* lib/str-two-way.h: New file, merged from...
* lib/memmem.c: ...here...
* lib/strstr.c: ...and here.
* modules/memmem (Files): Use it.
* modules/strstr (Files): Likewise.
Signed-off-by: Eric Blake <ebb9@byu.net>
2008-01-10 Eric Blake <ebb9@byu.net>
+ Share two-way algorithm.
+ * lib/str-two-way.h: New file, merged from...
+ * lib/memmem.c: ...here...
+ * lib/strstr.c: ...and here.
+ * modules/memmem (Files): Use it.
+ * modules/strstr (Files): Likewise.
+
Avoid quadratic strstr implementations.
* lib/strstr.c: New file.
* m4/strstr.m4: Likewise.
/* Specification of memmem. */
#include <string.h>
-#include <limits.h>
-#include <stddef.h>
-#include <stdint.h>
-
#ifndef _LIBC
# define __builtin_expect(expr, val) (expr)
#endif
-/* We use the Two-Way string matching algorithm, which guarantees
- linear complexity with constant space. Additionally, for long
- needles, we also use a bad character shift table similar to the
- Boyer-Moore algorithm to achieve sub-linear performance.
-
- See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
- and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
-*/
-
-/* Point at which computing a bad-byte shift table is likely to be
- worthwhile. Small needles should not compute a table, since it
- adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
- speedup no greater than a factor of NEEDLE_LEN. The larger the
- needle, the better the potential performance gain. On the other
- hand, on non-POSIX systems with CHAR_BIT larger than eight, the
- memory required for the table is prohibitive. */
-#if CHAR_BIT < 10
-# define LONG_NEEDLE_THRESHOLD 32U
-#else
-# define LONG_NEEDLE_THRESHOLD SIZE_MAX
-#endif
-
-#define MAX(a, b) ((a < b) ? (b) : (a))
-
-/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
- Return the index of the first byte in the right half, and set
- *PERIOD to the global period of the right half.
-
- The global period of a string is the smallest index (possibly its
- length) at which all remaining bytes in the string are repetitions
- of the prefix (the last repetition may be a subset of the prefix).
-
- When NEEDLE is factored into two halves, a local period is the
- length of the smallest word that shares a suffix with the left half
- and shares a prefix with the right half. All factorizations of a
- non-empty NEEDLE have a local period of at least 1 and no greater
- than NEEDLE_LEN.
-
- A critical factorization has the property that the local period
- equals the global period. All strings have at least one critical
- factorization with the left half smaller than the global period.
-
- Given an ordered alphabet, a critical factorization can be computed
- in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
- larger of two ordered maximal suffixes. The ordered maximal
- suffixes are determined by lexicographic comparison of
- periodicity. */
-static size_t
-critical_factorization (const unsigned char *needle, size_t needle_len,
- size_t *period)
-{
- /* Index of last byte of left half, or SIZE_MAX. */
- size_t max_suffix, max_suffix_rev;
- size_t j; /* Index into NEEDLE for current candidate suffix. */
- size_t k; /* Offset into current period. */
- size_t p; /* Intermediate period. */
- unsigned char a, b; /* Current comparison bytes. */
-
- /* Invariants:
- 0 <= j < NEEDLE_LEN - 1
- -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
- min(max_suffix, max_suffix_rev) < global period of NEEDLE
- 1 <= p <= global period of NEEDLE
- p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
- 1 <= k <= p
- */
-
- /* Perform lexicographic search. */
- max_suffix = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = needle[j + k];
- b = needle[max_suffix + k];
- if (a < b)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* b < a */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix = j++;
- k = p = 1;
- }
- }
- *period = p;
-
- /* Perform reverse lexicographic search. */
- max_suffix_rev = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = needle[j + k];
- b = needle[max_suffix_rev + k];
- if (b < a)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix_rev;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* a < b */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix_rev = j++;
- k = p = 1;
- }
- }
-
- /* Choose the longer suffix. Return the first byte of the right
- half, rather than the last byte of the left half. */
- if (max_suffix_rev + 1 < max_suffix + 1)
