+++ /dev/null
-/* Extended regular expression matching and search library, version
- 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
- internationalization features.)
-
- Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
- USA. */
-
-/* TODO:
- - structure the opcode space into opcode+flag.
- - merge with glibc's regex.[ch].
- - replace (succeed_n + jump_n + set_number_at) with something that doesn't
- need to modify the compiled regexp so that re_match can be reentrant.
- - get rid of on_failure_jump_smart by doing the optimization in re_comp
- rather than at run-time, so that re_match can be reentrant.
-*/
-
-/* AIX requires this to be the first thing in the file. */
-#if defined _AIX && !defined REGEX_MALLOC
- #pragma alloca
-#endif
-
-#ifdef HAVE_CONFIG_H
-# include <config.h>
-#endif
-
-#if defined STDC_HEADERS && !defined emacs
-# include <stddef.h>
-#else
-/* We need this for `regex.h', and perhaps for the Emacs include files. */
-# include <sys/types.h>
-#endif
-
-/* Whether to use ISO C Amendment 1 wide char functions.
- Those should not be used for Emacs since it uses its own. */
-#if defined _LIBC
-#define WIDE_CHAR_SUPPORT 1
-#else
-#define WIDE_CHAR_SUPPORT \
- (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
-#endif
-
-/* For platform which support the ISO C amendement 1 functionality we
- support user defined character classes. */
-#if WIDE_CHAR_SUPPORT
-/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
-# include <wchar.h>
-# include <wctype.h>
-#endif
-
-#ifdef _LIBC
-/* We have to keep the namespace clean. */
-# define regfree(preg) __regfree (preg)
-# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
-# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
-# define regerror(errcode, preg, errbuf, errbuf_size) \
- __regerror(errcode, preg, errbuf, errbuf_size)
-# define re_set_registers(bu, re, nu, st, en) \
- __re_set_registers (bu, re, nu, st, en)
-# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
- __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
-# define re_match(bufp, string, size, pos, regs) \
- __re_match (bufp, string, size, pos, regs)
-# define re_search(bufp, string, size, startpos, range, regs) \
- __re_search (bufp, string, size, startpos, range, regs)
-# define re_compile_pattern(pattern, length, bufp) \
- __re_compile_pattern (pattern, length, bufp)
-# define re_set_syntax(syntax) __re_set_syntax (syntax)
-# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
- __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
-# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
-
-/* Make sure we call libc's function even if the user overrides them. */
-# define btowc __btowc
-# define iswctype __iswctype
-# define wctype __wctype
-
-# define WEAK_ALIAS(a,b) weak_alias (a, b)
-
-/* We are also using some library internals. */
-# include <locale/localeinfo.h>
-# include <locale/elem-hash.h>
-# include <langinfo.h>
-#else
-# define WEAK_ALIAS(a,b)
-#endif
-
-/* This is for other GNU distributions with internationalized messages. */
-#if HAVE_LIBINTL_H || defined _LIBC
-# include <libintl.h>
-#else
-# define gettext(msgid) (msgid)
-#endif
-
-#ifndef gettext_noop
-/* This define is so xgettext can find the internationalizable
- strings. */
-# define gettext_noop(String) String
-#endif
-
-/* The `emacs' switch turns on certain matching commands
- that make sense only in Emacs. */
-#ifdef emacs
-
-# include "lisp.h"
-# include "buffer.h"
-
-/* Make syntax table lookup grant data in gl_state. */
-# define SYNTAX_ENTRY_VIA_PROPERTY
-
-# include "syntax.h"
-# include "charset.h"
-# include "category.h"
-
-# ifdef malloc
-# undef malloc
-# endif
-# define malloc xmalloc
-# ifdef realloc
-# undef realloc
-# endif
-# define realloc xrealloc
-# ifdef free
-# undef free
-# endif
-# define free xfree
-
-/* Converts the pointer to the char to BEG-based offset from the start. */
-# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
-# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
-
-# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
-# define RE_STRING_CHAR(p, s) \
- (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
-# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
- (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
-
-/* Set C a (possibly multibyte) character before P. P points into a
- string which is the virtual concatenation of STR1 (which ends at
- END1) or STR2 (which ends at END2). */
-# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
- do { \
- if (multibyte) \
- { \
- re_char *dtemp = (p) == (str2) ? (end1) : (p); \
- re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
- re_char *d0 = dtemp; \
- PREV_CHAR_BOUNDARY (d0, dlimit); \
- c = STRING_CHAR (d0, dtemp - d0); \
- } \
- else \
- (c = ((p) == (str2) ? (end1) : (p))[-1]); \
- } while (0)
-
-
-#else /* not emacs */
-
-/* If we are not linking with Emacs proper,
- we can't use the relocating allocator
- even if config.h says that we can. */
-# undef REL_ALLOC
-
-# if defined STDC_HEADERS || defined _LIBC
-# include <stdlib.h>
-# else
-char *malloc ();
-char *realloc ();
-# endif
-
-/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
- If nothing else has been done, use the method below. */
-# ifdef INHIBIT_STRING_HEADER
-# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
-# if !defined bzero && !defined bcopy
-# undef INHIBIT_STRING_HEADER
-# endif
-# endif
-# endif
-
-/* This is the normal way of making sure we have memcpy, memcmp and bzero.
- This is used in most programs--a few other programs avoid this
- by defining INHIBIT_STRING_HEADER. */
-# ifndef INHIBIT_STRING_HEADER
-# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
-# include <string.h>
-# ifndef bzero
-# ifndef _LIBC
-# define bzero(s, n) (memset (s, '\0', n), (s))
-# else
-# define bzero(s, n) __bzero (s, n)
-# endif
-# endif
-# else
-# include <strings.h>
-# ifndef memcmp
-# define memcmp(s1, s2, n) bcmp (s1, s2, n)
-# endif
-# ifndef memcpy
-# define memcpy(d, s, n) (bcopy (s, d, n), (d))
-# endif
-# endif
-# endif
-
-/* Define the syntax stuff for \<, \>, etc. */
-
-/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
-enum syntaxcode { Swhitespace = 0, Sword = 1 };
-
-# ifdef SWITCH_ENUM_BUG
-# define SWITCH_ENUM_CAST(x) ((int)(x))
-# else
-# define SWITCH_ENUM_CAST(x) (x)
-# endif
-
-/* Dummy macros for non-Emacs environments. */
-# define BASE_LEADING_CODE_P(c) (0)
-# define CHAR_CHARSET(c) 0
-# define CHARSET_LEADING_CODE_BASE(c) 0
-# define MAX_MULTIBYTE_LENGTH 1
-# define RE_MULTIBYTE_P(x) 0
-# define WORD_BOUNDARY_P(c1, c2) (0)
-# define CHAR_HEAD_P(p) (1)
-# define SINGLE_BYTE_CHAR_P(c) (1)
-# define SAME_CHARSET_P(c1, c2) (1)
-# define MULTIBYTE_FORM_LENGTH(p, s) (1)
-# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
-# define STRING_CHAR(p, s) (*(p))
-# define RE_STRING_CHAR STRING_CHAR
-# define CHAR_STRING(c, s) (*(s) = (c), 1)
-# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
-# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
-# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
- (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
-# define MAKE_CHAR(charset, c1, c2) (c1)
-#endif /* not emacs */
-
-#ifndef RE_TRANSLATE
-# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
-# define RE_TRANSLATE_P(TBL) (TBL)
-#endif
-\f
-/* Get the interface, including the syntax bits. */
-#include "regex.h"
-
-/* isalpha etc. are used for the character classes. */
-#include <ctype.h>
-
-#ifdef emacs
-
-/* 1 if C is an ASCII character. */
-# define IS_REAL_ASCII(c) ((c) < 0200)
-
-/* 1 if C is a unibyte character. */
-# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
-
-/* The Emacs definitions should not be directly affected by locales. */
-
-/* In Emacs, these are only used for single-byte characters. */
-# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
-# define ISCNTRL(c) ((c) < ' ')
-# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
- || ((c) >= 'a' && (c) <= 'f') \
- || ((c) >= 'A' && (c) <= 'F'))
-
-/* This is only used for single-byte characters. */
-# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-
-/* The rest must handle multibyte characters. */
-
-# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
- ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
- : 1)
-
-# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
- ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
- : 1)
-
-# define ISALNUM(c) (IS_REAL_ASCII (c) \
- ? (((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z') \
- || ((c) >= '0' && (c) <= '9')) \
- : SYNTAX (c) == Sword)
-
-# define ISALPHA(c) (IS_REAL_ASCII (c) \
- ? (((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z')) \
- : SYNTAX (c) == Sword)
-
-# define ISLOWER(c) (LOWERCASEP (c))
-
-# define ISPUNCT(c) (IS_REAL_ASCII (c) \
- ? ((c) > ' ' && (c) < 0177 \
- && !(((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z') \
- || ((c) >= '0' && (c) <= '9'))) \
- : SYNTAX (c) != Sword)
-
-# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
-
-# define ISUPPER(c) (UPPERCASEP (c))
-
-# define ISWORD(c) (SYNTAX (c) == Sword)
-
-#else /* not emacs */
-
-/* Jim Meyering writes:
-
- "... Some ctype macros are valid only for character codes that
- isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
- using /bin/cc or gcc but without giving an ansi option). So, all
- ctype uses should be through macros like ISPRINT... If
- STDC_HEADERS is defined, then autoconf has verified that the ctype
- macros don't need to be guarded with references to isascii. ...
- Defining isascii to 1 should let any compiler worth its salt
- eliminate the && through constant folding."
- Solaris defines some of these symbols so we must undefine them first. */
-
-# undef ISASCII
-# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
-# define ISASCII(c) 1
-# else
-# define ISASCII(c) isascii(c)
-# endif
-
-/* 1 if C is an ASCII character. */
-# define IS_REAL_ASCII(c) ((c) < 0200)
-
-/* This distinction is not meaningful, except in Emacs. */
-# define ISUNIBYTE(c) 1
-
-# ifdef isblank
-# define ISBLANK(c) (ISASCII (c) && isblank (c))
-# else
-# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-# endif
-# ifdef isgraph
-# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
-# else
-# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
-# endif
-
-# undef ISPRINT
-# define ISPRINT(c) (ISASCII (c) && isprint (c))
-# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
-# define ISALNUM(c) (ISASCII (c) && isalnum (c))
-# define ISALPHA(c) (ISASCII (c) && isalpha (c))
-# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
-# define ISLOWER(c) (ISASCII (c) && islower (c))
-# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
-# define ISSPACE(c) (ISASCII (c) && isspace (c))
-# define ISUPPER(c) (ISASCII (c) && isupper (c))
-# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
-
-# define ISWORD(c) ISALPHA(c)
-
-# ifdef _tolower
-# define TOLOWER(c) _tolower(c)
-# else
-# define TOLOWER(c) tolower(c)
-# endif
-
-/* How many characters in the character set. */
-# define CHAR_SET_SIZE 256
-
-# ifdef SYNTAX_TABLE
-
-extern char *re_syntax_table;
-
-# else /* not SYNTAX_TABLE */
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void
-init_syntax_once ()
-{
- register int c;
- static int done = 0;
-
- if (done)
- return;
-
- bzero (re_syntax_table, sizeof re_syntax_table);
-
- for (c = 0; c < CHAR_SET_SIZE; ++c)
- if (ISALNUM (c))
- re_syntax_table[c] = Sword;
-
- re_syntax_table['_'] = Sword;
-
- done = 1;
-}
-
-# endif /* not SYNTAX_TABLE */
-
-# define SYNTAX(c) re_syntax_table[(c)]
-
-#endif /* not emacs */
-\f
-#ifndef NULL
-# define NULL (void *)0
-#endif
-
-/* We remove any previous definition of `SIGN_EXTEND_CHAR',
- since ours (we hope) works properly with all combinations of
- machines, compilers, `char' and `unsigned char' argument types.
- (Per Bothner suggested the basic approach.) */
-#undef SIGN_EXTEND_CHAR
-#if __STDC__
-# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-#else /* not __STDC__ */
-/* As in Harbison and Steele. */
-# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
-#endif
-\f
-/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
- use `alloca' instead of `malloc'. This is because using malloc in
- re_search* or re_match* could cause memory leaks when C-g is used in
- Emacs; also, malloc is slower and causes storage fragmentation. On
- the other hand, malloc is more portable, and easier to debug.
-
- Because we sometimes use alloca, some routines have to be macros,
- not functions -- `alloca'-allocated space disappears at the end of the
- function it is called in. */
-
-#ifdef REGEX_MALLOC
-
-# define REGEX_ALLOCATE malloc
-# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
-# define REGEX_FREE free
-
-#else /* not REGEX_MALLOC */
-
-/* Emacs already defines alloca, sometimes. */
-# ifndef alloca
-
-/* Make alloca work the best possible way. */
-# ifdef __GNUC__
-# define alloca __builtin_alloca
-# else /* not __GNUC__ */
-# if HAVE_ALLOCA_H
-# include <alloca.h>
-# endif /* HAVE_ALLOCA_H */
-# endif /* not __GNUC__ */
-
-# endif /* not alloca */
-
-# define REGEX_ALLOCATE alloca
-
-/* Assumes a `char *destination' variable. */
-# define REGEX_REALLOCATE(source, osize, nsize) \
- (destination = (char *) alloca (nsize), \
- memcpy (destination, source, osize))
-
-/* No need to do anything to free, after alloca. */
-# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
-
-#endif /* not REGEX_MALLOC */
-
-/* Define how to allocate the failure stack. */
-
-#if defined REL_ALLOC && defined REGEX_MALLOC
-
-# define REGEX_ALLOCATE_STACK(size) \
- r_alloc (&failure_stack_ptr, (size))
-# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
- r_re_alloc (&failure_stack_ptr, (nsize))
-# define REGEX_FREE_STACK(ptr) \
- r_alloc_free (&failure_stack_ptr)
-
-#else /* not using relocating allocator */
-
-# ifdef REGEX_MALLOC
-
-# define REGEX_ALLOCATE_STACK malloc
-# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
-# define REGEX_FREE_STACK free
-
-# else /* not REGEX_MALLOC */
-
-# define REGEX_ALLOCATE_STACK alloca
-
-# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
- REGEX_REALLOCATE (source, osize, nsize)
-/* No need to explicitly free anything. */
-# define REGEX_FREE_STACK(arg) ((void)0)
-
-# endif /* not REGEX_MALLOC */
-#endif /* not using relocating allocator */
-
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
- `string1' or just past its end. This works if PTR is NULL, which is
- a good thing. */
-#define FIRST_STRING_P(ptr) \
- (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail. */
-#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define RETALLOC_IF(addr, n, t) \
- if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
-#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8 /* In bits. */
-
-#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
-#undef MAX
-#undef MIN
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-
-/* Type of source-pattern and string chars. */
-typedef const unsigned char re_char;
-
-typedef char boolean;
-#define false 0
-#define true 1
-
-static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
- re_char *string1, int size1,
- re_char *string2, int size2,
- int pos,
- struct re_registers *regs,
- int stop));
-\f
-/* These are the command codes that appear in compiled regular
- expressions. Some opcodes are followed by argument bytes. A
- command code can specify any interpretation whatsoever for its
- arguments. Zero bytes may appear in the compiled regular expression. */
-
-typedef enum
-{
- no_op = 0,
-
- /* Succeed right away--no more backtracking. */
- succeed,
-
- /* Followed by one byte giving n, then by n literal bytes. */
- exactn,
-
- /* Matches any (more or less) character. */
- anychar,
-
- /* Matches any one char belonging to specified set. First
- following byte is number of bitmap bytes. Then come bytes
- for a bitmap saying which chars are in. Bits in each byte
- are ordered low-bit-first. A character is in the set if its
- bit is 1. A character too large to have a bit in the map is
- automatically not in the set.
-
- If the length byte has the 0x80 bit set, then that stuff
- is followed by a range table:
- 2 bytes of flags for character sets (low 8 bits, high 8 bits)
- See RANGE_TABLE_WORK_BITS below.
- 2 bytes, the number of pairs that follow (upto 32767)
- pairs, each 2 multibyte characters,
- each multibyte character represented as 3 bytes. */
- charset,
-
- /* Same parameters as charset, but match any character that is
- not one of those specified. */
- charset_not,
-
- /* Start remembering the text that is matched, for storing in a
- register. Followed by one byte with the register number, in
- the range 0 to one less than the pattern buffer's re_nsub
- field. */
- start_memory,
-
- /* Stop remembering the text that is matched and store it in a
- memory register. Followed by one byte with the register
- number, in the range 0 to one less than `re_nsub' in the
- pattern buffer. */
- stop_memory,
-
- /* Match a duplicate of something remembered. Followed by one
- byte containing the register number. */
- duplicate,
-
- /* Fail unless at beginning of line. */
- begline,
-
- /* Fail unless at end of line. */
- endline,
-
- /* Succeeds if at beginning of buffer (if emacs) or at beginning
- of string to be matched (if not). */
- begbuf,
-
- /* Analogously, for end of buffer/string. */
- endbuf,
-
- /* Followed by two byte relative address to which to jump. */
- jump,
-
- /* Followed by two-byte relative address of place to resume at
- in case of failure. */
- on_failure_jump,
-
- /* Like on_failure_jump, but pushes a placeholder instead of the
- current string position when executed. */
- on_failure_keep_string_jump,
-
- /* Just like `on_failure_jump', except that it checks that we
- don't get stuck in an infinite loop (matching an empty string
- indefinitely). */
- on_failure_jump_loop,
-
- /* Just like `on_failure_jump_loop', except that it checks for
- a different kind of loop (the kind that shows up with non-greedy
- operators). This operation has to be immediately preceded
- by a `no_op'. */
- on_failure_jump_nastyloop,
-
- /* A smart `on_failure_jump' used for greedy * and + operators.
- It analyses the loop before which it is put and if the
- loop does not require backtracking, it changes itself to
- `on_failure_keep_string_jump' and short-circuits the loop,
- else it just defaults to changing itself into `on_failure_jump'.
- It assumes that it is pointing to just past a `jump'. */
- on_failure_jump_smart,
-
- /* Followed by two-byte relative address and two-byte number n.
- After matching N times, jump to the address upon failure.
- Does not work if N starts at 0: use on_failure_jump_loop
- instead. */
- succeed_n,
-
- /* Followed by two-byte relative address, and two-byte number n.
