whether the processor has a hardware floating-point unit or not. (A system
may provide hardware or software floating-point facilities.) Consequently, the
contents of the MSW register is not specified, letting the system set it according to
the hardware configuration. In any case, however, the processor presents a work-
ing floating-point implementation, including the Intel387 status and control word
registers with the following values at process initialization.

Figure 3-30: Floating-Point Control Word

Field Value Note

IC U 1 UAffine infinity (for compatibility)

RC B 00 gRound to nearest or even

PC 11 353-bit(double precision) G
PM 0 1 [gPrecision masked

UM 0O 1 0OUnderflow masked

oM O 1 Ooverflow

ZM B 1 Hzero divide

DM 5 1 Denormalized operand masked

IM 0 1 glnvalid operation

Operating System Interface

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 53

3-27

The initial floating-point state should be changed with care. In particular,
many floating-point routines may produce undefined behavior if the preci-
sion control is set to less than 53 bits. The _fpstart routine (see Chapter 6)
changes the precision control to 64 bits and sets all exceptions to be

asked. This is the default state required for conformance to the ANSI C
standard and to the IEEE 754 Floating-point standard.

OOOO

Process Stack and Registers

When a process receives control, its stack holds the arguments and environment
from exec (BA_OS).

Figure 3-31: Initial Process Stack

U Unspecified UHigh addresses

—

Elnformation block, including
argument strings,

environment strings,

auxiliary information

(size varies)
Unspecified
Null auxiliary vector entry
Auxiliary vector

(2-word entries)
0 word
Environment pointers

(one word each)
0 word
Argument pointers

d
g
U
d
g
U
O
g
U
O
g
U
d
U
O
d
g
U
O
g
U
d
g
O
d
H

MopOoOoOoonDoodpooOoonopoooo O

4(Yesp) (Argument count words)
0(%esp) Argument count
Undefined Low addresses
3-28 LOW-LEVEL SYSTEM INFORMATION
DRAFT COPY

March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 54

Argument strings, environment strings, and the auxiliary information appear in
no specific order within the information block; the system makes no guarantees
about their arrangement. The system also may leave an unspecified amount of
memory between the null auxiliary vector entry and the beginning of the informa-
tion block.

General and floating-point register values are unspecified at process entry, with
the exceptions appearing below. Consequently, a program that requires registers
to have specific values must set them explicitly during process initialization. It
should not rely on the operating system to set all registers to 0.

%bp The content of this register is unspecified at process initialization
time, but the user code should mark the deepest stack frame by
setting the frame pointer to zero. No other frame’s %&bp should
have a zero value.

%esp Performing its usual job, the stack pointer holds the address of the
bottom of the stack, which is guaranteed to be word aligned.

Yedx In a conforming program, this register contains a function pointer
that the application should register with at exi t (BA_OS). This
function is used for shared object termination code [see ‘“‘Dynamic
Linking” in Chapter 5 of the System V ABI].

%s, %ls, Y%es, 9%6s
The segment registers are initialized so that the user process can
address the code, data, and stack segments using a 32-bit virtual
address. A program that alters their values does not conform to
the ABI and has undefined behavior.

Every process has a stack, but the system defines no fixed stack address. Further-
more, a program’s stack address can change from one system to another—even
from one process invocation to another. Thus the process initialization code must
use the stack address in %esp. Data in the stack segment at addresses below the
stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from the
operating system to the program. This vector is an array of the following struc-
tures, interpreted according to the a_t ype member.

Operating System Interface 3-29

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 55

Figure 3-32: Auxiliary Vector

typedef struct
{ .
I nt a_type;
uni on {
long a val;
void *a ptr;
void (*a_fcn)();
} a un;
} auxv_t;
Figure 3-33: Auxiliary Vector Types, a_t ype
Name Value a un
AT _NULL U o Uignored
AT | G\CRE g 1 Uignored
AT_EXECFD 0o 2 pawval
AT_PHDR 0 3 [paptr
AT_PHENT O 4 [Oa.val
AT_PHNUM U 5 [Oaval
AT_PAGESZ g 6 Ua val
AT_BASE O 7 paptr
AT _FLAGS 0o 8 pa.val
AT_ENTRY g 9 [Oaptr
AT _LI BPATH U 10 Ua val
AT_FPHW g 11 Ha val
AT_INTP. DEMCE ;7 12 a_val
AT_| NTP_I NCDE B 13 aa_val

AT_NULL

The auxiliary vector has no fixed length; instead its last entry’s

a_t ype member has this value.

3-30

LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997

File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 56

<L L

AT_| GNCRE

AT_EXECFD

AT_PHDR

AT _PHENT

AT_PHNUM

AT_PACESZ

AT _BASE

AT FLAGS

AT_ENTRY

AT_LI BPATH

This type indicates the entry has no meaning. The corresponding
value of a_un is undefined.

As Chapter 5 describes, exec (BA_0OS) may pass control to an
interpreter program. When this happens, the system places either
an entry of type AT_EXECFD or one of type AT_PHDR in the auxili-
ary vector. The entry for type AT_EXECFD uses the a_val member
to contain a file descriptor open to read the application program’s
object file.

Under some conditions, the system creates the memory image of
the application program before passing control to the interpreter
program. When this happens, the a_pt r member of the AT_PHDR
entry tells the interpreter where to find the program header table
in the memory image. If the AT_PHDR entry is present, entries of
types AT_PHENT, AT_PHNUM and AT_ENTRY must also be present.
See Chapter 5 in both the System V ABI and the processor supple-
ment for more information about the program header table.

The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT_PHDR entry
points.

The a_val member of this entry holds the number of entries in
the program header table to which the AT_PHDR entry points.

If present, this entry’s a_val member gives the system page size,
in bytes. The same information also is available through
sysconf (BA_OS).

The a_pt r member of this entry holds the base address at which
the interpreter program was loaded into memory. See “Program
Header” in the System V ABI for more information about the base
address.

If present, the a_val member of this entry holds one-bit flags.
Bits with undefined semantics are set to zero.

The a_pt r member of this entry holds the entry point of the
application program to which the interpreter program should
transfer control.

The a_val member of this entry is non-zero if the dynamic linker
should examine LD_LIBRARY_PATH when searching for shared
objects of the process based on the security considerations in the
Shared Object Dependency section in Chapter 5 of the gABI.

Operating System Interface 3-31

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 57

AT_FPHW The a_val member of this entry will be set to

Figure 3-34: AT_FPHW values

Value Meaning

0 Uif no floating point support exists

1 if floating point software enul ati on exists
2 i f it has a 80287 chip

3 aif it has a 80387 chip or a 80487 chip

AT_I NTP_DEM CE
The a_val member of this entry holds the device number of the
file from which the dynamic linker is loaded.

AT_I NTP_I NCDE
The a_val member of this entry holds the inode of the file from
which the dynamic linker is loaded.

Other auxiliary vector types are reserved. No flags are currently defined for
AT_FLAGS, on the Intel386 architecture.
To illustrate, suppose an example process receives two arguments.

m echo

m abi

It also inherits two environment strings (this example is not intended to show a
fully configured execution environment).

m HOME=/ hone/ di r
m PATH=/ usr/ bi n:

Its one non-null auxiliary vector entry holds a file descriptor.
m {AT_EXECFD, 13}

The resulting stack resides below 0x8048000, growing toward lower addresses.

3-32 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 58

Figure 3-35: Example Process Stack

March 19, 1997
File: abi_386/chap3 (Delta 44.6)

386:adm.book:sum

Page: 59

Un O: O\o Upg UHigh addresses
& & / = b g0
o pf nb ! np
O= 0/ Ou Os 0O
O O O O O
0x8047ff0 DP DA DT DH 0
od gi pgr o\0 g
0 0 Om O e 0 / a
= I — = O
nE o= o/ oh o
0x8047fe0 N0 OH OO OM O
O O O O, d
20 ga gb gi g
ge pc oh go 0
0 0 0
t |
O 13 O
E 2 gAuxiliary vector
0 0 O
0x8047fc0 O 0x8047ff0 g
H 0x8047f el rEnvironment vector
0 0 0
0 0x8047f dd J
0x8047f b0 E 0x8047f d8 JArgument vector
0(%sp), 0x8047fac U 2 UArgument count
ﬁ Undefined Low addresses
Operating System Interface 3-33
DRAFT COPY

Coding Examples

This section discusses example code sequences for fundamental operations such as
calling functions, accessing static objects, and transferring control from one part of
a program to another. Previous sections discuss how a program may use the
machine or the operating system, and they specify what a program may and may
not assume about the execution environment. Unlike previous material, the infor-
mation here illustrates how operations may be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not
prevent a program from conforming to the ABI. Two main object code models are
available.

m Absolute code. Instructions can hold absolute addresses under this model.
To execute properly, the program must be loaded at a specific virtual
address, making the program’s absolute addresses coincide with the
process’s virtual addresses.

m Position-independent code. Instructions under this model hold relative
addresses, not absolute addresses. Consequently, the code is not tied to a
specific load address, allowing it to execute properly at various positions in
virtual memory.

Following sections describe the differences between these models. Code
sequences for the models (when different) appear together, allowing easier com-
parison.

Examples below show code fragments with various simplifications. They are
NOTE | intended to explain addressing modes, not to show optimal code sequences
nor to reproduce compiler output.

When other sections of this document show assembly language code
NOTE | Sequences, they typically show only the absolute versions. Information in this
section explains how position-independent code would alter the examples.

3-34 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 60

Code Model Overview

When the system creates a process image, the executable file portion of the process
has fixed addresses, and the system chooses shared object library virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared objects conventionally use position-independent code, in which instruc-
tions contain no absolute addresses. Shared object text segments can be loaded at
various virtual addresses without having to change the segment images. Thus
multiple processes can share a single shared object text segment, even though the
segment resides at a different virtual address in each process.

Position-independent code relies on two techniques.

m Control transfer instructions hold offsets relative to the extended instruction
pointer (EIP). An ElIP-relative branch or function call computes its destina-
tion address in terms of the current instruction pointer, not relative to any
absolute address.

m When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the instructions, the
compiler generates code to calculate an absolute address during execution.

Because the Intel386 architecture provides EIP-relative call and branch instruc-
tions, compilers can satisfy the first condition easily.

A global offset table provides information for address calculation. Position-
independent object files (executable and shared object files) have this table in their
data segment. When the system creates the memory image for an object file, the
table entries are relocated to reflect the absolute virtual addresses as assigned for
an individual process. Because data segments are private for each process, the
table entries can change—unlike text segments, which multiple processes share.

Assembly language examples below show the explicit notation needed for
position-independent code.

name @30T (%ebx)
This expression denotes an %ebx-relative reference to the global
offset table entry for the symbol name. The %bx register contains
the absolute address of the global offset table, as explained below.

Name@B0TCFF(Yebx)
This expression denotes an %ebx-relative reference to the symbol
name. Again, %ebx holds the global offset table address. Note
this expression references name, not the global offset table entry
for name.

Coding Examples 3-35

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 61

name@LT This expression denotes an EIP-relative reference to the procedure
linkage table entry for the symbol name.

_G.CBAL_CFFSET_TABLE
The symbol _A.CBAL_CFFSET_TABLE is used to access the global
offset table. When an instruction uses the symbol, it sees the
offset between the current instruction and the global offset table
as the symbol value.

Position-Independent Function Prologue

This section describes the function prologue for position-independent code. A
function’s prologue allocates the local stack space, saves any registers it must
preserve, and sets register %ebx to the global offset table’s address. Because %&@bx
is private for each function and preserved across function calls, a function calcu-
lates its value once at the entry.

Figure 3-36: Calculating Global Offset Table Address

Line Code
10 call .L1 g
2 B L1: popl %ebx g
3 A addl $ Q.CBAL_CFFSET_TABLE +[.-.L1], %bx A

These three lines accomplish the following.

