/* Higher indexes cause multiple tables to be output. */
};
+struct xtab_var
+ {
+ const struct variable *var;
+ union value *values;
+ size_t n_values;
+ };
+
/* A crosstabulation of 2 or more variables. */
struct crosstabulation
{
/* Variables (2 or more). */
int n_vars;
- const struct variable **vars;
+ struct xtab_var *vars;
/* Constants (0 or more). */
int n_consts;
- const struct variable **const_vars;
- union value *const_values;
+ struct xtab_var *const_vars;
/* Data. */
struct hmap data;
struct freq **entries;
size_t n_entries;
- /* Column values, number of columns. */
- union value *cols;
- int n_cols;
-
- /* Row values, number of rows. */
- union value *rows;
- int n_rows;
-
/* Number of statistically interesting columns/rows
(columns/rows with data in them). */
int ns_cols, ns_rows;
for (xt = &proc.pivots[0]; xt < &proc.pivots[proc.n_pivots]; xt++)
{
free (xt->vars);
- free (xt->const_vars);
/* We must not call value_destroy on const_values because
it is a wild pointer; it never pointed to anything owned
by the crosstabulation.
xt->weight_format = proc->weight_format;
xt->missing = 0.;
xt->n_vars = n_by;
- xt->vars = xmalloc (n_by * sizeof *xt->vars);
+ xt->vars = xcalloc (n_by, sizeof *xt->vars);
xt->n_consts = 0;
xt->const_vars = NULL;
- xt->const_values = NULL;
for (j = 0; j < n_by; j++)
- xt->vars[j] = by[j][by_iter[j]];
+ xt->vars[j].var = by[j][by_iter[j]];
for (j = n_by - 1; j >= 0; j--)
{
int j;
for (j = 0; j < xt->n_vars; j++)
{
- const struct variable *var = xt->vars[j];
+ const struct variable *var = xt->vars[j].var;
const struct var_range *range = get_var_range (xt->proc, var);
if (var_is_value_missing (var, case_data (c, var), exclude))
for (j = 0; j < xt->n_vars; j++)
{
/* Throw away fractional parts of values. */
- hash = hash_int (case_num (c, xt->vars[j]), hash);
+ hash = hash_int (case_num (c, xt->vars[j].var), hash);
}
HMAP_FOR_EACH_WITH_HASH (te, struct freq, node, hash, &xt->data)
{
for (j = 0; j < xt->n_vars; j++)
- if ((int) case_num (c, xt->vars[j]) != (int) te->values[j].f)
+ if ((int) case_num (c, xt->vars[j].var) != (int) te->values[j].f)
goto no_match;
/* Found an existing entry. */
te = xmalloc (table_entry_size (xt->n_vars));
te->count = weight;
for (j = 0; j < xt->n_vars; j++)
- te->values[j].f = (int) case_num (c, xt->vars[j]);
+ te->values[j].f = (int) case_num (c, xt->vars[j].var);
hmap_insert (&xt->data, &te->node, hash);
}
hash = 0;
for (j = 0; j < xt->n_vars; j++)
{
- const struct variable *var = xt->vars[j];
+ const struct variable *var = xt->vars[j].var;
hash = value_hash (case_data (c, var), var_get_width (var), hash);
}
{
for (j = 0; j < xt->n_vars; j++)
{
- const struct variable *var = xt->vars[j];
+ const struct variable *var = xt->vars[j].var;
if (!value_equal (case_data (c, var), &te->values[j],
var_get_width (var)))
goto no_match;
te->count = weight;
for (j = 0; j < xt->n_vars; j++)
{
- const struct variable *var = xt->vars[j];
+ const struct variable *var = xt->vars[j].var;
value_clone (&te->values[j], case_data (c, var), var_get_width (var));
}
hmap_insert (&xt->data, &te->node, hash);
const void *xt_);
static void enum_var_values (const struct crosstabulation *, int var_idx,
- union value **valuesp, int *n_values,
bool descending);
+static void free_var_values (const struct crosstabulation *, int var_idx);
static void output_crosstabulation (struct crosstabs_proc *,
struct crosstabulation *);
static void make_crosstabulation_subset (struct crosstabulation *xt,
}
}
if (proc->barchart)
- chart_item_submit
- (barchart_create (xt->vars, xt->n_vars, _("Count"), false, xt->entries, xt->n_entries));
+ {
+ const struct variable **vars = xcalloc (xt->n_vars, sizeof *vars);
+ for (size_t i = 0; i < xt->n_vars; i++)
+ vars[i] = xt->vars[i].var;
+ chart_item_submit (barchart_create (vars, xt->n_vars, _("Count"),
+ false,
+ xt->entries, xt->n_entries));
+ free (vars);
+ }
}
/* Free output and prepare for next split file. */
respectively). */
for (size_t i = 0; i < xt->n_vars; i++)
{
- int width = var_get_width (xt->vars[i]);
+ int width = var_get_width (xt->vars[i].var);
if (value_needs_init (width))
{
size_t j;
subset->missing = xt->missing;
subset->n_vars = 2;
subset->vars = xt->vars;
+
subset->n_consts = xt->n_vars - 2;
subset->const_vars = xt->vars + 2;
- subset->const_values = &xt->entries[row0]->values[2];
+ for (size_t i = 0; i < subset->n_consts; i++)
+ {
+ subset->const_vars[i].n_values = 1;
+ subset->const_vars[i].values = &xt->entries[row0]->values[2 + i];
+ }
}
subset->entries = &xt->entries[row0];
subset->n_entries = row1 - row0;
int idx)
{
return value_compare_3way (&a->values[idx], &b->values[idx],
- var_get_width (xt->vars[idx]));
+ var_get_width (xt->vars[idx].var));
}
static int
{
if (i > 0)
ds_put_cstr (&name, " * ");
