From: Jason Stover Date: Tue, 11 Mar 2008 04:02:54 +0000 (+0000) Subject: Removed header file for obsolete EXPORT subcommand X-Git-Tag: v0.6.0~61 X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=cf75e794a54ba92f57d71b236de555fcc1d5877e;p=pspp-builds.git Removed header file for obsolete EXPORT subcommand --- diff --git a/src/language/stats/regression-export.h b/src/language/stats/regression-export.h deleted file mode 100644 index 3c3a76d6..00000000 --- a/src/language/stats/regression-export.h +++ /dev/null @@ -1,145 +0,0 @@ -/* PSPP - a program for statistical analysis. - Copyright (C) 2005 Free Software Foundation, Inc. - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* - Exported C code for a regression model. The EXPORT subcommand causes PSPP - to save a model as a small C program. This file contains some of the code - of that saved program. - */ -#ifndef REG_EXPORT_COMMENTS_H -#define REG_EXPORT_COMMENTS_H -const char reg_header[] = "#ifndef REG_EXPORT_COMMENTS_H\n#define REG_EXPORT_COMMENTS_H\n" -"double pspp_reg_estimate (const double *, const char *[]);\n\n" -"double pspp_reg_variance (const double *var_vals, const char *[]);\n\n" -"double pspp_reg_confidence_interval_U " -"(const double *var_vals, const char *var_names[], double p);\n\n" -"double pspp_reg_confidence_interval_L " -"(const double *var_vals, const char *var_names[], double p);\n\n" -"double pspp_reg_prediction_interval_U " -"(const double *var_vals, const char *var_names[], double p);\n\n" -"double pspp_reg_prediction_interval_L " -"(const double *var_vals, const char *var_names[], double p);\n" -"#endif\n"; - -const char reg_preamble[] = "/*\n This program contains functions which return estimates\n" -" and confidence intervals for a linear model. The EXPORT subcommand\n" -" of the REGRESSION procedure of GNU PSPP generated this program.\n*/\n\n" -"#include \n#include \n#define PSPP_REG_MAXLEN 1024\n\n"; - -const char reg_mean_cmt[] = "/*\n Estimate the mean of Y, the dependent variable for\n" -" the linear model of the form \n\n" -" Y = b0 + b1 * X1 + b2 * X2 + ... + bk * Xk + error\n\n" -" where X1, ..., Xk are the independent variables\n" -" whose values are stored in var_vals and whose names, \n" -" as known by PSPP, are stored in var_names. The estimated \n" -" regression coefficients (i.e., the estimates of b0,...,bk) \n" -" are stored in model_coeffs.\n*/\n"; - -const char reg_getvar[] = "{\n\t\tj = pspp_reg_getvar (var_names[i]);\n" -"\t\testimate += var_vals[j] * model_coeffs[j];\n" -"\t}\n\t\n\treturn estimate;\n}\n\n" -"/*\n Variance of an estimated mean of this form:\n\t" -"Y = b0 + b1 * X1 + ... + bk * Xk\n where X1,...Xk are the dependent variables," -" stored in\n var_vals and b0,...,bk are the estimated regression coefficients.\n*/\n" -"double\npspp_reg_variance (const double *var_vals, " -"const char *var_names[])\n{\n\t"; - -const char reg_export_t_quantiles_1[] = "/*\n Quantiles for the T distribution.\n*/\n" -"static double\npspp_reg_t_quantile " -"(double prob)\n{\n\n\tint i;\n\tdouble quantiles[] = {\n\t\t"; - -const char reg_export_t_quantiles_2[] = "i = (int) 100.0 * prob;\n\treturn quantiles[i];\n}\n"; - -const char reg_variance[] = "double result = 0.0;\n\n\tfor(i = 0; i < n_vars; i++)\n\t" -"{\n\t\tj = pspp_reg_getvar (var_names[i]);\n\t\t" -"unshuffled_vals[j] = var_vals[i];\n\t}\n\t" -"for (i = 0; i < n_vars; i++)\n\t" -"{\n\t\tresult += cov[i][i] * unshuffled_vals[i] * unshuffled_vals[i];\n\t\t" -"for (j = i + 1; j < n_vars; j++)\n\t\t{\n\t\t\t" -"result += 2.0 * cov[i][j] * unshuffled_vals[i] * unshuffled_vals[j];" -"\n\t\t}\n\t}\n\treturn result;\n}\n"; - -const char reg_export_confidence_interval[] = "/*\n Upper confidence limit for an " -"estimated mean b0 + b1 * X1 + ... + bk * Xk.\n The confidence interval is a " -"100 * p percent confidence interval.