- Jump to the address N times, then fail. */
- jump_n,
-
- /* Set the following two-byte relative address to the
- subsequent two-byte number. The address *includes* the two
- bytes of number. */
- set_number_at,
-
- wordbeg, /* Succeeds if at word beginning. */
- wordend, /* Succeeds if at word end. */
-
- wordbound, /* Succeeds if at a word boundary. */
- notwordbound, /* Succeeds if not at a word boundary. */
-
- /* Matches any character whose syntax is specified. Followed by
- a byte which contains a syntax code, e.g., Sword. */
- syntaxspec,
-
- /* Matches any character whose syntax is not that specified. */
- notsyntaxspec
-
-#ifdef emacs
- ,before_dot, /* Succeeds if before point. */
- at_dot, /* Succeeds if at point. */
- after_dot, /* Succeeds if after point. */
-
- /* Matches any character whose category-set contains the specified
- category. The operator is followed by a byte which contains a
- category code (mnemonic ASCII character). */
- categoryspec,
-
- /* Matches any character whose category-set does not contain the
- specified category. The operator is followed by a byte which
- contains the category code (mnemonic ASCII character). */
- notcategoryspec
-#endif /* emacs */
-} re_opcode_t;
-\f
-/* Common operations on the compiled pattern. */
-
-/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
-
-#define STORE_NUMBER(destination, number) \
- do { \
- (destination)[0] = (number) & 0377; \
- (destination)[1] = (number) >> 8; \
- } while (0)
-
-/* Same as STORE_NUMBER, except increment DESTINATION to
- the byte after where the number is stored. Therefore, DESTINATION
- must be an lvalue. */
-
-#define STORE_NUMBER_AND_INCR(destination, number) \
- do { \
- STORE_NUMBER (destination, number); \
- (destination) += 2; \
- } while (0)
-
-/* Put into DESTINATION a number stored in two contiguous bytes starting
- at SOURCE. */
-
-#define EXTRACT_NUMBER(destination, source) \
- do { \
- (destination) = *(source) & 0377; \
- (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
- } while (0)
-
-#ifdef DEBUG
-static void extract_number _RE_ARGS ((int *dest, re_char *source));
-static void
-extract_number (dest, source)
- int *dest;
- re_char *source;
-{
- int temp = SIGN_EXTEND_CHAR (*(source + 1));
- *dest = *source & 0377;
- *dest += temp << 8;
-}
-
-# ifndef EXTRACT_MACROS /* To debug the macros. */
-# undef EXTRACT_NUMBER
-# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
-# endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-
-/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
- SOURCE must be an lvalue. */
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source) \
- do { \
- EXTRACT_NUMBER (destination, source); \
- (source) += 2; \
- } while (0)
-
-#ifdef DEBUG
-static void extract_number_and_incr _RE_ARGS ((int *destination,
- re_char **source));
-static void
-extract_number_and_incr (destination, source)
- int *destination;
- re_char **source;
-{
- extract_number (destination, *source);
- *source += 2;
-}
-
-# ifndef EXTRACT_MACROS
-# undef EXTRACT_NUMBER_AND_INCR
-# define EXTRACT_NUMBER_AND_INCR(dest, src) \
- extract_number_and_incr (&dest, &src)
-# endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-\f
-/* Store a multibyte character in three contiguous bytes starting
- DESTINATION, and increment DESTINATION to the byte after where the
- character is stored. Therefore, DESTINATION must be an lvalue. */
-
-#define STORE_CHARACTER_AND_INCR(destination, character) \
- do { \
- (destination)[0] = (character) & 0377; \
- (destination)[1] = ((character) >> 8) & 0377; \
- (destination)[2] = (character) >> 16; \
- (destination) += 3; \
- } while (0)
-
-/* Put into DESTINATION a character stored in three contiguous bytes
- starting at SOURCE. */
-
-#define EXTRACT_CHARACTER(destination, source) \
- do { \
- (destination) = ((source)[0] \
- | ((source)[1] << 8) \
- | ((source)[2] << 16)); \
- } while (0)
-
-
-/* Macros for charset. */
-
-/* Size of bitmap of charset P in bytes. P is a start of charset,
- i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
-#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
-
-/* Nonzero if charset P has range table. */
-#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
-
-/* Return the address of range table of charset P. But not the start
- of table itself, but the before where the number of ranges is
- stored. `2 +' means to skip re_opcode_t and size of bitmap,
- and the 2 bytes of flags at the start of the range table. */
-#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
-
-/* Extract the bit flags that start a range table. */
-#define CHARSET_RANGE_TABLE_BITS(p) \
- ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
- + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
-
-/* Test if C is listed in the bitmap of charset P. */
-#define CHARSET_LOOKUP_BITMAP(p, c) \
- ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
- && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
-
-/* Return the address of end of RANGE_TABLE. COUNT is number of
- ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
- is start of range and end of range. `* 3' is size of each start
- and end. */
-#define CHARSET_RANGE_TABLE_END(range_table, count) \
- ((range_table) + (count) * 2 * 3)
-
-/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
- COUNT is number of ranges in RANGE_TABLE. */
-#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
- do \
- { \
- re_wchar_t range_start, range_end; \
- re_char *p; \
- re_char *range_table_end \
- = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
- \
- for (p = (range_table); p < range_table_end; p += 2 * 3) \
- { \
- EXTRACT_CHARACTER (range_start, p); \
- EXTRACT_CHARACTER (range_end, p + 3); \
- \
- if (range_start <= (c) && (c) <= range_end) \
- { \
- (not) = !(not); \
- break; \
- } \
- } \
- } \
- while (0)
-
-/* Test if C is in range table of CHARSET. The flag NOT is negated if
- C is listed in it. */
-#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
- do \
- { \
- /* Number of ranges in range table. */ \
- int count; \
- re_char *range_table = CHARSET_RANGE_TABLE (charset); \
- \
- EXTRACT_NUMBER_AND_INCR (count, range_table); \
- CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
- } \
- while (0)
-\f
-/* If DEBUG is defined, Regex prints many voluminous messages about what
- it is doing (if the variable `debug' is nonzero). If linked with the
- main program in `iregex.c', you can enter patterns and strings
- interactively. And if linked with the main program in `main.c' and
- the other test files, you can run the already-written tests. */
-
-#ifdef DEBUG
-
-/* We use standard I/O for debugging. */
-# include <stdio.h>
-
-/* It is useful to test things that ``must'' be true when debugging. */
-# include <assert.h>
-
-static int debug = -100000;
-
-# define DEBUG_STATEMENT(e) e
-# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
-# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
-# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
-# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
-# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
- if (debug > 0) print_partial_compiled_pattern (s, e)
-# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
- if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
-
-
-/* Print the fastmap in human-readable form. */
-
-void
-print_fastmap (fastmap)
- char *fastmap;
-{
- unsigned was_a_range = 0;
- unsigned i = 0;
-
- while (i < (1 << BYTEWIDTH))
- {
- if (fastmap[i++])
- {
- was_a_range = 0;
- putchar (i - 1);
- while (i < (1 << BYTEWIDTH) && fastmap[i])
- {
- was_a_range = 1;
- i++;
- }
- if (was_a_range)
- {
- printf ("-");
- putchar (i - 1);
- }
- }
- }
- putchar ('\n');
-}
-
-
-/* Print a compiled pattern string in human-readable form, starting at
- the START pointer into it and ending just before the pointer END. */
-
-void
-print_partial_compiled_pattern (start, end)
- re_char *start;
- re_char *end;
-{
- int mcnt, mcnt2;
- re_char *p = start;
- re_char *pend = end;
-
- if (start == NULL)
- {
- fprintf (stderr, "(null)\n");
- return;
- }
-
- /* Loop over pattern commands. */
- while (p < pend)
- {
- fprintf (stderr, "%d:\t", p - start);
-
- switch ((re_opcode_t) *p++)
- {
- case no_op:
- fprintf (stderr, "/no_op");
- break;
-
- case succeed:
- fprintf (stderr, "/succeed");
- break;
-
- case exactn:
- mcnt = *p++;
- fprintf (stderr, "/exactn/%d", mcnt);
- do
- {
- fprintf (stderr, "/%c", *p++);
- }
- while (--mcnt);
- break;
-
- case start_memory:
- fprintf (stderr, "/start_memory/%d", *p++);
- break;
-
- case stop_memory:
- fprintf (stderr, "/stop_memory/%d", *p++);
- break;
-
- case duplicate:
- fprintf (stderr, "/duplicate/%d", *p++);
- break;
-
- case anychar:
- fprintf (stderr, "/anychar");
- break;
-
- case charset:
- case charset_not:
- {
- register int c, last = -100;
- register int in_range = 0;
- int length = CHARSET_BITMAP_SIZE (p - 1);
- int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
-
- fprintf (stderr, "/charset [%s",
- (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
-
- if (p + *p >= pend)
- fprintf (stderr, " !extends past end of pattern! ");
-
- for (c = 0; c < 256; c++)
- if (c / 8 < length
- && (p[1 + (c/8)] & (1 << (c % 8))))
- {
- /* Are we starting a range? */
- if (last + 1 == c && ! in_range)
- {
- fprintf (stderr, "-");
- in_range = 1;
- }
- /* Have we broken a range? */
- else if (last + 1 != c && in_range)
- {
- fprintf (stderr, "%c", last);
- in_range = 0;
- }
-
- if (! in_range)
- fprintf (stderr, "%c", c);
-
- last = c;
- }
-
- if (in_range)
- fprintf (stderr, "%c", last);
-
- fprintf (stderr, "]");
-
- p += 1 + length;
-
- if (has_range_table)
- {
- int count;
- fprintf (stderr, "has-range-table");
-
- /* ??? Should print the range table; for now, just skip it. */
- p += 2; /* skip range table bits */
- EXTRACT_NUMBER_AND_INCR (count, p);
- p = CHARSET_RANGE_TABLE_END (p, count);
- }
- }
- break;
-
- case begline:
- fprintf (stderr, "/begline");
- break;
-
- case endline:
- fprintf (stderr, "/endline");
- break;
-
- case on_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
- break;
-
- case on_failure_keep_string_jump:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
- break;
-
- case on_failure_jump_nastyloop:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
- break;
-
- case on_failure_jump_loop:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
- break;
-
- case on_failure_jump_smart:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
- break;
-
- case jump:
- extract_number_and_incr (&mcnt, &p);
- fprintf (stderr, "/jump to %d", p + mcnt - start);
- break;
-
- case succeed_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
- break;
-
- case jump_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
- break;
-
- case set_number_at:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
- break;
-
- case wordbound:
- fprintf (stderr, "/wordbound");
- break;
-
- case notwordbound:
- fprintf (stderr, "/notwordbound");
- break;
-
- case wordbeg:
- fprintf (stderr, "/wordbeg");
- break;
-
- case wordend:
- fprintf (stderr, "/wordend");
-
- case syntaxspec:
- fprintf (stderr, "/syntaxspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
- case notsyntaxspec:
- fprintf (stderr, "/notsyntaxspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
-# ifdef emacs
- case before_dot:
- fprintf (stderr, "/before_dot");
- break;
-
- case at_dot:
- fprintf (stderr, "/at_dot");
- break;
-
- case after_dot:
- fprintf (stderr, "/after_dot");
- break;
-
- case categoryspec:
- fprintf (stderr, "/categoryspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
- case notcategoryspec:
- fprintf (stderr, "/notcategoryspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-# endif /* emacs */
-
- case begbuf:
- fprintf (stderr, "/begbuf");
- break;
-
- case endbuf:
- fprintf (stderr, "/endbuf");
- break;
-
- default:
- fprintf (stderr, "?%d", *(p-1));
- }
-
- fprintf (stderr, "\n");
- }
-
- fprintf (stderr, "%d:\tend of pattern.\n", p - start);
-}
-
-
-void
-print_compiled_pattern (bufp)
- struct re_pattern_buffer *bufp;
-{
- re_char *buffer = bufp->buffer;
-
- print_partial_compiled_pattern (buffer, buffer + bufp->used);
- printf ("%ld bytes used/%ld bytes allocated.\n",
- bufp->used, bufp->allocated);
-
- if (bufp->fastmap_accurate && bufp->fastmap)
- {
- printf ("fastmap: ");
- print_fastmap (bufp->fastmap);
- }
-
- printf ("re_nsub: %d\t", bufp->re_nsub);
- printf ("regs_alloc: %d\t", bufp->regs_allocated);
- printf ("can_be_null: %d\t", bufp->can_be_null);
- printf ("no_sub: %d\t", bufp->no_sub);
- printf ("not_bol: %d\t", bufp->not_bol);
- printf ("not_eol: %d\t", bufp->not_eol);
- printf ("syntax: %lx\n", bufp->syntax);
- fflush (stdout);
- /* Perhaps we should print the translate table? */
-}
-
-
-void
-print_double_string (where, string1, size1, string2, size2)
- re_char *where;
- re_char *string1;
- re_char *string2;
- int size1;
- int size2;
-{
- int this_char;
-
- if (where == NULL)
- printf ("(null)");
- else
- {
- if (FIRST_STRING_P (where))
- {
- for (this_char = where - string1; this_char < size1; this_char++)
- putchar (string1[this_char]);
-
- where = string2;
- }
-
- for (this_char = where - string2; this_char < size2; this_char++)
- putchar (string2[this_char]);
- }
-}
-
-#else /* not DEBUG */
-
-# undef assert
-# define assert(e)
-
-# define DEBUG_STATEMENT(e)
-# define DEBUG_PRINT1(x)
-# define DEBUG_PRINT2(x1, x2)
-# define DEBUG_PRINT3(x1, x2, x3)
-# define DEBUG_PRINT4(x1, x2, x3, x4)
-# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-#endif /* not DEBUG */
-\f
-/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
- also be assigned to arbitrarily: each pattern buffer stores its own
- syntax, so it can be changed between regex compilations. */
-/* This has no initializer because initialized variables in Emacs
- become read-only after dumping. */
-reg_syntax_t re_syntax_options;
-
-
-/* Specify the precise syntax of regexps for compilation. This provides
- for compatibility for various utilities which historically have
- different, incompatible syntaxes.
-
- The argument SYNTAX is a bit mask comprised of the various bits
- defined in regex.h. We return the old syntax. */
-
-reg_syntax_t
-re_set_syntax (syntax)
- reg_syntax_t syntax;
-{
- reg_syntax_t ret = re_syntax_options;
-
- re_syntax_options = syntax;
- return ret;
-}
-WEAK_ALIAS (__re_set_syntax, re_set_syntax)
-\f
-/* This table gives an error message for each of the error codes listed
- in regex.h. Obviously the order here has to be same as there.
- POSIX doesn't require that we do anything for REG_NOERROR,
- but why not be nice? */
-
-static const char *re_error_msgid[] =
- {
- gettext_noop ("Success"), /* REG_NOERROR */
- gettext_noop ("No match"), /* REG_NOMATCH */
- gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
- gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
- gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
- gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
- gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
- gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
- gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
- gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
- gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
- gettext_noop ("Invalid range end"), /* REG_ERANGE */
- gettext_noop ("Memory exhausted"), /* REG_ESPACE */
- gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
- gettext_noop ("Premature end of regular expression"), /* REG_EEND */
- gettext_noop ("Regular expression too big"), /* REG_ESIZE */
- gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
- };
-\f
-/* Avoiding alloca during matching, to placate r_alloc. */
-
-/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
- searching and matching functions should not call alloca. On some
- systems, alloca is implemented in terms of malloc, and if we're
- using the relocating allocator routines, then malloc could cause a
- relocation, which might (if the strings being searched are in the
- ralloc heap) shift the data out from underneath the regexp
- routines.
-
- Here's another reason to avoid allocation: Emacs
- processes input from X in a signal handler; processing X input may
- call malloc; if input arrives while a matching routine is calling
- malloc, then we're scrod. But Emacs can't just block input while
- calling matching routines; then we don't notice interrupts when
- they come in. So, Emacs blocks input around all regexp calls
- except the matching calls, which it leaves unprotected, in the
- faith that they will not malloc. */
-
-/* Normally, this is fine. */
-#define MATCH_MAY_ALLOCATE
-
-/* When using GNU C, we are not REALLY using the C alloca, no matter
- what config.h may say. So don't take precautions for it. */
-#ifdef __GNUC__
-# undef C_ALLOCA
-#endif
-
-/* The match routines may not allocate if (1) they would do it with malloc
- and (2) it's not safe for them to use malloc.
- Note that if REL_ALLOC is defined, matching would not use malloc for the
- failure stack, but we would still use it for the register vectors;
- so REL_ALLOC should not affect this. */
-#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
-# undef MATCH_MAY_ALLOCATE
-#endif
-
-\f
-/* Failure stack declarations and macros; both re_compile_fastmap and
- re_match_2 use a failure stack. These have to be macros because of
- REGEX_ALLOCATE_STACK. */
-
-
-/* Approximate number of failure points for which to initially allocate space
- when matching. If this number is exceeded, we allocate more
- space, so it is not a hard limit. */
-#ifndef INIT_FAILURE_ALLOC
-# define INIT_FAILURE_ALLOC 20
-#endif
-
-/* Roughly the maximum number of failure points on the stack. Would be
- exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
- This is a variable only so users of regex can assign to it; we never
- change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
- before using it, so it should probably be a byte-count instead. */
-# if defined MATCH_MAY_ALLOCATE
-/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
- whose default stack limit is 2mb. In order for a larger
- value to work reliably, you have to try to make it accord
- with the process stack limit. */
-size_t re_max_failures = 40000;
-# else
-size_t re_max_failures = 4000;
-# endif
-
-union fail_stack_elt
-{
- re_char *pointer;
- /* This should be the biggest `int' that's no bigger than a pointer. */
- long integer;
-};
-
-typedef union fail_stack_elt fail_stack_elt_t;
-
-typedef struct
-{
- fail_stack_elt_t *stack;
- size_t size;
- size_t avail; /* Offset of next open position. */
- size_t frame; /* Offset of the cur constructed frame. */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
-#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
-
-
-/* Define macros to initialize and free the failure stack.
- Do `return -2' if the alloc fails. */
-
-#ifdef MATCH_MAY_ALLOCATE
-# define INIT_FAIL_STACK() \
- do { \
- fail_stack.stack = (fail_stack_elt_t *) \
- REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
- * sizeof (fail_stack_elt_t)); \
- \
- if (fail_stack.stack == NULL) \
- return -2; \
- \
- fail_stack.size = INIT_FAILURE_ALLOC; \
- fail_stack.avail = 0; \
- fail_stack.frame = 0; \
- } while (0)
-
-# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
-#else
-# define INIT_FAIL_STACK() \
- do { \
- fail_stack.avail = 0; \
- fail_stack.frame = 0; \
- } while (0)
-
-# define RESET_FAIL_STACK() ((void)0)
-#endif
-
-
-/* Double the size of FAIL_STACK, up to a limit
- which allows approximately `re_max_failures' items.
-
- Return 1 if succeeds, and 0 if either ran out of memory
- allocating space for it or it was already too large.
-
- REGEX_REALLOCATE_STACK requires `destination' be declared. */
-
-/* Factor to increase the failure stack size by
- when we increase it.
- This used to be 2, but 2 was too wasteful
- because the old discarded stacks added up to as much space
- were as ultimate, maximum-size stack. */
-#define FAIL_STACK_GROWTH_FACTOR 4
-
-#define GROW_FAIL_STACK(fail_stack) \
- (((fail_stack).size * sizeof (fail_stack_elt_t) \
- >= re_max_failures * TYPICAL_FAILURE_SIZE) \
- ? 0 \
- : ((fail_stack).stack \
- = (fail_stack_elt_t *) \
- REGEX_REALLOCATE_STACK ((fail_stack).stack, \
- (fail_stack).size * sizeof (fail_stack_elt_t), \
- MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
- ((fail_stack).size * sizeof (fail_stack_elt_t) \
- * FAIL_STACK_GROWTH_FACTOR))), \
- \
- (fail_stack).stack == NULL \
- ? 0 \
- : ((fail_stack).size \
- = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
- ((fail_stack).size * sizeof (fail_stack_elt_t) \
- * FAIL_STACK_GROWTH_FACTOR)) \
- / sizeof (fail_stack_elt_t)), \
- 1)))
-
-
-/* Push a pointer value onto the failure stack.
- Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_POINTER(item) \
- fail_stack.stack[fail_stack.avail++].pointer = (item)
-
-/* This pushes an integer-valued item onto the failure stack.
- Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_INT(item) \
- fail_stack.stack[fail_stack.avail++].integer = (item)
-
-/* Push a fail_stack_elt_t value onto the failure stack.
- Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_ELT(item) \
- fail_stack.stack[fail_stack.avail++] = (item)
-
-/* These three POP... operations complement the three PUSH... operations.
- All assume that `fail_stack' is nonempty. */
-#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
-#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
-#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
-
-/* Individual items aside from the registers. */
-#define NUM_NONREG_ITEMS 3
-
-/* Used to examine the stack (to detect infinite loops). */
-#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
-#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
-#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
-#define TOP_FAILURE_HANDLE() fail_stack.frame
-
-
-#define ENSURE_FAIL_STACK(space) \
-while (REMAINING_AVAIL_SLOTS <= space) { \
- if (!GROW_FAIL_STACK (fail_stack)) \
- return -2; \
- DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
- DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
-}
-
-/* Push register NUM onto the stack. */
-#define PUSH_FAILURE_REG(num) \
-do { \
- char *destination; \
- ENSURE_FAIL_STACK(3); \
- DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
- num, regstart[num], regend[num]); \
- PUSH_FAILURE_POINTER (regstart[num]); \
- PUSH_FAILURE_POINTER (regend[num]); \
- PUSH_FAILURE_INT (num); \
-} while (0)
-
-/* Change the counter's value to VAL, but make sure that it will
- be reset when backtracking. */
-#define PUSH_NUMBER(ptr,val) \
-do { \
- char *destination; \
- int c; \
- ENSURE_FAIL_STACK(3); \
- EXTRACT_NUMBER (c, ptr); \
- DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
- PUSH_FAILURE_INT (c); \
- PUSH_FAILURE_POINTER (ptr); \
- PUSH_FAILURE_INT (-1); \
- STORE_NUMBER (ptr, val); \
-} while (0)
-
-/* Pop a saved register off the stack. */
-#define POP_FAILURE_REG_OR_COUNT() \
-do { \
- int reg = POP_FAILURE_INT (); \
- if (reg == -1) \
- { \
- /* It's a counter. */ \
- /* Here, we discard `const', making re_match non-reentrant. */ \
- unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
- reg = POP_FAILURE_INT (); \
- STORE_NUMBER (ptr, reg); \
- DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
- } \
- else \
- { \
- regend[reg] = POP_FAILURE_POINTER (); \
- regstart[reg] = POP_FAILURE_POINTER (); \
- DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
- reg, regstart[reg], regend[reg]); \
- } \
-} while (0)
-
-/* Check that we are not stuck in an infinite loop. */
-#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
-do { \
- int failure = TOP_FAILURE_HANDLE (); \
- /* Check for infinite matching loops */ \
- while (failure > 0 \
- && (FAILURE_STR (failure) == string_place \
- || FAILURE_STR (failure) == NULL)) \
- { \
- assert (FAILURE_PAT (failure) >= bufp->buffer \
- && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
- if (FAILURE_PAT (failure) == pat_cur) \
- { \
- cycle = 1; \
- break; \
- } \
- DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
- failure = NEXT_FAILURE_HANDLE(failure); \
- } \
- DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
-} while (0)
-
-/* Push the information about the state we will need
- if we ever fail back to it.