- ds_put_cstr (&name, var_to_string (xt->vars[i]));
+ ds_put_cstr (&name, var_to_string (xt->vars[i].var));
}
tab_text (summary, 0, 0, TAB_LEFT, ds_cstr (&name));
struct tab_table *direct = NULL; /* Directional measures table. */
size_t row0, row1;
- enum_var_values (xt, COL_VAR, &xt->cols, &xt->n_cols, proc->descending);
+ enum_var_values (xt, COL_VAR, proc->descending);
- if (xt->n_cols == 0)
+ if (xt->vars[COL_VAR].n_values == 0)
{
struct string vars;
int i;
- ds_init_cstr (&vars, var_to_string (xt->vars[0]));
+ ds_init_cstr (&vars, var_to_string (xt->vars[0].var));
for (i = 1; i < xt->n_vars; i++)
- ds_put_format (&vars, " * %s", var_to_string (xt->vars[i]));
+ ds_put_format (&vars, " * %s", var_to_string (xt->vars[i].var));
/* TRANSLATORS: The %s here describes a crosstabulation. It takes the
form "var1 * var2 * var3 * ...". */
ds_cstr (&vars));
ds_destroy (&vars);
- free (xt->cols);
+ free_var_values (xt, COL_VAR);
return;
}
make_crosstabulation_subset (xt, row0, row1, &x);
/* Find all the row variable values. */
- enum_var_values (&x, ROW_VAR, &x.rows, &x.n_rows, proc->descending);
+ enum_var_values (&x, ROW_VAR, proc->descending);
- if (size_overflow_p (xtimes (xtimes (x.n_rows, x.n_cols),
- sizeof (double))))
+ size_t n_rows = x.vars[ROW_VAR].n_values;
+ size_t n_cols = x.vars[COL_VAR].n_values;
+ if (size_overflow_p (xtimes (xtimes (n_rows, n_cols), sizeof (double))))
xalloc_die ();
- x.row_tot = xmalloc (x.n_rows * sizeof *x.row_tot);
- x.col_tot = xmalloc (x.n_cols * sizeof *x.col_tot);
- x.mat = xmalloc (x.n_rows * x.n_cols * sizeof *x.mat);
+ x.row_tot = xmalloc (n_rows * sizeof *x.row_tot);
+ x.col_tot = xmalloc (n_cols * sizeof *x.col_tot);
+ x.mat = xmalloc (n_rows * n_cols * sizeof *x.mat);
/* Allocate table space for the matrix. */
if (table
- && tab_row (table) + (x.n_rows + 1) * proc->n_cells > tab_nr (table))
+ && tab_row (table) + (n_rows + 1) * proc->n_cells > tab_nr (table))
tab_realloc (table, -1,
- MAX (tab_nr (table) + (x.n_rows + 1) * proc->n_cells,
+ MAX (tab_nr (table) + (n_rows + 1) * proc->n_cells,
tab_nr (table) * xt->n_entries / x.n_entries));
build_matrix (&x);
/* Free the parts of x that are not owned by xt. In
particular we must not free x.cols, which is the same as
xt->cols, which is freed at the end of this function. */
- free (x.rows);
+ free_var_values (&x, ROW_VAR);
free (x.mat);
free (x.row_tot);
submit (xt, risk);
submit (xt, direct);
- free (xt->cols);
+ free_var_values (xt, COL_VAR);
}
static void
build_matrix (struct crosstabulation *x)
{
- const int col_var_width = var_get_width (x->vars[COL_VAR]);
- const int row_var_width = var_get_width (x->vars[ROW_VAR]);
+ const int col_var_width = var_get_width (x->vars[COL_VAR].var);
+ const int row_var_width = var_get_width (x->vars[ROW_VAR].var);
+ size_t n_rows = x->vars[ROW_VAR].n_values;
+ size_t n_cols = x->vars[COL_VAR].n_values;
int col, row;
double *mp;
struct freq **p;
{
const struct freq *te = *p;
- while (!value_equal (&x->rows[row], &te->values[ROW_VAR], row_var_width))
+ while (!value_equal (&x->vars[ROW_VAR].values[row],
+ &te->values[ROW_VAR], row_var_width))
{
- for (; col < x->n_cols; col++)
+ for (; col < n_cols; col++)
*mp++ = 0.0;
col = 0;
row++;
}
- while (!value_equal (&x->cols[col], &te->values[COL_VAR], col_var_width))
+ while (!value_equal (&x->vars[COL_VAR].values[col],
+ &te->values[COL_VAR], col_var_width))
{
*mp++ = 0.0;
col++;
}
*mp++ = te->count;
- if (++col >= x->n_cols)
+ if (++col >= n_cols)
{
col = 0;
row++;
}
}
- while (mp < &x->mat[x->n_cols * x->n_rows])
+ while (mp < &x->mat[n_cols * n_rows])
*mp++ = 0.0;
- assert (mp == &x->mat[x->n_cols * x->n_rows]);
+ assert (mp == &x->mat[n_cols * n_rows]);
/* Column totals, row totals, ns_rows. */
mp = x->mat;
- for (col = 0; col < x->n_cols; col++)
+ for (col = 0; col < n_cols; col++)
x->col_tot[col] = 0.0;
- for (row = 0; row < x->n_rows; row++)
+ for (row = 0; row < n_rows; row++)
x->row_tot[row] = 0.0;
x->ns_rows = 0;
- for (row = 0; row < x->n_rows; row++)
+ for (row = 0; row < n_rows; row++)
{
bool row_is_empty = true;
- for (col = 0; col < x->n_cols; col++)
+ for (col = 0; col < n_cols; col++)
{
if (*mp != 0.0)
{
if (!row_is_empty)
x->ns_rows++;
}
- assert (mp == &x->mat[x->n_cols * x->n_rows]);
+ assert (mp == &x->mat[n_cols * n_rows]);
/* ns_cols. */
x->ns_cols = 0;
- for (col = 0; col < x->n_cols; col++)
- for (row = 0; row < x->n_rows; row++)
- if (x->mat[col + row * x->n_cols] != 0.0)
+ for (col = 0; col < n_cols; col++)
+ for (row = 0; row < n_rows; row++)
+ if (x->mat[col + row * n_cols] != 0.0)
{
x->ns_cols++;
break;
/* Grand total. */
x->total = 0.0;
- for (col = 0; col < x->n_cols; col++)
+ for (col = 0; col < n_cols; col++)
x->total += x->col_tot[col];
}
make_crosstabulation_subset (xt, 0, 0, &x);
