};
-static void run_regression (const struct regression *cmd, struct casereader *input);
+static void run_regression (const struct regression *cmd,
+ struct casereader *input);
*/
struct reg_trns
{
- int n_trns; /* Number of transformations. */
- int trns_id; /* Which trns is this one? */
- linreg *c; /* Linear model for this trns. */
+ int n_trns; /* Number of transformations. */
+ int trns_id; /* Which trns is this one? */
+ linreg *c; /* Linear model for this trns. */
};
/*
*/
static int
regression_trns_pred_proc (void *t_, struct ccase **c,
- casenumber case_idx UNUSED)
+ casenumber case_idx UNUSED)
{
size_t i;
size_t n_vals;
*/
static int
regression_trns_resid_proc (void *t_, struct ccase **c,
- casenumber case_idx UNUSED)
+ casenumber case_idx UNUSED)
{
size_t i;
size_t n_vals;
/* XXX handle too-long prefixes */
name = xmalloc (strlen (prefix) + INT_BUFSIZE_BOUND (i) + 1);
- for (i = 1; ; i++)
+ for (i = 1;; i++)
{
sprintf (name, "%s%d", prefix, i);
if (dict_lookup_var (dict, name) == NULL)
static void
reg_save_var (struct dataset *ds, const char *prefix, trns_proc_func * f,
- linreg * c, struct variable **v, int n_trns)
+ linreg * c, struct variable **v, int n_trns)
{
struct dictionary *dict = dataset_dict (ds);
static int trns_index = 1;
linreg **lc;
int n_trns = 0;
- if ( cmd->resid ) n_trns++;
- if ( cmd->pred ) n_trns++;
+ if (cmd->resid)
+ n_trns++;
+ if (cmd->pred)
+ n_trns++;
n_trns *= cmd->n_dep_vars;
{
if ((*lc)->depvar != NULL)
{
- (*lc)->refcnt++;
+ (*lc)->refcnt++;
if (cmd->resid)
{
- reg_save_var (cmd->ds, "RES", regression_trns_resid_proc, *lc,
- &(*lc)->resid, n_trns);
+ reg_save_var (cmd->ds, "RES", regression_trns_resid_proc,
+ *lc, &(*lc)->resid, n_trns);
}
if (cmd->pred)
{
- reg_save_var (cmd->ds, "PRED", regression_trns_pred_proc, *lc,
- &(*lc)->pred, n_trns);
+ reg_save_var (cmd->ds, "PRED", regression_trns_pred_proc,
+ *lc, &(*lc)->pred, n_trns);
}
}
}
/* Accept an optional, completely pointless "/VARIABLES=" */
lex_match (lexer, T_SLASH);
- if (lex_match_id (lexer, "VARIABLES"))
+ if (lex_match_id (lexer, "VARIABLES"))
{
- if (! lex_force_match (lexer, T_EQUALS) )
+ if (!lex_force_match (lexer, T_EQUALS))
goto error;
}
if (!parse_variables_const (lexer, dict,
- ®ression.vars, ®ression.n_vars,
- PV_NO_DUPLICATE | PV_NUMERIC))
+ ®ression.vars, ®ression.n_vars,
+ PV_NO_DUPLICATE | PV_NUMERIC))
goto error;
{
lex_match (lexer, T_SLASH);
- if (lex_match_id (lexer, "DEPENDENT"))
+ if (lex_match_id (lexer, "DEPENDENT"))
{
- if (! lex_force_match (lexer, T_EQUALS) )
+ if (!lex_force_match (lexer, T_EQUALS))
goto error;
if (!parse_variables_const (lexer, dict,
- ®ression.dep_vars, ®ression.n_dep_vars,
+ ®ression.dep_vars,
+ ®ression.n_dep_vars,
PV_NO_DUPLICATE | PV_NUMERIC))
goto error;
}
else if (lex_match_id (lexer, "METHOD"))
- {
- lex_match (lexer, T_EQUALS);
+ {
+ lex_match (lexer, T_EQUALS);
if (!lex_force_match_id (lexer, "ENTER"))
{
}
}
else if (lex_match_id (lexer, "STATISTICS"))
- {
- lex_match (lexer, T_EQUALS);
+ {
+ lex_match (lexer, T_EQUALS);
- while (lex_token (lexer) != T_ENDCMD