-
- Requires variables fail_stack, regstart, regend and
- num_regs be declared. GROW_FAIL_STACK requires `destination' be
- declared.
-
- Does `return FAILURE_CODE' if runs out of memory. */
-
-#define PUSH_FAILURE_POINT(pattern, string_place) \
-do { \
- char *destination; \
- /* Must be int, so when we don't save any registers, the arithmetic \
- of 0 + -1 isn't done as unsigned. */ \
- \
- DEBUG_STATEMENT (nfailure_points_pushed++); \
- DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
- DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
- DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
- \
- ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
- \
- DEBUG_PRINT1 ("\n"); \
- \
- DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
- PUSH_FAILURE_INT (fail_stack.frame); \
- \
- DEBUG_PRINT2 (" Push string %p: `", string_place); \
- DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
- DEBUG_PRINT1 ("'\n"); \
- PUSH_FAILURE_POINTER (string_place); \
- \
- DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
- PUSH_FAILURE_POINTER (pattern); \
- \
- /* Close the frame by moving the frame pointer past it. */ \
- fail_stack.frame = fail_stack.avail; \
-} while (0)
-
-/* Estimate the size of data pushed by a typical failure stack entry.
- An estimate is all we need, because all we use this for
- is to choose a limit for how big to make the failure stack. */
-/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
-#define TYPICAL_FAILURE_SIZE 20
-
-/* How many items can still be added to the stack without overflowing it. */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-
-/* Pops what PUSH_FAIL_STACK pushes.
-
- We restore into the parameters, all of which should be lvalues:
- STR -- the saved data position.
- PAT -- the saved pattern position.
- REGSTART, REGEND -- arrays of string positions.
-
- Also assumes the variables `fail_stack' and (if debugging), `bufp',
- `pend', `string1', `size1', `string2', and `size2'. */
-
-#define POP_FAILURE_POINT(str, pat) \
-do { \
- assert (!FAIL_STACK_EMPTY ()); \
- \
- /* Remove failure points and point to how many regs pushed. */ \
- DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
- DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
- DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
- \
- /* Pop the saved registers. */ \
- while (fail_stack.frame < fail_stack.avail) \
- POP_FAILURE_REG_OR_COUNT (); \
- \
- pat = POP_FAILURE_POINTER (); \
- DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
- \
- /* If the saved string location is NULL, it came from an \
- on_failure_keep_string_jump opcode, and we want to throw away the \
- saved NULL, thus retaining our current position in the string. */ \
- str = POP_FAILURE_POINTER (); \
- DEBUG_PRINT2 (" Popping string %p: `", str); \
- DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
- DEBUG_PRINT1 ("'\n"); \
- \
- fail_stack.frame = POP_FAILURE_INT (); \
- DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
- \
- assert (fail_stack.avail >= 0); \
- assert (fail_stack.frame <= fail_stack.avail); \
- \
- DEBUG_STATEMENT (nfailure_points_popped++); \
-} while (0) /* POP_FAILURE_POINT */
-
-
-\f
-/* Registers are set to a sentinel when they haven't yet matched. */
-#define REG_UNSET(e) ((e) == NULL)
-\f
-/* Subroutine declarations and macros for regex_compile. */
-
-static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
- reg_syntax_t syntax,
- struct re_pattern_buffer *bufp));
-static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
-static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
- int arg1, int arg2));
-static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
- int arg, unsigned char *end));
-static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
- int arg1, int arg2, unsigned char *end));
-static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
- re_char *p,
- reg_syntax_t syntax));
-static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
- re_char *pend,
- reg_syntax_t syntax));
-static re_char *skip_one_char _RE_ARGS ((re_char *p));
-static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
- char *fastmap, const int multibyte));
-
-/* Fetch the next character in the uncompiled pattern, with no
- translation. */
-#define PATFETCH(c) \
- do { \
- int len; \
- if (p == pend) return REG_EEND; \
- c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
- p += len; \
- } while (0)
-
-
-/* If `translate' is non-null, return translate[D], else just D. We
- cast the subscript to translate because some data is declared as
- `char *', to avoid warnings when a string constant is passed. But
- when we use a character as a subscript we must make it unsigned. */
-#ifndef TRANSLATE
-# define TRANSLATE(d) \
- (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
-#endif
-
-
-/* Macros for outputting the compiled pattern into `buffer'. */
-
-/* If the buffer isn't allocated when it comes in, use this. */
-#define INIT_BUF_SIZE 32
-
-/* Make sure we have at least N more bytes of space in buffer. */
-#define GET_BUFFER_SPACE(n) \
- while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
- EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it. */
-#define BUF_PUSH(c) \
- do { \
- GET_BUFFER_SPACE (1); \
- *b++ = (unsigned char) (c); \
- } while (0)
-
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
-#define BUF_PUSH_2(c1, c2) \
- do { \
- GET_BUFFER_SPACE (2); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- } while (0)
-
-
-/* As with BUF_PUSH_2, except for three bytes. */
-#define BUF_PUSH_3(c1, c2, c3) \
- do { \
- GET_BUFFER_SPACE (3); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- *b++ = (unsigned char) (c3); \
- } while (0)
-
-
-/* Store a jump with opcode OP at LOC to location TO. We store a
- relative address offset by the three bytes the jump itself occupies. */
-#define STORE_JUMP(op, loc, to) \
- store_op1 (op, loc, (to) - (loc) - 3)
-
-/* Likewise, for a two-argument jump. */
-#define STORE_JUMP2(op, loc, to, arg) \
- store_op2 (op, loc, (to) - (loc) - 3, arg)
-
-/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP(op, loc, to) \
- insert_op1 (op, loc, (to) - (loc) - 3, b)
-
-/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP2(op, loc, to, arg) \
- insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
-
-
-/* This is not an arbitrary limit: the arguments which represent offsets
- into the pattern are two bytes long. So if 2^15 bytes turns out to
- be too small, many things would have to change. */
-# define MAX_BUF_SIZE (1L << 15)
-
-#if 0 /* This is when we thought it could be 2^16 bytes. */
-/* Any other compiler which, like MSC, has allocation limit below 2^16
- bytes will have to use approach similar to what was done below for
- MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
- reallocating to 0 bytes. Such thing is not going to work too well.
- You have been warned!! */
-#if defined _MSC_VER && !defined WIN32
-/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
-# define MAX_BUF_SIZE 65500L
-#else
-# define MAX_BUF_SIZE (1L << 16)
-#endif
-#endif /* 0 */
-
-/* Extend the buffer by twice its current size via realloc and
- reset the pointers that pointed into the old block to point to the
- correct places in the new one. If extending the buffer results in it
- being larger than MAX_BUF_SIZE, then flag memory exhausted. */
-#if __BOUNDED_POINTERS__
-# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
-# define MOVE_BUFFER_POINTER(P) \
- (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
-# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
- else \
- { \
- SET_HIGH_BOUND (b); \
- SET_HIGH_BOUND (begalt); \
- if (fixup_alt_jump) \
- SET_HIGH_BOUND (fixup_alt_jump); \
- if (laststart) \
- SET_HIGH_BOUND (laststart); \
- if (pending_exact) \
- SET_HIGH_BOUND (pending_exact); \
- }
-#else
-# define MOVE_BUFFER_POINTER(P) (P) += incr
-# define ELSE_EXTEND_BUFFER_HIGH_BOUND
-#endif
-#define EXTEND_BUFFER() \
- do { \
- re_char *old_buffer = bufp->buffer; \
- if (bufp->allocated == MAX_BUF_SIZE) \
- return REG_ESIZE; \
- bufp->allocated <<= 1; \
- if (bufp->allocated > MAX_BUF_SIZE) \
- bufp->allocated = MAX_BUF_SIZE; \
- RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
- if (bufp->buffer == NULL) \
- return REG_ESPACE; \
- /* If the buffer moved, move all the pointers into it. */ \
- if (old_buffer != bufp->buffer) \
- { \
- int incr = bufp->buffer - old_buffer; \
- MOVE_BUFFER_POINTER (b); \
- MOVE_BUFFER_POINTER (begalt); \
- if (fixup_alt_jump) \
- MOVE_BUFFER_POINTER (fixup_alt_jump); \
- if (laststart) \
- MOVE_BUFFER_POINTER (laststart); \
- if (pending_exact) \
- MOVE_BUFFER_POINTER (pending_exact); \
- } \
- ELSE_EXTEND_BUFFER_HIGH_BOUND \
- } while (0)
-
-
-/* Since we have one byte reserved for the register number argument to
- {start,stop}_memory, the maximum number of groups we can report
- things about is what fits in that byte. */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers. We just
- ignore the excess. */
-typedef int regnum_t;
-
-
-/* Macros for the compile stack. */
-
-/* Since offsets can go either forwards or backwards, this type needs to
- be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
-/* int may be not enough when sizeof(int) == 2. */
-typedef long pattern_offset_t;
-
-typedef struct
-{
- pattern_offset_t begalt_offset;
- pattern_offset_t fixup_alt_jump;
- pattern_offset_t laststart_offset;
- regnum_t regnum;
-} compile_stack_elt_t;
-
-
-typedef struct
-{
- compile_stack_elt_t *stack;
- unsigned size;
- unsigned avail; /* Offset of next open position. */
-} compile_stack_type;
-
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
-#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
-
-/* The next available element. */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-/* Explicit quit checking is only used on NTemacs. */
-#if defined WINDOWSNT && defined emacs && defined QUIT
-extern int immediate_quit;
-# define IMMEDIATE_QUIT_CHECK \
- do { \
- if (immediate_quit) QUIT; \
- } while (0)
-#else
-# define IMMEDIATE_QUIT_CHECK ((void)0)
-#endif
-\f
-/* Structure to manage work area for range table. */
-struct range_table_work_area
-{
- int *table; /* actual work area. */
- int allocated; /* allocated size for work area in bytes. */
- int used; /* actually used size in words. */
- int bits; /* flag to record character classes */
-};
-
-/* Make sure that WORK_AREA can hold more N multibyte characters.
- This is used only in set_image_of_range and set_image_of_range_1.
- It expects WORK_AREA to be a pointer.
- If it can't get the space, it returns from the surrounding function. */
-
-#define EXTEND_RANGE_TABLE(work_area, n) \
- do { \
- if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
- { \
- extend_range_table_work_area (work_area); \
- if ((work_area)->table == 0) \
- return (REG_ESPACE); \
- } \
- } while (0)
-
-#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
- (work_area).bits |= (bit)
-
-/* Bits used to implement the multibyte-part of the various character classes
- such as [:alnum:] in a charset's range table. */
-#define BIT_WORD 0x1
-#define BIT_LOWER 0x2
-#define BIT_PUNCT 0x4
-#define BIT_SPACE 0x8
-#define BIT_UPPER 0x10
-#define BIT_MULTIBYTE 0x20
-
-/* Set a range START..END to WORK_AREA.
- The range is passed through TRANSLATE, so START and END
- should be untranslated. */
-#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
- do { \
- int tem; \
- tem = set_image_of_range (&work_area, start, end, translate); \
- if (tem > 0) \
- FREE_STACK_RETURN (tem); \
- } while (0)
-
-/* Free allocated memory for WORK_AREA. */
-#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
- do { \
- if ((work_area).table) \
- free ((work_area).table); \
- } while (0)
-
-#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
-#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
-#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
-#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
-\f
-
-/* Set the bit for character C in a list. */
-#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
-
-
-/* Get the next unsigned number in the uncompiled pattern. */
-#define GET_UNSIGNED_NUMBER(num) \
- do { if (p != pend) \
- { \
- PATFETCH (c); \
- if (c == ' ') \
- FREE_STACK_RETURN (REG_BADBR); \
- while ('0' <= c && c <= '9') \
- { \
- int prev; \
- if (num < 0) \
- num = 0; \
- prev = num; \
- num = num * 10 + c - '0'; \
- if (num / 10 != prev) \
- FREE_STACK_RETURN (REG_BADBR); \
- if (p == pend) \
- break; \
- PATFETCH (c); \
- } \
- if (c == ' ') \
- FREE_STACK_RETURN (REG_BADBR); \
- } \
- } while (0)
-\f
-#if WIDE_CHAR_SUPPORT
-/* The GNU C library provides support for user-defined character classes
- and the functions from ISO C amendement 1. */
-# ifdef CHARCLASS_NAME_MAX
-# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
-# else
-/* This shouldn't happen but some implementation might still have this
- problem. Use a reasonable default value. */
-# define CHAR_CLASS_MAX_LENGTH 256
-# endif
-typedef wctype_t re_wctype_t;
-typedef wchar_t re_wchar_t;
-# define re_wctype wctype
-# define re_iswctype iswctype
-# define re_wctype_to_bit(cc) 0
-#else
-# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
-# define btowc(c) c
-
-/* Character classes. */
-typedef enum { RECC_ERROR = 0,
- RECC_ALNUM, RECC_ALPHA, RECC_WORD,
- RECC_GRAPH, RECC_PRINT,
- RECC_LOWER, RECC_UPPER,
- RECC_PUNCT, RECC_CNTRL,
- RECC_DIGIT, RECC_XDIGIT,
- RECC_BLANK, RECC_SPACE,
- RECC_MULTIBYTE, RECC_NONASCII,
- RECC_ASCII, RECC_UNIBYTE
-} re_wctype_t;
-
-typedef int re_wchar_t;
-
-/* Map a string to the char class it names (if any). */
-static re_wctype_t
-re_wctype (str)
- re_char *str;
-{
- const char *string = str;
- if (STREQ (string, "alnum")) return RECC_ALNUM;
- else if (STREQ (string, "alpha")) return RECC_ALPHA;
- else if (STREQ (string, "word")) return RECC_WORD;
- else if (STREQ (string, "ascii")) return RECC_ASCII;
- else if (STREQ (string, "nonascii")) return RECC_NONASCII;
- else if (STREQ (string, "graph")) return RECC_GRAPH;
- else if (STREQ (string, "lower")) return RECC_LOWER;
- else if (STREQ (string, "print")) return RECC_PRINT;
- else if (STREQ (string, "punct")) return RECC_PUNCT;
- else if (STREQ (string, "space")) return RECC_SPACE;
- else if (STREQ (string, "upper")) return RECC_UPPER;
- else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
- else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
- else if (STREQ (string, "digit")) return RECC_DIGIT;
- else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
- else if (STREQ (string, "cntrl")) return RECC_CNTRL;
- else if (STREQ (string, "blank")) return RECC_BLANK;
- else return 0;
-}
-
-/* True iff CH is in the char class CC. */
-static boolean
-re_iswctype (ch, cc)
- int ch;
- re_wctype_t cc;
-{
- switch (cc)
- {
- case RECC_ALNUM: return ISALNUM (ch);
- case RECC_ALPHA: return ISALPHA (ch);
- case RECC_BLANK: return ISBLANK (ch);
- case RECC_CNTRL: return ISCNTRL (ch);
- case RECC_DIGIT: return ISDIGIT (ch);
- case RECC_GRAPH: return ISGRAPH (ch);
- case RECC_LOWER: return ISLOWER (ch);
- case RECC_PRINT: return ISPRINT (ch);
- case RECC_PUNCT: return ISPUNCT (ch);
- case RECC_SPACE: return ISSPACE (ch);
- case RECC_UPPER: return ISUPPER (ch);
- case RECC_XDIGIT: return ISXDIGIT (ch);
- case RECC_ASCII: return IS_REAL_ASCII (ch);
- case RECC_NONASCII: return !IS_REAL_ASCII (ch);
- case RECC_UNIBYTE: return ISUNIBYTE (ch);
- case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
- case RECC_WORD: return ISWORD (ch);
- case RECC_ERROR: return false;
- default:
- abort();
- }
-}
-
-/* Return a bit-pattern to use in the range-table bits to match multibyte
- chars of class CC. */
-static int
-re_wctype_to_bit (cc)
- re_wctype_t cc;
-{
- switch (cc)
- {
- case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
- case RECC_MULTIBYTE: return BIT_MULTIBYTE;
- case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
- case RECC_LOWER: return BIT_LOWER;
- case RECC_UPPER: return BIT_UPPER;
- case RECC_PUNCT: return BIT_PUNCT;
- case RECC_SPACE: return BIT_SPACE;
- case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
- case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
- default:
- abort();
- }
-}
-#endif
-\f
-/* Filling in the work area of a range. */
-
-/* Actually extend the space in WORK_AREA. */
-
-static void
-extend_range_table_work_area (work_area)
- struct range_table_work_area *work_area;
-{
- work_area->allocated += 16 * sizeof (int);
- if (work_area->table)
- work_area->table
- = (int *) realloc (work_area->table, work_area->allocated);
- else
- work_area->table
- = (int *) malloc (work_area->allocated);
-}
-
-#ifdef emacs
-
-/* Carefully find the ranges of codes that are equivalent
- under case conversion to the range start..end when passed through
- TRANSLATE. Handle the case where non-letters can come in between
- two upper-case letters (which happens in Latin-1).
- Also handle the case of groups of more than 2 case-equivalent chars.
-
- The basic method is to look at consecutive characters and see
- if they can form a run that can be handled as one.
-
- Returns -1 if successful, REG_ESPACE if ran out of space. */
-
-static int
-set_image_of_range_1 (work_area, start, end, translate)
- RE_TRANSLATE_TYPE translate;
- struct range_table_work_area *work_area;
- re_wchar_t start, end;
-{
- /* `one_case' indicates a character, or a run of characters,
- each of which is an isolate (no case-equivalents).
- This includes all ASCII non-letters.
-
- `two_case' indicates a character, or a run of characters,
- each of which has two case-equivalent forms.
- This includes all ASCII letters.
-
- `strange' indicates a character that has more than one
- case-equivalent. */
-
- enum case_type {one_case, two_case, strange};
-
- /* Describe the run that is in progress,
- which the next character can try to extend.
- If run_type is strange, that means there really is no run.
- If run_type is one_case, then run_start...run_end is the run.
- If run_type is two_case, then the run is run_start...run_end,
- and the case-equivalents end at run_eqv_end. */
-
- enum case_type run_type = strange;
- int run_start, run_end, run_eqv_end;
-
- Lisp_Object eqv_table;
-
- if (!RE_TRANSLATE_P (translate))
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (start);
- work_area->table[work_area->used++] = (end);
- return -1;
- }
-
- eqv_table = XCHAR_TABLE (translate)->extras[2];
-
- for (; start <= end; start++)
- {
- enum case_type this_type;
- int eqv = RE_TRANSLATE (eqv_table, start);
- int minchar, maxchar;
-
- /* Classify this character */
- if (eqv == start)
- this_type = one_case;
- else if (RE_TRANSLATE (eqv_table, eqv) == start)
- this_type = two_case;
- else
- this_type = strange;
-
- if (start < eqv)
- minchar = start, maxchar = eqv;
- else
- minchar = eqv, maxchar = start;
-
- /* Can this character extend the run in progress? */
- if (this_type == strange || this_type != run_type
- || !(minchar == run_end + 1
- && (run_type == two_case
- ? maxchar == run_eqv_end + 1 : 1)))
- {
- /* No, end the run.
- Record each of its equivalent ranges. */
- if (run_type == one_case)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- }
- else if (run_type == two_case)
- {
- EXTEND_RANGE_TABLE (work_area, 4);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_start);
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_end);
- }
- run_type = strange;
- }
-
- if (this_type == strange)
- {
- /* For a strange character, add each of its equivalents, one
- by one. Don't start a range. */
- do
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = eqv;
- work_area->table[work_area->used++] = eqv;
- eqv = RE_TRANSLATE (eqv_table, eqv);
- }
- while (eqv != start);
- }
-
- /* Add this char to the run, or start a new run. */
- else if (run_type == strange)
- {
- /* Initialize a new range. */
- run_type = this_type;
- run_start = start;
- run_end = start;
- run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
- }
- else
- {
- /* Extend a running range. */
- run_end = minchar;
- run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
- }
- }
-
- /* If a run is still in progress at the end, finish it now
- by recording its equivalent ranges. */
- if (run_type == one_case)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- }
- else if (run_type == two_case)
- {
- EXTEND_RANGE_TABLE (work_area, 4);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_start);
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_end);
- }
-
- return -1;
-}
-
-#endif /* emacs */
-
-/* Record the the image of the range start..end when passed through
- TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
- and is not even necessarily contiguous.