- return max_suffix + 1;
- *period = p;
- return max_suffix_rev + 1;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL. This
- method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
- for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD. Performance is linear,
- with 2 * NEEDLE_LEN comparisons in preparation, and at most 2 *
- HAYSTACK_LEN - NEEDLE_LEN comparisons in searching. */
-static void *
-two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
-{
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
-
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
-
- /* Perform the search. Each iteration compares the right half
- first. */
- if (memcmp (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch can only advance by the
- period, so use memory to avoid rescanning known occurrences
- of the period. */
- size_t memory = 0;
- j = 0;
- while (j <= haystack_len - needle_len)
- {
- /* Scan for matches in right half. */
- i = MAX (suffix, memory);
- while (i < needle_len && needle[i] == haystack[i + j])
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && needle[i] == haystack[i + j])
- --i;
- if (i + 1 < memory + 1)
- return (void *) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (j <= haystack_len - needle_len)
- {
- /* Scan for matches in right half. */
- i = suffix;
- while (i < needle_len && needle[i] == haystack[i + j])
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && needle[i] == haystack[i + j])
- --i;
- if (i == SIZE_MAX)
- return (void *) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL. This
- method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
- for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN. Performance is linear,
- with 3 * NEEDLE_LEN + (1U << CHAR_BIT) operations in preparation,
- and at most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.
- The extra initialization cost allows for potential sublinear
- performance O(HAYSTACK_LEN / NEEDLE_LEN). */
-static void *
-two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
-{
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
- size_t shift_table[1U << CHAR_BIT]; /* See below. */
-
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
-
- /* Populate shift_table. For each possible byte value c,
- shift_table[c] is the distance from the last occurrence of c to
- the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
- shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
- for (i = 0; i < 1U << CHAR_BIT; i++)
- shift_table[i] = needle_len;
- for (i = 0; i < needle_len; i++)
- shift_table[needle[i]] = needle_len - i - 1;
-
- /* Perform the search. Each iteration compares the right half
- first. */
- if (memcmp (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch can only advance by the
- period, so use memory to avoid rescanning known occurrences
- of the period. */
- size_t memory = 0;
- j = 0;
- while (j <= haystack_len - needle_len)
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- size_t shift = shift_table[haystack[j + needle_len - 1]];
- if (0 < shift)
- {
- if (memory && shift < period)
- {
- /* Since needle is periodic, but the last period has
- a byte out of place, there can be no match until
- after the mismatch. */
- shift = needle_len - period;
- memory = 0;
- }
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = MAX (suffix, memory);
- while (i < needle_len - 1 && needle[i] == haystack[i + j])
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && needle[i] == haystack[i + j])
- --i;
- if (i + 1 < memory + 1)
- return (void *) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (j <= haystack_len - needle_len)
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- size_t shift = shift_table[haystack[j + needle_len - 1]];
- if (0 < shift)
- {
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = suffix;
- while (i < needle_len - 1 && needle[i] == haystack[i + j])
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && needle[i] == haystack[i + j])
- --i;
- if (i == SIZE_MAX)
- return (void *) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
-}
+#define RETURN_TYPE void *
+#define AVAILABLE(h, h_l, j, n_l) ((j) <= (h_l) - (n_l))
+#include "str-two-way.h"
/* Return the first occurrence of NEEDLE in HAYSTACK. Return HAYSTACK
if NEEDLE_LEN is 0, otherwise NULL if NEEDLE is not found in
}
#undef LONG_NEEDLE_THRESHOLD
-#undef MAX
--- /dev/null
+/* Byte-wise substring search, using the Two-Way algorithm.