- && lex_token (lexer) != T_SLASH)
- {
+ while (lex_token (lexer) != T_ENDCMD
+ && lex_token (lexer) != T_SLASH)
+ {
if (lex_match (lexer, T_ALL))
{
}
}
}
else if (lex_match_id (lexer, "SAVE"))
- {
- lex_match (lexer, T_EQUALS);
+ {
+ lex_match (lexer, T_EQUALS);
- while (lex_token (lexer) != T_ENDCMD
- && lex_token (lexer) != T_SLASH)
- {
+ while (lex_token (lexer) != T_ENDCMD
+ && lex_token (lexer) != T_SLASH)
+ {
if (lex_match_id (lexer, "PRED"))
{
regression.pred = true;
}
- regression.models = xcalloc (regression.n_dep_vars, sizeof *regression.models);
+ regression.models =
+ xcalloc (regression.n_dep_vars, sizeof *regression.models);
save = regression.pred || regression.resid;
if (save)
struct casegrouper *grouper;
struct casereader *group;
bool ok;
-
+
grouper = casegrouper_create_splits (proc_open_filtering (ds, !save),
dict);
while (casegrouper_get_next_group (grouper, &group))
{
subcommand_save (®ression);
}
-
+
for (k = 0; k < regression.n_dep_vars; k++)
linreg_unref (regression.models[k]);
free (regression.vars);
free (regression.dep_vars);
return CMD_SUCCESS;
-
- error:
+
+error:
if (regression.models)
- {
- for (k = 0; k < regression.n_dep_vars; k++)
- linreg_unref (regression.models[k]);
- free (regression.models);
- }
+ {
+ for (k = 0; k < regression.n_dep_vars; k++)
+ linreg_unref (regression.models[k]);
+ free (regression.models);
+ }
free (regression.vars);
free (regression.dep_vars);
return CMD_FAILURE;
for (i = 0; i < cmd->n_dep_vars; i++)
{
for (j = 0; j < cmd->n_vars; j++)
- {
- if (cmd->vars[j] == cmd->dep_vars[i])
- {
- result--;
- }
- }
+ {
+ if (cmd->vars[j] == cmd->dep_vars[i])
+ {
+ result--;
+ }
+ }
}
return result;
}
size_t i;
size_t j;
bool absent;
-
+
for (i = 0; i < cmd->n_vars; i++)
{
vars[i] = cmd->vars[i];
{
absent = true;
for (j = 0; j < cmd->n_vars; j++)
- {
- if (cmd->dep_vars[i] == cmd->vars[j])
- {
- absent = false;
- break;
- }
- }
+ {
+ if (cmd->dep_vars[i] == cmd->vars[j])
+ {
+ absent = false;
+ break;
+ }
+ }
if (absent)
- {
- vars[i + cmd->n_vars] = cmd->dep_vars[i];
- }
+ {
+ vars[i + cmd->n_vars] = cmd->dep_vars[i];
+ }
}
}
/* Identify the explanatory variables in v_variables. Returns
the number of independent variables. */
static int
-identify_indep_vars (const struct regression *cmd,
+identify_indep_vars (const struct regression *cmd,
const struct variable **indep_vars,
- const struct variable *depvar)
+ const struct variable *depvar)
{
int n_indep_vars = 0;
int i;
if ((n_indep_vars < 1) && is_depvar (cmd, 0, depvar))
{
/*
- There is only one independent variable, and it is the same
- as the dependent variable. Print a warning and continue.
- */
+ There is only one independent variable, and it is the same
+ as the dependent variable. Print a warning and continue.
+ */
msg (SW,
- gettext ("The dependent variable is equal to the independent variable."
- "The least squares line is therefore Y=X."
- "Standard errors and related statistics may be meaningless."));
+ gettext
+ ("The dependent variable is equal to the independent variable."
+ "The least squares line is therefore Y=X."