1. Thecal | instruction pushes the absolute address of the next instruction
onto the stack.

2. Consequently, the popl instruction pops the absolute address of . L1 into
register %ebx.

3. The last instruction computes the desired absolute value into ¥%ebx. This
works because Q.CBAL_CFFSET_TABLE in the expression gives the dis-
tance from the addl instruction to the global offset table; [. -. L1] gives the
distance from . L1 to the addl instruction. Adding their sum to the abso-
lute address of . L1, already in %&bx, gives the absolute address of the glo-
bal offset table.

3-36 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 62

This computation can be added to the standard function prologue, giving the stan-
dard prologue for position-independent code. To illustrate, the following function
prologue allocates 80 bytes of local stack space and saves the local registers %ebx,
Y%si , and %di .

Figure 3-37: Position-Independent Function Prologue

prologue:
pushl %bp
movl %sp, %ebp
subl $80, Y%esp

pushl %di
pushl %esi
pushl %bx
call .L1

.L1: popl Yebx
addl $ G.OBAL CFFSET TABLE +[.-.L1], %bx

Position-independent and absolute code use the same function epilogue.

Data Objects

This discussion excludes stack-resident objects, because programs always compute
their virtual addresses relative to the stack and frame pointers. Instead, this sec-
tion describes objects with static storage duration.

In the Intel386 architecture, all memory reference instructions can address any
location within the 32-bit address space. Symbolic references in absolute code put
the symbols’ values—or absolute virtual addresses—into instructions.

Coding Examples 3-37

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 63

Figure 3-38: Absolute Data Access

C Assembly

Lextern int src; U U globl src, dst, ptr U

xtern int dst; E B g
cextern int *ptr; 5 g 0
ptr = &dst; 0 novl $dst, ptr 0
0 0o o 0
Giptr = src; U Unovl ptr, %ax g
E E novl src, %edx g
0 0 Qnovl %dx, (%ax) [

Position-independent instructions cannot contain absolute addresses. Instead,
instructions that reference symbols hold the symbols’ offsets into the global offset
table. Combining the offset with the global offset table address in %ebx gives the
absolute address of the table entry holding the desired address.

Figure 3-39: Position-Independent Data Access

C Assembly

Lextern int src; E g.gl obl src, dst, ptr g

xt ern !nt Sst;. 00 0
cextern int *ptr; o g 0
(ptr = &dst; 0O gnovl pt r @OT(%bx), Y%eax [
O 0 Onovl dst @OT(%bx), %dx 0O
U U Unovl %edx, (%eax) U
a 0o ad 0
%ptr = src; E Em)vl pt r @OT(%ebx), %Yeax E
0 0 gnovl (Y%eax), %Yeax 0
O 0 Onovl src@OT(%ebx), %dx 0O
U U Unovl (%dx), Y%edx U
H E novl %dx, (%ax) H

Finally, position-independent references to static data may be optimized. Because
%bx holds a known address, the global offset table, a program may use it as a
base register. External references should use the global offset table entry, because
dynamic linking may bind the entry to a definition outside the current object file’s
scope.

3-38 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 64

Figure 3-40: Position-Independent Static Data Access

C Assembly

Lstatic int src; U O g

tatic int dst; g E E
cstatic int *ptr; 5 0
ptr = &dst; 0 gl eal pt r @OTCFF(%ebx), %ax [
O O dleal dst @OTCFF(%&bx), %edx 0O
g U Unovl %dx, (%ax) g
O O O
%ptr = src; E Em)vl pt r @OTCFF(%ebx), %eax E
0 0 gnovl src@OTCFF(%ebx), Yedx [
g g Grovl %dx, (%ax) g

Function Calls

Programs use the cal | instruction to make direct function calls. A cal |
instruction’s destination is an EIP-relative value that can reach any address in the
32-bit virtual space. Even when the code for a function resides in a shared object,
the caller uses the same assembly language instruction sequence, although in that
case control passes from the original call, through an indirection sequence, to the
desired destination. See “‘Procedure Linkage Table” in Chapter 5 for more infor-
mation on the indirection sequence.

Figure 3-41: Absolute Direct Function Call

C Assembly

Lextern void function(); U U globl function U
% unction(); E Ecal I function

Dynamic linking may redirect a function call outside the current object file’s scope;
so position-independent calls should use the procedure linkage table explicitly.

Coding Examples 3-39

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 65

Figure 3-42: Position-Independent Direct Function Call

C Assembly
Lextern void function(); U U.globl function U
B unction(); Ecal I functi on@LT H

Indirect function calls use the indirect cal | instruction.

Figure 3-43: Absolute Indirect Function Call

C Assembly
Lextern void (*ptr)(); U U.globl ptr, name; U
xtern void nane(); g E g
ptr = nane; 0 ghovl $nane, ptr
a o O 0
H*ptr) () B Beall “ptr B

For position-independent code, the global offset table supplies absolute addresses
for all required symbols, whether the symbols name objects or functions.

Figure 3-44: Position-Independent Indirect Function Call

C Assembly
Lextern void (*ptr)(); E B.gl obl ptr, name B
xtern voi d name(); 00 0
ptr = name; 0 pmovl ptr @OT(%bx), %ax
0 o onovl nane@OT(%ebx), %dx [
0 O Onovl Yedx, (%ax) 0
0 0o o a
*ptr)(); E Brmvl pt r @OT(Y%ebx), %Yeax B
0 0 Qcall *(%gax) 0
3-40 LOW-LEVEL SYSTEM INFORMATION
DRAFT COPY

March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 66

Branching

Programs use branch instructions to control their execution flow. As defined by
the Intel386 architecture, branch instructions hold an EIP-relative value with a
signed 32-bit range, allowing a jump to any location within the virtual address
space.

Figure 3-45: Branch Instruction, All Models

C Assembly
4 abel : 0 0 Lo1: g
D . . . |:| |:| . . . D
% got o | abel ; E E jnp .Lo1 %

C swi t ch statements provide multiway selection. When the case labels of a

swi t ch statement satisfy grouping constraints, the compiler implements the selec-
tion with an address table. The following examples use several simplifying con-
ventions to hide irrelevant details:

m The selection expression resides in register %eax;
m case label constants begin at zero;

m case labels, def aul t , and the address table use assembly names . Lcasei,
. Ldef , and . Lt ab, respectively.

Address table entries for absolute code contain virtual addresses; the selection
code extracts an entry’s value and jumps to that address. Position-independent
table entries hold offsets; the selection code computes a destination’s absolute
address.

Coding Examples 3-41

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 67

Figure 3-46: Absolute swi t ch Code

C Assembly

switch (j) U O cnpl $3, %ax U

O 0O ; O

00 ja . Ldef 0

rcase O 0 0 jp *. Ltab(, %ax,4)

0 0 - Ltab: .long .Lcase0 0

[(tase 2 o ad .long . Ldef a

U . g o .long .Lcase2 U

%;ase 3 0o | ong Lcase3 O

O 0O ' ' O

O - - - 00 O

defaul t: 0O 0O 0

O O 0O O

B B B H

Figure 3-47: Position-Independent swi t ch Code
C Assembly
kwitch (j) U O cnpl $3, Y%eax g
O 0O ; O
00 ja . Ldef 0
rcase O 0 0 | eal . Lt ab@OTCFF(%&bx) , %edx 0
0 0O 0O novl (%dx, Yeax, 4), %Yeax 0
[(tase 2 o ad novl . Lt ab@OTCFF(%&bx, Yeax, 4), %ax [0
U . g o cal | .Ljnp g
B:ase 3 O O np: O
. Lj np:
0 0 0 O
0 0 0 popl Y@CcX 0
rdef aul t 0O 0O addl %cx, %eax 0
a o ad jnp *gax a
9 0 O Ltab: O
0o .long .LcaseO - .Ljnp O
O 0 0 . O
0 0 0 .long .Ldef - .Ljnp 0
0 0O 0O .long .Lcase2 - .Ljnp 0
g 8 g .long .Lcase3 - .Ljnp]
3-42 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 68

C Stack Frame

Figure 3-48 shows the C stack frame organization. It conforms to the standard
stack frame with designated roles for unspecified areas in the standard frame.
This represents one possible organization of the C stack frame. Usage of %ebp as a
frame pointer, the exact positions of the callee saved registers, and space for local
storage is implementation specific.

Figure 3-48: C Stack Frame

Base Offset Contents
%bp 4n+8 U argumentwordn gHigh addresses
||
8 O argumentword0 [O
4 H return address g
%ebp 0 E caller’s Y%ebp 0
%ebp -4 Uxwords local space: U
gautomatic variables, g
q temporaries, 0
%ebp -4X 0 etc. 0
Yesp 12 & {1
Y%esp 8 U callers %di U
= ; - O
4 7 caller's%si 0
Y%esp 0 B caller's %ebx HLow addresses

A C stack frame doesn’t normally change size during execution. The exception is
dynamically allocated stack memory, discussed below. By convention, a function
allocates automatic (local) variables in the middle of its frame and references them
as negative offsets from %bp. Its incoming arguments reside in the previous
frame, referenced as positive offsets from %ebp. If necessary, a function saves the
values of %edi , %esi , and %ebx in the positions shown and restores their values
before returning to the caller. The positions may be different from the diagram
above, depending on which of these three registers the function saves and
restores.

Coding Examples 3-43

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 69

LKL

Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on the argument passing scheme, impli-
citly assuming that 1) all arguments reside on the stack, and 2) arguments appear
in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked on many machines, including the
Intel386. Nonetheless, portable C programs should use the facilities defined in the
header files <st dar g. h> or <var ar gs. h> to deal with variable argument lists.

Allocating Stack Space Dynamically

Unlike some other languages, C does not need dynamic stack allocation within a
stack frame. Frames are allocated dynamically on the program stack, depending
on program execution, but individual stack frames can have static sizes. Nonethe-
less, the architecture supports dynamic allocation for those languages that require
it, and the standard calling sequence and stack frame support it as well. Thus
languages that need dynamic stack frame sizes can call C functions, and vice
versa.

Figure 3-48 shows the layout of the C stack frame. The double line divides the
area referenced from %bp from the area referenced from %@sp. Dynamic space is
allocated below the line, as a downward growing heap whose size changes as
required. Typical C functions have no space in the heap. All areas above the heap
in the current frame have a known size to the compiler. Dynamic stack allocation
thus takes the following steps.

1. Stack frames are word aligned; dynamic allocation should preserve this
property. Thus the program rounds (up) the desired byte count to a multi-
ple of 4.

2. The program decreases the stack pointer by the rounded byte count,
increasing its frame size. At this point, the ““new’’ space resides just below
the register save area at the bottom of the stack.

3. The program copies the register save area (three or fewer words) to the bot-
tom of the stack, effectively moving the new space up into the frame.

3-44 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 70

The register save area is reserved and should not be used for purposes out- G
NoTE | side of this document.

Even in the presence of signals, dynamic allocation is *‘safe.” If a signal interrupts
allocation, one of three things can happen.

m The signal handler can return. The process then resumes the dynamic allo-
cation from the point of interruption.

m The signal handler can execute a non-local goto, or | ongj np [see
set j np(BA_LIB)]. This resets the process to a new context in a previous
stack frame, automatically discarding the dynamic allocation.

m The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

To illustrate, assume a program wants to allocate 50 bytes, and it has saved three
registers in the bottom of the frame. The first step is rounding 50 to 52, making it
a multiple of 4. Figure 3-49 shows how the stack frame changes.