- table = tab_create (x.n_consts + 1 + x.n_cols + 1,
- (x.n_entries / x.n_cols) * 3 / 2 * proc->n_cells + 10);
+ size_t n_cols = x.vars[COL_VAR].n_values;
+ table = tab_create (x.n_consts + 1 + n_cols + 1,
+ (x.n_entries / n_cols) * 3 / 2 * proc->n_cells + 10);
tab_headers (table, x.n_consts + 1, 0, 2, 0);
tab_set_format (table, RC_WEIGHT, &proc->weight_format);
/* First header line. */
tab_joint_text (table, x.n_consts + 1, 0,
- (x.n_consts + 1) + (x.n_cols - 1), 0,
- TAB_CENTER | TAT_TITLE, var_to_string (x.vars[COL_VAR]));
+ (x.n_consts + 1) + (n_cols - 1), 0,
+ TAB_CENTER | TAT_TITLE, var_to_string (x.vars[COL_VAR].var));
tab_hline (table, TAL_1, x.n_consts + 1,
- x.n_consts + 2 + x.n_cols - 2, 1);
+ x.n_consts + 2 + n_cols - 2, 1);
/* Second header line. */
for (i = 2; i < x.n_consts + 2; i++)
tab_joint_text (table, x.n_consts + 2 - i - 1, 0,
x.n_consts + 2 - i - 1, 1,
- TAB_RIGHT | TAT_TITLE, var_to_string (x.vars[i]));
+ TAB_RIGHT | TAT_TITLE, var_to_string (x.vars[i].var));
tab_text (table, x.n_consts + 2 - 2, 1, TAB_RIGHT | TAT_TITLE,
- var_to_string (x.vars[ROW_VAR]));
- for (i = 0; i < x.n_cols; i++)
+ var_to_string (x.vars[ROW_VAR].var));
+ for (i = 0; i < n_cols; i++)
table_value_missing (proc, table, x.n_consts + 2 + i - 1, 1, TAB_RIGHT,
- &x.cols[i], x.vars[COL_VAR]);
- tab_text (table, x.n_consts + 2 + x.n_cols - 1, 1, TAB_CENTER, _("Total"));
+ &x.vars[COL_VAR].values[i], x.vars[COL_VAR].var);
+ tab_text (table, x.n_consts + 2 + n_cols - 1, 1, TAB_CENTER, _("Total"));
- tab_hline (table, TAL_1, 0, x.n_consts + 2 + x.n_cols - 1, 2);
- tab_vline (table, TAL_1, x.n_consts + 2 + x.n_cols - 1, 0, 1);
+ tab_hline (table, TAL_1, 0, x.n_consts + 2 + n_cols - 1, 2);
+ tab_vline (table, TAL_1, x.n_consts + 2 + n_cols - 1, 0, 1);
/* Title. */
ds_init_empty (&title);
{
if (i)
ds_put_cstr (&title, " * ");
- ds_put_cstr (&title, var_to_string (x.vars[i]));
+ ds_put_cstr (&title, var_to_string (x.vars[i].var));
}
for (i = 0; i < xt->n_consts; i++)
{
- const struct variable *var = xt->const_vars[i];
+ const struct variable *var = xt->const_vars[i].var;
char *s;
ds_put_format (&title, ", %s=", var_to_string (var));
/* Insert the formatted value of VAR without any leading spaces. */
- s = data_out (&xt->const_values[i], var_get_encoding (var),
+ s = data_out (&xt->const_vars[i].values[0], var_get_encoding (var),
var_get_print_format (var));
ds_put_cstr (&title, s + strspn (s, " "));
free (s);
{
struct tab_table *chisq;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
chisq = tab_create (6 + (xt->n_vars - 2),
- xt->n_entries / xt->n_cols * 3 / 2 * N_CHISQ + 10);
+ xt->n_entries / n_cols * 3 / 2 * N_CHISQ + 10);
tab_headers (chisq, 1 + (xt->n_vars - 2), 0, 1, 0);
tab_set_format (chisq, RC_WEIGHT, &proc->weight_format);
{
struct tab_table *sym;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
sym = tab_create (6 + (xt->n_vars - 2),
- xt->n_entries / xt->n_cols * 7 + 10);
+ xt->n_entries / n_cols * 7 + 10);
tab_set_format (sym, RC_WEIGHT, &proc->weight_format);
{
struct tab_table *risk;
- risk = tab_create (4 + (xt->n_vars - 2), xt->n_entries / xt->n_cols * 4 + 10);
+ size_t n_cols = xt->vars[COL_VAR].n_values;
+ risk = tab_create (4 + (xt->n_vars - 2), xt->n_entries / n_cols * 4 + 10);
tab_headers (risk, 1 + xt->n_vars - 2, 0, 2, 0);
tab_title (risk, _("Risk estimate."));
tab_set_format (risk, RC_WEIGHT, &proc->weight_format);
{
struct tab_table *direct;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
direct = tab_create (7 + (xt->n_vars - 2),
- xt->n_entries / xt->n_cols * 7 + 10);
+ xt->n_entries / n_cols * 7 + 10);
tab_headers (direct, 3 + (xt->n_vars - 2), 0, 1, 0);
tab_title (direct, _("Directional measures."));
tab_set_format (direct, RC_WEIGHT, &proc->weight_format);
static void
delete_missing (struct crosstabulation *xt)
{
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
int r, c;
- for (r = 0; r < xt->n_rows; r++)
- if (var_is_num_missing (xt->vars[ROW_VAR], xt->rows[r].f, MV_USER))
+ for (r = 0; r < n_rows; r++)
+ if (var_is_num_missing (xt->vars[ROW_VAR].var,
+ xt->vars[ROW_VAR].values[r].f, MV_USER))
{
- for (c = 0; c < xt->n_cols; c++)
- xt->mat[c + r * xt->n_cols] = 0.;
+ for (c = 0; c < n_cols; c++)
+ xt->mat[c + r * n_cols] = 0.;
xt->ns_rows--;
}
- for (c = 0; c < xt->n_cols; c++)
- if (var_is_num_missing (xt->vars[COL_VAR], xt->cols[c].f, MV_USER))
+ for (c = 0; c < n_cols; c++)
+ if (var_is_num_missing (xt->vars[COL_VAR].var,
+ xt->vars[COL_VAR].values[c].f, MV_USER))
{
- for (r = 0; r < xt->n_rows; r++)
- xt->mat[c + r * xt->n_cols] = 0.;
+ for (r = 0; r < n_rows; r++)
+ xt->mat[c + r * n_cols] = 0.;
xt->ns_cols--;
}
}
if (xt != NULL)
for (i = 2; i < xt->n_vars; i++)
tab_text (t, xt->n_vars - i - 1, 0, TAB_RIGHT | TAT_TITLE,
- var_to_string (xt->vars[i]));
+ var_to_string (xt->vars[i].var));