+ Copyright (C) 2008 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Written by Eric Blake <ebb9@byu.net>, 2008.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License along
+ with this program; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+/* Before including this file, you need to include <config.h> and
+ <string.h>, and define:
+ RESULT_TYPE A macro that expands to the return type.
+ AVAILABLE(h, h_l, j, n_l)
+ A macro that returns nonzero if there are
+ at least N_L bytes left starting at H[J].
+ H is 'unsigned char *', H_L, J, and N_L
+ are 'size_t'; H_L is an lvalue. For
+ NUL-terminated searches, H_L can be
+ modified each iteration to avoid having
+ to compute the end of H up front.
+
+ For case-insensitivity, you may optionally define:
+ CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L
+ characters of P1 and P2 are equal.
+ CANON_ELEMENT(c) A macro that canonicalizes an element right after
+ it has been fetched from one of the two strings.
+ The argument is an 'unsigned char'; the result
+ must be an 'unsigned char' as well.
+
+ This file undefines the macros documented above, and defines
+ LONG_NEEDLE_THRESHOLD.
+*/
+
+#include <limits.h>
+#include <stdint.h>
+
+/* We use the Two-Way string matching algorithm, which guarantees
+ linear complexity with constant space. Additionally, for long
+ needles, we also use a bad character shift table similar to the
+ Boyer-Moore algorithm to achieve improved (potentially sub-linear)
+ performance.
+
+ See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
+ and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
+*/
+
+/* Point at which computing a bad-byte shift table is likely to be
+ worthwhile. Small needles should not compute a table, since it
+ adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
+ speedup no greater than a factor of NEEDLE_LEN. The larger the
+ needle, the better the potential performance gain. On the other
+ hand, on non-POSIX systems with CHAR_BIT larger than eight, the
+ memory required for the table is prohibitive. */
+#if CHAR_BIT < 10
+# define LONG_NEEDLE_THRESHOLD 32U
+#else
+# define LONG_NEEDLE_THRESHOLD SIZE_MAX
+#endif
+
+#define MAX(a, b) ((a < b) ? (b) : (a))
+
+#ifndef CANON_ELEMENT
+# define CANON_ELEMENT(c) c
+#endif
+#ifndef CMP_FUNC
+# define CMP_FUNC memcmp
+#endif
+
+/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
+ Return the index of the first byte in the right half, and set
+ *PERIOD to the global period of the right half.
+
+ The global period of a string is the smallest index (possibly its
+ length) at which all remaining bytes in the string are repetitions
+ of the prefix (the last repetition may be a subset of the prefix).
+
+ When NEEDLE is factored into two halves, a local period is the
+ length of the smallest word that shares a suffix with the left half
+ and shares a prefix with the right half. All factorizations of a
+ non-empty NEEDLE have a local period of at least 1 and no greater
+ than NEEDLE_LEN.
+
+ A critical factorization has the property that the local period
+ equals the global period. All strings have at least one critical
+ factorization with the left half smaller than the global period.