+ "Standard errors and related statistics may be meaningless."));
n_indep_vars = 1;
indep_vars[0] = cmd->vars[0];
}
static double
-fill_covariance (gsl_matrix *cov, struct covariance *all_cov,
- const struct variable **vars,
- size_t n_vars, const struct variable *dep_var,
- const struct variable **all_vars, size_t n_all_vars,
- double *means)
+fill_covariance (gsl_matrix * cov, struct covariance *all_cov,
+ const struct variable **vars,
+ size_t n_vars, const struct variable *dep_var,
+ const struct variable **all_vars, size_t n_all_vars,
+ double *means)
{
size_t i;
size_t j;
const gsl_matrix *mean_matrix;
const gsl_matrix *ssize_matrix;
double result = 0.0;
-
+
gsl_matrix *cm = covariance_calculate_unnormalized (all_cov);
- if ( cm == NULL)
+ if (cm == NULL)
return 0;
rows = xnmalloc (cov->size1 - 1, sizeof (*rows));
-
+
for (i = 0; i < n_all_vars; i++)
{
for (j = 0; j < n_vars; j++)
- {
- if (vars[j] == all_vars[i])
- {
- rows[j] = i;
- }
- }
+ {
+ if (vars[j] == all_vars[i])
+ {
+ rows[j] = i;
+ }
+ }
if (all_vars[i] == dep_var)
- {
- dep_subscript = i;
- }
+ {
+ dep_subscript = i;
+ }
}
mean_matrix = covariance_moments (all_cov, MOMENT_MEAN);
ssize_matrix = covariance_moments (all_cov, MOMENT_NONE);
for (i = 0; i < cov->size1 - 1; i++)
{
means[i] = gsl_matrix_get (mean_matrix, rows[i], 0)
- / gsl_matrix_get (ssize_matrix, rows[i], 0);
+ / gsl_matrix_get (ssize_matrix, rows[i], 0);
for (j = 0; j < cov->size2 - 1; j++)
- {
- gsl_matrix_set (cov, i, j, gsl_matrix_get (cm, rows[i], rows[j]));
- gsl_matrix_set (cov, j, i, gsl_matrix_get (cm, rows[j], rows[i]));
- }
+ {
+ gsl_matrix_set (cov, i, j, gsl_matrix_get (cm, rows[i], rows[j]));
+ gsl_matrix_set (cov, j, i, gsl_matrix_get (cm, rows[j], rows[i]));
+ }
}
means[cov->size1 - 1] = gsl_matrix_get (mean_matrix, dep_subscript, 0)
/ gsl_matrix_get (ssize_matrix, dep_subscript, 0);
result = gsl_matrix_get (ssizes, dep_subscript, rows[0]);
for (i = 0; i < cov->size1 - 1; i++)
{
- gsl_matrix_set (cov, i, cov->size1 - 1,
- gsl_matrix_get (cm, rows[i], dep_subscript));
- gsl_matrix_set (cov, cov->size1 - 1, i,
- gsl_matrix_get (cm, rows[i], dep_subscript));
+ gsl_matrix_set (cov, i, cov->size1 - 1,
+ gsl_matrix_get (cm, rows[i], dep_subscript));
+ gsl_matrix_set (cov, cov->size1 - 1, i,
+ gsl_matrix_get (cm, rows[i], dep_subscript));
if (result > gsl_matrix_get (ssizes, rows[i], dep_subscript))
- {
- result = gsl_matrix_get (ssizes, rows[i], dep_subscript);
- }
+ {
+ result = gsl_matrix_get (ssizes, rows[i], dep_subscript);
+ }
}
- gsl_matrix_set (cov, cov->size1 - 1, cov->size1 - 1,
- gsl_matrix_get (cm, dep_subscript, dep_subscript));
+ gsl_matrix_set (cov, cov->size1 - 1, cov->size1 - 1,
+ gsl_matrix_get (cm, dep_subscript, dep_subscript));