- Normally we approximate it with the smallest contiguous range that contains
- all the chars we need. However, for Latin-1 we go to extra effort
- to do a better job.
-
- This function is not called for ASCII ranges.
-
- Returns -1 if successful, REG_ESPACE if ran out of space. */
-
-static int
-set_image_of_range (work_area, start, end, translate)
- RE_TRANSLATE_TYPE translate;
- struct range_table_work_area *work_area;
- re_wchar_t start, end;
-{
- re_wchar_t cmin, cmax;
-
-#ifdef emacs
- /* For Latin-1 ranges, use set_image_of_range_1
- to get proper handling of ranges that include letters and nonletters.
- For a range that includes the whole of Latin-1, this is not necessary.
- For other character sets, we don't bother to get this right. */
- if (RE_TRANSLATE_P (translate) && start < 04400
- && !(start < 04200 && end >= 04377))
- {
- int newend;
- int tem;
- newend = end;
- if (newend > 04377)
- newend = 04377;
- tem = set_image_of_range_1 (work_area, start, newend, translate);
- if (tem > 0)
- return tem;
-
- start = 04400;
- if (end < 04400)
- return -1;
- }
-#endif
-
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (start);
- work_area->table[work_area->used++] = (end);
-
- cmin = -1, cmax = -1;
-
- if (RE_TRANSLATE_P (translate))
- {
- int ch;
-
- for (ch = start; ch <= end; ch++)
- {
- re_wchar_t c = TRANSLATE (ch);
- if (! (start <= c && c <= end))
- {
- if (cmin == -1)
- cmin = c, cmax = c;
- else
- {
- cmin = MIN (cmin, c);
- cmax = MAX (cmax, c);
- }
- }
- }
-
- if (cmin != -1)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (cmin);
- work_area->table[work_area->used++] = (cmax);
- }
- }
-
- return -1;
-}
-\f
-#ifndef MATCH_MAY_ALLOCATE
-
-/* If we cannot allocate large objects within re_match_2_internal,
- we make the fail stack and register vectors global.
- The fail stack, we grow to the maximum size when a regexp
- is compiled.
- The register vectors, we adjust in size each time we
- compile a regexp, according to the number of registers it needs. */
-
-static fail_stack_type fail_stack;
-
-/* Size with which the following vectors are currently allocated.
- That is so we can make them bigger as needed,
- but never make them smaller. */
-static int regs_allocated_size;
-
-static re_char ** regstart, ** regend;
-static re_char **best_regstart, **best_regend;
-
-/* Make the register vectors big enough for NUM_REGS registers,
- but don't make them smaller. */
-
-static
-regex_grow_registers (num_regs)
- int num_regs;
-{
- if (num_regs > regs_allocated_size)
- {
- RETALLOC_IF (regstart, num_regs, re_char *);
- RETALLOC_IF (regend, num_regs, re_char *);
- RETALLOC_IF (best_regstart, num_regs, re_char *);
- RETALLOC_IF (best_regend, num_regs, re_char *);
-
- regs_allocated_size = num_regs;
- }
-}
-
-#endif /* not MATCH_MAY_ALLOCATE */
-\f
-static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
- compile_stack,
- regnum_t regnum));
-
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
- Returns one of error codes defined in `regex.h', or zero for success.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate'
- fields are set in BUFP on entry.
-
- If it succeeds, results are put in BUFP (if it returns an error, the
- contents of BUFP are undefined):
- `buffer' is the compiled pattern;
- `syntax' is set to SYNTAX;
- `used' is set to the length of the compiled pattern;
- `fastmap_accurate' is zero;
- `re_nsub' is the number of subexpressions in PATTERN;
- `not_bol' and `not_eol' are zero;
-
- The `fastmap' field is neither examined nor set. */
-
-/* Insert the `jump' from the end of last alternative to "here".
- The space for the jump has already been allocated. */
-#define FIXUP_ALT_JUMP() \
-do { \
- if (fixup_alt_jump) \
- STORE_JUMP (jump, fixup_alt_jump, b); \
-} while (0)
-
-
-/* Return, freeing storage we allocated. */
-#define FREE_STACK_RETURN(value) \
- do { \
- FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
- free (compile_stack.stack); \
- return value; \
- } while (0)
-
-static reg_errcode_t
-regex_compile (pattern, size, syntax, bufp)
- re_char *pattern;
- size_t size;
- reg_syntax_t syntax;
- struct re_pattern_buffer *bufp;
-{
- /* We fetch characters from PATTERN here. */
- register re_wchar_t c, c1;
-
- /* A random temporary spot in PATTERN. */
- re_char *p1;
-
- /* Points to the end of the buffer, where we should append. */
- register unsigned char *b;
-
- /* Keeps track of unclosed groups. */
- compile_stack_type compile_stack;
-
- /* Points to the current (ending) position in the pattern. */
-#ifdef AIX
- /* `const' makes AIX compiler fail. */
- unsigned char *p = pattern;
-#else
- re_char *p = pattern;
-#endif
- re_char *pend = pattern + size;
-
- /* How to translate the characters in the pattern. */
- RE_TRANSLATE_TYPE translate = bufp->translate;
-
- /* Address of the count-byte of the most recently inserted `exactn'
- command. This makes it possible to tell if a new exact-match
- character can be added to that command or if the character requires
- a new `exactn' command. */
- unsigned char *pending_exact = 0;
-
- /* Address of start of the most recently finished expression.
- This tells, e.g., postfix * where to find the start of its
- operand. Reset at the beginning of groups and alternatives. */
- unsigned char *laststart = 0;
-
- /* Address of beginning of regexp, or inside of last group. */
- unsigned char *begalt;
-
- /* Place in the uncompiled pattern (i.e., the {) to
- which to go back if the interval is invalid. */
- re_char *beg_interval;
-
- /* Address of the place where a forward jump should go to the end of
- the containing expression. Each alternative of an `or' -- except the
- last -- ends with a forward jump of this sort. */
- unsigned char *fixup_alt_jump = 0;
-
- /* Counts open-groups as they are encountered. Remembered for the
- matching close-group on the compile stack, so the same register
- number is put in the stop_memory as the start_memory. */
- regnum_t regnum = 0;
-
- /* Work area for range table of charset. */
- struct range_table_work_area range_table_work;
-
- /* If the object matched can contain multibyte characters. */
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
-
-#ifdef DEBUG
- debug++;
- DEBUG_PRINT1 ("\nCompiling pattern: ");
- if (debug > 0)
- {
- unsigned debug_count;
-
- for (debug_count = 0; debug_count < size; debug_count++)
- putchar (pattern[debug_count]);
- putchar ('\n');
- }
-#endif /* DEBUG */
-
- /* Initialize the compile stack. */
- compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
- if (compile_stack.stack == NULL)
- return REG_ESPACE;
-
- compile_stack.size = INIT_COMPILE_STACK_SIZE;
- compile_stack.avail = 0;
-
- range_table_work.table = 0;
- range_table_work.allocated = 0;
-
- /* Initialize the pattern buffer. */
- bufp->syntax = syntax;
- bufp->fastmap_accurate = 0;
- bufp->not_bol = bufp->not_eol = 0;
-
- /* Set `used' to zero, so that if we return an error, the pattern
- printer (for debugging) will think there's no pattern. We reset it
- at the end. */
- bufp->used = 0;
-
- /* Always count groups, whether or not bufp->no_sub is set. */
- bufp->re_nsub = 0;
-
-#if !defined emacs && !defined SYNTAX_TABLE
- /* Initialize the syntax table. */
- init_syntax_once ();
-#endif
-
- if (bufp->allocated == 0)
- {
- if (bufp->buffer)
- { /* If zero allocated, but buffer is non-null, try to realloc
- enough space. This loses if buffer's address is bogus, but
- that is the user's responsibility. */
- RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
- }
- else
- { /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
- }
- if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
-
- bufp->allocated = INIT_BUF_SIZE;
- }
-
- begalt = b = bufp->buffer;
-
- /* Loop through the uncompiled pattern until we're at the end. */
- while (p != pend)
- {
- PATFETCH (c);
-
- switch (c)
- {
- case '^':
- {
- if ( /* If at start of pattern, it's an operator. */
- p == pattern + 1
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's come before. */
- || at_begline_loc_p (pattern, p, syntax))
- BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
- else
- goto normal_char;
- }
- break;
-
-
- case '$':
- {
- if ( /* If at end of pattern, it's an operator. */
- p == pend
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's next. */
- || at_endline_loc_p (p, pend, syntax))
- BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
- else
- goto normal_char;
- }
- break;
-
-
- case '+':
- case '?':
- if ((syntax & RE_BK_PLUS_QM)
- || (syntax & RE_LIMITED_OPS))
- goto normal_char;
- handle_plus:
- case '*':
- /* If there is no previous pattern... */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (!(syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- }
-
- {
- /* 1 means zero (many) matches is allowed. */
- boolean zero_times_ok = 0, many_times_ok = 0;
- boolean greedy = 1;
-
- /* If there is a sequence of repetition chars, collapse it
- down to just one (the right one). We can't combine
- interval operators with these because of, e.g., `a{2}*',
- which should only match an even number of `a's. */
-
- for (;;)
- {
- if ((syntax & RE_FRUGAL)
- && c == '?' && (zero_times_ok || many_times_ok))
- greedy = 0;
- else
- {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
- }
-
- if (p == pend)
- break;
- else if (*p == '*'
- || (!(syntax & RE_BK_PLUS_QM)
- && (*p == '+' || *p == '?')))
- ;
- else if (syntax & RE_BK_PLUS_QM && *p == '\\')
- {
- if (p+1 == pend)
- FREE_STACK_RETURN (REG_EESCAPE);
- if (p[1] == '+' || p[1] == '?')
- PATFETCH (c); /* Gobble up the backslash. */
- else
- break;
- }
- else
- break;
- /* If we get here, we found another repeat character. */
- PATFETCH (c);
- }
-
- /* Star, etc. applied to an empty pattern is equivalent
- to an empty pattern. */
- if (!laststart || laststart == b)
- break;
-
- /* Now we know whether or not zero matches is allowed
- and also whether or not two or more matches is allowed. */
- if (greedy)
- {
- if (many_times_ok)
- {
- boolean simple = skip_one_char (laststart) == b;
- unsigned int startoffset = 0;
- re_opcode_t ofj =
- /* Check if the loop can match the empty string. */
- (simple || !analyse_first (laststart, b, NULL, 0))
- ? on_failure_jump : on_failure_jump_loop;
- assert (skip_one_char (laststart) <= b);
-
- if (!zero_times_ok && simple)
- { /* Since simple * loops can be made faster by using
- on_failure_keep_string_jump, we turn simple P+
- into PP* if P is simple. */
- unsigned char *p1, *p2;
- startoffset = b - laststart;
- GET_BUFFER_SPACE (startoffset);
- p1 = b; p2 = laststart;
- while (p2 < p1)
- *b++ = *p2++;
- zero_times_ok = 1;
- }
-
- GET_BUFFER_SPACE (6);
- if (!zero_times_ok)
- /* A + loop. */
- STORE_JUMP (ofj, b, b + 6);
- else
- /* Simple * loops can use on_failure_keep_string_jump
- depending on what follows. But since we don't know
- that yet, we leave the decision up to
- on_failure_jump_smart. */
- INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
- laststart + startoffset, b + 6);
- b += 3;
- STORE_JUMP (jump, b, laststart + startoffset);
- b += 3;
- }
- else
- {
- /* A simple ? pattern. */
- assert (zero_times_ok);
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (on_failure_jump, laststart, b + 3);
- b += 3;
- }
- }
- else /* not greedy */
- { /* I wish the greedy and non-greedy cases could be merged. */
-
- GET_BUFFER_SPACE (7); /* We might use less. */
- if (many_times_ok)
- {
- boolean emptyp = analyse_first (laststart, b, NULL, 0);
-
- /* The non-greedy multiple match looks like
- a repeat..until: we only need a conditional jump
- at the end of the loop. */
- if (emptyp) BUF_PUSH (no_op);
- STORE_JUMP (emptyp ? on_failure_jump_nastyloop
- : on_failure_jump, b, laststart);
- b += 3;
- if (zero_times_ok)
- {
- /* The repeat...until naturally matches one or more.
- To also match zero times, we need to first jump to
- the end of the loop (its conditional jump). */
- INSERT_JUMP (jump, laststart, b);
- b += 3;
- }
- }
- else
- {
- /* non-greedy a?? */
- INSERT_JUMP (jump, laststart, b + 3);
- b += 3;
- INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
- b += 3;
- }
- }
- }
- pending_exact = 0;
- break;
-
-
- case '.':
- laststart = b;
- BUF_PUSH (anychar);
- break;
-
-
- case '[':
- {
- CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
-
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- /* Ensure that we have enough space to push a charset: the
- opcode, the length count, and the bitset; 34 bytes in all. */
- GET_BUFFER_SPACE (34);
-
- laststart = b;
-
- /* We test `*p == '^' twice, instead of using an if
- statement, so we only need one BUF_PUSH. */
- BUF_PUSH (*p == '^' ? charset_not : charset);
- if (*p == '^')
- p++;
-
- /* Remember the first position in the bracket expression. */
- p1 = p;
-
- /* Push the number of bytes in the bitmap. */
- BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* Clear the whole map. */
- bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* charset_not matches newline according to a syntax bit. */
- if ((re_opcode_t) b[-2] == charset_not
- && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
- SET_LIST_BIT ('\n');
-
- /* Read in characters and ranges, setting map bits. */
- for (;;)
- {
- boolean escaped_char = false;
- const unsigned char *p2 = p;
-
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- /* Don't translate yet. The range TRANSLATE(X..Y) cannot
- always be determined from TRANSLATE(X) and TRANSLATE(Y)
- So the translation is done later in a loop. Example:
- (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
- PATFETCH (c);
-
- /* \ might escape characters inside [...] and [^...]. */
- if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
- {
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
- PATFETCH (c);
- escaped_char = true;
- }
- else
- {
- /* Could be the end of the bracket expression. If it's
- not (i.e., when the bracket expression is `[]' so
- far), the ']' character bit gets set way below. */
- if (c == ']' && p2 != p1)
- break;
- }
-
- /* What should we do for the character which is
- greater than 0x7F, but not BASE_LEADING_CODE_P?
- XXX */
-
- /* See if we're at the beginning of a possible character
- class. */
-
- if (!escaped_char &&
- syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
- {
- /* Leave room for the null. */
- unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
- const unsigned char *class_beg;
-
- PATFETCH (c);
- c1 = 0;
- class_beg = p;
-
- /* If pattern is `[[:'. */
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- for (;;)
- {
- PATFETCH (c);
- if ((c == ':' && *p == ']') || p == pend)
- break;
- if (c1 < CHAR_CLASS_MAX_LENGTH)
- str[c1++] = c;
- else
- /* This is in any case an invalid class name. */
- str[0] = '\0';
- }
- str[c1] = '\0';
-
- /* If isn't a word bracketed by `[:' and `:]':
- undo the ending character, the letters, and
- leave the leading `:' and `[' (but set bits for
- them). */
- if (c == ':' && *p == ']')
- {
- re_wchar_t ch;
- re_wctype_t cc;
-
- cc = re_wctype (str);
-
- if (cc == 0)
- FREE_STACK_RETURN (REG_ECTYPE);
-
- /* Throw away the ] at the end of the character
- class. */
- PATFETCH (c);
-
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- /* Most character classes in a multibyte match
- just set a flag. Exceptions are is_blank,
- is_digit, is_cntrl, and is_xdigit, since
- they can only match ASCII characters. We
- don't need to handle them for multibyte.
- They are distinguished by a negative wctype. */
-
- if (multibyte)
- SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
- re_wctype_to_bit (cc));
-
- for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
- {
- int translated = TRANSLATE (ch);
- if (re_iswctype (btowc (ch), cc))
- SET_LIST_BIT (translated);
- }
-
- /* Repeat the loop. */
- continue;
- }
- else
- {
- /* Go back to right after the "[:". */
- p = class_beg;
- SET_LIST_BIT ('[');
-
- /* Because the `:' may starts the range, we
- can't simply set bit and repeat the loop.
- Instead, just set it to C and handle below. */
- c = ':';
- }
- }
-
- if (p < pend && p[0] == '-' && p[1] != ']')
- {
-
- /* Discard the `-'. */
- PATFETCH (c1);
-
- /* Fetch the character which ends the range. */
- PATFETCH (c1);
-
- if (SINGLE_BYTE_CHAR_P (c))
- {
- if (! SINGLE_BYTE_CHAR_P (c1))
- {
- /* Handle a range starting with a
- character of less than 256, and ending
- with a character of not less than 256.
- Split that into two ranges, the low one
- ending at 0377, and the high one
- starting at the smallest character in
- the charset of C1 and ending at C1. */
- int charset = CHAR_CHARSET (c1);
- re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
-
- SET_RANGE_TABLE_WORK_AREA (range_table_work,
- c2, c1);
- c1 = 0377;
- }
- }
- else if (!SAME_CHARSET_P (c, c1))
- FREE_STACK_RETURN (REG_ERANGE);
- }
- else
- /* Range from C to C. */
- c1 = c;
-
- /* Set the range ... */
- if (SINGLE_BYTE_CHAR_P (c))
- /* ... into bitmap. */
- {
- re_wchar_t this_char;
- re_wchar_t range_start = c, range_end = c1;
-
- /* If the start is after the end, the range is empty. */
- if (range_start > range_end)
- {
- if (syntax & RE_NO_EMPTY_RANGES)
- FREE_STACK_RETURN (REG_ERANGE);
- /* Else, repeat the loop. */
- }
- else
- {
- for (this_char = range_start; this_char <= range_end;
- this_char++)
- SET_LIST_BIT (TRANSLATE (this_char));
- }
- }
- else
- /* ... into range table. */
- SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
- }
-
- /* Discard any (non)matching list bytes that are all 0 at the
- end of the map. Decrease the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
-
- /* Build real range table from work area. */
- if (RANGE_TABLE_WORK_USED (range_table_work)
- || RANGE_TABLE_WORK_BITS (range_table_work))
- {
- int i;
- int used = RANGE_TABLE_WORK_USED (range_table_work);
-
- /* Allocate space for COUNT + RANGE_TABLE. Needs two
- bytes for flags, two for COUNT, and three bytes for
- each character. */
- GET_BUFFER_SPACE (4 + used * 3);
-
- /* Indicate the existence of range table. */
- laststart[1] |= 0x80;
-
- /* Store the character class flag bits into the range table.
- If not in emacs, these flag bits are always 0. */
- *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
- *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
-
- STORE_NUMBER_AND_INCR (b, used / 2);
- for (i = 0; i < used; i++)
- STORE_CHARACTER_AND_INCR
- (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
- }
- }
- break;
-
-
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_open;
- else
- goto normal_char;
-
-
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_close;
- else
- goto normal_char;
-
-
- case '\n':
- if (syntax & RE_NEWLINE_ALT)
- goto handle_alt;
- else
- goto normal_char;
-
-
- case '|':
- if (syntax & RE_NO_BK_VBAR)
- goto handle_alt;
- else
- goto normal_char;
-
-
- case '{':
- if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
- goto handle_interval;
- else
- goto normal_char;
-
-
- case '\\':
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
- /* Do not translate the character after the \, so that we can
- distinguish, e.g., \B from \b, even if we normally would
- translate, e.g., B to b. */
- PATFETCH (c);
-
- switch (c)
- {
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
-
- handle_open:
- {
- int shy = 0;
- if (p+1 < pend)
- {
- /* Look for a special (?...) construct */
- if ((syntax & RE_SHY_GROUPS) && *p == '?')