Figure 3-49: Dynamic Stack Allocation

Original Intermediate Final
0(%bp) LU arguments U U arguments U U arguments U0(%bp)
O o 0O O O O
0 and 0 0 and 0 0 and 0
[automatic 5 [automatic ; [automatic [
[] Vvariables [[variables [[variables [
12(%sp) & 0 8 0 B O
U savearea U U savearea U Uoldsavearea U
0 O o 0O O O O
O(%sp) 5 3words 0 o 3 words 0 o 3 words 7
E 0 i +H++t+H+ [E +++++++++ [
a O 0O newspace [0 [O newspace 0O
g U 0 52bytess U 0O 52pytess U
O undefined O O bttt O b+ O
O o 0O O O.5/0
0 0 O 0 O gl2(%esp)
O O 0O) 0 [savearea []
& g g undefined 55 Suords HO(Yesp)

New space starts at 12(%esp) . As described, every dynamic allocation in this
function will return a new area starting at 12(%esp) , leaving previous heap
objects untouched (other functions could have different heap addresses).

Coding Examples 3-45

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 71

Consequently, the compiler should compute the absolute address for each area,
avoiding relative references. Otherwise, future allocations in the same frame
would destroy the heap’s integrity.

Existing stack objects reside at fixed offsets from the frame pointer (%&bp).
Dynamic allocation preserves those offsets, because the frame pointer does not
change and the objects relative to it do not move. Objects relative to the stack
pointer (%esp) move, but their ¥Yesp-relative positions do not change. Accord-
ingly, compilers arrange not to publicize the absolute address of any object in the
bottom half of the stack frame (in a way that violates the scope rules). %esp-
relative references stay valid after dynamic allocation, but absolute addresses do
not.

No special code is needed to free dynamically allocated stack memory. The func-
tion return resets the stack pointer and removes the entire stack frame, including
the heap, from the stack. Naturally, a program should not reference heap objects
after they have gone out of scope.

3-46 LOW-LEVEL SYSTEM INFORMATION

DRAFT COPY
March 19, 1997
File: abi_386/chap3 (Delta 44.6)
386:adm.book:sum

Page: 72

4 OBJECT FILES

ELF Header 4-1
Machine Information 4-1
Sections 4-2
Special Sections 4-2
Symbol Table 4-3
Symbol Values 4-3
Relocation 4-4
Relocation Types 4-4

Table of Contents

DRAFT COPY
March 19, 1997
File: abi_386/Cchap4 (Delta 44.3)
386:adm.book:sum

Page: 73

ELF Header

Machine Information

For file identification in e_i dent , the Intel386 architecture requires the following
values.

Figure 4-1: Intel386 Identification, e_i dent

Position Value
e ident[Bl _CQLASS] UHE.FOLASS32

e ident[El _DATA] BELFDATAZLSB

Processor identification resides in the ELF header’s e_nachi ne member and must
have the value EM 386.

The ELF header’s e_f | ags member holds bit flags associated with the file. The
Intel386 architecture defines no flags; so this member contains zero.

ELF Header 4-1

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 74

Sections

Special Sections

Various sections hold program and control information. Sections in the list below
are used by the system and have the indicated types and attributes.

Figure 4-2: Special Sections

Name Type Attributes
.got USHT PROGBITS USHF ALLOC+SHF WRI TE
plt ESI—IT_PR(IEBI TS ES!—F_ALL(I} SHE_EXEQ NSTR

. got This section holds the global offset table. See “Coding Examples”
in Chapter 3 and ““Global Offset Table’ in Chapter 5 for more
information.

.plt This section holds the procedure linkage table. See ““Procedure

Linkage Table” in Chapter 5 for more information.

4-2 OBJECT FILES

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 75

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associ-
ated shared objects, the symbol table section for that file will contain an entry for
that symbol. The st _shndx member of that symbol table entry contains
SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been allo-
cated a procedure linkage table entry in the executable file, and the st _val ue
member for that symbol table entry is non-zero, the value will contain the virtual
address of the first instruction of that procedure linkage table entry. Otherwise,
the st _val ue member contains zero. This procedure linkage table entry address
is used by the dynamic linker in resolving references to the address of the func-
tion. See ““Function Addresses” in Chapter 5 for details.

Symbol Table 4-3

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 76

Relocation

Relocation Types

Relocation entries describe how to alter the following instruction and data fields
(bit numbers appear in the lower box corners).

Figure 4-3: Relocatable Fields

word32

31 0

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary byte
alignment. These values use the same byte order as other word
values in the Intel386 architecture.

0x01020304 01 02 03 04

31 0

Calculations below assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are similar
and accomplish the same result. Descriptions below use the following notation.

A This means the addend used to compute the value of the relocatable field.

B This means the base address at which a shared object has been loaded into
memory during execution. Generally, a shared object file is built with a 0
base virtual address, but the execution address will be different. See “‘Pro-
gram Header” in the System V ABI for more information about the base
address.

G This means the offset into the global offset table at which the address of
the relocation entry’s symbol will reside during execution. See ““Coding
Examples’ in Chapter 3 and ““Global Offset Table” in Chapter 5 for more
information.

4-4 OBJECT FILES

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 77

Qor This means the address of the global offset table. See ‘““Coding Examples”
in Chapter 3 and ““Global Offset Table” in Chapter 5 for more information.

L This means the place (section offset or address) of the procedure linkage
table entry for a symbol. A procedure linkage table entry redirects a func-
tion call to the proper destination. The link editor builds the initial pro-
cedure linkage table, and the dynamic linker modifies the entries during
execution. See “‘Procedure Linkage Table” in Chapter 5 for more informa-

tion.

P This means the place (section offset or address) of the storage unit being
relocated (computed using r _of f set).

S This means the value of the symbol whose index resides in the relocation
entry.

A relocation entry’s r _of f set value designates the offset or virtual address of the
first byte of the affected storage unit. The relocation type specifies which bits to
change and how to calculate their values. The Intel386 architecture uses only

H f 32_Rel relocation entries, the field to be relocated holds the addend. In all
cases, the addend and the computed result use the same byte order.

Figure 4-4. Relocation Types

Name Value Field Calculation
R 386 _NONE 0O 0 Unone Unone
R 386_32 B 1 Bword32 Bs + A
R 386_PC32 0 2 word2 [S+A- P
R 386_QOT32 0 3 [word32 oG+ A- P
R 386_PLT32 0 4 DOword32 OL +A- P
R 386_QCPY 0O 5 Unone Unone
R 386_Q.CB DAT B 6 Hword32 Bs
R386_JW SLOT [7 word32 S
R 386 RELATIVE [8 [word32 B + A
R386 GOTCFF O 9 [Oword32 OS + A - GOT
R 386_GOTPC E 10 EwordSZ Eeor +A-P

Some relocation types have semantics beyond simple calculation.

R 386_Q0r32 This relocation type computes the distance from the base of
the global offset table to the symbol’s global offset table entry.
It additionally instructs the link editor to build a global offset
table.

Relocation 4-5

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 78

R 386_PLT32

R 386_COPY

R 386_GLCB_DAT

R 386_JMP_SLOT

R 386_RELATI VE

R 386_GOTCFF

R 386_GOTPC

This relocation type computes the address of the symbol’s
procedure linkage table entry and additionally instructs the
link editor to build a procedure linkage table.

The link editor creates this relocation type for dynamic link-
ing. Its offset member refers to a location in a writable seg-
ment. The symbol table index specifies a symbol that should
exist both in the current object file and in a shared object.
During execution, the dynamic linker copies data associated
with the shared object’s symbol to the location specified by
the offset.

This relocation type is used to set a global offset table entry to
the address of the specified symbol. The special relocation
type allows one to determine the correspondence between
symbols and global offset table entries.

The link editor creates this relocation type for dynamic link-
ing. Its offset member gives the location of a procedure link-
age table entry. The dynamic linker modifies the procedure
linkage table entry to transfer control to the designated
symbol’s address [see “‘Procedure Linkage Table” in Chapter
5].

The link editor creates this relocation type for dynamic link-
ing. Its offset member gives a location within a shared object
that contains a value representing a relative address. The
dynamic linker computes the corresponding virtual address
by adding the virtual address at which the shared object was
loaded to the relative address. Relocation entries for this type
must specify 0 for the symbol table index.

This relocation type computes the difference between a
symbol’s value and the address of the global offset table. It
additionally instructs the link editor to build the global offset
table.

This relocation type resembles R _386_PC32, except it uses the
address of the global offset table in its calculation. The sym-
bol referenced in this relocation normally is
_A.BAL_CFFSET_TABLE , which additionally instructs the
link editor to build the global offset table.

OBJECT FILES

DRAFT COPY
March 19, 1997
File: abi_386/chap4 (Delta 44.3)
386:adm.book:sum

Page: 79

5 PROGRAM LOADING AND
DYNAMIC LINKING

Program Loading 5-1
Dynamic Linking 5-5
Dynamic Section 5-5
Global Offset Table 5-5
Function Addresses 5-6
Procedure Linkage Table 5-7
Program Interpreter 5-10

Table of Contents i

DRAFT COPY
March 19, 1997
File: abi_386/Cchap5 (Delta 44.3)
386:adm.book:sum

Page: 80

Program Loading

As the system creates or augments a process image, it logically copies a file’s seg-
ment to a virtual memory segment. When—and if—the system physically reads
the file depends on the program’s execution behavior, system load, and so on. A
process does not require a physical page unless it references the logical page dur-
ing execution, and processes commonly leave many pages unreferenced. There-
fore delaying physical reads frequently obviates them, improving system perfor-
mance. To obtain this efficiency in practice, executable and shared object files
must have segment images whose file offsets and virtual addresses are congruent,
modulo the page size.

Virtual addresses and file offsets for the Intel386 architecture segments are
congruent modulo 4 KB (0x1000) or larger powers of 2. Because 4 KB is the max-
imum page size, the files will be suitable for paging regardless of physical page
size.

Figure 5-1: Executable File

File Offset File Virtual Address
o U ELF header g
Program header table [
O Other information O

0x100 E Text segment HOX8048100
O A O
0 0x2be0O0 bytes 10x8073ef f
0x2bf 00 B Data segment EOX8074f 00
E 0x4e00 bytes H0x80790ff
0x30d00 [0 Other information 0
H - H
Program Loading 5-1

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 81

Figure 5-2: Program Header Segments

Member Text Data

ptype U PT LoD U PT_LQAD
p_of f set g 0x100 g 0x2bf 00
p_vaddr 5 0x8048100 [0x8074f 00
p_paddr [junspecified unspecified
pfilesz O 0x2be00 O 0x4e00
p_mensz U 0x2be00 U 0x5e24
p_flags CPF R+PF X EPF_R+ PFE_ WA PE_X
p_align A 0x1000 A 0x1000

Although the example’s file offsets and virtual addresses are congruent modulo
4 KB for both text and data, up to four file pages hold impure text or data
(depending on page size and file system block size).

m The first text page contains the ELF header, the program header table, and
other information.

m The last text page holds a copy of the beginning of data.
m The first data page has a copy of the end of text.

m The last data page may contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if each segment were
complete and separate; segments’ addresses are adjusted to ensure each logical
page in the address space has a single set of permissions. In the example above,
the region of the file holding the end of text and the beginning of data will be
mapped twice: at one virtual address for text and at a different virtual address for
data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus if a file’s last data page
includes information not in the logical memory page, the extraneous data must be
set to zero, not the unknown contents of the executable file. “Impurities” in the
other three pages are not logically part of the process image; whether the system
expunges them is unspecified. The memory image for this program follows,
assuming 4 KB (0x1000) pages.

5-2 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 82

Figure 5-3: Process Image Segments

Virtual Address Contents Segment

0x8048000 T Header padding =

O O

1 0x100 bytes 0
0x8048100 0O Text segment g

O O

0 0

0 0 Text

O O

0 Ox2be00 bytes
0x8073f00 U Datapadding U

H 0x100 bytes E
0x8074000 B Text padding E

o 0xf 00 bytes 0
0x8074f 00 [Datasegment

0 0

O O

B E Data

1 0x4e00 bytes
0x8079d00 OUninitialized data [

UJ0x1024 zero bytes E
0x807ad24 E Page padding 0

] 0x2dc zero bytes

One aspect of segment loading differs between executable files and shared objects.
Executable file segments typically contain absolute code (see ‘““Coding Examples”
in Chapter 3). To let the process execute correctly, the segments must reside at the
virtual addresses used to build the executable file. Thus the system uses the
p_vaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent
code. This lets a segment’s virtual address change from one process to another,
without invalidating execution behavior. Though the system chooses virtual
addresses for individual processes, it maintains the segments’ relative positions.
Because position-independent code uses relative addressing between segments,
the difference between virtual addresses in memory must match the difference
between virtual addresses in the file. The following table shows possible shared
object virtual address assignments for several processes, illustrating constant rela-
tive positioning. The table also illustrates the base address computations.

