PCI IDE Controller

Specification

Revision 1.0

3/4/94

1.0. Introduction

This document defines the necessary charaderistics of a PCl-based IDE controll er so that device
independent software (i.e.; BIOSes) can identify and properly configure the device. The document should
be viewed as a set of guidelines or rulesthat PCI IDE controllers sould foll ow when they are used on PCI
add-in cards. Devices that foll ow these guidelines are asaured that they will fit cleanly in the 'Plugand Play'
model of PCI, will be recgnized by BIOSes on PCI madines, and will be properly configured in the
system.

IDE controllers are one of asmall set of ‘compatibility' devices, that have well known programming
interfaces at fixed addresses and typicdly using fixed IRQs. Most OS's contain code that ded diredly with
compatibility devices (IDE included) and this becmes a strong forceto maintain the ‘compatibilit y'
programming models. Newer OS's all ow devicesto maintain the same register level programming interface
(i.e.; the same meanings for register), while aldressng the registers at non-standard locaions and using
non-standard IRQs. This helps avoid resource nflicts and all ows multi ple controllers of the same type to
bein asystem.

The guidelines in the document all ow an IDE controller to be:

1. ‘compatibility' only,

2. ‘'compatibility' or native-PCI (i.e.; fully-relocatable),

3. or native-PCl only.
The recommended implementation for add-in IDE controll ersis number 2 (‘compatibility' or native-PCl), or
number 3 (native-PCI only).

2.0. PCI IDE Controller

The PCI IDE controller is cgpable of supparting upto two IDE channels (primary and secndary) with two
devices per channel for atotal of four IDE devices. Thetwo channelsin the IDE controller are independent
and donot effed ead others operation. The control registers for ead channel foll ow the AT Attachment
(ATA) Interface Standard with one exception defined below. The PCI I DE controller (supparting two
channels) isasinge PCl function. A PCI device supparting four IDE channels would be amultifunction
device (acdualy two functions) where eat function isa PCI | DE controll er supparting two channels. PCI
IDE controllers (like dl PCI devices) must implement and respond to PCI Configuration Space

The ATA Standard defines two sets of registers known as Control Block Registers and Command Block
Registers. The Command Block Registers consist of eight 10 ports providing various command/status
functions for the IDE device The Control Block registers consist of two bytes used for control/status of the
IDE device The second byte of this pair is read-only and has the interesting quirk where the top kit of this
byteis sared with the floppy controller when the IDE deviceis mapped at ‘compatibility' locaions. It turns
out that software controlling IDE devices (BIOS, drivers, etc.) does not use this register at all..

The exception for PCI IDE controllersto the ATA Standard is that only the first of the two bytes defined in
the Control Block registersisimplemented. This byte provides Alternate Status on reads and Device
Control on writes. Accessesto the second byte of the Control Block registers (Drive Address) should be
ignored by the PCI I DE controller.

The ATA Standard defines an interrupt for the IDE channel. Sincethe PCI | DE controll er supparts two
IDE channelsit hasto ded with two interrupts. When the PCI IDE controller is operating in ‘compatibilit y'
mode it uses the standard interrupts defined for compatibility. When the cntroller is operating in retive-
PCI mode the interrupts from the channels are llapsed and shared on asinge PCI interrupt line.

Global control (i.e.; enable/disable) of the PCI IDE controller is done by manipulating the 'l O enabl€' bit in
the controll er's Configuration SpaceCommand register. Controll ers must implement this bit as read-write
and the bit must be set to zero (disabled) on reset. Note that this bit effeds both IDE channels.

2.1. PCIIDE Controller in "Compatibility' mode

This edion definesthe charaderistics of a PCI I DE controll er when it is operating in the ‘compatibilit y'
mode. The main charaderistics are that the cntroll er registers are hardwired to fixed IO locations and

fixed IRQs are used. Hardwired assignments are shown in the Table 1 below. When a channel is operating
in' compatibility’ mode it must decode the addresses shown in the Table 1 and use the specified IRQ. When
the device is disabled (using the 10 Enable bit in the Command register), the device must not respond to any
IO addresses, and must tristate it' s1RQ connections.