- {
- PATFETCH (c); /* Gobble up the '?'. */
- PATFETCH (c);
- switch (c)
- {
- case ':': shy = 1; break;
- default:
- /* Only (?:...) is supported right now. */
- FREE_STACK_RETURN (REG_BADPAT);
- }
- }
- }
-
- if (!shy)
- {
- bufp->re_nsub++;
- regnum++;
- }
-
- if (COMPILE_STACK_FULL)
- {
- RETALLOC (compile_stack.stack, compile_stack.size << 1,
- compile_stack_elt_t);
- if (compile_stack.stack == NULL) return REG_ESPACE;
-
- compile_stack.size <<= 1;
- }
-
- /* These are the values to restore when we hit end of this
- group. They are all relative offsets, so that if the
- whole pattern moves because of realloc, they will still
- be valid. */
- COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
- COMPILE_STACK_TOP.fixup_alt_jump
- = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
- COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
- COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
-
- /* Do not push a
- start_memory for groups beyond the last one we can
- represent in the compiled pattern. */
- if (regnum <= MAX_REGNUM && !shy)
- BUF_PUSH_2 (start_memory, regnum);
-
- compile_stack.avail++;
-
- fixup_alt_jump = 0;
- laststart = 0;
- begalt = b;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
- break;
- }
-
- case ')':
- if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
-
- if (COMPILE_STACK_EMPTY)
- {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_backslash;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
- }
-
- handle_close:
- FIXUP_ALT_JUMP ();
-
- /* See similar code for backslashed left paren above. */
- if (COMPILE_STACK_EMPTY)
- {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_char;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
- }
-
- /* Since we just checked for an empty stack above, this
- ``can't happen''. */
- assert (compile_stack.avail != 0);
- {
- /* We don't just want to restore into `regnum', because
- later groups should continue to be numbered higher,
- as in `(ab)c(de)' -- the second group is #2. */
- regnum_t this_group_regnum;
-
- compile_stack.avail--;
- begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
- fixup_alt_jump
- = COMPILE_STACK_TOP.fixup_alt_jump
- ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
- : 0;
- laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
- this_group_regnum = COMPILE_STACK_TOP.regnum;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
-
- /* We're at the end of the group, so now we know how many
- groups were inside this one. */
- if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
- BUF_PUSH_2 (stop_memory, this_group_regnum);
- }
- break;
-
-
- case '|': /* `\|'. */
- if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
- goto normal_backslash;
- handle_alt:
- if (syntax & RE_LIMITED_OPS)
- goto normal_char;
-
- /* Insert before the previous alternative a jump which
- jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (on_failure_jump, begalt, b + 6);
- pending_exact = 0;
- b += 3;
-
- /* The alternative before this one has a jump after it
- which gets executed if it gets matched. Adjust that
- jump so it will jump to this alternative's analogous
- jump (put in below, which in turn will jump to the next
- (if any) alternative's such jump, etc.). The last such
- jump jumps to the correct final destination. A picture:
- _____ _____
- | | | |
- | v | v
- a | b | c
-
- If we are at `b', then fixup_alt_jump right now points to a
- three-byte space after `a'. We'll put in the jump, set
- fixup_alt_jump to right after `b', and leave behind three
- bytes which we'll fill in when we get to after `c'. */
-
- FIXUP_ALT_JUMP ();
-
- /* Mark and leave space for a jump after this alternative,
- to be filled in later either by next alternative or
- when know we're at the end of a series of alternatives. */
- fixup_alt_jump = b;
- GET_BUFFER_SPACE (3);
- b += 3;
-
- laststart = 0;
- begalt = b;
- break;
-
-
- case '{':
- /* If \{ is a literal. */
- if (!(syntax & RE_INTERVALS)
- /* If we're at `\{' and it's not the open-interval
- operator. */
- || (syntax & RE_NO_BK_BRACES))
- goto normal_backslash;
-
- handle_interval:
- {
- /* If got here, then the syntax allows intervals. */
-
- /* At least (most) this many matches must be made. */
- int lower_bound = 0, upper_bound = -1;
-
- beg_interval = p;
-
- if (p == pend)
- FREE_STACK_RETURN (REG_EBRACE);
-
- GET_UNSIGNED_NUMBER (lower_bound);
-
- if (c == ',')
- GET_UNSIGNED_NUMBER (upper_bound);
- else
- /* Interval such as `{1}' => match exactly once. */
- upper_bound = lower_bound;
-
- if (lower_bound < 0 || upper_bound > RE_DUP_MAX
- || (upper_bound >= 0 && lower_bound > upper_bound))
- FREE_STACK_RETURN (REG_BADBR);
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (c != '\\')
- FREE_STACK_RETURN (REG_BADBR);
-
- PATFETCH (c);
- }
-
- if (c != '}')
- FREE_STACK_RETURN (REG_BADBR);
-
- /* We just parsed a valid interval. */
-
- /* If it's invalid to have no preceding re. */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (syntax & RE_CONTEXT_INDEP_OPS)
- laststart = b;
- else
- goto unfetch_interval;
- }
-
- if (upper_bound == 0)
- /* If the upper bound is zero, just drop the sub pattern
- altogether. */
- b = laststart;
- else if (lower_bound == 1 && upper_bound == 1)
- /* Just match it once: nothing to do here. */
- ;
-
- /* Otherwise, we have a nontrivial interval. When
- we're all done, the pattern will look like:
- set_number_at <jump count> <upper bound>
- set_number_at <succeed_n count> <lower bound>
- succeed_n <after jump addr> <succeed_n count>
- <body of loop>
- jump_n <succeed_n addr> <jump count>
- (The upper bound and `jump_n' are omitted if
- `upper_bound' is 1, though.) */
- else
- { /* If the upper bound is > 1, we need to insert
- more at the end of the loop. */
- unsigned int nbytes = (upper_bound < 0 ? 3
- : upper_bound > 1 ? 5 : 0);
- unsigned int startoffset = 0;
-
- GET_BUFFER_SPACE (20); /* We might use less. */
-
- if (lower_bound == 0)
- {
- /* A succeed_n that starts with 0 is really a
- a simple on_failure_jump_loop. */
- INSERT_JUMP (on_failure_jump_loop, laststart,
- b + 3 + nbytes);
- b += 3;
- }
- else
- {
- /* Initialize lower bound of the `succeed_n', even
- though it will be set during matching by its
- attendant `set_number_at' (inserted next),
- because `re_compile_fastmap' needs to know.
- Jump to the `jump_n' we might insert below. */
- INSERT_JUMP2 (succeed_n, laststart,
- b + 5 + nbytes,
- lower_bound);
- b += 5;
-
- /* Code to initialize the lower bound. Insert
- before the `succeed_n'. The `5' is the last two
- bytes of this `set_number_at', plus 3 bytes of
- the following `succeed_n'. */
- insert_op2 (set_number_at, laststart, 5, lower_bound, b);
- b += 5;
- startoffset += 5;
- }
-
- if (upper_bound < 0)
- {
- /* A negative upper bound stands for infinity,
- in which case it degenerates to a plain jump. */
- STORE_JUMP (jump, b, laststart + startoffset);
- b += 3;
- }
- else if (upper_bound > 1)
- { /* More than one repetition is allowed, so
- append a backward jump to the `succeed_n'
- that starts this interval.
-
- When we've reached this during matching,
- we'll have matched the interval once, so
- jump back only `upper_bound - 1' times. */
- STORE_JUMP2 (jump_n, b, laststart + startoffset,
- upper_bound - 1);
- b += 5;
-
- /* The location we want to set is the second
- parameter of the `jump_n'; that is `b-2' as
- an absolute address. `laststart' will be
- the `set_number_at' we're about to insert;
- `laststart+3' the number to set, the source
- for the relative address. But we are
- inserting into the middle of the pattern --
- so everything is getting moved up by 5.
- Conclusion: (b - 2) - (laststart + 3) + 5,
- i.e., b - laststart.
-
- We insert this at the beginning of the loop
- so that if we fail during matching, we'll
- reinitialize the bounds. */
- insert_op2 (set_number_at, laststart, b - laststart,
- upper_bound - 1, b);
- b += 5;
- }
- }
- pending_exact = 0;
- beg_interval = NULL;
- }
- break;
-
- unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- assert (beg_interval);
- p = beg_interval;
- beg_interval = NULL;
-
- /* normal_char and normal_backslash need `c'. */
- c = '{';
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- assert (p > pattern && p[-1] == '\\');
- goto normal_backslash;
- }
- else
- goto normal_char;
-
-#ifdef emacs
- /* There is no way to specify the before_dot and after_dot
- operators. rms says this is ok. --karl */
- case '=':
- BUF_PUSH (at_dot);
- break;
-
- case 's':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
- break;
-
- case 'S':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
- break;
-
- case 'c':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (categoryspec, c);
- break;
-
- case 'C':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (notcategoryspec, c);
- break;
-#endif /* emacs */
-
-
- case 'w':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH_2 (syntaxspec, Sword);
- break;
-
-
- case 'W':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH_2 (notsyntaxspec, Sword);
- break;
-
-
- case '<':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (wordbeg);
- break;
-
- case '>':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (wordend);
- break;
-
- case 'b':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (wordbound);
- break;
-
- case 'B':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (notwordbound);
- break;
-
- case '`':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (begbuf);
- break;
-
- case '\'':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (endbuf);
- break;
-
- case '1': case '2': case '3': case '4': case '5':
- case '6': case '7': case '8': case '9':
- {
- regnum_t reg;
-
- if (syntax & RE_NO_BK_REFS)
- goto normal_backslash;
-
- reg = c - '0';
-
- /* Can't back reference to a subexpression before its end. */
- if (reg > regnum || group_in_compile_stack (compile_stack, reg))
- FREE_STACK_RETURN (REG_ESUBREG);
-
- laststart = b;
- BUF_PUSH_2 (duplicate, reg);
- }
- break;
-
-
- case '+':
- case '?':
- if (syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backslash;
-
- default:
- normal_backslash:
- /* You might think it would be useful for \ to mean
- not to translate; but if we don't translate it
- it will never match anything. */
- goto normal_char;
- }
- break;
-
-
- default:
- /* Expects the character in `c'. */
- normal_char:
- /* If no exactn currently being built. */
- if (!pending_exact
-
- /* If last exactn not at current position. */
- || pending_exact + *pending_exact + 1 != b
-
- /* We have only one byte following the exactn for the count. */
- || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
-
- /* If followed by a repetition operator. */
- || (p != pend && (*p == '*' || *p == '^'))
- || ((syntax & RE_BK_PLUS_QM)
- ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
- : p != pend && (*p == '+' || *p == '?'))
- || ((syntax & RE_INTERVALS)
- && ((syntax & RE_NO_BK_BRACES)
- ? p != pend && *p == '{'
- : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
- {
- /* Start building a new exactn. */
-
- laststart = b;
-
- BUF_PUSH_2 (exactn, 0);
- pending_exact = b - 1;
- }
-
- GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
- {
- int len;
-
- c = TRANSLATE (c);
- if (multibyte)
- len = CHAR_STRING (c, b);
- else
- *b = c, len = 1;
- b += len;
- (*pending_exact) += len;
- }
-
- break;
- } /* switch (c) */
- } /* while p != pend */
-
-
- /* Through the pattern now. */
-
- FIXUP_ALT_JUMP ();
-
- if (!COMPILE_STACK_EMPTY)
- FREE_STACK_RETURN (REG_EPAREN);
-
- /* If we don't want backtracking, force success
- the first time we reach the end of the compiled pattern. */
- if (syntax & RE_NO_POSIX_BACKTRACKING)
- BUF_PUSH (succeed);
-
- /* We have succeeded; set the length of the buffer. */
- bufp->used = b - bufp->buffer;
-
-#ifdef DEBUG
- if (debug > 0)
- {
- re_compile_fastmap (bufp);
- DEBUG_PRINT1 ("\nCompiled pattern: \n");
- print_compiled_pattern (bufp);
- }
- debug--;
-#endif /* DEBUG */
-
-#ifndef MATCH_MAY_ALLOCATE
- /* Initialize the failure stack to the largest possible stack. This
- isn't necessary unless we're trying to avoid calling alloca in
- the search and match routines. */
- {
- int num_regs = bufp->re_nsub + 1;
-
- if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
- {
- fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
-
- if (! fail_stack.stack)
- fail_stack.stack
- = (fail_stack_elt_t *) malloc (fail_stack.size
- * sizeof (fail_stack_elt_t));
- else
- fail_stack.stack
- = (fail_stack_elt_t *) realloc (fail_stack.stack,
- (fail_stack.size
- * sizeof (fail_stack_elt_t)));
- }
-
- regex_grow_registers (num_regs);
- }
-#endif /* not MATCH_MAY_ALLOCATE */
-
- FREE_STACK_RETURN (REG_NOERROR);
-} /* regex_compile */
-\f
-/* Subroutines for `regex_compile'. */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG. */
-
-static void
-store_op1 (op, loc, arg)
- re_opcode_t op;
- unsigned char *loc;
- int arg;
-{
- *loc = (unsigned char) op;
- STORE_NUMBER (loc + 1, arg);
-}
-
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-static void
-store_op2 (op, loc, arg1, arg2)
- re_opcode_t op;
- unsigned char *loc;
- int arg1, arg2;
-{
- *loc = (unsigned char) op;
- STORE_NUMBER (loc + 1, arg1);
- STORE_NUMBER (loc + 3, arg2);
-}
-
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
- for OP followed by two-byte integer parameter ARG. */
-
-static void
-insert_op1 (op, loc, arg, end)
- re_opcode_t op;
- unsigned char *loc;
- int arg;
- unsigned char *end;
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 3;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op1 (op, loc, arg);
-}
-
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-static void
-insert_op2 (op, loc, arg1, arg2, end)
- re_opcode_t op;
- unsigned char *loc;
- int arg1, arg2;
- unsigned char *end;
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 5;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op2 (op, loc, arg1, arg2);
-}
-
-
-/* P points to just after a ^ in PATTERN. Return true if that ^ comes
- after an alternative or a begin-subexpression. We assume there is at
- least one character before the ^. */
-
-static boolean
-at_begline_loc_p (pattern, p, syntax)
- re_char *pattern, *p;
- reg_syntax_t syntax;
-{
- re_char *prev = p - 2;
- boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
-
- return
- /* After a subexpression? */
- (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
- /* After an alternative? */
- || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
- /* After a shy subexpression? */
- || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
- && prev[-1] == '?' && prev[-2] == '('
- && (syntax & RE_NO_BK_PARENS
- || (prev - 3 >= pattern && prev[-3] == '\\')));
-}
-
-
-/* The dual of at_begline_loc_p. This one is for $. We assume there is
- at least one character after the $, i.e., `P < PEND'. */
-
-static boolean
-at_endline_loc_p (p, pend, syntax)
- re_char *p, *pend;
- reg_syntax_t syntax;
-{
- re_char *next = p;
- boolean next_backslash = *next == '\\';
- re_char *next_next = p + 1 < pend ? p + 1 : 0;
-
- return
- /* Before a subexpression? */
- (syntax & RE_NO_BK_PARENS ? *next == ')'
- : next_backslash && next_next && *next_next == ')')
- /* Before an alternative? */
- || (syntax & RE_NO_BK_VBAR ? *next == '|'
- : next_backslash && next_next && *next_next == '|');
-}
-
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
- false if it's not. */
-
-static boolean
-group_in_compile_stack (compile_stack, regnum)
- compile_stack_type compile_stack;
- regnum_t regnum;
-{
- int this_element;
-
- for (this_element = compile_stack.avail - 1;
- this_element >= 0;
- this_element--)
- if (compile_stack.stack[this_element].regnum == regnum)
- return true;
-
- return false;
-}
-\f
-/* analyse_first.
- If fastmap is non-NULL, go through the pattern and fill fastmap
- with all the possible leading chars. If fastmap is NULL, don't
- bother filling it up (obviously) and only return whether the
- pattern could potentially match the empty string.
-
- Return 1 if p..pend might match the empty string.
- Return 0 if p..pend matches at least one char.
- Return -1 if fastmap was not updated accurately. */
-
-static int
-analyse_first (p, pend, fastmap, multibyte)
- re_char *p, *pend;
- char *fastmap;
- const int multibyte;
-{
- int j, k;
- boolean not;
-
- /* If all elements for base leading-codes in fastmap is set, this
- flag is set true. */
- boolean match_any_multibyte_characters = false;
-
- assert (p);
-
- /* The loop below works as follows:
- - It has a working-list kept in the PATTERN_STACK and which basically
- starts by only containing a pointer to the first operation.
- - If the opcode we're looking at is a match against some set of
- chars, then we add those chars to the fastmap and go on to the
- next work element from the worklist (done via `break').
- - If the opcode is a control operator on the other hand, we either
- ignore it (if it's meaningless at this point, such as `start_memory')
- or execute it (if it's a jump). If the jump has several destinations
- (i.e. `on_failure_jump'), then we push the other destination onto the
- worklist.
- We guarantee termination by ignoring backward jumps (more or less),
- so that `p' is monotonically increasing. More to the point, we
- never set `p' (or push) anything `<= p1'. */
-
- while (p < pend)
- {
- /* `p1' is used as a marker of how far back a `on_failure_jump'
- can go without being ignored. It is normally equal to `p'
- (which prevents any backward `on_failure_jump') except right
- after a plain `jump', to allow patterns such as:
- 0: jump 10
- 3..9: <body>
- 10: on_failure_jump 3
- as used for the *? operator. */
- re_char *p1 = p;
-
- switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
- {
- case succeed:
- return 1;
- continue;
-
- case duplicate:
- /* If the first character has to match a backreference, that means
- that the group was empty (since it already matched). Since this
- is the only case that interests us here, we can assume that the
- backreference must match the empty string. */
- p++;
- continue;
-
-
- /* Following are the cases which match a character. These end
- with `break'. */
-
- case exactn:
- if (fastmap)
- {
- int c = RE_STRING_CHAR (p + 1, pend - p);
-
- if (SINGLE_BYTE_CHAR_P (c))
- fastmap[c] = 1;
- else
- fastmap[p[1]] = 1;
- }
- break;
-
-
- case anychar:
- /* We could put all the chars except for \n (and maybe \0)
- but we don't bother since it is generally not worth it. */
- if (!fastmap) break;
- return -1;
-
-
- case charset_not:
- /* Chars beyond end of bitmap are possible matches.
- All the single-byte codes can occur in multibyte buffers.
- So any that are not listed in the charset
- are possible matches, even in multibyte buffers. */
- if (!fastmap) break;
- for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
- j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
- /* Fallthrough */
- case charset:
- if (!fastmap) break;
- not = (re_opcode_t) *(p - 1) == charset_not;
- for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
- j >= 0; j--)
- if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
- fastmap[j] = 1;
-
- if ((not && multibyte)
- /* Any character set can possibly contain a character
- which doesn't match the specified set of characters. */
- || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
- && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
- /* If we can match a character class, we can match
- any character set. */
- {
- set_fastmap_for_multibyte_characters:
- if (match_any_multibyte_characters == false)
- {
- for (j = 0x80; j < 0xA0; j++) /* XXX */
- if (BASE_LEADING_CODE_P (j))
- fastmap[j] = 1;
- match_any_multibyte_characters = true;
- }
- }
-
- else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
- && match_any_multibyte_characters == false)
- {
- /* Set fastmap[I] 1 where I is a base leading code of each
- multibyte character in the range table. */
- int c, count;
-
- /* Make P points the range table. `+ 2' is to skip flag
- bits for a character class. */
- p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
-
- /* Extract the number of ranges in range table into COUNT. */
- EXTRACT_NUMBER_AND_INCR (count, p);
- for (; count > 0; count--, p += 2 * 3) /* XXX */
- {
- /* Extract the start of each range. */
- EXTRACT_CHARACTER (c, p);
- j = CHAR_CHARSET (c);
- fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
- }
- }
- break;
-
- case syntaxspec:
- case notsyntaxspec:
- if (!fastmap) break;
-#ifndef emacs
- not = (re_opcode_t)p[-1] == notsyntaxspec;
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
- fastmap[j] = 1;
- break;
-#else /* emacs */
- /* This match depends on text properties. These end with
- aborting optimizations. */
- return -1;
-
- case categoryspec:
- case notcategoryspec:
- if (!fastmap) break;
- not = (re_opcode_t)p[-1] == notcategoryspec;
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
- fastmap[j] = 1;
-
- if (multibyte)
- /* Any character set can possibly contain a character
- whose category is K (or not). */
- goto set_fastmap_for_multibyte_characters;
- break;
-
- /* All cases after this match the empty string. These end with
- `continue'. */
-
- case before_dot:
- case at_dot:
- case after_dot:
-#endif /* !emacs */
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbound:
- case notwordbound:
- case wordbeg:
- case wordend:
- continue;
-
-
- case jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
- if (j < 0)
- /* Backward jumps can only go back to code that we've already
- visited. `re_compile' should make sure this is true. */
- break;
- p += j;
- switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
- {
- case on_failure_jump:
- case on_failure_keep_string_jump:
- case on_failure_jump_loop:
- case on_failure_jump_nastyloop:
- case on_failure_jump_smart:
- p++;
- break;
- default:
- continue;
- };
- /* Keep `p1' to allow the `on_failure_jump' we are jumping to
- to jump back to "just after here". */
- /* Fallthrough */
-
- case on_failure_jump:
- case on_failure_keep_string_jump:
- case on_failure_jump_nastyloop:
- case on_failure_jump_loop:
- case on_failure_jump_smart:
- EXTRACT_NUMBER_AND_INCR (j, p);
- if (p + j <= p1)
- ; /* Backward jump to be ignored. */
- else
- { /* We have to look down both arms.