Program Loading 5-3

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 83

Figure 5-4: Example Shared Object Segment Addresses

Source Text Data Base Address
File 0 0x200 U 0x2a400 U 0x0
Process 1 B0x80000200 50x8002a400 gowooooooo

Process 2 70x80081200 0x800ab400 5 0x80081000
Process 3 [0x900c0200 [0x900ea400 7 0x900c0000
Process 4 H0x900c6200 H0x900f 0400 H 0x900c6000

5-4 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 84

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in
the dynamic structure.

DI_PLTQOT On the Intel386 architecture, this entry’s d_pt r member gives the
address of the first entry in the global offset table. As mentioned
below, the first three global offset table entries are reserved, and
two are used to hold procedure linkage table information.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and shara-
bility of a program’s text. A program references its global offset table using
position-independent addressing and extracts absolute values, thus redirecting
position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation
entries [see ‘‘Relocation” in Chapter 4]. After the system creates memory seg-
ments for a loadable object file, the dynamic linker processes the relocation entries,
some of which will be type R_386_G_CB_DAT referring to the global offset table.
The dynamic linker determines the associated symbol values, calculates their
absolute addresses, and sets the appropriate memory table entries to the proper
values. Although the absolute addresses are unknown when the link editor builds
an object file, the dynamic linker knows the addresses of all memory segments
and can thus calculate the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that sym-
bol will have a global offset table entry. Because the executable file and shared
objects have separate global offset tables, a symbol’s address may appear in
several tables. The dynamic linker processes all the global offset table relocations
before giving control to any code in the process image, thus ensuring the absolute
addresses are available during execution.

Dynamic Linking 5-5

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 85

The table’s entry zero is reserved to hold the address of the dynamic structure,
referenced with the symbol _DYNAM C. This allows a program, such as the
dynamic linker, to find its own dynamic structure without having yet processed
its relocation entries. This is especially important for the dynamic linker, because
it must initialize itself without relying on other programs to relocate its memory
image. On the Intel386 architecture, entries one and two in the global offset table
also are reserved. “‘Procedure Linkage Table’ below describes them.

The system may choose different memory segment addresses for the same shared
object in different programs; it may even choose different library addresses for dif-
ferent executions of the same program. Nonetheless, memory segments do not
change addresses once the process image is established. As long as a process
exists, its memory segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor-specific. For the
Intel386 architecture, the symbol _Q.OBAL_CFFSET_TABLE may be used to access
the table.

Figure 5-5: Global Offset Table

extern Hf32_Addr _Q.OBAL_CFFSET_TABLE [];

The symbol G.CBAL_CFFSET _TABLE may reside in the middle of the . got sec-
tion, allowing both negative and non-negative “‘subscripts’ into the array of
addresses.

Function Addresses

References to the address of a function from an executable file and the shared
objects associated with it might not resolve to the same value. References from
within shared objects will normally be resolved by the dynamic linker to the vir-
tual address of the function itself. References from within the executable file to a
function defined in a shared object will normally be resolved by the link editor to
the address of the procedure linkage table entry for that function within the exe-
cutable file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the link editor will place the
address of the procedure linkage table entry for that function in its associated
symbol table entry. [See “Symbol Values’ in Chapter 4]. The dynamic linker

5-6 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 86

treats such symbol table entries specially. If the dynamic linker is searching for a
symbol, and encounters a symbol table entry for that symbol in the executable file,
it normally follows the rules below.

1. If the st _shndx member of the symbol table entry is not SHN_UNDEF, the
dynamic linker has found a definition for the symbol and uses its st _val ue
member as the symbol’s address.

2. Ifthe st _shndx member is SHN UNDEF and the symbol is of type STT_FUNC
and the st _val ue member is not zero, the dynamic linker recognizes this
entry as special and uses the st _val ue member as the symbol’s address.

3. Otherwise, the dynamic linker considers the symbol to be undefined within
the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These
entries are used for direct function calls rather than for references to function
addresses. These relocations are not treated in the special way described above
because the dynamic linker must not redirect procedure linkage table entries to
point to themselves.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations
to absolute locations, the procedure linkage table redirects position-independent
function calls to absolute locations. The link editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to another.
Consequently, the link editor arranges to have the program transfer control to
entries in the procedure linkage table. On the Intel386 architecture, procedure
linkage tables reside in shared text, but they use addresses in the private global
offset table. The dynamic linker determines the destinations’ absolute addresses
and modifies the global offset table’s memory image accordingly. The dynamic
linker thus can redirect the entries without compromising the position-
independence and sharability of the program’s text. Executable files and shared
object files have separate procedure linkage tables.

Dynamic Linking 5-7

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 87

Figure 5-6: Absolute Procedure Linkage Table

. PLTO: pushl got plus 4
jnp *got_plus_8
nop; nop
nop; nop
.PLTL: jnp *namel_in_GOT
pushl $offset
j mp . PLTO@C
.PLT2: jnp *name2_in_GOT
pushl $offset
j mp . PLTO@C

Figure 5-7: Position-Independent Procedure Linkage Table

. PLTO: pushl 4(%bx)
jnp *8(%ebx)
nop; nop
nop; nop
.PLTL: jnp * nane 1 @30T (Yebx)
pushl $offset
jnp . PLTO@C
.PLT2: jnp * nane2 @30T (Yebx)
pushl $offset
jnp . PLTO@C

5-8 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 88

NOTE

As the figures show, the procedure linkage table instructions use different
operand addressing modes for absolute code and for position-independent
code. Nonetheless, their interfaces to the dynamic linker are the same.

Following the steps below, the dynamic linker and the program ‘“‘cooperate’ to
resolve symbolic references through the procedure linkage table and the global
offset table.

1.

When first creating the memory image of the program, the dynamic linker
sets the second and the third entries in the global offset table to special
values. Steps below explain more about these values.

If the procedure linkage table is position-independent, the address of the
global offset table must reside in %ebx. Each shared object file in the pro-
cess image has its own procedure linkage table, and control transfers to a
procedure linkage table entry only from within the same object file. Conse-
quently, the calling function is responsible for setting the global offset table
base register before calling the procedure linkage table entry.

For illustration, assume the program calls nanmel, which transfers control to
the label . PLT1.

. The first instruction jumps to the address in the global offset table entry for

nanel. Initially, the global offset table holds the address of the following
pushl instruction, not the real address of narel.

. Consequently, the program pushes a relocation offset (offset) on the stack.

The relocation offset is a 32-bit, non-negative byte offset into the relocation
table. The designated relocation entry will have type R 386_JMP_SLOT,
and its offset will specify the global offset table entry used in the previous
j np instruction. The relocation entry also contains a symbol table index,
thus telling the dynamic linker what symbol is being referenced, nanel in
this case.

. After pushing the relocation offset, the program then jumps to . PLTO, the

first entry in the procedure linkage table. The pushl instruction places the
value of the second global offset table entry (got_plus_4 or 4(%ebx)) on the
stack, thus giving the dynamic linker one word of identifying information.
The program then jumps to the address in the third global offset table entry
(got_plus_8 or 8(%ebx)), which transfers control to the dynamic linker.

. When the dynamic linker receives control, it unwinds the stack, looks at the

designated relocation entry, finds the symbol’s value, stores the *‘real”
address for nanel in its global offset table entry, and transfers control to the
desired destination.

Dynamic Linking 5-9

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 89

8. Subsequent executions of the procedure linkage table entry will transfer
directly to nanel, without calling the dynamic linker a second time. That
is, the j np instruction at. PLT1 will transfer to nanel, instead of ““falling
through’ to the pushl instruction.

The LD _BI ND_NOMNenvironment variable can change dynamic linking behavior. If
its value is non-null, the dynamic linker evaluates procedure linkage table entries
before transferring control to the program. That is, the dynamic linker processes
relocation entries of type R_386_JMP_SL OT during process initialization. Other-
wise, the dynamic linker evaluates procedure linkage table entries lazily, delaying
symbol resolution and relocation until the first execution of a table entry.

Lazy binding generally improves overall application performance, because
NOTE | unused symbols do not incur the dynamic linking overhead. Nevertheless,
two situations make lazy binding undesirable for some applications. First, the
initial reference to a shared object function takes longer than subsequent
calls, because the dynamic linker intercepts the call to resolve the symbol.
Some applications cannot tolerate this unpredictability. Second, if an error
occurs and the dynamic linker cannot resolve the symbol, the dynamic linker
will terminate the program. Under lazy binding, this might occur at arbitrary
times. Once again, some applications cannot tolerate this unpredictability. By
turning off lazy binding, the dynamic linker forces the failure to occur during
process initialization, before the application receives control.

Program Interpreter

There is one valid program interpreter for programs conforming to the Intel386
ABI:

fusr/lib/libc.so.1

5-10 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 19, 1997
File: abi_386/chap5 (Delta 44.3)
386:adm.book:sum

Page: 90

LIBRARIES

Shared Library Names 6-1
C Library 6-2
Additional Entry Points 6-2
Support Routines 6-3
Global Data Symbols 6-4

m Application Constraints 6-4
System Data Interfaces 6-5
Data Definitions 6-5

m Reentrancy Considerations 6-5
X Window Data Definitions 6-127
Motif 1.2 Data Definitions 6-192
TCP/IP Data Definitions 6-269

Table of Contents

DRAFT COPY
March 19, 1997

File: abi_386/Cchap6 (Delta 44.4)
386:adm.book:sum

Page: 91

Shared Library Names

The version number of the libraries named in the System V Generic ABI is specified
below.

Figure 6-1: Shared Library Names

Library Reference Name
libc.so. 1

l'i bthread. so. 1
libdl.so.1
libnsl.so.1
libX11l.s0.5.0
libXt.so0.5.0

i bXext.so0.5.0
libXmso.1.2
libMmso. 1.2

Shared Library Names 6-1

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 92

<L

LI <L

C Library

Additional Entry Points

The following routines are included in the libc library to provide entry points for
the required source-level interface listed in the System V ABI. A description and
syntax symmary for each function follows the table.

Figure 6-2: | i bc Additional Required Entry Points

_fxstat _Ixstat _xnknod _xstat nuname
_nunarre

int fxstat(int, int, struct stat *);
The semantics of this function are identical to those of the
f st at (BA_OS) function described in the System V Interface
Definition, Edition 4. Its only difference is that it requires an extra
first argument whose value must be 2.

int _Ixstat(int, char *, struct stat *);
The semantics of this function are identical to those of the
| st at (BA_OS) function described in the System V Interface
Definition, Edition 4. Its only difference is that it requires an extra
first argument whose value must be 2.

int nunane(struct utsnane *);
The semantics and syntax of this function are identical to those of
the uname(BA_OS) function described in the System V Interface
Definition, Edition 4. The symbol _nunane is also available with
the same semantics.

int _xnmknod(int, char *, nmode_t, dev_t);
The semantics of this function are identical to those of the
nmknod(BA_OS) function described in the System V Interface
Definition, Edition 4. Its only difference is that it requires an extra
first argument whose value must be 2.

int xstat(int, char *, struct stat *);
The semantics of this function are identical to those of the
st at (BA_OS) function described in the System V Interface

6-2 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 93

Definition, Edition 4. Its only difference is that it requires an extra
first argument whose value must be 2.

Support Routines

Besides operating system services, libc contains the following processor-specific
support routines.