Channel Command Block | Control Block IRQ
Registers Register

Primary 1F0Oh - 1F7h 3F6h 14

Secondary 170h - 177h 376h 15

Table 1. Compatibility resource mappings

When achannel is operating in' compatibility’ modeand it' s Control Block register is addressed with more
than one byte enable asserted (i.e.; a WORD access to 3F6h or 176h) the PCI IDE controller may either

return both bytes of data (with the high-order byte returning device specific data) or terminate the access

with Target-Abort.

2.2. PCI IDE Controller in Native-PCl mode

This section defines the characteristics of a PCI IDE controller when it is operating in native-PCI mode. In
this mode the registers of the IDE channels are completely relocatable in 10 space. Base Address Registers
in the PCI IDE controller' s Configuration Space registers are used to map the IDE registersinto 10 space.
Specific base address registers are used to map the different register blocks as defined in Table 2 (below).
Base address registers are identified by providing their offset in configuration space.

Channel Command Block Control Block
Registers Register
Primary BA at offset 0x10 | BA at offset 0x14
Secondary | BA at offset 0x18 | BA at offset 0x1C

Table 2. Base Address Registers for Register Mapping

Base registers used to map Command Block registers must ask for 8 bytes of 10 space. Base registers used
to map Control Block registers must ask for 4 bytes of 10 space.l In thisfour byte allocation the byte at
offset 02h is where the Alternate Satus/Device Control byteislocated. Other bytesin the four byte
allocation (bytes at offsets 0,1 and 3) are undefined and may be used for device specific purposes. Device
independent software should only access the byte at offset 02h; Accessing other bytes may cause errors.

Interrupt signals from the IDE channels must be connected to the appropriate PCI interrupt pin and
converted to the appropriate polarity. The Interrupt Pin and Interrupt Line registers must be implemented in
the controller' s configuration space.

2.3. PCI IDE Controller |dentification and Control

The Class Code field in the controllers configuration space is used by software to determine and control the
mode that PCI IDE controller is operating in. In the three byte Class Code field, the upper byte (Base
Class) has the value 01h, the middle byte (Sub-Class) has the value 01h, and the low byte (Programming
Interface) can have several values depending on the functionality of the controller (see Figure 1.).

In the Programming Interface byte there are two bits allocated for each IDE channel that determine and
control what mode the channel is operating in. Table 3 provides the definitions for those bits.

[Bit | Description |

IThisisthe smallest amount of 1O space that a Base Register can request.

0 Determines the mode that the primary IDE channel is operating in. Zero
correspondsto’ compatibility' , one means native-PClI mode. Thisbit is
implemented as read-only if the channel supports only one mode, or read-
write if both modes are supported. The powerup state for this bit (when
writable) can be either O or 1.

1 This bit indicates whether or not the primary channel has a fixed mode of
operation. If thisbit is zero, the mode is fixed and is determined by the (read-
only) value of bit 0. If thisbit is one, the channel supports both modes and
may be set to either mode by writing bit 0.

2 Determines the mode that the secondary | DE channel is operating in. Zero
correspondsto’ compatibility' , one means native-PClI mode. Thisbit is
implemented as read-only if the channel supports only one mode, or read-
write if both modes are supported. The powerup state for this bit (when
writable) can be either O or 1.

3 This bit indicates whether or not the secondary channel has a fixed mode of
operation. If thisbit is zero, the mode is fixed and is determined by the (read-
only) value of bit 0. If thisbit is one, the channel supports both modes and
may be set to either mode by writing bit 0.

Table 3. Bit definitionsin Programming Interface byte

Base Class Sub-Class Pragramming Interface

01h 01h Oh

Programmable Indicator (Secondary)
Operating Mode (Secondary)
Programmable Indicator (Primary)
Operating Mode (Primary)

Figure 1. PCI IDE Controller Class Code
24. Both Modes Controller

PCI IDE controllers that support both modes (' compatibility’ and native-PCl) and software configuring these
devices must be aware of the following points.

Whenachannel isin' compatibility’ mode, the controller does hard decodes of the compatibility
addresses. Any valuesin the associated Base Address registers are ignored. Conversely, when a
channel isin native-PCl mode decodes are done using the values in the associated Base Address
registersand no' compatibility’ addresses should be used.