tab_box (t, TAL_2, TAL_2, -1, -1, 0, 0, tab_nc (t) - 1, tab_nr (t) - 1);
tab_box (t, -1, -1, -1, TAL_1, tab_l (t), tab_t (t) - 1, tab_nc (t) - 1,
tab_nr (t) - 1);
to existing data not owned by *VALUES itself. */
static void
enum_var_values (const struct crosstabulation *xt, int var_idx,
- union value **valuesp, int *n_values, bool descending)
+ bool descending)
{
- const struct variable *var = xt->vars[var_idx];
- const struct var_range *range = get_var_range (xt->proc, var);
- union value *values;
- size_t i;
+ struct xtab_var *xv = &xt->vars[var_idx];
+ const struct var_range *range = get_var_range (xt->proc, xv->var);
if (range)
{
- values = *valuesp = xnmalloc (range->count, sizeof *values);
- *n_values = range->count;
- for (i = 0; i < range->count; i++)
- values[i].f = range->min + i;
+ xv->values = xnmalloc (range->count, sizeof *xv->values);
+ xv->n_values = range->count;
+ for (size_t i = 0; i < range->count; i++)
+ xv->values[i].f = range->min + i;
}
else
{
- int width = var_get_width (var);
+ int width = var_get_width (xv->var);
struct hmapx_node *node;
const union value *iter;
struct hmapx set;
hmapx_init (&set);
- for (i = 0; i < xt->n_entries; i++)
+ for (size_t i = 0; i < xt->n_entries; i++)
{
const struct freq *te = xt->entries[i];
const union value *value = &te->values[var_idx];
next_entry: ;
}
- *n_values = hmapx_count (&set);
- values = *valuesp = xnmalloc (*n_values, sizeof *values);
- i = 0;
+ xv->n_values = hmapx_count (&set);
+ xv->values = xnmalloc (xv->n_values, sizeof *xv->values);
+ size_t i = 0;
HMAPX_FOR_EACH (iter, node, &set)
- values[i++] = *iter;
+ xv->values[i++] = *iter;
hmapx_destroy (&set);
- sort (values, *n_values, sizeof *values,
+ sort (xv->values, xv->n_values, sizeof *xv->values,
descending ? compare_value_3way_inv : compare_value_3way,
&width);
}
}
+static void
+free_var_values (const struct crosstabulation *xt, int var_idx)
+{
+ struct xtab_var *xv = &xt->vars[var_idx];
+ free (xv->values);
+ xv->values = NULL;
+ xv->n_values = 0;
+}
+
/* Sets cell (C,R) in TABLE, with options OPT, to have a value taken
from V, displayed with print format spec from variable VAR. When
in REPORT missing-value mode, missing values have an M appended. */
for (; first_difference >= 2; first_difference--)
table_value_missing (proc, table, xt->n_consts + xt->n_vars - first_difference - 1, 0,
TAB_RIGHT, &xt->entries[0]->values[first_difference],
- xt->vars[first_difference]);
+ xt->vars[first_difference].var);
}
/* Put VALUE into cell (C,R) of TABLE, suffixed with character
display_crosstabulation (struct crosstabs_proc *proc,
struct crosstabulation *xt, struct tab_table *table)
{
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
int last_row;
int r, c, i;
double *mp;
- for (r = 0; r < xt->n_rows; r++)
+ for (r = 0; r < n_rows; r++)
table_value_missing (proc, table, xt->n_consts + xt->n_vars - 2,
- r * proc->n_cells, TAB_RIGHT, &xt->rows[r],
- xt->vars[ROW_VAR]);
+ r * proc->n_cells, TAB_RIGHT,
+ &xt->vars[ROW_VAR].values[r],
+ xt->vars[ROW_VAR].var);
- tab_text (table, xt->n_vars - 2, xt->n_rows * proc->n_cells,
+ tab_text (table, xt->n_vars - 2, n_rows * proc->n_cells,
TAB_LEFT, _("Total"));
/* Put in the actual cells. */
mp = xt->mat;
tab_offset (table, xt->n_consts + xt->n_vars - 1, -1);
- for (r = 0; r < xt->n_rows; r++)
+ for (r = 0; r < n_rows; r++)
{
if (proc->n_cells > 1)
- tab_hline (table, TAL_1, -1, xt->n_cols, 0);
- for (c = 0; c < xt->n_cols; c++)
+ tab_hline (table, TAL_1, -1, n_cols, 0);
+ for (c = 0; c < n_cols; c++)
{
bool mark_missing = false;
double expected_value = xt->row_tot[r] * xt->col_tot[c] / xt->total;
if (proc->exclude == MV_NEVER
- && (var_is_num_missing (xt->vars[COL_VAR], xt->cols[c].f, MV_USER)
- || var_is_num_missing (xt->vars[ROW_VAR], xt->rows[r].f,
+ && (var_is_num_missing (xt->vars[COL_VAR].var,
+ xt->vars[COL_VAR].values[c].f, MV_USER)
+ || var_is_num_missing (xt->vars[ROW_VAR].var,
+ xt->vars[ROW_VAR].values[r].f,
MV_USER)))
mark_missing = true;
for (i = 0; i < proc->n_cells; i++)
}
/* Row totals. */
- tab_offset (table, -1, tab_row (table) - proc->n_cells * xt->n_rows);
- for (r = 0; r < xt->n_rows; r++)
+ tab_offset (table, -1, tab_row (table) - proc->n_cells * n_rows);
+ for (r = 0; r < n_rows; r++)
{
bool mark_missing = false;
if (proc->exclude == MV_NEVER
- && var_is_num_missing (xt->vars[ROW_VAR], xt->rows[r].f, MV_USER))
+ && var_is_num_missing (xt->vars[ROW_VAR].var,
+ xt->vars[ROW_VAR].values[r].f, MV_USER))
mark_missing = true;
for (i = 0; i < proc->n_cells; i++)
NOT_REACHED ();
}
- format_cell_entry (table, xt->n_cols, 0, v, suffix, mark_missing, proc->dict);
+ format_cell_entry (table, n_cols, 0, v, suffix, mark_missing, proc->dict);
tab_next_row (table);
}
}
/* Column totals, grand total. */
last_row = 0;