Figure 6-3: | i bc, Support Routines
fpstart sbrk _sbrk

_fpstart

char *sbrk(int incr);
This function adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in which case
the amount of allocated space is decreased. The break value is the
address of the first allocation beyond the end of the data segment.
The amount of allocated space increases as the break value
increases. Newly allocated space is set to zero. If, however, the
same memory space is reallocated to the same process, its con-
tents are undefined. Upon successful completion, sbr k returns
the old break value. Otherwise, it returns - 1 and sets err no to
indicate the error. The symbol _sbr k is also available with the
same semantics.

void _ fpstart(void);
This function calls_f pstart (), to initialize the floating-point
environment.

void fpstart(void);
This function initializes the floating-point execution environment.
It sets _fp_hw to the appropriate value. It sets the rounding mode
to “‘nearest.” It also resets the Intel387 control word to the default
state.

C Library 6-3

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 94

Global Data Symbols

The li be library requires that some globel external data objects be defined for the
routines to work properly. In addition to the corresponding data symbols listed in
the System V ABI, the following symbols must be provided in the system library
on all ABI-conforming systems implemented with the Intel386 architecture.
Declarations for the data objects listed below can be found in the Data Definitions
section of this chapter or immediately following the table.

Figure 6-4: | i bc, Global External Data Symbols

__flt rounds _fp hw _ huge val

externint fp hw
This variable describes the floating-point hardware available. If
the value is zero, no floating-point support is present. If the value
is 1, the floating-point support is provided by an Intel387 software
emulator. If the value is 2, an 80287 chip is available. If the value
is 3, an Intel387 chip is available. System software sets the value
appropriately, before transferring control to nai n.

Application Constraints

As described above, | i bc provides symbols for applications. In a few cases, how-
ever, an application is obliged to provide symbols for the library. In addition to
the application-provided symbols listed in this section of the System VV ABI, con-
forming applications on the Intel386 architecture are also required to provide the
following symbols.

extern _end;
This symbol refers neither to a routine nor to a location with
interesting contents. Instead, its address must correspond to the
beginning of a program’s dynamic allocation area, called the
heap. Typically, the heap begins immediately after the data seg-
ment of the program’s executable file.

extern const int _|ib version;
This variable’s value specifies the compilation and execution
mode for the program. If the value is zero, the program wants to
preserve the semantics of older (pre-ANSI) C, where conflicts
exist with ANSI. Otherwise, the value is non-zero, and the pro-
gram wants ANSI C semantics.

6-4 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 95

M

System Data Interfaces

Data Definitions

This section contains standard data definitions that describe system data. These
files are referred to by their names in angle brackets: <name.h>and <sys/name.h>.
Included in these data definitions are macro definitions and data definitions.

The data objects described in this section are part of the interface between an ABI-
conforming application and the underlying ABI-conforming system where it will
run. While an ABI-conforming system must provide these interfaces, it is not
required to contain the actual data definitions referenced here. Programmers
should observe that the sources of the structures defined in these data definitions
are defined in SVID.

ANSI C serves as the ABI reference programming language, and data definitions
are specificed in ANSI C format. The C language is used here as a convenient
notation. Using a C language description of these data objects does not preclude
their use by other programming languages.

Reentrancy Considerations

New conventions have been added to accomodate the new requirements of reen-
trancy. Some historic binary code sequences are inherently non-reentrant. Unless
great care is taken, multi-threaded applications cannot safely use such sequences.
The most portable (i.e. those guaranteed to work in all cases) are those that are
marked as reentrant in this chapter. For the ABI, this sometimes requires that two
definitions exist for these interfaces, one that is reentrant and one that is not.
These are indicated by comments that define which of the alternate definitions is
reentrant. These alternatives are not selected at run-time, but are intended to be
bound at application build time.

All information presented in the figures marked with * are new to the Fourth M
NoTE | Edition of the psABI.

System Data Interfaces 6-5

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 96

<

L L

Figure 6-5: <ai 0. h>*

struct aioch {

i nt aio_fildes;
vol atil e void* aio_buf;
size_t ai o_nbyt es;
of f _t ai o_offset;

i nt ai o_reqpri o;
struct sigevent aio_sigevent;
i nt ai o_| i o_opcode;
ssize_t ;

int ;

int ;

voi d ;

i nt

1

#define AlO CANCELED (0)
#define Al O ALLDONE (1)
#def i ne Al O NOTCANCELED (2)

#define LIO NOM T (0)
#define LIOWAT (1)
#define LI O NCP (0)
#define LI O READ (1)
#define LIOWR TE (2)

Figure 6-6: <assert. h>

extern void __assert(const char *, const char *, int);

#define assert (EX) (void)((EX)||(__assert(#EX, __FILE _,

__LINE_), 0)

6-6

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 97

LIBRARIES

Figure 6-7: <ctype. h>

#define U 01

#define _L 02

#define N 04

#define _S 010

#define P 020

#define _C 040

#define B 0100

#define _X 0200

extern unsi gned char __ctype[];

#define isalpha(c) ((__ctype+tl)[c]& U L))
#define isupper(c) ((__ctype+tl)[c]& U

#define islower(c) ((__ctype+l)[c]& L)

#define isdigit(c) ((__ctypetl)[c]&N

#define isxdigit(c) ((__ctype+tl)[c]& X

#define isalnun{c) ((__ctype+tl)[c]& U L|_N)
#define isspace(c) ((__ctype+tl)[c]& 9

#define ispunct(c) ((__ctype+l)[c]& P)

#define isprint(c) ((__ctypetl)[c]& P _U L _N_B))
#define isgraph(c) ((__ctypet])[c]& P _U _L|_N)
#define iscntrl(c) ((__ctype+tl)[c]& O

#define isascii(c) (!((c)&0177))

#define _toupper(c) ((__ctype+258)[c])

#define _tolower(c) ((__ctype+258)[c])

#define toascii(c) ((c)&177)

The data definitions in ctype.h are moved to Level 2 as of January 1, 1993.
In order to correctly function in an internationalized environment, applica-
tions are encouraged to use the functions in libc instead.

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 98

M

6-7

Figure 6-8: <dirent. h>

typedef struct {

i nt dd_f d;
i nt dd_l oc;
i nt dd_si ze;
char *dd_buf ;
} DR
struct dirent {
i no_t d_i no;
of f _t d off;
unsi gned short d_recl en;
char d_name[1] ;

Figure 6-9: <dl fcn. h>*

#def i ne RTLD_LAZY 1
#def i ne RTLD _NOW 2
#defi ne RTLD_Q.CBAL 4

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 99

LIBRARIES

Figure 6-10: <elf.h>* Part 1 of 6
#defi ne ELF32_FSZ ADDR 4
#defi ne ELF32_FSZ HALF 2
#defi ne ELF32_FSZ CFF 4
#define ELF32_FSZ SWRD 4
#defi ne ELF32_FSZ WIRD 4
#define El _N DENT 16
typedef struct {
unsi gned char e_i dent [El _N DENT] ;
Bf32 Half e type;
B f32_Hal f e_nachi ne;
Bf32 Wrd e _version;
B f32_Addr e entry;
Bf32 Of e_phof f;
Bf32 Of e_shof f;
Bf32 Wrd e flags;
B f32_Hal f e_ehsi ze;
Bf32 Half e _phent si ze;
B f32_Hal f e_phnum
B f32_Hal f e_shent si ze;
B f32_Hal f e_shnum
B f32_Hal f e_shst rndx;
} Hf32_Ehdr;
#def i ne ELFMAQD Ox7f
#def i ne ELFVAGL =
#def i ne ELFVAR L
#def i ne ELFVMAG3 'F
#def i ne ELFMAG "\ 177ELF"
#def i ne SELFMAG 4
System Data Interfaces 6-9
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 100

Figure 6-11: <elf.h>* Part 2 of 6

#defi ne El _MAQD
#defi ne El _NMAGL
#defi ne El _NMAR
#define El _MAG
#define Bl _CLASS
#def i ne El _DATA
#define Bl _VERSI ON
#defi ne Bl _PAD

NOoO b~ wWNEO

#def i ne ELFCLASSNONE
#def i ne ELFOLASS32
#def i ne ELFOLASS64
#def i ne ELFCLASSNUM
#def i ne ELFDATANONE
#def i ne ELFDATA2LSB
#def i ne ELFDATA2NMBB
#def i ne ELFDATANUM

WNPFPOWNPEFO

#defi ne ET_NONE
#define ET_REL
#defi ne ET_EXEC
#defi ne ET_DYN
#defi ne ET_CCRE
#defi ne ET_NUM

#def i ne ET_LCPRCC 0oxf f 00
#def i ne ET_H PRCC Oxffff

#defi ne EM NONE
#def i ne EM MB2
#defi ne EM SPARC
#def i ne EM 386
#def i ne EM 68K
#def i ne EM 88K
#def i ne EM 486
#def i ne EM 860
#defi ne EM NUM

O~NO OIS WNEFEO

6-10 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 101

Figure 6-12: <elf.h>* Part 3 of 6

#def i ne
#def i ne
#def i ne

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

#def i ne
#def i ne

#def i ne
#def i ne
#def i ne

#def i ne

EV_NONE 0
EV_CURRENT 1
EV_NUM 2

typedef struct {
B f32 Wrd _type;
Bf32 Of p_of fset;
B f32_Addr p_vaddr;
B f32_Addr p_paddr;
Bf32 Wrd p filesz;
Bf32 Wrd p_nensz;
Bf32 Wrd p_flags;
Bf32 VWrd p_align;

} Bf32 |

Phdr ;

PT_NULL
PT_LQAD
PT_DYNAM C
PT_| NTERP
PT_NOTE
PT_SH.IB
PT_PHDR
PT_NUM

~NOoO oA~ WNEO

PT_LCPROC 0x70000000
PT_HPROC Ox7fffffff

PF R Ox4
PE W 0x2
PF_X ox1
PF_MASKPROC 0xf 0000000

System Data Interfaces

DRAFT COPY
March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 102

6-11

Figure 6-13: <el f. h>*

Part 4 of 6

typedef struct {
Bf32_ Wrd sh_nare;
Hf32 Wrd sh_type;
Bf32 Wrd sh_flags;
B f32_Addr sh_addr;
Bf32 Of sh_of f set;
Bf32 Wrd sh_size;
Bf32 Wrd sh_link;
Bf32 Wrd sh_info;
Bf32 Wrd sh_addralign;
Bf32_ Wrd sh_entsize;
} Hf32_Shdr;
#defi ne SHT_NULL 0
#def i ne SHT_PROEBI TS 1
#def i ne SHT_SYMIAB 2
#def i ne SHT_STRTAB 3
#def i ne SHT_RELA 4
#def i ne SHT HASH 5
#def i ne SHT_DYNAM C 6
#def i ne SHT_NOTE 7
#defi ne SHT _NCBI TS 8
#defi ne SHT REL 9
#define SHT_SH.I B 10
#def i ne SHT_DYNSYM 11
#def i ne SHT_NUM 12
#def i ne SHT_LQUSER 0x80000000
#define SHT_H USER Oxffffffff
#defi ne SHT_LCPROC ~ 0x70000000
#defi ne SHT HPROC Ox7fffffff
#def i ne SHF_MASKPROC Oxf 0000000
#defi ne SHF_WR TE 0x1
#define SHF_ALLCC 0x2
#defi ne SH-_EXEQ NSTR 0x4
6-12 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 103