- We first go down the "straight" path so as to minimize
- stack usage when going through alternatives. */
- int r = analyse_first (p, pend, fastmap, multibyte);
- if (r) return r;
- p += j;
- }
- continue;
-
-
- case jump_n:
- /* This code simply does not properly handle forward jump_n. */
- DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
- p += 4;
- /* jump_n can either jump or fall through. The (backward) jump
- case has already been handled, so we only need to look at the
- fallthrough case. */
- continue;
-
- case succeed_n:
- /* If N == 0, it should be an on_failure_jump_loop instead. */
- DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
- p += 4;
- /* We only care about one iteration of the loop, so we don't
- need to consider the case where this behaves like an
- on_failure_jump. */
- continue;
-
-
- case set_number_at:
- p += 4;
- continue;
-
-
- case start_memory:
- case stop_memory:
- p += 1;
- continue;
-
-
- default:
- abort (); /* We have listed all the cases. */
- } /* switch *p++ */
-
- /* Getting here means we have found the possible starting
- characters for one path of the pattern -- and that the empty
- string does not match. We need not follow this path further. */
- return 0;
- } /* while p */
-
- /* We reached the end without matching anything. */
- return 1;
-
-} /* analyse_first */
-\f
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
- BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
- characters can start a string that matches the pattern. This fastmap
- is used by re_search to skip quickly over impossible starting points.
-
- Character codes above (1 << BYTEWIDTH) are not represented in the
- fastmap, but the leading codes are represented. Thus, the fastmap
- indicates which character sets could start a match.
-
- The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- area as BUFP->fastmap.
-
- We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
- the pattern buffer.
-
- Returns 0 if we succeed, -2 if an internal error. */
-
-int
-re_compile_fastmap (bufp)
- struct re_pattern_buffer *bufp;
-{
- char *fastmap = bufp->fastmap;
- int analysis;
-
- assert (fastmap && bufp->buffer);
-
- bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
- bufp->fastmap_accurate = 1; /* It will be when we're done. */
-
- analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
- fastmap, RE_MULTIBYTE_P (bufp));
- bufp->can_be_null = (analysis != 0);
- return 0;
-} /* re_compile_fastmap */
-\f
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
- ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
- this memory for recording register information. STARTS and ENDS
- must be allocated using the malloc library routine, and must each
- be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
- If NUM_REGS == 0, then subsequent matches should allocate their own
- register data.
-
- Unless this function is called, the first search or match using
- PATTERN_BUFFER will allocate its own register data, without
- freeing the old data. */
-
-void
-re_set_registers (bufp, regs, num_regs, starts, ends)
- struct re_pattern_buffer *bufp;
- struct re_registers *regs;
- unsigned num_regs;
- regoff_t *starts, *ends;
-{
- if (num_regs)
- {
- bufp->regs_allocated = REGS_REALLOCATE;
- regs->num_regs = num_regs;
- regs->start = starts;
- regs->end = ends;
- }
- else
- {
- bufp->regs_allocated = REGS_UNALLOCATED;
- regs->num_regs = 0;
- regs->start = regs->end = (regoff_t *) 0;
- }
-}
-WEAK_ALIAS (__re_set_registers, re_set_registers)
-\f
-/* Searching routines. */
-
-/* Like re_search_2, below, but only one string is specified, and
- doesn't let you say where to stop matching. */
-
-int
-re_search (bufp, string, size, startpos, range, regs)
- struct re_pattern_buffer *bufp;
- const char *string;
- int size, startpos, range;
- struct re_registers *regs;
-{
- return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
- regs, size);
-}
-WEAK_ALIAS (__re_search, re_search)
-
-/* Head address of virtual concatenation of string. */
-#define HEAD_ADDR_VSTRING(P) \
- (((P) >= size1 ? string2 : string1))
-
-/* End address of virtual concatenation of string. */
-#define STOP_ADDR_VSTRING(P) \
- (((P) >= size1 ? string2 + size2 : string1 + size1))
-
-/* Address of POS in the concatenation of virtual string. */
-#define POS_ADDR_VSTRING(POS) \
- (((POS) >= size1 ? string2 - size1 : string1) + (POS))
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
- virtual concatenation of STRING1 and STRING2, starting first at index
- STARTPOS, then at STARTPOS + 1, and so on.
-
- STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
- RANGE is how far to scan while trying to match. RANGE = 0 means try
- only at STARTPOS; in general, the last start tried is STARTPOS +
- RANGE.
-
- In REGS, return the indices of the virtual concatenation of STRING1
- and STRING2 that matched the entire BUFP->buffer and its contained
- subexpressions.
-
- Do not consider matching one past the index STOP in the virtual
- concatenation of STRING1 and STRING2.
-
- We return either the position in the strings at which the match was
- found, -1 if no match, or -2 if error (such as failure
- stack overflow). */
-
-int
-re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
- struct re_pattern_buffer *bufp;
- const char *str1, *str2;
- int size1, size2;
- int startpos;
- int range;
- struct re_registers *regs;
- int stop;
-{
- int val;
- re_char *string1 = (re_char*) str1;
- re_char *string2 = (re_char*) str2;
- register char *fastmap = bufp->fastmap;
- register RE_TRANSLATE_TYPE translate = bufp->translate;
- int total_size = size1 + size2;
- int endpos = startpos + range;
- boolean anchored_start;
-
- /* Nonzero if we have to concern multibyte character. */
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
-
- /* Check for out-of-range STARTPOS. */
- if (startpos < 0 || startpos > total_size)
- return -1;
-
- /* Fix up RANGE if it might eventually take us outside
- the virtual concatenation of STRING1 and STRING2.
- Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
- if (endpos < 0)
- range = 0 - startpos;
- else if (endpos > total_size)
- range = total_size - startpos;
-
- /* If the search isn't to be a backwards one, don't waste time in a
- search for a pattern anchored at beginning of buffer. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
- {
- if (startpos > 0)
- return -1;
- else
- range = 0;
- }
-
-#ifdef emacs
- /* In a forward search for something that starts with \=.
- don't keep searching past point. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
- {
- range = PT_BYTE - BEGV_BYTE - startpos;
- if (range < 0)
- return -1;
- }
-#endif /* emacs */
-
- /* Update the fastmap now if not correct already. */
- if (fastmap && !bufp->fastmap_accurate)
- re_compile_fastmap (bufp);
-
- /* See whether the pattern is anchored. */
- anchored_start = (bufp->buffer[0] == begline);
-
-#ifdef emacs
- gl_state.object = re_match_object;
- {
- int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
-
- SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
- }
-#endif
-
- /* Loop through the string, looking for a place to start matching. */
- for (;;)
- {
- /* If the pattern is anchored,
- skip quickly past places we cannot match.
- We don't bother to treat startpos == 0 specially
- because that case doesn't repeat. */
- if (anchored_start && startpos > 0)
- {
- if (! ((startpos <= size1 ? string1[startpos - 1]
- : string2[startpos - size1 - 1])
- == '\n'))
- goto advance;
- }
-
- /* If a fastmap is supplied, skip quickly over characters that
- cannot be the start of a match. If the pattern can match the
- null string, however, we don't need to skip characters; we want
- the first null string. */
- if (fastmap && startpos < total_size && !bufp->can_be_null)
- {
- register re_char *d;
- register re_wchar_t buf_ch;
-
- d = POS_ADDR_VSTRING (startpos);
-
- if (range > 0) /* Searching forwards. */
- {
- register int lim = 0;
- int irange = range;
-
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
-
- /* Written out as an if-else to avoid testing `translate'
- inside the loop. */
- if (RE_TRANSLATE_P (translate))
- {
- if (multibyte)
- while (range > lim)
- {
- int buf_charlen;
-
- buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
- buf_charlen);
-
- buf_ch = RE_TRANSLATE (translate, buf_ch);
- if (buf_ch >= 0400
- || fastmap[buf_ch])
- break;
-
- range -= buf_charlen;
- d += buf_charlen;
- }
- else
- while (range > lim
- && !fastmap[RE_TRANSLATE (translate, *d)])
- {
- d++;
- range--;
- }
- }
- else
- while (range > lim && !fastmap[*d])
- {
- d++;
- range--;
- }
-
- startpos += irange - range;
- }
- else /* Searching backwards. */
- {
- int room = (startpos >= size1
- ? size2 + size1 - startpos
- : size1 - startpos);
- buf_ch = RE_STRING_CHAR (d, room);
- buf_ch = TRANSLATE (buf_ch);
-
- if (! (buf_ch >= 0400
- || fastmap[buf_ch]))
- goto advance;
- }
- }
-
- /* If can't match the null string, and that's all we have left, fail. */
- if (range >= 0 && startpos == total_size && fastmap
- && !bufp->can_be_null)
- return -1;
-
- val = re_match_2_internal (bufp, string1, size1, string2, size2,
- startpos, regs, stop);
-#ifndef REGEX_MALLOC
-# ifdef C_ALLOCA
- alloca (0);
-# endif
-#endif
-
- if (val >= 0)
- return startpos;
-
- if (val == -2)
- return -2;
-
- advance:
- if (!range)
- break;
- else if (range > 0)
- {
- /* Update STARTPOS to the next character boundary. */
- if (multibyte)
- {
- re_char *p = POS_ADDR_VSTRING (startpos);
- re_char *pend = STOP_ADDR_VSTRING (startpos);
- int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
-
- range -= len;
- if (range < 0)
- break;
- startpos += len;
- }
- else
- {
- range--;
- startpos++;
- }
- }
- else
- {
- range++;
- startpos--;
-
- /* Update STARTPOS to the previous character boundary. */
- if (multibyte)
- {
- re_char *p = POS_ADDR_VSTRING (startpos) + 1;
- re_char *p0 = p;
- re_char *phead = HEAD_ADDR_VSTRING (startpos);
-
- /* Find the head of multibyte form. */
- PREV_CHAR_BOUNDARY (p, phead);
- range += p0 - 1 - p;
- if (range > 0)
- break;
-
- startpos -= p0 - 1 - p;
- }
- }
- }
- return -1;
-} /* re_search_2 */
-WEAK_ALIAS (__re_search_2, re_search_2)
-\f
-/* Declarations and macros for re_match_2. */
-
-static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
- register int len,
- RE_TRANSLATE_TYPE translate,
- const int multibyte));
-
-/* This converts PTR, a pointer into one of the search strings `string1'
- and `string2' into an offset from the beginning of that string. */
-#define POINTER_TO_OFFSET(ptr) \
- (FIRST_STRING_P (ptr) \
- ? ((regoff_t) ((ptr) - string1)) \
- : ((regoff_t) ((ptr) - string2 + size1)))
-
-/* Call before fetching a character with *d. This switches over to
- string2 if necessary.
- Check re_match_2_internal for a discussion of why end_match_2 might
- not be within string2 (but be equal to end_match_1 instead). */
-#define PREFETCH() \
- while (d == dend) \
- { \
- /* End of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* End of string1 => advance to string2. */ \
- d = string2; \
- dend = end_match_2; \
- }
-
-/* Call before fetching a char with *d if you already checked other limits.
- This is meant for use in lookahead operations like wordend, etc..
- where we might need to look at parts of the string that might be
- outside of the LIMITs (i.e past `stop'). */
-#define PREFETCH_NOLIMIT() \
- if (d == end1) \
- { \
- d = string2; \
- dend = end_match_2; \
- } \
-
-/* Test if at very beginning or at very end of the virtual concatenation
- of `string1' and `string2'. If only one string, it's `string2'. */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-
-
-/* Test if D points to a character which is word-constituent. We have
- two special cases to check for: if past the end of string1, look at
- the first character in string2; and if before the beginning of
- string2, look at the last character in string1. */
-#define WORDCHAR_P(d) \
- (SYNTAX ((d) == end1 ? *string2 \
- : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
- == Sword)
-
-/* Disabled due to a compiler bug -- see comment at case wordbound */
-
-/* The comment at case wordbound is following one, but we don't use
- AT_WORD_BOUNDARY anymore to support multibyte form.
-
- The DEC Alpha C compiler 3.x generates incorrect code for the
- test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
- AT_WORD_BOUNDARY, so this code is disabled. Expanding the
- macro and introducing temporary variables works around the bug. */
-
-#if 0
-/* Test if the character before D and the one at D differ with respect
- to being word-constituent. */
-#define AT_WORD_BOUNDARY(d) \
- (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
- || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-#endif
-
-/* Free everything we malloc. */
-#ifdef MATCH_MAY_ALLOCATE
-# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
-# define FREE_VARIABLES() \
- do { \
- REGEX_FREE_STACK (fail_stack.stack); \
- FREE_VAR (regstart); \
- FREE_VAR (regend); \
- FREE_VAR (best_regstart); \
- FREE_VAR (best_regend); \
- } while (0)
-#else
-# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
-#endif /* not MATCH_MAY_ALLOCATE */
-
-\f
-/* Optimization routines. */
-
-/* If the operation is a match against one or more chars,
- return a pointer to the next operation, else return NULL. */
-static re_char *
-skip_one_char (p)
- re_char *p;
-{
- switch (SWITCH_ENUM_CAST (*p++))
- {
- case anychar:
- break;
-
- case exactn:
- p += *p + 1;
- break;
-
- case charset_not:
- case charset:
- if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
- {
- int mcnt;
- p = CHARSET_RANGE_TABLE (p - 1);
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p = CHARSET_RANGE_TABLE_END (p, mcnt);
- }
- else
- p += 1 + CHARSET_BITMAP_SIZE (p - 1);
- break;
-
- case syntaxspec:
- case notsyntaxspec:
-#ifdef emacs
- case categoryspec:
- case notcategoryspec:
-#endif /* emacs */
- p++;
- break;
-
- default:
- p = NULL;
- }
- return p;
-}
-
-
-/* Jump over non-matching operations. */
-static re_char *
-skip_noops (p, pend)
- re_char *p, *pend;
-{
- int mcnt;
- while (p < pend)
- {
- switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
- {
- case start_memory:
- case stop_memory:
- p += 2; break;
- case no_op:
- p += 1; break;
- case jump:
- p += 1;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p += mcnt;
- break;
- default:
- return p;
- }
- }
- assert (p == pend);
- return p;
-}
-
-/* Non-zero if "p1 matches something" implies "p2 fails". */
-static int
-mutually_exclusive_p (bufp, p1, p2)
- struct re_pattern_buffer *bufp;
- re_char *p1, *p2;
-{
- re_opcode_t op2;
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
- unsigned char *pend = bufp->buffer + bufp->used;
-
- assert (p1 >= bufp->buffer && p1 < pend
- && p2 >= bufp->buffer && p2 <= pend);
-
- /* Skip over open/close-group commands.
- If what follows this loop is a ...+ construct,
- look at what begins its body, since we will have to
- match at least one of that. */
- p2 = skip_noops (p2, pend);
- /* The same skip can be done for p1, except that this function
- is only used in the case where p1 is a simple match operator. */
- /* p1 = skip_noops (p1, pend); */
-
- assert (p1 >= bufp->buffer && p1 < pend
- && p2 >= bufp->buffer && p2 <= pend);
-
- op2 = p2 == pend ? succeed : *p2;
-
- switch (SWITCH_ENUM_CAST (op2))
- {
- case succeed:
- case endbuf:
- /* If we're at the end of the pattern, we can change. */
- if (skip_one_char (p1))
- {
- DEBUG_PRINT1 (" End of pattern: fast loop.\n");
- return 1;
- }
- break;
-
- case endline:
- case exactn:
- {
- register re_wchar_t c
- = (re_opcode_t) *p2 == endline ? '\n'
- : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
-
- if ((re_opcode_t) *p1 == exactn)
- {
- if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
- {
- DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
- return 1;
- }
- }
-
- else if ((re_opcode_t) *p1 == charset
- || (re_opcode_t) *p1 == charset_not)
- {
- int not = (re_opcode_t) *p1 == charset_not;
-
- /* Test if C is listed in charset (or charset_not)
- at `p1'. */
- if (SINGLE_BYTE_CHAR_P (c))
- {
- if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
- && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
- }
- else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
- CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
-
- /* `not' is equal to 1 if c would match, which means
- that we can't change to pop_failure_jump. */
- if (!not)
- {
- DEBUG_PRINT1 (" No match => fast loop.\n");
- return 1;
- }
- }
- else if ((re_opcode_t) *p1 == anychar
- && c == '\n')
- {
- DEBUG_PRINT1 (" . != \\n => fast loop.\n");
- return 1;
- }
- }
- break;
-
- case charset:
- {
- if ((re_opcode_t) *p1 == exactn)
- /* Reuse the code above. */
- return mutually_exclusive_p (bufp, p2, p1);
-
- /* It is hard to list up all the character in charset
- P2 if it includes multibyte character. Give up in
- such case. */
- else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
- {
- /* Now, we are sure that P2 has no range table.
- So, for the size of bitmap in P2, `p2[1]' is
- enough. But P1 may have range table, so the
- size of bitmap table of P1 is extracted by
- using macro `CHARSET_BITMAP_SIZE'.
-
- Since we know that all the character listed in
- P2 is ASCII, it is enough to test only bitmap
- table of P1. */
-
- if ((re_opcode_t) *p1 == charset)
- {
- int idx;
- /* We win if the charset inside the loop
- has no overlap with the one after the loop. */
- for (idx = 0;
- (idx < (int) p2[1]
- && idx < CHARSET_BITMAP_SIZE (p1));
- idx++)
- if ((p2[2 + idx] & p1[2 + idx]) != 0)
- break;
-
- if (idx == p2[1]
- || idx == CHARSET_BITMAP_SIZE (p1))
- {
- DEBUG_PRINT1 (" No match => fast loop.\n");
- return 1;
- }
- }
- else if ((re_opcode_t) *p1 == charset_not)
- {
- int idx;
- /* We win if the charset_not inside the loop lists
- every character listed in the charset after. */
- for (idx = 0; idx < (int) p2[1]; idx++)
- if (! (p2[2 + idx] == 0
- || (idx < CHARSET_BITMAP_SIZE (p1)
- && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
- break;
-
- if (idx == p2[1])
- {
- DEBUG_PRINT1 (" No match => fast loop.\n");
- return 1;
- }
- }
- }
- }
- break;
-
- case charset_not:
- switch (SWITCH_ENUM_CAST (*p1))
- {
- case exactn:
- case charset:
- /* Reuse the code above. */
- return mutually_exclusive_p (bufp, p2, p1);
- case charset_not:
- /* When we have two charset_not, it's very unlikely that
- they don't overlap. The union of the two sets of excluded
- chars should cover all possible chars, which, as a matter of
- fact, is virtually impossible in multibyte buffers. */
- break;
- }
- break;
-
- case wordend:
- case notsyntaxspec:
- return ((re_opcode_t) *p1 == syntaxspec
- && p1[1] == (op2 == wordend ? Sword : p2[1]));
-
- case wordbeg:
- case syntaxspec:
- return ((re_opcode_t) *p1 == notsyntaxspec
- && p1[1] == (op2 == wordend ? Sword : p2[1]));
-
- case wordbound:
- return (((re_opcode_t) *p1 == notsyntaxspec
- || (re_opcode_t) *p1 == syntaxspec)
- && p1[1] == Sword);
-
-#ifdef emacs
- case categoryspec:
- return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
- case notcategoryspec:
- return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
-#endif /* emacs */
-
- default:
- ;
- }
-
- /* Safe default. */
- return 0;
-}
-
-\f
-/* Matching routines. */
-
-#ifndef emacs /* Emacs never uses this. */
-/* re_match is like re_match_2 except it takes only a single string. */
-
-int
-re_match (bufp, string, size, pos, regs)
- struct re_pattern_buffer *bufp;
- const char *string;
- int size, pos;
- struct re_registers *regs;
-{
- int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
- pos, regs, size);
-# if defined C_ALLOCA && !defined REGEX_MALLOC
- alloca (0);
-# endif
- return result;
-}
-WEAK_ALIAS (__re_match, re_match)
-#endif /* not emacs */
-
-#ifdef emacs
-/* In Emacs, this is the string or buffer in which we
- are matching. It is used for looking up syntax properties. */
-Lisp_Object re_match_object;
-#endif
-
-/* re_match_2 matches the compiled pattern in BUFP against the
- the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
- and SIZE2, respectively). We start matching at POS, and stop
- matching at STOP.
-
- If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- store offsets for the substring each group matched in REGS. See the
- documentation for exactly how many groups we fill.