free (rows);
gsl_matrix_free (cm);
return result;
static void reg_stats_anova (linreg *, void *, const struct variable *);
static void reg_stats_bcov (linreg *, void *, const struct variable *);
-static void statistics_keyword_output (void (*)(linreg *, void *, const struct variable *),
- bool, linreg *, void *, const struct variable *);
+static void
+statistics_keyword_output (void (*)
+ (linreg *, void *, const struct variable *), bool,
+ linreg *, void *, const struct variable *);
static void
-subcommand_statistics (const struct regression *cmd , linreg * c, void *aux,
- const struct variable *var)
+subcommand_statistics (const struct regression *cmd, linreg * c, void *aux,
+ const struct variable *var)
{
statistics_keyword_output (reg_stats_r, cmd->r, c, aux, var);
statistics_keyword_output (reg_stats_anova, cmd->anova, c, aux, var);
all_vars = xnmalloc (n_all_vars, sizeof (*all_vars));
fill_all_vars (all_vars, cmd);
vars = xnmalloc (cmd->n_vars, sizeof (*vars));
- means = xnmalloc (n_all_vars, sizeof (*means));
+ means = xnmalloc (n_all_vars, sizeof (*means));
cov = covariance_1pass_create (n_all_vars, all_vars,
- dict_get_weight (dataset_dict (cmd->ds)), MV_ANY);
+ dict_get_weight (dataset_dict (cmd->ds)),
+ MV_ANY);
reader = casereader_clone (input);
reader = casereader_create_filter_missing (reader, all_vars, n_all_vars,
- MV_ANY, NULL, NULL);
+ MV_ANY, NULL, NULL);
for (; (c = casereader_read (reader)) != NULL; case_unref (c))
gsl_matrix *this_cm;
n_indep = identify_indep_vars (cmd, vars, dep_var);
-
+
this_cm = gsl_matrix_alloc (n_indep + 1, n_indep + 1);
- n_data = fill_covariance (this_cm, cov, vars, n_indep,
- dep_var, all_vars, n_all_vars, means);
+ n_data = fill_covariance (this_cm, cov, vars, n_indep,
+ dep_var, all_vars, n_all_vars, means);
models[k] = linreg_alloc (dep_var, (const struct variable **) vars,
- n_data, n_indep);
+ n_data, n_indep);
models[k]->depvar = dep_var;
for (i = 0; i < n_indep; i++)
- {
- linreg_set_indep_variable_mean (models[k], i, means[i]);
- }
+ {
+ linreg_set_indep_variable_mean (models[k], i, means[i]);
+ }
linreg_set_depvar_mean (models[k], means[i]);
/*
- For large data sets, use QR decomposition.
- */
+ For large data sets, use QR decomposition.
+ */
if (n_data > sqrt (n_indep) && n_data > REG_LARGE_DATA)
- {
- models[k]->method = LINREG_QR;
- }
+ {
+ models[k]->method = LINREG_QR;
+ }
if (n_data > 0)
- {
- /*
- Find the least-squares estimates and other statistics.
- */
- linreg_fit (this_cm, models[k]);
-
- if (!taint_has_tainted_successor (casereader_get_taint (input)))
- {
- subcommand_statistics (cmd, models[k], this_cm, dep_var);
- }
- }
+ {
+ /*
+ Find the least-squares estimates and other statistics.