Figure 6-14: <el f.h>* Part 5 of 6
#defi ne SHN UNDEF 0
#def i ne SHN_LORESERVE oxf f 00
#defi ne SHN_ABS Oxfffl
#def i ne SHN_COMMON Oxfff2
#def i ne SHN_H RESERVE Oxffff
#defi ne SHN LOPROC oxf f 00
#define SHN H PROC Oxf f 1f
typedef struct {
E f32 Wrd st _nane;
E f32_Addr st _val ue;
E f32 Wrd st _si ze;
unsi gned char st _info;
unsi gned char st _ot her;
B f32_Hal f st _shndx;
} Bf32_Sym
#define STN UNDEF O
#defi ne ELF32_ST_BI ND(i nf 0) ((info) >> 4)
#def i ne ELF32_ST_TYPE(i nf 0) ((info) & Oxf)
#define ELF32_ST | NFQ(bi nd, type) (((bi nd)<<4)+((type)&0xf))
#define STB LOCAL O
#define STB ACBAL 1
#def i ne STB_WEAK 2
#def i ne STB_NUM 3
#define STB LOPROC 13
#define STB H PROC 15

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 104

6-13

Figure 6-15: <el f.h>* Part 6 of 6

#define STT_NOTYPE O
#define STT_CBIJECT 1
#defi ne STT_FUNC 2
#define STT_SECTION3
#define STT_FILE 4
#define STT_NUM 5
#define STT_LCPROC 13
#define STT_H PROC 15

typedef struct {
B f 32_Addr r_offset;
Bf32_Wrd r_info;

} Bf32_Rel;

typedef struct {
B f 32_Addr r_offset;
Bf32_Wrd r_info;
B f32_Sword r_addend;
} Bf32_Rel g

#defi ne ELF32_R SYMi nfo) ((info)>>8)
#def i ne ELF32_R TYPE(i nfo) ((unsigned char) (i nfo))

#tdefi ne ELF32_ R INFQ'symtype) (((sym) <<8)+(unsi gned char) (type))

6-14

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 105

LIBRARIES

Figure 6-16: <errno. h>, Part 1 of 3

#def i ne EPERM 1
#def i ne ENCENT 2
#def i ne ESRCH 3
#defi ne EI NTR 4
#define H O 5
#define ENXI O 6
#defi ne E2BI G 7
#def i ne ENCEXEC 8
#def i ne EBADF 9
#defi ne ECH LD 10
#defi ne EAGAIN 11
#def i ne ENQVEM 12
#def i ne EACCES 13
#defi ne BEFAULT 14
#def i ne ENOTBLK 15
#def i ne EBUSY 16
#defi ne EEXI ST 17
#def i ne EXDEV 18
#def i ne ENCDEV 19
#defi ne ENOTD R 20
#define B SD R 21
#def i ne Bl NVAL 22
#defi ne ENFI LE 23
#def i ne BEMFI LE 24
#def i ne ENOITY 25
#def i ne ETXTBSY 26
#defi ne EFBI G 27
System Data Interfaces 6-15

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 106

Figure 6-17: <errno. h>, Part 2 of 3

#def i ne ENCSPC 28
#defi ne ESPI PE 29
#defi ne ERCFS 30
#defi ne EM.I NK 31
#defi ne EPI PE 32
#def i ne EDOM 33
#def i ne ERANCE 34
#def i ne ENOVBG 35
#defi ne E DRM 36
#defi ne ECHRNG 37
#defi ne EL2NSYNC 38
#define EL3H.T 39
#defi ne EL3RST 40
#defi ne ELNRNG 41
#def i ne EUNATCH 42
#def i ne ENCCSI 43
#define EL2H.T 44
#def i ne EDEADLK 45
#defi ne ENOLCK 46
#def i ne ENCSTR 60
#def i ne ENCDATA 61
#defi ne ETI ME 62
#defi ne ENCSR 63
#defi ne ENONET 64
#def i ne ENCPKG 65
#def i ne EREMOTE 66
#defi ne ENCLI NK 67
6-16 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 107

Figure 6-18: <errno. h>, Part 3 of 3

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

EADV

ESRWNT
ECOW
EPROTO
EMLLTI HOP
EBADVSG
ENAMETCCLONG
EOVERFLOW
ENOTUN Q
EBADFD
EREMCHG
ENCBYS

ELCCP
ERESTART
ESTRPI PE
ENOTEMPTY
EUSERS
ECONNABCRTED
CONNRESET
ECONNREFUSED
El NPROGRESS
ESTALE
ECANCELED

/* Non-reentrant */
extern int errno;

/* Reentrant */
#define errno

68
69
70
71
74
77
78
79
80
81
82
89
90
91
92
93
94
130
131

150
151
158

(*_thr_errno())

146

System Data Interfaces

DRAFT COPY
March 19, 1997

File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 108

£ £ £ 2006

Figure 6-19: <fcnt!l. h>, Part 1 of 2

#define O RDOLY 0
#defi ne O WRO\LY 1
#defi ne O RDAR 2
#defi ne O_NDELAY 0x04
#defi ne O APPEND 0x08
#define O SYNC 0x10
#defi ne O_NCNBLOCK 0x80
#defi ne O CREAT 0x100
#define O TRUNC 0x200
#define O EXCL 0x400
#defi ne O_NCCTTY 0x800
#defi ne F_DUPFD 0
#define F_CETFD 1
#defi ne F_SETFD 2
#define F_CGETFL 3
#define F_SETFL 4
#define F_CETLK 14
#define F_SETLK 6
#defi ne F_SETLKW 7

6-18

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 109

LIBRARIES

Figure 6-20: <fcntl. h>, Part 2 of 2

short
short
of f t
of f t
| ong
pidt
| ong
} flock t;

typedef struct flock {

| _type;
| _whence;
| start;

| len;

| _sysid,;

| _pid;
pad[4] ;

#define F_ ROLCK 01
#define F_WRLCK 02
#define F_UNLCK 03

#defi ne O ACCMDE 3
#defi ne FD CLCEXEC 1

System Data Interfaces

DRAFT COPY
March 19, 1997

File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 110

6-19

Figure 6-21: <fl oat. h>, Single-Precision

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

extern i

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

nt __flt_rounds;

FLT ROUNDS __flt_rounds
FLT_RADI X 2

FLT_MANT DI G 24

FLT EPSILON 1. 19209290E- O7F
FLT DG 6

FLT M N EXP (-125)

FLT_MN 1. 17549435E- 38F
FLT M N 10 EXP (-37)
FLT_MAX_EXP (+128)

FLT MAX 3. 40282347E+38F

FLT_MAX 10 EXP

(+38)

Figure 6-22: <fl oat. h>, Double-Precision

#defi ne DBL_MANT_DI G 53

#def i ne DBL_EPSI LON 2.2204460492503131E- 16

#define DBL_D G 15

#defi ne DBL_M N _EXP (-1021)

#define DBL_MN 2. 2250738585072014E- 308

#define DBL_M N_10_EXP (-307)

#def i ne DBL_MAX_EXP (+1024)

#def i ne DBL_MAX 1.7976931348623157E+308

#def i ne DBL_MAX 10_EXP (+308)

6-20 LIBRARIES

DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 111

Figure 6-23: <fl oat . h>, Extended-Precision
#define LDBL_NMANT DI G 64
#define LDBL_EPSI LON 1. 084202172485504434e- 19
#define LDBL_D G 18
#define LDBL_M N _EXP - 16381
#define LDBL_MN 3. 362103143112093506e- 4932
#define LDBL_ MN 10 EXP -4931
#def i ne LDBL_MAX _EXP 16384
#defi ne LDBL_MAX 1. 189731495347231765e+4932
#define LDBL_NMAX 10 EXP 4932
Figure 6-24: <f ninsg. h>, Part 1 of 2
#define MM NULL oL
#defi ne MM HARD 0x00000001L
#defi ne MM SCFT 0x00000002L
#defi ne MM FI RM 0x00000004L
#defi ne MM RECOVER 0x00000100L
#defi ne MM NREQOV 0x00000200L
#defi ne MM APPL 0x00000008L
#define MM UTI L 0x00000010L
#defi ne MM CPSYS 0x00000020L
#defi ne MM PRI NT 0x00000040L
#defi ne MM CONSCLE 0x00000080L
System Data Interfaces 6-21
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 112

OOOOLOLOLOOLOOO

Figure 6-25: <fnt nsg. h>, Part 2 of 2

#defi ne MM NOBEV 0

#define MM HALT 1

#defi ne MM ERRCR 2

#defi ne MM WARNI NG 3

#defi ne MM I NFO 4

#defi ne MM NULLLBL ((char *) NULL)

#defi ne MM NULLSEV MV NCBEV

#defi ne MM NULLMC MV NULL

#defi ne MM NULLTXT ((char *) NULL)

#defi ne MM NULLACT ((char *) NULL)

#defi ne MM NULLTAG ((char *) NULL)

#defi ne MM NOTCK -1

#defi ne MM K 0x00

#defi ne MM NOVBG 0x01

#defi ne MM NOOON 0x04

Figure 6-26: <f nmat ch. h>*
#def i ne FNM_PATHNAME 0x001
#defi ne FNM PER CD 0x002
#def i ne FNM NCESCAPE 0x004
#def i ne FNM BADRANGE 0x008
#def i ne FNM EXTENDED 0x020
#def i ne FNM NOBYS (-1
#def i ne FNM NOQVATCH (-2)
6-22 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 113

Figure 6-27: <ftw h>

#define FTWF 0
#defi ne FTWD 1
#def i ne FTWDNR 2
#def i ne FTWNS 3
#defi ne FTWSL 4
#def i ne FTWDP 6
#defi ne FTWSLN 7

#defi ne FTWPHYS 01
#defi ne FTW MOUNT 02
#define FIWCGHD R 04
#def i ne FTW DEPTH 010
struct FTW({

i nt qui t;

i nt base;

i nt | evel ;
h
#defi ne FTW SKD 1
#def i ne FTWFCLLON 2
#defi ne FTW PRUNE 4

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 114

6-23

Figure 6-28: <gl ob. h>*

#defi ne GLCB_APPEND 0x0001
#def i ne A.CB_DOCFFS 0x0002
#define LB _ERR 0x0004
#define GLCB_MARK 0x0008
#def i ne A.CB_NOCHECK 0x0010
#def i ne LCB_NOSCRT 0x0020
#def i ne LCB_NCESCAPE 0x0040
#def i ne ALCB_CKAYDOT 0x0200

#def i ne LCB_BADRANCE 0x0400
#def i ne _.CB_EXTENDED 0x1000

#defi ne A.CB_NCOBYS (-1
#defi ne A.CB_ABCRTED (-2)
#def i ne ALCB_NOBPACE (-3)
#defi ne A.CB_NQVATCH (-4)
typedef struct
{
void *,
char **gl _pat hv;
size t gl _pat hc;
size t gl _offs;
} glob t;
6-24 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 115

Figure 6-29: <grp. h>

struct group {
char *gr_nane;
char *gr_passwd;
gid_t gr_gid;
char **gr_mem

Figure 6-30: <i conv. h>*

typedef void *iconv_t;

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 116

6-25

Figure 6-31: <sys/i pc. h>

struct ipc_perm {

ui d_t ui d;
gidt gid;

ui d_t cui d;
gidt cgi d;
node_t node;
ul ong seq;
key t key;

| ong pad[4] ;

}s

#define | PC_ CREAT 0001000
#define IPC EXCL 0002000
#define | PC_ NOMI T 0004000

#def i ne | PC_PR VATE (key t)0

#define | PCRMD 10
#define | PC SET 11
#defi ne | PC_STAT 12
6-26 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 117

Figure 6-32: <l angi nfo. h>, Part 1 of 2

#defi ne DAY_1 1
#defi ne DAY_2 2
#defi ne DAY 3 3
#defi ne DAY 4 4
#defi ne DAY 5 5
#defi ne DAY 6 6
#defi ne DAY_7 7
#def i ne ABDAY_1 8
#def i ne ABDAY_2 9
#def i ne ABDAY_3 10
#defi ne ABDAY 4 11
#defi ne ABDAY 5 12
#def i ne ABDAY_6 13
#def i ne ABDAY_7 14
#define MON_1 15
#defi ne MON_2 16
#define MON 3 17
#define MON 4 18
#define MON 5 19
#defi ne MON_6 20
#define MON_7 21
#define MON 8 22
#define MON 9 23
#defi ne MON 10 24
#define MON 11 25
#define MON 12 26
System Data Interfaces 6-27