-
- We return -1 if no match, -2 if an internal error (such as the
- failure stack overflowing). Otherwise, we return the length of the
- matched substring. */
-
-int
-re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
- struct re_pattern_buffer *bufp;
- const char *string1, *string2;
- int size1, size2;
- int pos;
- struct re_registers *regs;
- int stop;
-{
- int result;
-
-#ifdef emacs
- int charpos;
- gl_state.object = re_match_object;
- charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
- SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
-#endif
-
- result = re_match_2_internal (bufp, (re_char*) string1, size1,
- (re_char*) string2, size2,
- pos, regs, stop);
-#if defined C_ALLOCA && !defined REGEX_MALLOC
- alloca (0);
-#endif
- return result;
-}
-WEAK_ALIAS (__re_match_2, re_match_2)
-
-/* This is a separate function so that we can force an alloca cleanup
- afterwards. */
-static int
-re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
- struct re_pattern_buffer *bufp;
- re_char *string1, *string2;
- int size1, size2;
- int pos;
- struct re_registers *regs;
- int stop;
-{
- /* General temporaries. */
- int mcnt;
- size_t reg;
- boolean not;
-
- /* Just past the end of the corresponding string. */
- re_char *end1, *end2;
-
- /* Pointers into string1 and string2, just past the last characters in
- each to consider matching. */
- re_char *end_match_1, *end_match_2;
-
- /* Where we are in the data, and the end of the current string. */
- re_char *d, *dend;
-
- /* Used sometimes to remember where we were before starting matching
- an operator so that we can go back in case of failure. This "atomic"
- behavior of matching opcodes is indispensable to the correctness
- of the on_failure_keep_string_jump optimization. */
- re_char *dfail;
-
- /* Where we are in the pattern, and the end of the pattern. */
- re_char *p = bufp->buffer;
- re_char *pend = p + bufp->used;
-
- /* We use this to map every character in the string. */
- RE_TRANSLATE_TYPE translate = bufp->translate;
-
- /* Nonzero if we have to concern multibyte character. */
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
-
- /* Failure point stack. Each place that can handle a failure further
- down the line pushes a failure point on this stack. It consists of
- regstart, and regend for all registers corresponding to
- the subexpressions we're currently inside, plus the number of such
- registers, and, finally, two char *'s. The first char * is where
- to resume scanning the pattern; the second one is where to resume
- scanning the strings. */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
- fail_stack_type fail_stack;
-#endif
-#ifdef DEBUG
- unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
-
-#if defined REL_ALLOC && defined REGEX_MALLOC
- /* This holds the pointer to the failure stack, when
- it is allocated relocatably. */
- fail_stack_elt_t *failure_stack_ptr;
-#endif
-
- /* We fill all the registers internally, independent of what we
- return, for use in backreferences. The number here includes
- an element for register zero. */
- size_t num_regs = bufp->re_nsub + 1;
-
- /* Information on the contents of registers. These are pointers into
- the input strings; they record just what was matched (on this
- attempt) by a subexpression part of the pattern, that is, the
- regnum-th regstart pointer points to where in the pattern we began
- matching and the regnum-th regend points to right after where we
- stopped matching the regnum-th subexpression. (The zeroth register
- keeps track of what the whole pattern matches.) */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
- re_char **regstart, **regend;
-#endif
-
- /* The following record the register info as found in the above
- variables when we find a match better than any we've seen before.
- This happens as we backtrack through the failure points, which in
- turn happens only if we have not yet matched the entire string. */
- unsigned best_regs_set = false;
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
- re_char **best_regstart, **best_regend;
-#endif
-
- /* Logically, this is `best_regend[0]'. But we don't want to have to
- allocate space for that if we're not allocating space for anything
- else (see below). Also, we never need info about register 0 for
- any of the other register vectors, and it seems rather a kludge to
- treat `best_regend' differently than the rest. So we keep track of
- the end of the best match so far in a separate variable. We
- initialize this to NULL so that when we backtrack the first time
- and need to test it, it's not garbage. */
- re_char *match_end = NULL;
-
-#ifdef DEBUG
- /* Counts the total number of registers pushed. */
- unsigned num_regs_pushed = 0;
-#endif
-
- DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
-
- INIT_FAIL_STACK ();
-
-#ifdef MATCH_MAY_ALLOCATE
- /* Do not bother to initialize all the register variables if there are
- no groups in the pattern, as it takes a fair amount of time. If
- there are groups, we include space for register 0 (the whole
- pattern), even though we never use it, since it simplifies the
- array indexing. We should fix this. */
- if (bufp->re_nsub)
- {
- regstart = REGEX_TALLOC (num_regs, re_char *);
- regend = REGEX_TALLOC (num_regs, re_char *);
- best_regstart = REGEX_TALLOC (num_regs, re_char *);
- best_regend = REGEX_TALLOC (num_regs, re_char *);
-
- if (!(regstart && regend && best_regstart && best_regend))
- {
- FREE_VARIABLES ();
- return -2;
- }
- }
- else
- {
- /* We must initialize all our variables to NULL, so that
- `FREE_VARIABLES' doesn't try to free them. */
- regstart = regend = best_regstart = best_regend = NULL;
- }
-#endif /* MATCH_MAY_ALLOCATE */
-
- /* The starting position is bogus. */
- if (pos < 0 || pos > size1 + size2)
- {
- FREE_VARIABLES ();
- return -1;
- }
-
- /* Initialize subexpression text positions to -1 to mark ones that no
- start_memory/stop_memory has been seen for. Also initialize the
- register information struct. */
- for (reg = 1; reg < num_regs; reg++)
- regstart[reg] = regend[reg] = NULL;
-
- /* We move `string1' into `string2' if the latter's empty -- but not if
- `string1' is null. */
- if (size2 == 0 && string1 != NULL)
- {
- string2 = string1;
- size2 = size1;
- string1 = 0;
- size1 = 0;
- }
- end1 = string1 + size1;
- end2 = string2 + size2;
-
- /* `p' scans through the pattern as `d' scans through the data.
- `dend' is the end of the input string that `d' points within. `d'
- is advanced into the following input string whenever necessary, but
- this happens before fetching; therefore, at the beginning of the
- loop, `d' can be pointing at the end of a string, but it cannot
- equal `string2'. */
- if (pos >= size1)
- {
- /* Only match within string2. */
- d = string2 + pos - size1;
- dend = end_match_2 = string2 + stop - size1;
- end_match_1 = end1; /* Just to give it a value. */
- }
- else
- {
- if (stop < size1)
- {
- /* Only match within string1. */
- end_match_1 = string1 + stop;
- /* BEWARE!
- When we reach end_match_1, PREFETCH normally switches to string2.
- But in the present case, this means that just doing a PREFETCH
- makes us jump from `stop' to `gap' within the string.
- What we really want here is for the search to stop as
- soon as we hit end_match_1. That's why we set end_match_2
- to end_match_1 (since PREFETCH fails as soon as we hit
- end_match_2). */
- end_match_2 = end_match_1;
- }
- else
- { /* It's important to use this code when stop == size so that
- moving `d' from end1 to string2 will not prevent the d == dend
- check from catching the end of string. */
- end_match_1 = end1;
- end_match_2 = string2 + stop - size1;
- }
- d = string1 + pos;
- dend = end_match_1;
- }
-
- DEBUG_PRINT1 ("The compiled pattern is: ");
- DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
- DEBUG_PRINT1 ("The string to match is: `");
- DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
- DEBUG_PRINT1 ("'\n");
-
- /* This loops over pattern commands. It exits by returning from the
- function if the match is complete, or it drops through if the match
- fails at this starting point in the input data. */
- for (;;)
- {
- DEBUG_PRINT2 ("\n%p: ", p);
-
- if (p == pend)
- { /* End of pattern means we might have succeeded. */
- DEBUG_PRINT1 ("end of pattern ... ");
-
- /* If we haven't matched the entire string, and we want the
- longest match, try backtracking. */
- if (d != end_match_2)
- {
- /* 1 if this match ends in the same string (string1 or string2)
- as the best previous match. */
- boolean same_str_p = (FIRST_STRING_P (match_end)
- == FIRST_STRING_P (d));
- /* 1 if this match is the best seen so far. */
- boolean best_match_p;
-
- /* AIX compiler got confused when this was combined
- with the previous declaration. */
- if (same_str_p)
- best_match_p = d > match_end;
- else
- best_match_p = !FIRST_STRING_P (d);
-
- DEBUG_PRINT1 ("backtracking.\n");
-
- if (!FAIL_STACK_EMPTY ())
- { /* More failure points to try. */
-
- /* If exceeds best match so far, save it. */
- if (!best_regs_set || best_match_p)
- {
- best_regs_set = true;
- match_end = d;
-
- DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
-
- for (reg = 1; reg < num_regs; reg++)
- {
- best_regstart[reg] = regstart[reg];
- best_regend[reg] = regend[reg];
- }
- }
- goto fail;
- }
-
- /* If no failure points, don't restore garbage. And if
- last match is real best match, don't restore second
- best one. */
- else if (best_regs_set && !best_match_p)
- {
- restore_best_regs:
- /* Restore best match. It may happen that `dend ==
- end_match_1' while the restored d is in string2.
- For example, the pattern `x.*y.*z' against the
- strings `x-' and `y-z-', if the two strings are
- not consecutive in memory. */
- DEBUG_PRINT1 ("Restoring best registers.\n");
-
- d = match_end;
- dend = ((d >= string1 && d <= end1)
- ? end_match_1 : end_match_2);
-
- for (reg = 1; reg < num_regs; reg++)
- {
- regstart[reg] = best_regstart[reg];
- regend[reg] = best_regend[reg];
- }
- }
- } /* d != end_match_2 */
-
- succeed_label:
- DEBUG_PRINT1 ("Accepting match.\n");
-
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub)
- {
- /* Have the register data arrays been allocated? */
- if (bufp->regs_allocated == REGS_UNALLOCATED)
- { /* No. So allocate them with malloc. We need one
- extra element beyond `num_regs' for the `-1' marker
- GNU code uses. */
- regs->num_regs = MAX (RE_NREGS, num_regs + 1);
- regs->start = TALLOC (regs->num_regs, regoff_t);
- regs->end = TALLOC (regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- {
- FREE_VARIABLES ();
- return -2;
- }
- bufp->regs_allocated = REGS_REALLOCATE;
- }
- else if (bufp->regs_allocated == REGS_REALLOCATE)
- { /* Yes. If we need more elements than were already
- allocated, reallocate them. If we need fewer, just
- leave it alone. */
- if (regs->num_regs < num_regs + 1)
- {
- regs->num_regs = num_regs + 1;
- RETALLOC (regs->start, regs->num_regs, regoff_t);
- RETALLOC (regs->end, regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- {
- FREE_VARIABLES ();
- return -2;
- }
- }
- }
- else
- {
- /* These braces fend off a "empty body in an else-statement"
- warning under GCC when assert expands to nothing. */
- assert (bufp->regs_allocated == REGS_FIXED);
- }
-
- /* Convert the pointer data in `regstart' and `regend' to
- indices. Register zero has to be set differently,
- since we haven't kept track of any info for it. */
- if (regs->num_regs > 0)
- {
- regs->start[0] = pos;
- regs->end[0] = POINTER_TO_OFFSET (d);
- }
-
- /* Go through the first `min (num_regs, regs->num_regs)'
- registers, since that is all we initialized. */
- for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
- {
- if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
- regs->start[reg] = regs->end[reg] = -1;
- else
- {
- regs->start[reg]
- = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
- regs->end[reg]
- = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
- }
- }
-
- /* If the regs structure we return has more elements than
- were in the pattern, set the extra elements to -1. If
- we (re)allocated the registers, this is the case,
- because we always allocate enough to have at least one
- -1 at the end. */
- for (reg = num_regs; reg < regs->num_regs; reg++)
- regs->start[reg] = regs->end[reg] = -1;
- } /* regs && !bufp->no_sub */
-
- DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
- nfailure_points_pushed, nfailure_points_popped,
- nfailure_points_pushed - nfailure_points_popped);
- DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
-
- mcnt = POINTER_TO_OFFSET (d) - pos;
-
- DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
-
- FREE_VARIABLES ();
- return mcnt;
- }
-
- /* Otherwise match next pattern command. */
- switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
- {
- /* Ignore these. Used to ignore the n of succeed_n's which
- currently have n == 0. */
- case no_op:
- DEBUG_PRINT1 ("EXECUTING no_op.\n");
- break;
-
- case succeed:
- DEBUG_PRINT1 ("EXECUTING succeed.\n");
- goto succeed_label;
-
- /* Match the next n pattern characters exactly. The following
- byte in the pattern defines n, and the n bytes after that
- are the characters to match. */
- case exactn:
- mcnt = *p++;
- DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
-
- /* Remember the start point to rollback upon failure. */
- dfail = d;
-
- /* This is written out as an if-else so we don't waste time
- testing `translate' inside the loop. */
- if (RE_TRANSLATE_P (translate))
- {
- if (multibyte)
- do
- {
- int pat_charlen, buf_charlen;
- unsigned int pat_ch, buf_ch;
-
- PREFETCH ();
- pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
- buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
-
- if (RE_TRANSLATE (translate, buf_ch)
- != pat_ch)
- {
- d = dfail;
- goto fail;
- }
-
- p += pat_charlen;
- d += buf_charlen;
- mcnt -= pat_charlen;
- }
- while (mcnt > 0);
- else
- do
- {
- PREFETCH ();
- if (RE_TRANSLATE (translate, *d) != *p++)
- {
- d = dfail;
- goto fail;
- }
- d++;
- }
- while (--mcnt);
- }
- else
- {
- do
- {
- PREFETCH ();
- if (*d++ != *p++)
- {
- d = dfail;
- goto fail;
- }
- }
- while (--mcnt);
- }
- break;
-
-
- /* Match any character except possibly a newline or a null. */
- case anychar:
- {
- int buf_charlen;
- re_wchar_t buf_ch;
-
- DEBUG_PRINT1 ("EXECUTING anychar.\n");
-
- PREFETCH ();
- buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
- buf_ch = TRANSLATE (buf_ch);
-
- if ((!(bufp->syntax & RE_DOT_NEWLINE)
- && buf_ch == '\n')
- || ((bufp->syntax & RE_DOT_NOT_NULL)
- && buf_ch == '\000'))
- goto fail;
-
- DEBUG_PRINT2 (" Matched `%d'.\n", *d);
- d += buf_charlen;
- }
- break;
-
-
- case charset:
- case charset_not:
- {
- register unsigned int c;
- boolean not = (re_opcode_t) *(p - 1) == charset_not;
- int len;
-
- /* Start of actual range_table, or end of bitmap if there is no
- range table. */
- re_char *range_table;
-
- /* Nonzero if there is a range table. */
- int range_table_exists;
-
- /* Number of ranges of range table. This is not included
- in the initial byte-length of the command. */
- int count = 0;
-
- DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
-
- range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
-
- if (range_table_exists)
- {
- range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
- EXTRACT_NUMBER_AND_INCR (count, range_table);
- }
-
- PREFETCH ();
- c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
- c = TRANSLATE (c); /* The character to match. */
-
- if (SINGLE_BYTE_CHAR_P (c))
- { /* Lookup bitmap. */
- /* Cast to `unsigned' instead of `unsigned char' in
- case the bit list is a full 32 bytes long. */
- if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
- && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
- }
-#ifdef emacs
- else if (range_table_exists)
- {
- int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
-
- if ( (class_bits & BIT_LOWER && ISLOWER (c))
- | (class_bits & BIT_MULTIBYTE)
- | (class_bits & BIT_PUNCT && ISPUNCT (c))
- | (class_bits & BIT_SPACE && ISSPACE (c))
- | (class_bits & BIT_UPPER && ISUPPER (c))
- | (class_bits & BIT_WORD && ISWORD (c)))
- not = !not;
- else
- CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
- }
-#endif /* emacs */
-
- if (range_table_exists)
- p = CHARSET_RANGE_TABLE_END (range_table, count);
- else
- p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
-
- if (!not) goto fail;
-
- d += len;
- break;
- }
-
-
- /* The beginning of a group is represented by start_memory.
- The argument is the register number. The text
- matched within the group is recorded (in the internal
- registers data structure) under the register number. */
- case start_memory:
- DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
-
- /* In case we need to undo this operation (via backtracking). */
- PUSH_FAILURE_REG ((unsigned int)*p);
-
- regstart[*p] = d;
- regend[*p] = NULL; /* probably unnecessary. -sm */
- DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
-
- /* Move past the register number and inner group count. */
- p += 1;
- break;
-
-
- /* The stop_memory opcode represents the end of a group. Its
- argument is the same as start_memory's: the register number. */
- case stop_memory:
- DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
-
- assert (!REG_UNSET (regstart[*p]));
- /* Strictly speaking, there should be code such as:
-
- assert (REG_UNSET (regend[*p]));
- PUSH_FAILURE_REGSTOP ((unsigned int)*p);
-
- But the only info to be pushed is regend[*p] and it is known to
- be UNSET, so there really isn't anything to push.
- Not pushing anything, on the other hand deprives us from the
- guarantee that regend[*p] is UNSET since undoing this operation
- will not reset its value properly. This is not important since
- the value will only be read on the next start_memory or at
- the very end and both events can only happen if this stop_memory
- is *not* undone. */
-
- regend[*p] = d;
- DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
-
- /* Move past the register number and the inner group count. */
- p += 1;
- break;
-
-
- /* \<digit> has been turned into a `duplicate' command which is
- followed by the numeric value of <digit> as the register number. */
- case duplicate:
- {
- register re_char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
- DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
-
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
- goto fail;
-
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
-
- /* Remember the start point to rollback upon failure. */
- dfail = d;
-
- /* Where to stop matching; if both the place to start and
- the place to stop matching are in the same string, then
- set to the place to stop, otherwise, for now have to use
- the end of the first string. */
-
- dend2 = ((FIRST_STRING_P (regstart[regno])
- == FIRST_STRING_P (regend[regno]))
- ? regend[regno] : end_match_1);
- for (;;)
- {
- /* If necessary, advance to next segment in register
- contents. */
- while (d2 == dend2)
- {
- if (dend2 == end_match_2) break;
- if (dend2 == regend[regno]) break;
-
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
- }
- /* At end of register contents => success */
- if (d2 == dend2) break;
-
- /* If necessary, advance to next segment in data. */
- PREFETCH ();
-
- /* How many characters left in this segment to match. */
- mcnt = dend - d;
-
- /* Want how many consecutive characters we can match in
- one shot, so, if necessary, adjust the count. */
- if (mcnt > dend2 - d2)
- mcnt = dend2 - d2;
-
- /* Compare that many; failure if mismatch, else move
- past them. */
- if (RE_TRANSLATE_P (translate)
- ? bcmp_translate (d, d2, mcnt, translate, multibyte)
- : memcmp (d, d2, mcnt))
- {
- d = dfail;
- goto fail;
- }
- d += mcnt, d2 += mcnt;
- }
- }
- break;
-
-
- /* begline matches the empty string at the beginning of the string
- (unless `not_bol' is set in `bufp'), and after newlines. */
- case begline:
- DEBUG_PRINT1 ("EXECUTING begline.\n");
-
- if (AT_STRINGS_BEG (d))
- {
- if (!bufp->not_bol) break;
- }
- else
- {
- unsigned char c;
- GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
- if (c == '\n')
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
-
-
- /* endline is the dual of begline. */
- case endline:
- DEBUG_PRINT1 ("EXECUTING endline.\n");
-
- if (AT_STRINGS_END (d))
- {
- if (!bufp->not_eol) break;
- }
- else
- {
- PREFETCH_NOLIMIT ();
- if (*d == '\n')
- break;
- }
- goto fail;
-
-
- /* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT1 ("EXECUTING begbuf.\n");
- if (AT_STRINGS_BEG (d))
- break;
- goto fail;
-
-
- /* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT1 ("EXECUTING endbuf.\n");
- if (AT_STRINGS_END (d))
- break;
- goto fail;
-
-
- /* on_failure_keep_string_jump is used to optimize `.*\n'. It
- pushes NULL as the value for the string on the stack. Then
- `POP_FAILURE_POINT' will keep the current value for the
- string, instead of restoring it. To see why, consider
- matching `foo\nbar' against `.*\n'. The .* matches the foo;
- then the . fails against the \n. But the next thing we want
- to do is match the \n against the \n; if we restored the
- string value, we would be back at the foo.
-
- Because this is used only in specific cases, we don't need to
- check all the things that `on_failure_jump' does, to make
- sure the right things get saved on the stack. Hence we don't
- share its code. The only reason to push anything on the
- stack at all is that otherwise we would have to change
- `anychar's code to do something besides goto fail in this
- case; that seems worse than this. */
- case on_failure_keep_string_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
- mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT (p - 3, NULL);
- break;
-
- /* A nasty loop is introduced by the non-greedy *? and +?.