« Whenachannel isin' compatibility’ mode, the controller can either disable the first four Base Address
registers (i.e.; make them not writable and return 0' s when read) or leave them fully programmable. In
either case the values in these registers are ignored as long as the channel isin' compatibility’ mode.

e When achannel isin compatibility mode the IRQ used by the channel must bethe' compatibility' IRQ.
PCI interrupt lines must not be effected by that channel’ sinterrupt. Conversely, when the channel isin
native-PCl mode the channel' sinterrupt should be connected to the appropriatéNTx#. Compatibility
IRQs should not be effected (i.e.; they should be tristated).

» Connections of channel interrupt signalsto the' compatibility' RQs should be disabled (i.e.; tristated)
until the PCI IDE controller is enabled viathe Command register in Configuration Space. The
controller isenabled whena' 1' iswritten to the 10 enable bit (bit 0) in the Command register.

3.0. BIOS Implications

B1OSes are expected to recognize and properly configure PCI IDE controllers. This means examining the
Class Code fields for all PCI IDE controllers to determine their capabilities (i.e.; relocatability), choosing
which controllers/channels will be' compatibility' primary and secondary, and configuring or disabling all
others. The BIOS must take into account non-PCI IDE controllers when doing the configuration.

B10OSes should also consider adding the capability of booting from native-PCI IDE controllers.

Guidelines for the BIOS interpretation of the Programming Interface byte of the PCI IDE controller class
code are given in Table 4. This table shows the interesting combinations of the lower four bits of the
Programming I nterface byte.

Lower 4 bits of
Programming | Description
Interface byte

0000 Indicatesa' compatibility’ -only device. BIOS must assume that both channels
are implemented (even if device actually supports only one). Device must be
used for both' compatibility’ channels or not used at all (disabled).

0001 Primary channel is native-PCI only. Secondary channel is' compatibility' -only.

If controller is not going to be used for secondary ' compatibility' channel then

both channels cannot be used.

001x Primary channel can operate in either mode. Secondary channel is

' compatibility' -only. If controller isnot going to be used for secondary

compatibility' channel then both channels cannot be used.

0100 Secondary channel is native-PCl only. Primary channel is' compatibility' -only.

If controller is not going to be used for primary ' compatibility’ channel then both

channels cannot be used.

0101 Both primary and secondary channels operate in native-PCl mode only.

011x Primary channel can operate in either mode. Secondary channel is native-PCl
only.

1x00 Secondary channel can operate in either mode. Primary channel is

compatibility' -only. If controller isnot going to be used for primary
compatibility' channel then both channels cannot be used.

1x01 Secondary channel can operate in either mode. Primary channel is native-PCI
only.
Ix1x Thisisthe most general case. Both channels support both modes.

Table 4. BIOS interpretation of Programming Interface byte.
3.1. Device Operation with Older BIOSes

PCI IDE controllers that follow this specification and are added into a system that has an older BIOS that is
not aware of this specification will behave as follows:

If the device defaultsto ' compatibility' mode, it will hard decode the compatibility addresses and use the
compatibility IRQs. If the system already contains an IDE controller some unusual behavior will occur.
The end-user will have to deal with the problem.

If the device defaults to native-PCl mode, it will be configured like any other PCI device and will operate
(with the appropriate drivers) without end-user involvement.

4.0. Compatibility Interrupt Connection

This document does not define how a PCI IDE controller on an add-in card gets connected to the

' compatibility' 1RQs (14 and 15) needed to operatein' compatibility’ mode. It isunlikely that these IRQs
will ever be made available on the standard PCI connector. However, it isthe responsibility of the add-in
card to provide these connections in some manner.

5.0. Operation with PCI-to-PCI Bridges

PCI IDE controllers operating in' compatibility' mode are not supported behind a PCI to PCI bridge. PCI to
PCI bridges (and secondary Host Bus Bridges) do not support the forwarding of IDE ' compatibility'
addresses to their secondary bus. To operatein' compatibility' mode the controller must reside on the
primary PCI bus of the system.

PCI IDE controllers operating in native-PCl mode can be used on any PCI busin the system.