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 118

Figure 6-33: <l angi nf 0. h>, Part 2 of 2

#defi ne ABMON 1 27
#def i ne ABMON 2 28
#def i ne ABMON_3 29
#def i ne ABMON 4 30
#defi ne ABMON 5 31
#defi ne ABMON 6 32
#def i ne ABMON 7 33
#defi ne ABMON 8 34
#def i ne ABMON 9 35
#def i ne ABMON 10 36
#def i ne ABMON 11 37
#def i ne ABMON 12 38
#def i ne RADI XCHAR 39
#def i ne THOUSEP 40
#def i ne YESSTR 41
#def i ne NOBTR 42
#def i ne CRNCYSTR 43
#define D T_FMI 44
#define D _FMI 45
#define T_FMI 46
#def i ne AM STR 47
#defi ne PM STR 48
#def i ne CCDESET 49
#define T_FMI_AVPM 50
#def i ne ERA 51
#define ERA D FMI 52
#define ERA D T_FMI 53
#define ERA T _FMI 54
#define ALT DA TS 55
#def i ne YESEXPR 56
#def i ne NCEXPR 57
6-28 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 119

LI LLL

Figure 6-34: <limts. h> Part1of2

#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CHAR BI T
SCHAR M N
SCHAR_MAX
UCHAR MAX
MB_LEN MAX

CHAR M N
CHAR MAX

SHRT_ M N
SHRT_MAX
USHRT _MAX
INT_M N

| NT_MAX

U NT_MAX
LONG M N
LONG_MAX
ULONG_MAX

ARG MAX

LI NK_MAX
MAX_CANCN
MAX_| NPUT
NGROUPS_MAX
PATH_MAX

Pl PE_BUF
TMP_MVAX
PASS_MAX

CH LD MAX

8
(-128)
127
255

5

SOHAR M N
SCHAR MAX

(-32768)

32767

65535

(- 2147483647- 1)
2147483647
4294967295

(- 2147483647- 1)
2147483647
4294967295

* 0% ok X 3k X %k X X %

/* starred val ues vary and shoul d be
retrieved using sysconf() or pathconf() */

System Data Interfaces

DRAFT COPY
March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 120

6-29

Figure 6-35: <limts. h>, Part 2 of 2

#def i ne NL_ARGVAX 9

#def i ne NL_LANGVAX 14

#def i ne NL_MBAVAX 32767

#def i ne NL_NVAX 1

#def i ne NL_SETMVAX 255

#def i ne NL_TEXTNVAX 255

#def i ne NZERO 20

#define WORD BI T 32

#define LONGBI T 32

#define DBL_D G 15

#def i ne DBL_MAX 1. 7976931348623157E+308

#define DBL_M N 2.2250738585072014E- 308

#define FLT D G 6

#defi ne FLT_MAX 3. 40282347E+38F

#define FLT_M N 1. 17549435E- 38F

#def i ne FCHR_MAX 1048576

6-30 LIBRARIES

DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 121

Figure 6-36: <l ocal e. h>

struct |conv {

char *deci nal _point;
char *thousands_sep;
char *groupi ng;
char *int_curr_synbol;
char *currency_synbol ;
char *non_deci nmal _poi nt;
char *non_t housands_sep;
char *mon_groupi ng;
char *positive_sign;
char *negative_sign;
char int_frac digits;
char frac digits;
char p_cs_precedes;
char p_sep by space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;
H
#defi ne LC _CTYPE 0
#define LC NUMER C 1
#define LC TI ME 2
#def i ne LC_COLLATE 3
#defi ne LC MONETARY 4
#def i ne LC_MESSAGES 5
#define LC ALL 6
System Data Interfaces 6-31
DRAFT COPY

March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 122

Figure 6-37: <l wpsynch. h>*

typedef volatile struct {

char want ed;
_sinpl el ock_t | ock;
} Iwp_nutex t;
typedef volatile struct {
char want ed;
} Iwp_cond t;

Figure 6-38: <nachl ock. h>*

typedef vol atile unsigned char _sinplelock t;

Figure 6-39: <mat h. h>

extern const double _huge val;
#defi ne HUGE VAL __huge_val

6-32 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 123

Figure 6-40: <sys/ mman. h>

#defi ne PROT_READ 0x1
#def i ne PROT_WR TE 0x2
#defi ne PROT_EXEC 0x4
#def i ne PROT_NONE 0x0
#defi ne MAP_SHARED 1
#defi ne MAP_PRI VATE 2
#def i ne MAP_FI XED 0x10
#def i ne M5_SYNC 0x0
#defi ne M5_ASYNC 0x1
#def i ne M5_| NVALI DATE 0x2
#define PROC TEXT (PROT_EXEC | PROT_READ)
#defi ne PROC_ DATA (PROT_READ | PROT_WR TE | PROT_EXEQ
#def i ne SHARED 0x10
#defi ne PR VATE 0x20
#defi ne MC_SYNC 1
#defi ne MC LOCK 2
#defi ne MC_UNLCCK 3
#defi ne MC_LOCKAS 5
#defi ne MC_ UNLOCKAS 6
#def i ne MOL_CURRENT Ox1
#def i ne ML_FUTURE Ox2
System Data Interfaces 6-33
DRAFT COPY

March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 124

OO OO

(ONO)

Figure 6-41: <sys/ nmod. h>*

#define VA D voi d
#def i ne MAXPATHLEN 1024
#def i ne MCDVAXLI NKI NFCLEN 32

struct nodspecific_stat {
char nss_|inki nf o[MODVAXLI NKI NFCLEN ;
i nt nss_type;
i nt nss_p0[2] ;
i nt nss_pl[2] ;

H
#def i ne MODVAXLI NK 4
struct nodstatus {
i nt ns_id;
vab *ms_base;
unsi gned i nt ns_si ze;
i nt ns_rev;
char ns_pat h[MAXPATHLEN ;
time t ns_unl oad_del ay;
i nt ns_refcnt;
i nt ns_depcnt ;
struct nodspeci fic_stat ns_nsi nf o MODVAXLI NK] ;
H
6-34 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 125

Figure 6-42: <sys/ nount. h>

#define M5 RDONLY 0x01
#defi ne M5 FSS 0x02
#defi ne M5_DATA 0x04
#defi ne M5_HADBAD 0x08
#define M5_NCBU D 0x10
#def i ne M5_REMOUNT 0x20
#defi ne M5_NOTRUNC 0x40

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 126

6-35

Figure 6-43: <sys/msg. h>

#def i ne M5G_NCERRCR 010000
struct nsqid ds {
struct ipc_perm nsg_perm
struct mseg *nsg_first;
struct msg *nsg_l ast;
ul ong nsg_chyt es;
ul ong nsg_gnum
ul ong nsg_gbyt es;
pid_t nsg_| spi d;
pi d_t nsg_| rpid;
time t nsg_stime;
| ong nsg_padl;
time t nsg rtime;
| ong nsg_pad2;
time t nsg_ctime;
| ong nsg_pad3;
| ong nsg_pad4 4] ;
h
struct nsg {
struct nsg *nsg_next;
| ong nsg_type;
ushort nsg ts;
short nsg_spot ;
h
6-36 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 127

Figure 6-44: <netconfi g. h>, Part 1 of 2

1

#def i ne

struct netconfig {

char
unsi gned | ong
unsi gned | ong
char
char
char
unsi gned | ong
char
unsi gned | ong

#define NC TPl _CQLTS
#defi ne NC TPl QOIS
NC TPl _QOrS CRD
#def i ne NC TPl _RAW

#defi ne NC NOFLAG

#define NC_ VM SI BLE

*nc_neti d;
nc_senantics;
nc_fl ag;
*nc_protofmy;
*nc_proto;
*nc_devi ce;
nc_nl ookups;
**nc_| ookups;
nc_unused| 8] ;

A WN PP

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 128

6-37

Figure 6-45: <net confi g. h>, Part 2 of 2

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

NC_NCPROTGFMLY

NC_LOCPBACK
NC | NET
NC | MPLI NK
NC_PUP
NC_CHACS
NC NS
NC_NBS
NC_ECMVA

NC DATAKI T
NC O TT
NC_SNA
NC_DECNET
NC DLI

NC _LAT
NC_HYLI NK
NC_APPLETALK
NCNT

NC | EEE802
NC_CSl
NC_X25

NC_ 0S| NET
NC_G0Sl P
NC_NETWARE

NC_NOPROTO
NC_TCP
NC_UDP

NC | QWP
NC | PX
NC_SPX

"1 oopback"
"inet"

"i npl i nk"
" pup”
"chaos"
"ns"
"nbs"
"ecma"
"datakit"
"ceitt"
"sna"
"decnet"
“dhi"
"lat"
"hyl i nk"
"appl et al k"
"nit"

"i eee802"
"osi"
"x25"
"osi net"
"gosi p"
"net war e"

"tep"
" udp”
"i cnp”
"i px”
" spx”

6-38

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 129

LIBRARIES

<L

Figure 6-46: <netdir. h>, Part 1 of 2

struct nd_addrlist {
i nt n_cnt;
struct net buf *n_addrs;

b

struct nd_hostservlist {
i nt h_cnt;
struct nd_hostserv *h_hostservs;

struct nd_hostserv {
char *h_host ;
char *h_serv;

#defi ne ND HOSTSERV
#defi ne ND_HOSTSERWLI ST
#defi ne ND_ADDR
#define ND ADDRLI ST

WN PO

#def i ne ND_BADARG
#defi ne ND_NOMEM
#defi ne ND (K

#defi ne ND_NCHOST
#def i ne ND_NOBERV
#defi ne ND_NCBYM
#defi ne ND_CPEN
#defi ne ND_ACCESS
#defi ne ND_UKNWN
#defi ne ND_NOCTRL
#define ND FAI LCTRL
#defi ne ND_SYSTEM
#defi ne ND_NCERRVEM 10
#define ND_NCLI B 11
#defi ne ND_XTI ERRCR 12
#defi ne ND_BADSTATE 13

1
=N

©CoOoO~NOOOUOITA~,WNEFEO!

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 130

6-39

=LKL

Figure 6-47: <netdir.

h>,

Part 2 of 2

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

ND_SET_BROADCAST
ND_SET_RESERVEDPCRT
ND_CHECK_RESERVEDPCRT
ND_MERGEADDR

ND_CLEAR BROADCAST
ND_SET_REUSEADDR
ND_CLEAR REUSEADDR

HOST_SELF
HOST_ANY
HOST_BROADCAST

~NOoO b~ wWDNPRE

"W\ 1"
"\\ 2"
"\ 3"

Figure 6-48: <nl _types. h>

#define NL_SETD

typedef int nl_item
typedef void *nl_catd;

6-40

DRAFT COPY
March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 131

LIBRARIES

<L

Figure 6-49: <sys/ param h>

#defi ne CANBS| Z 256
#define HZ 100
#define TICK 10000000
#def i ne NGROUPS_UM N 0
#def i ne NBPSCTR 512
#def i ne MAXPATHLEN 1024
#def i ne MAXSYM.I NKS 20
#def i ne MAXNAMELEN 256
#def i ne NADDR 13
#defi ne Pl PE_MAX 5120
#def i ne NBBY 8
#def i ne MAXFRAG 8

System Data Interfaces 6-41

DRAFT COPY

March 19, 1997

File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 132

Figure 6-50: <pol | . h>

struct pollfd {

i nt fd;

short events;

short revents;
1
#defi ne PCLLIN 0x0001
#defi ne POLLPR 0x0002
#defi ne POLLQUT 0x0004
#def i ne POLLRDONCRM 0x0040
#def i ne POLLWRNCRM POLLOUT
#defi ne POLLRDBAND 0x0080
#defi ne POLLWRBAND 0x0100
#def i ne PCLLNCRM PCLLRDNCRM
#defi ne POLLERR 0x0008
#defi ne POLLHUP 0x0010
#defi ne POLLNVAL 0x0020