if (proc->n_cells > 1)
- tab_hline (table, TAL_1, -1, xt->n_cols, 0);
- for (c = 0; c <= xt->n_cols; c++)
+ tab_hline (table, TAL_1, -1, n_cols, 0);
+ for (c = 0; c <= n_cols; c++)
{
- double ct = c < xt->n_cols ? xt->col_tot[c] : xt->total;
+ double ct = c < n_cols ? xt->col_tot[c] : xt->total;
bool mark_missing = false;
int i;
- if (proc->exclude == MV_NEVER && c < xt->n_cols
- && var_is_num_missing (xt->vars[COL_VAR], xt->cols[c].f, MV_USER))
+ if (proc->exclude == MV_NEVER && c < n_cols
+ && var_is_num_missing (xt->vars[COL_VAR].var,
+ xt->vars[COL_VAR].values[c].f, MV_USER))
mark_missing = true;
for (i = 0; i < proc->n_cells; i++)
for (i = 0; i < 3; i++)
{
- const struct variable *cv = xt->vars[COL_VAR];
- const struct variable *rv = xt->vars[ROW_VAR];
+ const struct variable *cv = xt->vars[COL_VAR].var;
+ const struct variable *rv = xt->vars[ROW_VAR].var;
int cvw = var_get_width (cv);
int rvw = var_get_width (rv);
case 2:
if (var_is_numeric (rv))
sprintf (buf, _("For cohort %s = %.*g"),
- var_to_string (rv), DBL_DIG + 1, xt->rows[i - 1].f);
+ var_to_string (rv), DBL_DIG + 1,
+ xt->vars[ROW_VAR].values[i - 1].f);
else
sprintf (buf, _("For cohort %s = %.*s"),
var_to_string (rv),
- rvw, value_str (&xt->rows[i - 1], rvw));
+ rvw, value_str (&xt->vars[ROW_VAR].values[i - 1], rvw));
break;
}
if (k == 0)
string = NULL;
else if (k == 1)
- string = var_to_string (xt->vars[0]);
+ string = var_to_string (xt->vars[0].var);
else
- string = var_to_string (xt->vars[1]);
+ string = var_to_string (xt->vars[1].var);
tab_text_format (direct, j, 0, TAB_LEFT,
gettext (stats_names[j][k]), string);
return;
}
- for (r = 0; r < xt->n_rows; r++)
- for (c = 0; c < xt->n_cols; c++)
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
+ for (r = 0; r < n_rows; r++)
+ for (c = 0; c < n_cols; c++)
{
const double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total;
- const double freq = xt->mat[xt->n_cols * r + c];
+ const double freq = xt->mat[n_cols * r + c];
const double residual = freq - expected;
chisq[0] += residual * residual / expected;
int nz_cols[2];
int i, j;
- for (i = j = 0; i < xt->n_cols; i++)
+ for (i = j = 0; i < n_cols; i++)
if (xt->col_tot[i] != 0.)
{
nz_cols[j++] = i;
f11 = xt->mat[nz_cols[0]];
f12 = xt->mat[nz_cols[1]];
- f21 = xt->mat[nz_cols[0] + xt->n_cols];
- f22 = xt->mat[nz_cols[1] + xt->n_cols];
+ f21 = xt->mat[nz_cols[0] + n_cols];
+ f22 = xt->mat[nz_cols[1] + n_cols];
}
/* Yates. */
}
/* Calculate Mantel-Haenszel. */
- if (var_is_numeric (xt->vars[ROW_VAR]) && var_is_numeric (xt->vars[COL_VAR]))
+ if (var_is_numeric (xt->vars[ROW_VAR].var)
+ && var_is_numeric (xt->vars[COL_VAR].var))
{
double r, ase_0, ase_1;
- calc_r (xt, (double *) xt->rows, (double *) xt->cols, &r, &ase_0, &ase_1);
+ calc_r (xt, (double *) xt->vars[ROW_VAR].values,
+ (double *) xt->vars[COL_VAR].values,
+ &r, &ase_0, &ase_1);
chisq[4] = (xt->total - 1.) * r * r;
df[4] = 1;
calc_r (struct crosstabulation *xt,
double *XT, double *Y, double *r, double *t, double *error)
{
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
double SX, SY, S, T;
double Xbar, Ybar;
double sum_XYf, sum_X2Y2f;
double sum_Yc, sum_Y2c;
int i, j;
- for (sum_X2Y2f = sum_XYf = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (sum_X2Y2f = sum_XYf = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
- double fij = xt->mat[j + i * xt->n_cols];
+ double fij = xt->mat[j + i * n_cols];
double product = XT[i] * Y[j];
double temp = fij * product;
sum_XYf += temp;
sum_X2Y2f += temp * product;
}
- for (sum_Xr = sum_X2r = 0., i = 0; i < xt->n_rows; i++)
+ for (sum_Xr = sum_X2r = 0., i = 0; i < n_rows; i++)
{
sum_Xr += XT[i] * xt->row_tot[i];
sum_X2r += pow2 (XT[i]) * xt->row_tot[i];
}
Xbar = sum_Xr / xt->total;
- for (sum_Yc = sum_Y2c = 0., i = 0; i < xt->n_cols; i++)
+ for (sum_Yc = sum_Y2c = 0., i = 0; i < n_cols; i++)
{
sum_Yc += Y[i] * xt->col_tot[i];
sum_Y2c += Y[i] * Y[i] * xt->col_tot[i];
{
double s, c, y, t;
- for (s = c = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (s = c = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
double Xresid, Yresid;
double temp;
temp = (T * Xresid * Yresid
- ((S / (2. * T))
* (Xresid * Xresid * SY + Yresid * Yresid * SX)));
- y = xt->mat[j + i * xt->n_cols] * temp * temp - c;
+ y = xt->mat[j + i * n_cols] * temp * temp - c;
t = s + y;
c = (t - s) - y;
s = t;
double somers_d_v[3], double somers_d_ase[3],
double somers_d_t[3])
{
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
int q, i;
q = MIN (xt->ns_rows, xt->ns_cols);
double Xp = 0.; /* Pearson chi-square. */
int r, c;
- for (r = 0; r < xt->n_rows; r++)
- for (c = 0; c < xt->n_cols; c++)
+ for (r = 0; r < n_rows; r++)
+ for (c = 0; c < n_cols; c++)
{
const double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total;