- With such loops, the stack only ever contains one failure point
- at a time, so that a plain on_failure_jump_loop kind of
- cycle detection cannot work. Worse yet, such a detection
- can not only fail to detect a cycle, but it can also wrongly
- detect a cycle (between different instantiations of the same
- loop).
- So the method used for those nasty loops is a little different:
- We use a special cycle-detection-stack-frame which is pushed
- when the on_failure_jump_nastyloop failure-point is *popped*.
- This special frame thus marks the beginning of one iteration
- through the loop and we can hence easily check right here
- whether something matched between the beginning and the end of
- the loop. */
- case on_failure_jump_nastyloop:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
- mcnt, p + mcnt);
-
- assert ((re_opcode_t)p[-4] == no_op);
- {
- int cycle = 0;
- CHECK_INFINITE_LOOP (p - 4, d);
- if (!cycle)
- /* If there's a cycle, just continue without pushing
- this failure point. The failure point is the "try again"
- option, which shouldn't be tried.
- We want (x?)*?y\1z to match both xxyz and xxyxz. */
- PUSH_FAILURE_POINT (p - 3, d);
- }
- break;
-
- /* Simple loop detecting on_failure_jump: just check on the
- failure stack if the same spot was already hit earlier. */
- case on_failure_jump_loop:
- on_failure:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
- mcnt, p + mcnt);
- {
- int cycle = 0;
- CHECK_INFINITE_LOOP (p - 3, d);
- if (cycle)
- /* If there's a cycle, get out of the loop, as if the matching
- had failed. We used to just `goto fail' here, but that was
- aborting the search a bit too early: we want to keep the
- empty-loop-match and keep matching after the loop.
- We want (x?)*y\1z to match both xxyz and xxyxz. */
- p += mcnt;
- else
- PUSH_FAILURE_POINT (p - 3, d);
- }
- break;
-
-
- /* Uses of on_failure_jump:
-
- Each alternative starts with an on_failure_jump that points
- to the beginning of the next alternative. Each alternative
- except the last ends with a jump that in effect jumps past
- the rest of the alternatives. (They really jump to the
- ending jump of the following alternative, because tensioning
- these jumps is a hassle.)
-
- Repeats start with an on_failure_jump that points past both
- the repetition text and either the following jump or
- pop_failure_jump back to this on_failure_jump. */
- case on_failure_jump:
- IMMEDIATE_QUIT_CHECK;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
- mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT (p -3, d);
- break;
-
- /* This operation is used for greedy *.
- Compare the beginning of the repeat with what in the
- pattern follows its end. If we can establish that there
- is nothing that they would both match, i.e., that we
- would have to backtrack because of (as in, e.g., `a*a')
- then we can use a non-backtracking loop based on
- on_failure_keep_string_jump instead of on_failure_jump. */
- case on_failure_jump_smart:
- IMMEDIATE_QUIT_CHECK;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
- mcnt, p + mcnt);
- {
- re_char *p1 = p; /* Next operation. */
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
- unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
-
- p -= 3; /* Reset so that we will re-execute the
- instruction once it's been changed. */
-
- EXTRACT_NUMBER (mcnt, p2 - 2);
-
- /* Ensure this is a indeed the trivial kind of loop
- we are expecting. */
- assert (skip_one_char (p1) == p2 - 3);
- assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
- DEBUG_STATEMENT (debug += 2);
- if (mutually_exclusive_p (bufp, p1, p2))
- {
- /* Use a fast `on_failure_keep_string_jump' loop. */
- DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
- *p3 = (unsigned char) on_failure_keep_string_jump;
- STORE_NUMBER (p2 - 2, mcnt + 3);
- }
- else
- {
- /* Default to a safe `on_failure_jump' loop. */
- DEBUG_PRINT1 (" smart default => slow loop.\n");
- *p3 = (unsigned char) on_failure_jump;
- }
- DEBUG_STATEMENT (debug -= 2);
- }
- break;
-
- /* Unconditionally jump (without popping any failure points). */
- case jump:
- unconditional_jump:
- IMMEDIATE_QUIT_CHECK;
- EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT2 ("(to %p).\n", p);
- break;
-
-
- /* Have to succeed matching what follows at least n times.
- After that, handle like `on_failure_jump'. */
- case succeed_n:
- /* Signedness doesn't matter since we only compare MCNT to 0. */
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
-
- /* Originally, mcnt is how many times we HAVE to succeed. */
- if (mcnt != 0)
- {
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
- mcnt--;
- p += 4;
- PUSH_NUMBER (p2, mcnt);
- }
- else
- /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
- goto on_failure;
- break;
-
- case jump_n:
- /* Signedness doesn't matter since we only compare MCNT to 0. */
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
-
- /* Originally, this is how many times we CAN jump. */
- if (mcnt != 0)
- {
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
- mcnt--;
- PUSH_NUMBER (p2, mcnt);
- goto unconditional_jump;
- }
- /* If don't have to jump any more, skip over the rest of command. */
- else
- p += 4;
- break;
-
- case set_number_at:
- {
- unsigned char *p2; /* Location of the counter. */
- DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- /* Here, we discard `const', making re_match non-reentrant. */
- p2 = (unsigned char*) p + mcnt;
- /* Signedness doesn't matter since we only copy MCNT's bits . */
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
- PUSH_NUMBER (p2, mcnt);
- break;
- }
-
- case wordbound:
- case notwordbound:
- not = (re_opcode_t) *(p - 1) == notwordbound;
- DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
-
- /* We SUCCEED (or FAIL) in one of the following cases: */
-
- /* Case 1: D is at the beginning or the end of string. */
- if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
- not = !not;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
-#ifdef emacs
- int offset = PTR_TO_OFFSET (d - 1);
- int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
- s1 = SYNTAX (c1);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
-#endif
- PREFETCH_NOLIMIT ();
- c2 = RE_STRING_CHAR (d, dend - d);
- s2 = SYNTAX (c2);
-
- if (/* Case 2: Only one of S1 and S2 is Sword. */
- ((s1 == Sword) != (s2 == Sword))
- /* Case 3: Both of S1 and S2 are Sword, and macro
- WORD_BOUNDARY_P (C1, C2) returns nonzero. */
- || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
- not = !not;
- }
- if (not)
- break;
- else
- goto fail;
-
- case wordbeg:
- DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the end of string. */
- if (AT_STRINGS_END (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
-#ifdef emacs
- int offset = PTR_TO_OFFSET (d);
- int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- PREFETCH ();
- c2 = RE_STRING_CHAR (d, dend - d);
- s2 = SYNTAX (c2);
-
- /* Case 2: S2 is not Sword. */
- if (s2 != Sword)
- goto fail;
-
- /* Case 3: D is not at the beginning of string ... */
- if (!AT_STRINGS_BEG (d))
- {
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
-#endif
- s1 = SYNTAX (c1);
-
- /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
- returns 0. */
- if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
- goto fail;
- }
- }
- break;
-
- case wordend:
- DEBUG_PRINT1 ("EXECUTING wordend.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the beginning of string. */
- if (AT_STRINGS_BEG (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
-#ifdef emacs
- int offset = PTR_TO_OFFSET (d) - 1;
- int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
- s1 = SYNTAX (c1);
-
- /* Case 2: S1 is not Sword. */
- if (s1 != Sword)
- goto fail;
-
- /* Case 3: D is not at the end of string ... */
- if (!AT_STRINGS_END (d))
- {
- PREFETCH_NOLIMIT ();
- c2 = RE_STRING_CHAR (d, dend - d);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_FORWARD (charpos);
-#endif
- s2 = SYNTAX (c2);
-
- /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
- returns 0. */
- if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
- goto fail;
- }
- }
- break;
-
- case syntaxspec:
- case notsyntaxspec:
- not = (re_opcode_t) *(p - 1) == notsyntaxspec;
- mcnt = *p++;
- DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
- PREFETCH ();
-#ifdef emacs
- {
- int offset = PTR_TO_OFFSET (d);
- int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (pos1);
- }
-#endif
- {
- int len;
- re_wchar_t c;
-
- c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
-
- if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
- goto fail;
- d += len;
- }
- break;
-
-#ifdef emacs
- case before_dot:
- DEBUG_PRINT1 ("EXECUTING before_dot.\n");
- if (PTR_BYTE_POS (d) >= PT_BYTE)
- goto fail;
- break;
-
- case at_dot:
- DEBUG_PRINT1 ("EXECUTING at_dot.\n");
- if (PTR_BYTE_POS (d) != PT_BYTE)
- goto fail;
- break;
-
- case after_dot:
- DEBUG_PRINT1 ("EXECUTING after_dot.\n");
- if (PTR_BYTE_POS (d) <= PT_BYTE)
- goto fail;
- break;
-
- case categoryspec:
- case notcategoryspec:
- not = (re_opcode_t) *(p - 1) == notcategoryspec;
- mcnt = *p++;
- DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
- PREFETCH ();
- {
- int len;
- re_wchar_t c;
-
- c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
-
- if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
- goto fail;
- d += len;
- }
- break;
-
-#endif /* emacs */
-
- default:
- abort ();
- }
- continue; /* Successfully executed one pattern command; keep going. */
-
-
- /* We goto here if a matching operation fails. */
- fail:
- IMMEDIATE_QUIT_CHECK;
- if (!FAIL_STACK_EMPTY ())
- {
- re_char *str, *pat;
- /* A restart point is known. Restore to that state. */
- DEBUG_PRINT1 ("\nFAIL:\n");
- POP_FAILURE_POINT (str, pat);
- switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
- {
- case on_failure_keep_string_jump:
- assert (str == NULL);
- goto continue_failure_jump;
-
- case on_failure_jump_nastyloop:
- assert ((re_opcode_t)pat[-2] == no_op);
- PUSH_FAILURE_POINT (pat - 2, str);
- /* Fallthrough */
-
- case on_failure_jump_loop:
- case on_failure_jump:
- case succeed_n:
- d = str;
- continue_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, pat);
- p = pat + mcnt;
- break;
-
- case no_op:
- /* A special frame used for nastyloops. */
- goto fail;
-
- default:
- abort();
- }
-
- assert (p >= bufp->buffer && p <= pend);
-
- if (d >= string1 && d <= end1)
- dend = end_match_1;
- }
- else
- break; /* Matching at this starting point really fails. */
- } /* for (;;) */
-
- if (best_regs_set)
- goto restore_best_regs;
-
- FREE_VARIABLES ();
-
- return -1; /* Failure to match. */
-} /* re_match_2 */
-\f
-/* Subroutine definitions for re_match_2. */
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
- bytes; nonzero otherwise. */
-
-static int
-bcmp_translate (s1, s2, len, translate, multibyte)
- re_char *s1, *s2;
- register int len;
- RE_TRANSLATE_TYPE translate;
- const int multibyte;
-{
- register re_char *p1 = s1, *p2 = s2;
- re_char *p1_end = s1 + len;
- re_char *p2_end = s2 + len;
-
- /* FIXME: Checking both p1 and p2 presumes that the two strings might have
- different lengths, but relying on a single `len' would break this. -sm */
- while (p1 < p1_end && p2 < p2_end)
- {
- int p1_charlen, p2_charlen;
- re_wchar_t p1_ch, p2_ch;
-
- p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
- p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
-
- if (RE_TRANSLATE (translate, p1_ch)
- != RE_TRANSLATE (translate, p2_ch))
- return 1;
-
- p1 += p1_charlen, p2 += p2_charlen;
- }
-
- if (p1 != p1_end || p2 != p2_end)
- return 1;
-
- return 0;
-}
-\f
-/* Entry points for GNU code. */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
- compiles PATTERN (of length SIZE) and puts the result in BUFP.
- Returns 0 if the pattern was valid, otherwise an error string.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate' fields
- are set in BUFP on entry.
-
- We call regex_compile to do the actual compilation. */
-
-const char *
-re_compile_pattern (pattern, length, bufp)
- const char *pattern;
- size_t length;
- struct re_pattern_buffer *bufp;
-{
- reg_errcode_t ret;
-
- /* GNU code is written to assume at least RE_NREGS registers will be set
- (and at least one extra will be -1). */
- bufp->regs_allocated = REGS_UNALLOCATED;
-
- /* And GNU code determines whether or not to get register information
- by passing null for the REGS argument to re_match, etc., not by
- setting no_sub. */
- bufp->no_sub = 0;
-
- ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
-
- if (!ret)
- return NULL;
- return gettext (re_error_msgid[(int) ret]);
-}
-WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
-\f
-/* Entry points compatible with 4.2 BSD regex library. We don't define
- them unless specifically requested. */
-
-#if defined _REGEX_RE_COMP || defined _LIBC
-
-/* BSD has one and only one pattern buffer. */
-static struct re_pattern_buffer re_comp_buf;
-
-char *
-# ifdef _LIBC
-/* Make these definitions weak in libc, so POSIX programs can redefine
- these names if they don't use our functions, and still use
- regcomp/regexec below without link errors. */
-weak_function
-# endif
-re_comp (s)
- const char *s;
-{
- reg_errcode_t ret;
-
- if (!s)
- {
- if (!re_comp_buf.buffer)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext ("No previous regular expression");
- return 0;
- }
-
- if (!re_comp_buf.buffer)
- {
- re_comp_buf.buffer = (unsigned char *) malloc (200);
- if (re_comp_buf.buffer == NULL)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
- re_comp_buf.allocated = 200;
-
- re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
- if (re_comp_buf.fastmap == NULL)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
- }
-
- /* Since `re_exec' always passes NULL for the `regs' argument, we
- don't need to initialize the pattern buffer fields which affect it. */
-
- ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
-
- if (!ret)
- return NULL;
-
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) ret]);
-}
-
-
-int
-# ifdef _LIBC
-weak_function
-# endif
-re_exec (s)
- const char *s;
-{
- const int len = strlen (s);
- return
- 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
-}
-#endif /* _REGEX_RE_COMP */
-\f
-/* POSIX.2 functions. Don't define these for Emacs. */
-
-#ifndef emacs
-
-/* regcomp takes a regular expression as a string and compiles it.
-
- PREG is a regex_t *. We do not expect any fields to be initialized,
- since POSIX says we shouldn't. Thus, we set
-
- `buffer' to the compiled pattern;
- `used' to the length of the compiled pattern;
- `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
- REG_EXTENDED bit in CFLAGS is set; otherwise, to
- RE_SYNTAX_POSIX_BASIC;
- `fastmap' to an allocated space for the fastmap;
- `fastmap_accurate' to zero;
- `re_nsub' to the number of subexpressions in PATTERN.
-
- PATTERN is the address of the pattern string.
-
- CFLAGS is a series of bits which affect compilation.
-
- If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
- use POSIX basic syntax.
-
- If REG_NEWLINE is set, then . and [^...] don't match newline.
- Also, regexec will try a match beginning after every newline.
-
- If REG_ICASE is set, then we considers upper- and lowercase
- versions of letters to be equivalent when matching.
-
- If REG_NOSUB is set, then when PREG is passed to regexec, that
- routine will report only success or failure, and nothing about the
- registers.
-
- It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
- the return codes and their meanings.) */
-
-int
-regcomp (preg, pattern, cflags)
- regex_t *__restrict preg;
- const char *__restrict pattern;
- int cflags;
-{
- reg_errcode_t ret;
- reg_syntax_t syntax
- = (cflags & REG_EXTENDED) ?
- RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
- /* regex_compile will allocate the space for the compiled pattern. */
- preg->buffer = 0;
- preg->allocated = 0;
- preg->used = 0;
-
- /* Try to allocate space for the fastmap. */
- preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
-
- if (cflags & REG_ICASE)
- {
- unsigned i;
-
- preg->translate
- = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
- * sizeof (*(RE_TRANSLATE_TYPE)0));
- if (preg->translate == NULL)
- return (int) REG_ESPACE;
-
- /* Map uppercase characters to corresponding lowercase ones. */
- for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
- }
- else
- preg->translate = NULL;
-
- /* If REG_NEWLINE is set, newlines are treated differently. */
- if (cflags & REG_NEWLINE)
- { /* REG_NEWLINE implies neither . nor [^...] match newline. */
- syntax &= ~RE_DOT_NEWLINE;
- syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- }
- else
- syntax |= RE_NO_NEWLINE_ANCHOR;
-
- preg->no_sub = !!(cflags & REG_NOSUB);
-
- /* POSIX says a null character in the pattern terminates it, so we
- can use strlen here in compiling the pattern. */
- ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
-
- /* POSIX doesn't distinguish between an unmatched open-group and an
- unmatched close-group: both are REG_EPAREN. */
- if (ret == REG_ERPAREN)
- ret = REG_EPAREN;
-
- if (ret == REG_NOERROR && preg->fastmap)
- { /* Compute the fastmap now, since regexec cannot modify the pattern
- buffer. */
- re_compile_fastmap (preg);
- if (preg->can_be_null)
- { /* The fastmap can't be used anyway. */
- free (preg->fastmap);
- preg->fastmap = NULL;
- }
- }
- return (int) ret;
-}
-WEAK_ALIAS (__regcomp, regcomp)
-
-
-/* regexec searches for a given pattern, specified by PREG, in the
- string STRING.
-
- If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
- least NMATCH elements, and we set them to the offsets of the
- corresponding matched substrings.
-
- EFLAGS specifies `execution flags' which affect matching: if
- REG_NOTBOL is set, then ^ does not match at the beginning of the
- string; if REG_NOTEOL is set, then $ does not match at the end.
-
- We return 0 if we find a match and REG_NOMATCH if not. */
-
-int
-regexec (preg, string, nmatch, pmatch, eflags)
- const regex_t *__restrict preg;
- const char *__restrict string;
- size_t nmatch;
- regmatch_t pmatch[__restrict_arr];
- int eflags;
-{
- int ret;
- struct re_registers regs;
- regex_t private_preg;
- int len = strlen (string);
- boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
-
- private_preg = *preg;
-
- private_preg.not_bol = !!(eflags & REG_NOTBOL);
- private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
- /* The user has told us exactly how many registers to return
- information about, via `nmatch'. We have to pass that on to the
- matching routines. */
- private_preg.regs_allocated = REGS_FIXED;
-
- if (want_reg_info)
- {
- regs.num_regs = nmatch;
- regs.start = TALLOC (nmatch * 2, regoff_t);
- if (regs.start == NULL)
- return (int) REG_NOMATCH;
- regs.end = regs.start + nmatch;
- }
-
- /* Instead of using not_eol to implement REG_NOTEOL, we could simply
- pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
- was a little bit longer but still only matching the real part.
- This works because the `endline' will check for a '\n' and will find a
- '\0', correctly deciding that this is not the end of a line.
- But it doesn't work out so nicely for REG_NOTBOL, since we don't have
- a convenient '\0' there. For all we know, the string could be preceded
- by '\n' which would throw things off. */
-
- /* Perform the searching operation. */
- ret = re_search (&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : (struct re_registers *) 0);
-
- /* Copy the register information to the POSIX structure. */
- if (want_reg_info)
- {
- if (ret >= 0)
- {
- unsigned r;
-
- for (r = 0; r < nmatch; r++)
- {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
-
- /* If we needed the temporary register info, free the space now. */
- free (regs.start);
- }
-
- /* We want zero return to mean success, unlike `re_search'. */
- return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
-WEAK_ALIAS (__regexec, regexec)
-
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
- from either regcomp or regexec. We don't use PREG here. */
-
-size_t
-regerror (errcode, preg, errbuf, errbuf_size)
- int errcode;
- const regex_t *preg;
- char *errbuf;
- size_t errbuf_size;
-{
- const char *msg;
- size_t msg_size;
-
- if (errcode < 0
- || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
- /* Only error codes returned by the rest of the code should be passed
- to this routine. If we are given anything else, or if other regex
- code generates an invalid error code, then the program has a bug.
- Dump core so we can fix it. */
- abort ();
-
- msg = gettext (re_error_msgid[errcode]);
-
- msg_size = strlen (msg) + 1; /* Includes the null. */
-
- if (errbuf_size != 0)
- {
- if (msg_size > errbuf_size)
- {
- strncpy (errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- }
- else
- strcpy (errbuf, msg);
- }
-
- return msg_size;
-}
-WEAK_ALIAS (__regerror, regerror)
-
-
-/* Free dynamically allocated space used by PREG. */
-
-void
-regfree (preg)
- regex_t *preg;
-{
- if (preg->buffer != NULL)
- free (preg->buffer);
- preg->buffer = NULL;
-
- preg->allocated = 0;
- preg->used = 0;
-
- if (preg->fastmap != NULL)
- free (preg->fastmap);
- preg->fastmap = NULL;
- preg->fastmap_accurate = 0;
-
- if (preg->translate != NULL)
- free (preg->translate);
- preg->translate = NULL;
-}
-WEAK_ALIAS (__regfree, regfree)
-
-#endif /* not emacs */
-
-/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
- (do not change this comment) */