6-42 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 133

Figure 6-51: <sys/priocntl.h>*

#define PC_GETA D 0

#defi ne PC GETCLI NFO 1
#defi ne PC_SETPARVS 2

#def i ne PC_GETPARVB 3

#def i ne PC_CLNULL -1

#define PC_ CLNVBZ 16
#define PC CLINFCsZ (32 / si zeof (I ong))
#defi ne PC CLPARVBZ (32 / si zeof (I ong))

typedef struct pcinfo {
idt pc_cid;
char pc_cl name[PC_ALNVEZ] ;
long pc_clinfo[PC QLI NFO&Z];
} pcinfo_t;

typedef struct pcparns {

idt pc_cid;

long pc_cl parns[PC_ CLPARVEZ] ;
} pcparns_t;

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 134

6-43

Figure 6-52: <sys/ procset. h>

=

#define P_INTPI D
#define P_INTUD
#define P_IN TP D

[oNe]

typedef enumi dtype {
P_PID
P_PPI D,
P_PA D,
P SID
P AD
P UD
P ADb
P ALL
} idtype t;

typedef enumi dop {
PCP_DI FF,
PCP_AND,
PCP_CR
PCP_XCOR

} idop_t;

typedef struct procset {
i dop_t p_op;
i dtype t p_lidtype;
id_t p_lid;
i dtype t p_ridtype;
id_t p_rid;

} procset t;

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 135

LIBRARIES

Figure 6-53: <pwd. h>

struct passwd {
char *pw_nane,
char *pw_passwd;
uid_t pw_ui d;
gidt pw_gi d;
char *pw_age;
char *pw_conmrent ;
char *pw_gecos;
char *pw dir;
char *pw_shel | ;

H

System Data Interfaces 6-45
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 136

Figure 6-54: <regex. h>* Part 1 of 2

#def i ne REG_NOTBCL 0x000001
#def i ne REG_NOTECL 0x000002
#defi ne REG_ NONEMPTY 0x000004
#def i ne REG CR 0x000001
#define REG PLUS 0x000002
#def i ne REG QUEST 0x000004
#defi ne REG BRACES 0x000008
#def i ne REG_PARENS 0x000010
#defi ne REG_ANCHORS 0x000020

#def i ne REG_NCBACKREF 0x000040
#defi ne REG NOAUTOQUOTE ~ 0x000080

#def i ne REG EXTENDED (REG R | REG PLUS |

REG NCBACKREF | REG NOAUTCQUOTE)

REG QUEST |
REG BRACES | REG PARENS | REG ANCHCRS |

#define REG | CASE 0x000100
#def i ne REG_NOSUB 0x000200
#defi ne REG NEWL.I NE 0x000400
#def i ne REG_ ONESUB 0x000800
#def i ne REG_BADRANCGE 0x004000
#def i ne REG_ ANGLES 0x040000
#def i ne REG_ ESO\L 0x080000
#defi ne REG CLDBRE (REG BADRANGE | REG ANGLES | REG ESO\L)
6-46 LIBRARIES

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 137

Figure 6-55: <regex. h>*

Part 2 of 2

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

{

{

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

REG ENCBYS
REG NOVATCH
REG BADPAT

REG ECTYPE
REG EESCAPE
REG ESUBREG
REG EBRACK
REG NCPAT
REG EPAREN
REG EBRACE
REG BADBR
REG ERANGE
REG ESPACE
REG BADRPT

t ypedef struct

size t
unsi gned | ong
voi d

} regex_t;

t ypedef struct

regof f _t
regof f _t

} regnatch t;

(
1
2
REG ECOLLATE 3
4
;
8

re_nsub;
re flags;
“[4];

typedef ssize t regoff t;

rmso;
rmeo;

System Data Interfaces

DRAFT COPY

March

19, 1997

File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 138

6-47

Figure 6-56: <sys/resource. h>

#define RLIMT_CPU 0
#define RLIMT_FSI ZE 1
#defi ne RLIM T_DATA 2
#define RLIMT_STACK 3
#define RLIMT_CCRE 4
#define RLIM T_NCFI LE 5
#define RLIMT_VMEM 6
#define RLIMNLIM TS 7
#define RLIMT_AS RLIMT_WEM
#define RLIMINFINTY OX7fffffff
t ypedef unsi gned | ong rlimt;
struct rlint {
rlimt rlimcur;
rlimt rlimnax;
H
6-48 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 139

Figure 6-57: <rpc. h>, Part 1 of 16

#def i ne bool t int

#def i ne enum t i nt

enum xdr _op {

XDR_ENCCDE=0,
XDR DEQCDE=1,
XDR FREE=2
h
typedef bool _t (*xdrproc_t)();

typedef struct {

enum xdr_op X_op;

struct xdr_ops {
bool t (*x_getlong)();
bool t (*x_putlong)();
bool t (*x_gethytes)();
bool t (*x_putbytes)();
uint (*x_getpostn)();
bool t (*x_setpostn)();
long * (*x_inline)();
void (*x_destroy)();

} *x_ops;
caddr _t X_publ i c;
caddr _t X_private;
caddr _t X_base;
i nt x_handy;
}XDR
System Data Interfaces 6-49

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 140

Figure 6-58: <rpc. h>, Part 2 of 16

#defi ne xdr_get pos(xdrs)
(*(xdrs)->x_ops->x_get postn) (xdrs)
#def i ne xdr_set pos(xdrs, pos)
(*(xdrs)->x_ops->x_setpostn)(xdrs, pos)
#define xdr_inline(xdrs, |en)
(*(xdrs)->x_ops->x_inline)(xdrs, |en)
#def i ne xdr_dest roy(xdrs)
(*(xdrs)->x_ops->x_destroy) (xdrs)

#define NULL_xdrproc_t ((xdrproc_t)0)
struct xdr_discrim{

i nt val ue;

xdrproc_t proc;

s

6-50

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 141

LIBRARIES

<L

Figure 6-59: <rpc. h>, Part 3 of 16

#def i ne MAX_AUTH BYTES 400
#def i ne MAXNETNAMELEN 255
#def i ne HEXKEYBYTES 48

enum aut h_stat {
AUTH_CK=0,
AUTH BADCRED=1,
AUTH REJECTEDCRED=2,
AUTH_BADVERF=3,
AUTH REJECTEDVERF=4,
AUTH_TOONEAK=5,
AUTH_| NVALI DRESP=6,
AUTH FAl LED=7

h
typedef u_l ong u_int32
uni on des_bl ock {
struct {
u_int 32 hi gh;
u_int32 | ow,
} key;
char ¢[8];
h
typedef uni on des_bl ock des_bl ock;
System Data Interfaces 6-51

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 142

<L

Figure 6-60: <rpc. h>, Part 4 of 16

struct opaque_auth {

enum t oa flavor;
caddr _t oa_base;
u_int oa_| engt h;

}

typedef struct {
struct opaque_auth ah cred;
struct opaque_auth ah verf;
uni on des_bl ock ah_key;
struct auth _ops {
void (*ah_nextverf)();
i nt (*ah_narshal) ();
i nt (*ah_ validate)();
i nt (*ah_refresh)();
void (*ah_destroy)();

} *ah_ops;
caddr _t ah_private;
} AUTH
#defi ne aut h_destroy(auth) \
((*((aut h)->ah_ops->ah_destroy)) (auth))
#def i ne AUTH NONE 0
#def i ne AUTH _NULL 0
#def i ne AUTH SYS 1
#def i ne AUTH_UN X AUTH_SYS
#def i ne AUTH_SHORT 2
#defi ne AUTH DES 3
#def i ne AUTH ESV 200004

6-52

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 143

LIBRARIES

Figure 6-61: <rpc. h>, Part 5 of 16

s

enumclnt_stat {

RPC_SUCCESS=0,
RPC_CANTENCCDEARGS=1,
RPC_CANTDECCDERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,

RPC_TI MEDOUT=5,

RPC | NTR=18,
RPC_UDERROR=23,
RPC_VERSM SVATCHS,
RPC_AUTHERROR=7,
RPC_PROGUNAVAI L=8,
RPC_PROGVERSM SMATCHE9,
RPC_PROCUNAVA! L=10,
RPC_CANTDECCDEARGS=11,
RPC_SYSTEMERROR=12,
RPC_UNKNOWNHCST=13,
RPC_UNKNOWPROTO=17,
RPC_UNKNOWNADDR=19,
RPC_NCBROADCAST=21,
RPC_RPCBFAI LURE=14,
RPC_PROGNOTREG STERED=15,
RPC_N2AXLATEFAI LURE=22,
RPC_TLI ERRCR=20,

RPC FA LED=16

#defi ne RPC_PVAPFAI LURE RPC_RPCBFAI LURE

System Data Interfaces

DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 144

6-53

Figure 6-62: <rpc. h>, Part 6 of 16

struct rpc_err {

enumcl nt _stat re_status;
uni on {
struct {
i nt errno;
i nt t_errno;
} RE err;
enum aut h_st at RE why;
struct {
u_l ong | ow,
u_l ong hi gh;
} RE vers;
struct {
long s1,
long s2;
} RE | b;
}oruy;

h
typedef struct {
AUTH *cl _aut h;
struct clnt_ops {
enumcl nt_stat

(*cl _call)();

void (*cl _abort)();
void (*cl _geterr)();
bool _t (*cl _freeres)();
void (*cl _destroy)();
bool _t (*cl _control)();
} *cl _ops;
caddr _t cl _private;
char *cl _netid;
char *cl _tp;
} CLIENT;
6-54 LIBRARIES
DRAFT COPY
March 19, 1997
File: abi_386/chap6 (Delta 44.21)

386:adm.book:sum

Page: 145

Figure 6-63: <rpc. h>, Part 7 of 16

#def i ne FEEDBACK REXM T1 1
#def i ne FEEDBACK (K 2

#define clnt_call(rh, proc, xargs, argsp, xres, resp, secs)\

((*(rh)->cl _ops->cl _call) \
(rh, proc, xargs, argsp, Xres, resp, secs))

#def i ne cl nt_abort (rh) \
((*(rh)->cl _ops->cl _abort)(rh))

#define clnt_geterr(rh, errp) \
((*(rh)->cl _ops->cl _geterr)(rh, errp))

#define clnt_freeres(rh, xres, resp) \
((*(rh)->cl _ops->cl _freeres)(rh, xres,resp))

#define clnt_control (cl, rqg, in) \
((*(cl)->cl _ops->cl _control)(cl, rqg, in))

#define clnt_destroy(rh) \
((*(rh)->cl _ops->cl _destroy)(rh))

#defi ne CLSET_TI MEQUT 1

#defi ne CLGET_TI MEQUT 2

#def i ne CLGET_SERVER ADDR 3

#defi ne CLGET_FD 6

#defi ne CLGET_SVC ADDR 7

#define CLSET_FD A.CSE 8

#def i ne CLSET_FD NCLCSE 9

#defi ne CLSET_RETRY_TI MEQUT 4

#def i ne CLGET_RETRY_TI MEQUT 5

System Data Interfaces 6-55
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 146

Figure 6-64: <rpc. h>, Part 8 of 16

typedef struct {
enum clnt_stat cf _stat;
struct rpc_err cf _error;
} rpc_createerr t;
extern rpc_createerr_t rpc_createerr;
6-56 LIBRARIES
DRAFT COPY

March 19, 1997
File: abi_386/chap6 (Delta 44.21)
386:adm.book:sum

Page: 147

< ZLZLXL

Figure 6-65: <rpc. h>, Part 9 of 16

enum nsg_type {
CALL=0,
REPLY=1
h

enumreply stat {
MBG ACCEPTED-0,
MBG DEN ED=1

h

enum accept _stat {
SUCCESS=0,
PROG_UNAVAI L=1,
PROG M SMATCH=2,
PROC_UNAVAI L=3,
GAR