- const double freq = xt->mat[xt->n_cols * r + c];
+ const double freq = xt->mat[n_cols * r + c];
const double residual = freq - expected;
Xp += residual * residual / expected;
int r, c;
Dr = Dc = pow2 (xt->total);
- for (r = 0; r < xt->n_rows; r++)
+ for (r = 0; r < n_rows; r++)
Dr -= pow2 (xt->row_tot[r]);
- for (c = 0; c < xt->n_cols; c++)
+ for (c = 0; c < n_cols; c++)
Dc -= pow2 (xt->col_tot[c]);
- cum = xnmalloc (xt->n_cols * xt->n_rows, sizeof *cum);
- for (c = 0; c < xt->n_cols; c++)
+ cum = xnmalloc (n_cols * n_rows, sizeof *cum);
+ for (c = 0; c < n_cols; c++)
{
double ct = 0.;
- for (r = 0; r < xt->n_rows; r++)
- cum[c + r * xt->n_cols] = ct += xt->mat[c + r * xt->n_cols];
+ for (r = 0; r < n_rows; r++)
+ cum[c + r * n_cols] = ct += xt->mat[c + r * n_cols];
}
/* P and Q. */
double Cij, Dij;
P = Q = 0.;
- for (i = 0; i < xt->n_rows; i++)
+ for (i = 0; i < n_rows; i++)
{
Cij = Dij = 0.;
- for (j = 1; j < xt->n_cols; j++)
- Cij += xt->col_tot[j] - cum[j + i * xt->n_cols];
+ for (j = 1; j < n_cols; j++)
+ Cij += xt->col_tot[j] - cum[j + i * n_cols];
if (i > 0)
- for (j = 1; j < xt->n_cols; j++)
- Dij += cum[j + (i - 1) * xt->n_cols];
+ for (j = 1; j < n_cols; j++)
+ Dij += cum[j + (i - 1) * n_cols];
for (j = 0;;)
{
- double fij = xt->mat[j + i * xt->n_cols];
+ double fij = xt->mat[j + i * n_cols];
P += fij * Cij;
Q += fij * Dij;
- if (++j == xt->n_cols)
+ if (++j == n_cols)
break;
- assert (j < xt->n_cols);
+ assert (j < n_cols);
- Cij -= xt->col_tot[j] - cum[j + i * xt->n_cols];
- Dij += xt->col_tot[j - 1] - cum[j - 1 + i * xt->n_cols];
+ Cij -= xt->col_tot[j] - cum[j + i * n_cols];
+ Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols];
if (i > 0)
{
- Cij += cum[j - 1 + (i - 1) * xt->n_cols];
- Dij -= cum[j + (i - 1) * xt->n_cols];
+ Cij += cum[j - 1 + (i - 1) * n_cols];
+ Dij -= cum[j + (i - 1) * n_cols];
}
}
}
double Cij, Dij;
btau_cum = ctau_cum = gamma_cum = d_yx_cum = d_xy_cum = 0.;
- for (i = 0; i < xt->n_rows; i++)
+ for (i = 0; i < n_rows; i++)
{
Cij = Dij = 0.;
- for (j = 1; j < xt->n_cols; j++)
- Cij += xt->col_tot[j] - cum[j + i * xt->n_cols];
+ for (j = 1; j < n_cols; j++)
+ Cij += xt->col_tot[j] - cum[j + i * n_cols];
if (i > 0)
- for (j = 1; j < xt->n_cols; j++)
- Dij += cum[j + (i - 1) * xt->n_cols];
+ for (j = 1; j < n_cols; j++)
+ Dij += cum[j + (i - 1) * n_cols];
for (j = 0;;)
{
- double fij = xt->mat[j + i * xt->n_cols];
+ double fij = xt->mat[j + i * n_cols];
if (proc->statistics & (1u << CRS_ST_BTAU))
{
- (Q - P) * (xt->total - xt->col_tot[j]));
}
- if (++j == xt->n_cols)
+ if (++j == n_cols)
break;
- assert (j < xt->n_cols);
+ assert (j < n_cols);
- Cij -= xt->col_tot[j] - cum[j + i * xt->n_cols];
- Dij += xt->col_tot[j - 1] - cum[j - 1 + i * xt->n_cols];
+ Cij -= xt->col_tot[j] - cum[j + i * n_cols];
+ Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols];
if (i > 0)
{
- Cij += cum[j - 1 + (i - 1) * xt->n_cols];
- Dij -= cum[j + (i - 1) * xt->n_cols];
+ Cij += cum[j - 1 + (i - 1) * n_cols];
+ Dij -= cum[j + (i - 1) * n_cols];
}
}
}
/* Spearman correlation, Pearson's r. */
if (proc->statistics & (1u << CRS_ST_CORR))
{
- double *R = xmalloc (sizeof *R * xt->n_rows);
- double *C = xmalloc (sizeof *C * xt->n_cols);
+ double *R = xmalloc (sizeof *R * n_rows);
+ double *C = xmalloc (sizeof *C * n_cols);
{
double y, t, c = 0., s = 0.;
t = s + y;
c = (t - s) - y;
s = t;
- if (++i == xt->n_rows)
+ if (++i == n_rows)
break;
- assert (i < xt->n_rows);
+ assert (i < n_rows);
}
}
t = s + y;
c = (t - s) - y;
s = t;
- if (++j == xt->n_cols)
+ if (++j == n_cols)
break;
- assert (j < xt->n_cols);
+ assert (j < n_cols);
}
}
free (R);
free (C);
- calc_r (xt, (double *) xt->rows, (double *) xt->cols, &v[7], &t[7], &ase[7]);
+ calc_r (xt, (double *) xt->vars[ROW_VAR].values,
+ (double *) xt->vars[COL_VAR].values,
+ &v[7], &t[7], &ase[7]);
}
/* Cohen's kappa. */
prod = xt->row_tot[i] * xt->col_tot[j];
sum = xt->row_tot[i] + xt->col_tot[j];
- sum_fii += xt->mat[j + i * xt->n_cols];
+ sum_fii += xt->mat[j + i * n_cols];
sum_rici += prod;
- sum_fiiri_ci += xt->mat[j + i * xt->n_cols] * sum;
+ sum_fiiri_ci += xt->mat[j + i * n_cols] * sum;
sum_riciri_ci += prod * sum;
}
for (sum_fijri_ci2 = 0., i = 0; i < xt->ns_rows; i++)
for (j = 0; j < xt->ns_cols; j++)
{
double sum = xt->row_tot[i] + xt->col_tot[j];
- sum_fijri_ci2 += xt->mat[j + i * xt->n_cols] * sum * sum;
+ sum_fijri_ci2 += xt->mat[j + i * n_cols] * sum * sum;
}
v[8] = (xt->total * sum_fii - sum_rici) / (pow2 (xt->total) - sum_rici);
calc_risk (struct crosstabulation *xt,
double *value, double *upper, double *lower, union value *c)
{
+ size_t n_cols = xt->vars[COL_VAR].n_values;
double f11, f12, f21, f22;
double v;
int nz_cols[2];
int i, j;
- for (i = j = 0; i < xt->n_cols; i++)
+ for (i = j = 0; i < n_cols; i++)
if (xt->col_tot[i] != 0.)