\n*/\n" -"double pspp_reg_confidence_interval_U " -"(const double *var_vals, const char *var_names[], double p)\n{\n\t" -"double result;\n\t" -"result = sqrt (pspp_reg_variance (var_vals, var_names));\n\t" -"result *= pspp_reg_t_quantile ((1.0 + p) / 2.0);\n\t" -"result += pspp_reg_estimate (var_vals, var_names);\n\treturn result;\n}\n" -"/*\n Lower confidence limit for an " -"estimated mean b0 + b1 * X1 + ... + bk * Xk.\n The confidence interval is a " -"100 * p percent confidence interval.\n*/\n" -"double pspp_reg_confidence_interval_L " -"(const double *var_vals, const char *var_names[], double p)\n{\n\t" -"double result;\n\t" -"result = -sqrt (pspp_reg_variance (var_vals, var_names));\n\t" -"result *= pspp_reg_t_quantile ((1.0 + p) / 2.0);\n\t" -"result += pspp_reg_estimate (var_vals, var_names);\n\treturn result;\n}\n"; - -const char reg_export_prediction_interval_1[] = "/*\n Upper prediction limit for a " -"predicted value b0 + b1 * X1 + ... + bk * Xk.\n The prediction interval is a " -"100 * p percent prediction interval.\n*/\n" -"double pspp_reg_prediction_interval_U " -"(const double *var_vals, const char *var_names[], double p)\n{\n\t" -"double result;\n\tresult = sqrt ("; - -const char reg_export_prediction_interval_2[] = " + pspp_reg_variance (var_vals, var_names));\n" -"\tresult *= pspp_reg_t_quantile ((1.0 + p) / 2.0);\n\t" -"result += pspp_reg_estimate (var_vals, var_names);\n\treturn result;\n}\n" -"/*\n Lower prediction limit for a " -"predicted value b0 + b1 * X1 + ... + bk * Xk.\n The prediction interval is a " -"100 * p percent prediction interval.\n*/\n" -"double pspp_reg_prediction_interval_L " -"(const double *var_vals, const char *var_names[], double p)\n{\n\t" -"double result;\n\t" -"result = -sqrt ("; - -const char reg_export_prediction_interval_3[] = " + pspp_reg_variance (var_vals, var_names));" -"\n\tresult *= pspp_reg_t_quantile ((1.0 + p) / 2.0);\n\t" -"result += pspp_reg_estimate (var_vals, var_names);\n\treturn result;\n}\n"; - -/* - Change categorical values to binary vectors. The routine will use - an encoding in which a categorical variable with n values is mapped - to a vector with n-1 entries. Value 0 is mapped to the zero vector, - value 1 is mapped to a vector whose first entry is 1 and all others are - 0, etc. For example, if a variable can have 'a', 'b' or 'c' as values, - then the value 'a' will be encoded as (0,0), 'b' as (1,0) and 'c' as - (0,1). If the design matrix used to create the model used a different - encoding, then the function pspp_reg_categorical_encode () will return - a vector which does not match its categorical value in the model. - */ -const char reg_export_categorical_encode_1[] = "struct pspp_reg_categorical_variable\n" -"{\n\tchar * name;\n\tsize_t n_vals;\n\tchar *values[1024];\n};\n\n" -"/*\n This function returns the binary vector which corresponds to the value\n" -" of the categorical variable stored in 'value'. The name of the variable is\n" -" stored in the 'var' argument. Notice the values stored in the\n" -" pspp_categorical_variable structures all end with a space character.\n" -" That means the values of the categorical variables you pass to any function\n" -" in this program should also end with a space character.\n*/\n" -"static\ndouble * pspp_reg_get_value_vector (char *var, char *value)\n{\n\tdouble *result;\n\t" -"int i;\n\t"; - -const char reg_export_categorical_encode_2[] = "int v_index = 0;\n\t" -"while (v_index < n_vars && strncmp (var, varlist[i]->name, PSPP_REG_MAXLEN) != 0)\n\t{\n\t\t" -"v_index++;\n\t}\n\tresult = (double *) malloc (varlist[v_index]->n_vals * sizeof (*result));\n\t" -"for (i = 0; i < varlist[v_index]->n_vals; i++)\n\t{\n\t\t" -"if (strncmp ( (varlist[v_index]->values)[i], value, PSPP_REG_MAXLEN) == 0)\n\t\t{\n\t\t\t" -"result[i] = 1.0;\n\t\t}\n\t\telse result[i] = 0.0;\n\t}\n\n\t" -"return result;\n}\n\n"; -#endif