+ */
+ linreg_fit (this_cm, models[k]);
+
+ if (!taint_has_tainted_successor (casereader_get_taint (input)))
+ {
+ subcommand_statistics (cmd, models[k], this_cm, dep_var);
+ }
+ }
else
- {
- msg (SE,
- _("No valid data found. This command was skipped."));
+ {
+ msg (SE, _("No valid data found. This command was skipped."));
linreg_unref (models[k]);
models[k] = NULL;
- }
+ }
gsl_matrix_free (this_cm);
}
-
+
casereader_destroy (reader);
free (vars);
free (all_vars);
casereader_destroy (input);
covariance_destroy (cov);
}
+\f
-\f
static void
-reg_stats_r (linreg *c, void *aux UNUSED, const struct variable *var)
+reg_stats_r (linreg * c, void *aux UNUSED, const struct variable *var)
{
struct tab_table *t;
int n_rows = 2;
assert (c != NULL);
rsq = linreg_ssreg (c) / linreg_sst (c);
- adjrsq = rsq -
- (1.0 - rsq) * linreg_n_coeffs (c) / (linreg_n_obs (c) - linreg_n_coeffs (c) - 1);
+ adjrsq = rsq -
+ (1.0 - rsq) * linreg_n_coeffs (c) / (linreg_n_obs (c) -
+ linreg_n_coeffs (c) - 1);
std_error = sqrt (linreg_mse (c));
t = tab_create (n_cols, n_rows);
tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
tab_double (t, 4, 1, 0, 0.0, NULL);
t_stat = linreg_intercept (c) / std_err;
tab_double (t, 5, 1, 0, t_stat, NULL);
- pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), (double) (linreg_n_obs (c) - linreg_n_coeffs (c)));
+ pval =
+ 2 * gsl_cdf_tdist_Q (fabs (t_stat),
+ (double) (linreg_n_obs (c) - linreg_n_coeffs (c)));
tab_double (t, 6, 1, 0, pval, NULL);
for (j = 0; j < linreg_n_coeffs (c); j++)
{
ds_put_cstr (&tstr, label);
tab_text (t, 1, this_row, TAB_CENTER, ds_cstr (&tstr));
/*
- Regression coefficients.
- */
+ Regression coefficients.
+ */
tab_double (t, 2, this_row, 0, linreg_coeff (c, j), NULL);
/*
- Standard error of the coefficients.
- */
+ Standard error of the coefficients.
+ */
std_err = sqrt (gsl_matrix_get (linreg_cov (c), j + 1, j + 1));
tab_double (t, 3, this_row, 0, std_err, NULL);
/*
- Standardized coefficient, i.e., regression coefficient
- if all variables had unit variance.
- */
+ Standardized coefficient, i.e., regression coefficient
+ if all variables had unit variance.
+ */
beta = sqrt (gsl_matrix_get (cov, j, j));
- beta *= linreg_coeff (c, j) /
- sqrt (gsl_matrix_get (cov, cov->size1 - 1, cov->size2 - 1));
+ beta *= linreg_coeff (c, j) /
+ sqrt (gsl_matrix_get (cov, cov->size1 - 1, cov->size2 - 1));
tab_double (t, 4, this_row, 0, beta, NULL);
/*
- Test statistic for H0: coefficient is 0.
- */
+ Test statistic for H0: coefficient is 0.
+ */
t_stat = linreg_coeff (c, j) / std_err;
tab_double (t, 5, this_row, 0, t_stat, NULL);
/*
- P values for the test statistic above.
- */
+ P values for the test statistic above.
+ */
pval =
- 2 * gsl_cdf_tdist_Q (fabs (t_stat),
- (double) (linreg_n_obs (c) - linreg_n_coeffs (c) - 1));
+ 2 * gsl_cdf_tdist_Q (fabs (t_stat),
+ (double) (linreg_n_obs (c) -
+ linreg_n_coeffs (c) - 1));
tab_double (t, 6, this_row, 0, pval, NULL);
ds_destroy (&tstr);
}
tab_text (t, 2, i, TAB_CENTER, label);
tab_text (t, i + 2, 0, TAB_CENTER, label);
for (k = 1; k < linreg_n_coeffs (c); k++)
- {
- col = (i <= k) ? k : i;
- row = (i <= k) ? i : k;
- tab_double (t, k + 2, i, TAB_CENTER,
+ {
+ col = (i <= k) ? k : i;
+ row = (i <= k) ? i : k;
+ tab_double (t, k + 2, i, TAB_CENTER,
gsl_matrix_get (c->cov, row, col), NULL);
- }
+ }
}
tab_title (t, _("Coefficient Correlations (%s)"), var_to_string (var));
tab_submit (t);
}
static void
-statistics_keyword_output (void (*function) (linreg *, void *, const struct variable *var),
- bool keyword, linreg * c, void *aux, const struct variable *var)
+statistics_keyword_output (void (*function)
+ (linreg *, void *, const struct variable * var),
+ bool keyword, linreg * c, void *aux,
+ const struct variable *var)
{
if (keyword)
{