{
nz_cols[j++] = i;
f11 = xt->mat[nz_cols[0]];
f12 = xt->mat[nz_cols[1]];
- f21 = xt->mat[nz_cols[0] + xt->n_cols];
- f22 = xt->mat[nz_cols[1] + xt->n_cols];
+ f21 = xt->mat[nz_cols[0] + n_cols];
+ f22 = xt->mat[nz_cols[1] + n_cols];
- c[0] = xt->cols[nz_cols[0]];
- c[1] = xt->cols[nz_cols[1]];
+ c[0] = xt->vars[COL_VAR].values[nz_cols[0]];
+ c[1] = xt->vars[COL_VAR].values[nz_cols[1]];
}
value[0] = (f11 * f22) / (f12 * f21);
double v[N_DIRECTIONAL], double ase[N_DIRECTIONAL],
double t[N_DIRECTIONAL], double sig[N_DIRECTIONAL])
{
+ size_t n_rows = xt->vars[ROW_VAR].n_values;
+ size_t n_cols = xt->vars[COL_VAR].n_values;
{
int i;
/* Lambda. */
if (proc->statistics & (1u << CRS_ST_LAMBDA))
{
- double *fim = xnmalloc (xt->n_rows, sizeof *fim);
- int *fim_index = xnmalloc (xt->n_rows, sizeof *fim_index);
- double *fmj = xnmalloc (xt->n_cols, sizeof *fmj);
- int *fmj_index = xnmalloc (xt->n_cols, sizeof *fmj_index);
+ double *fim = xnmalloc (n_rows, sizeof *fim);
+ int *fim_index = xnmalloc (n_rows, sizeof *fim_index);
+ double *fmj = xnmalloc (n_cols, sizeof *fmj);
+ int *fmj_index = xnmalloc (n_cols, sizeof *fmj_index);
double sum_fim, sum_fmj;
double rm, cm;
int rm_index, cm_index;
int i, j;
/* Find maximum for each row and their sum. */
- for (sum_fim = 0., i = 0; i < xt->n_rows; i++)
+ for (sum_fim = 0., i = 0; i < n_rows; i++)
{
- double max = xt->mat[i * xt->n_cols];
+ double max = xt->mat[i * n_cols];
int index = 0;
- for (j = 1; j < xt->n_cols; j++)
- if (xt->mat[j + i * xt->n_cols] > max)
+ for (j = 1; j < n_cols; j++)
+ if (xt->mat[j + i * n_cols] > max)
{
- max = xt->mat[j + i * xt->n_cols];
+ max = xt->mat[j + i * n_cols];
index = j;
}
}
/* Find maximum for each column. */
- for (sum_fmj = 0., j = 0; j < xt->n_cols; j++)
+ for (sum_fmj = 0., j = 0; j < n_cols; j++)
{
double max = xt->mat[j];
int index = 0;
- for (i = 1; i < xt->n_rows; i++)
- if (xt->mat[j + i * xt->n_cols] > max)
+ for (i = 1; i < n_rows; i++)
+ if (xt->mat[j + i * n_cols] > max)
{
- max = xt->mat[j + i * xt->n_cols];
+ max = xt->mat[j + i * n_cols];
index = i;
}
/* Find maximum row total. */
rm = xt->row_tot[0];
rm_index = 0;
- for (i = 1; i < xt->n_rows; i++)
+ for (i = 1; i < n_rows; i++)
if (xt->row_tot[i] > rm)
{
rm = xt->row_tot[i];
/* Find maximum column total. */
cm = xt->col_tot[0];
cm_index = 0;
- for (j = 1; j < xt->n_cols; j++)
+ for (j = 1; j < n_cols; j++)
if (xt->col_tot[j] > cm)
{
cm = xt->col_tot[j];
double accum;
accum = 0.;
- for (i = 0; i < xt->n_rows; i++)
+ for (i = 0; i < n_rows; i++)
if (cm_index == fim_index[i])
accum += fim[i];
ase[2] = sqrt ((xt->total - sum_fim) * (sum_fim + cm - 2. * accum)
{
double accum;
- for (accum = 0., i = 0; i < xt->n_rows; i++)
+ for (accum = 0., i = 0; i < n_rows; i++)
if (cm_index != fim_index[i])
- accum += (xt->mat[i * xt->n_cols + fim_index[i]]
- + xt->mat[i * xt->n_cols + cm_index]);
+ accum += (xt->mat[i * n_cols + fim_index[i]]
+ + xt->mat[i * n_cols + cm_index]);
t[2] = v[2] / (sqrt (accum - pow2 (sum_fim - cm) / xt->total) / (xt->total - cm));
}
double accum;
accum = 0.;
- for (j = 0; j < xt->n_cols; j++)
+ for (j = 0; j < n_cols; j++)
if (rm_index == fmj_index[j])
accum += fmj[j];
ase[1] = sqrt ((xt->total - sum_fmj) * (sum_fmj + rm - 2. * accum)
{
double accum;
- for (accum = 0., j = 0; j < xt->n_cols; j++)
+ for (accum = 0., j = 0; j < n_cols; j++)
if (rm_index != fmj_index[j])
- accum += (xt->mat[j + xt->n_cols * fmj_index[j]]
- + xt->mat[j + xt->n_cols * rm_index]);
+ accum += (xt->mat[j + n_cols * fmj_index[j]]
+ + xt->mat[j + n_cols * rm_index]);
t[1] = v[1] / (sqrt (accum - pow2 (sum_fmj - rm) / xt->total) / (xt->total - rm));
}
double accum0;
double accum1;
- for (accum0 = accum1 = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (accum0 = accum1 = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
int temp0 = (fmj_index[j] == i) + (fim_index[i] == j);
int temp1 = (i == rm_index) + (j == cm_index);
- accum0 += xt->mat[j + i * xt->n_cols] * pow2 (temp0 - temp1);
- accum1 += (xt->mat[j + i * xt->n_cols]
+ accum0 += xt->mat[j + i * n_cols] * pow2 (temp0 - temp1);
+ accum1 += (xt->mat[j + i * n_cols]
* pow2 (temp0 + (v[0] - 1.) * temp1));
}
ase[0] = sqrt (accum1 - 4. * xt->total * v[0] * v[0]) / (2. * xt->total - rm - cm);
double sum_fij2_ri, sum_fij2_ci;
double sum_ri2, sum_cj2;
- for (sum_fij2_ri = sum_fij2_ci = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (sum_fij2_ri = sum_fij2_ci = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
- double temp = pow2 (xt->mat[j + i * xt->n_cols]);
+ double temp = pow2 (xt->mat[j + i * n_cols]);
sum_fij2_ri += temp / xt->row_tot[i];
sum_fij2_ci += temp / xt->col_tot[j];
}
- for (sum_ri2 = 0., i = 0; i < xt->n_rows; i++)
+ for (sum_ri2 = 0., i = 0; i < n_rows; i++)
sum_ri2 += pow2 (xt->row_tot[i]);
- for (sum_cj2 = 0., j = 0; j < xt->n_cols; j++)
+ for (sum_cj2 = 0., j = 0; j < n_cols; j++)
sum_cj2 += pow2 (xt->col_tot[j]);
v[3] = (xt->total * sum_fij2_ci - sum_ri2) / (pow2 (xt->total) - sum_ri2);
double ase1_yx, ase1_xy, ase1_sym;
int i, j;
- for (UX = 0., i = 0; i < xt->n_rows; i++)
+ for (UX = 0., i = 0; i < n_rows; i++)
if (xt->row_tot[i] > 0.)
UX -= xt->row_tot[i] / xt->total * log (xt->row_tot[i] / xt->total);
- for (UY = 0., j = 0; j < xt->n_cols; j++)
+ for (UY = 0., j = 0; j < n_cols; j++)
if (xt->col_tot[j] > 0.)
UY -= xt->col_tot[j] / xt->total * log (xt->col_tot[j] / xt->total);
- for (UXY = P = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (UXY = P = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
- double entry = xt->mat[j + i * xt->n_cols];
+ double entry = xt->mat[j + i * n_cols];
if (entry <= 0.)
continue;
UXY -= entry / xt->total * log (entry / xt->total);
}
- for (ase1_yx = ase1_xy = ase1_sym = 0., i = 0; i < xt->n_rows; i++)
- for (j = 0; j < xt->n_cols; j++)
+ for (ase1_yx = ase1_xy = ase1_sym = 0., i = 0; i < n_rows; i++)
+ for (j = 0; j < n_cols; j++)
{
- double entry = xt->mat[j + i * xt->n_cols];
+ double entry = xt->mat[j + i * n_cols];
if (entry <= 0.)
continue;
double SX, SXW;
int i, j;
- for (sum_Xr = sum_X2r = 0., i = 0; i < xt->n_rows; i++)
+ for (sum_Xr = sum_X2r = 0., i = 0; i < n_rows; i++)
{
- sum_Xr += xt->rows[i].f * xt->row_tot[i];
- sum_X2r += pow2 (xt->rows[i].f) * xt->row_tot[i];
+ sum_Xr += xt->vars[ROW_VAR].values[i].f * xt->row_tot[i];
+ sum_X2r += pow2 (xt->vars[ROW_VAR].values[i].f) * xt->row_tot[i];
}
SX = sum_X2r - pow2 (sum_Xr) / xt->total;
- for (SXW = 0., j = 0; j < xt->n_cols; j++)
+ for (SXW = 0., j = 0; j < n_cols; j++)
{
double cum;
- for (cum = 0., i = 0; i < xt->n_rows; i++)
+ for (cum = 0., i = 0; i < n_rows; i++)
{
- SXW += pow2 (xt->rows[i].f) * xt->mat[j + i * xt->n_cols];
- cum += xt->rows[i].f * xt->mat[j + i * xt->n_cols];
+ SXW += (pow2 (xt->vars[ROW_VAR].values[i].f)
+ * xt->mat[j + i * n_cols]);
+ cum += (xt->vars[ROW_VAR].values[i].f
+ * xt->mat[j + i * n_cols]);
}
SXW -= cum * cum / xt->col_tot[j];
double SY, SYW;
int i, j;
- for (sum_Yc = sum_Y2c = 0., i = 0; i < xt->n_cols; i++)
+ for (sum_Yc = sum_Y2c = 0., i = 0; i < n_cols; i++)
{
- sum_Yc += xt->cols[i].f * xt->col_tot[i];
- sum_Y2c += pow2 (xt->cols[i].f) * xt->col_tot[i];
+ sum_Yc += xt->vars[COL_VAR].values[i].f * xt->col_tot[i];
+ sum_Y2c += pow2 (xt->vars[COL_VAR].values[i].f) * xt->col_tot[i];
}
SY = sum_Y2c - sum_Yc * sum_Yc / xt->total;
- for (SYW = 0., i = 0; i < xt->n_rows; i++)
+ for (SYW = 0., i = 0; i < n_rows; i++)
{
double cum;
- for (cum = 0., j = 0; j < xt->n_cols; j++)
+ for (cum = 0., j = 0; j < n_cols; j++)
{
- SYW += pow2 (xt->cols[j].f) * xt->mat[j + i * xt->n_cols];
- cum += xt->cols[j].f * xt->mat[j + i * xt->n_cols];
+ SYW += (pow2 (xt->vars[COL_VAR].values[j].f)
+ * xt->mat[j + i * n_cols]);
+ cum += (xt->vars[COL_VAR].values[j].f
+ * xt->mat[j + i * n_cols]);
}
SYW -= cum * cum / xt->row_tot[i];