+
+ Given an ordered alphabet, a critical factorization can be computed
+ in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
+ larger of two ordered maximal suffixes. The ordered maximal
+ suffixes are determined by lexicographic comparison of
+ periodicity. */
+static size_t
+critical_factorization (const unsigned char *needle, size_t needle_len,
+ size_t *period)
+{
+ /* Index of last byte of left half, or SIZE_MAX. */
+ size_t max_suffix, max_suffix_rev;
+ size_t j; /* Index into NEEDLE for current candidate suffix. */
+ size_t k; /* Offset into current period. */
+ size_t p; /* Intermediate period. */
+ unsigned char a, b; /* Current comparison bytes. */
+
+ /* Invariants:
+ 0 <= j < NEEDLE_LEN - 1
+ -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
+ min(max_suffix, max_suffix_rev) < global period of NEEDLE
+ 1 <= p <= global period of NEEDLE
+ p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
+ 1 <= k <= p
+ */
+
+ /* Perform lexicographic search. */
+ max_suffix = SIZE_MAX;
+ j = 0;
+ k = p = 1;
+ while (j + k < needle_len)
+ {
+ a = CANON_ELEMENT (needle[j + k]);
+ b = CANON_ELEMENT (needle[max_suffix + k]);
+ if (a < b)
+ {
+ /* Suffix is smaller, period is entire prefix so far. */
+ j += k;
+ k = 1;
+ p = j - max_suffix;
+ }
+ else if (a == b)
+ {
+ /* Advance through repetition of the current period. */
+ if (k != p)
+ ++k;
+ else
+ {
+ j += p;
+ k = 1;
+ }
+ }
+ else /* b < a */
+ {
+ /* Suffix is larger, start over from current location. */
+ max_suffix = j++;
+ k = p = 1;
+ }
+ }
+ *period = p;
+
+ /* Perform reverse lexicographic search. */
+ max_suffix_rev = SIZE_MAX;
+ j = 0;
+ k = p = 1;
+ while (j + k < needle_len)
+ {
+ a = CANON_ELEMENT (needle[j + k]);
+ b = CANON_ELEMENT (needle[max_suffix_rev + k]);
+ if (b < a)
+ {
+ /* Suffix is smaller, period is entire prefix so far. */
+ j += k;
+ k = 1;
+ p = j - max_suffix_rev;
+ }
+ else if (a == b)
+ {
+ /* Advance through repetition of the current period. */
+ if (k != p)
+ ++k;
+ else
+ {
+ j += p;
+ k = 1;
+ }
+ }
+ else /* a < b */
+ {
+ /* Suffix is larger, start over from current location. */
+ max_suffix_rev = j++;
+ k = p = 1;
+ }
+ }
+
+ /* Choose the longer suffix. Return the first byte of the right
+ half, rather than the last byte of the left half. */
+ if (max_suffix_rev + 1 < max_suffix + 1)
+ return max_suffix + 1;
+ *period = p;
+ return max_suffix_rev + 1;
+}
+
+/* Return the first location of non-empty NEEDLE within HAYSTACK, or
+ NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
+ method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
+ Performance is guaranteed to be linear, with an initialization cost
+ of 2 * NEEDLE_LEN comparisons.
+
+ If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
+ most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
+ If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
+ HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */
+static RETURN_TYPE
+two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
+ const unsigned char *needle, size_t needle_len)
+{
+ size_t i; /* Index into current byte of NEEDLE. */
+ size_t j; /* Index into current window of HAYSTACK. */
+ size_t period; /* The period of the right half of needle. */
+ size_t suffix; /* The index of the right half of needle. */
+
+ /* Factor the needle into two halves, such that the left half is
+ smaller than the global period, and the right half is
+ periodic (with a period as large as NEEDLE_LEN - suffix). */
+ suffix = critical_factorization (needle, needle_len, &period);
+
+ /* Perform the search. Each iteration compares the right half
+ first. */
+ if (CMP_FUNC (needle, needle + period, suffix) == 0)
+ {
+ /* Entire needle is periodic; a mismatch can only advance by the
+ period, so use memory to avoid rescanning known occurrences
+ of the period. */
+ size_t memory = 0;
+ j = 0;
+ while (AVAILABLE (haystack, haystack_len, j, needle_len))
+ {
+ /* Scan for matches in right half. */
+ i = MAX (suffix, memory);
+ while (i < needle_len && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ ++i;
+ if (needle_len <= i)
+ {
+ /* Scan for matches in left half. */
+ i = suffix - 1;
+ while (memory < i + 1 && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ --i;
+ if (i + 1 < memory + 1)
+ return (RETURN_TYPE) (haystack + j);
+ /* No match, so remember how many repetitions of period
+ on the right half were scanned. */
+ j += period;
+ memory = needle_len - period;
+ }
+ else
+ {
+ j += i - suffix + 1;
+ memory = 0;
+ }
+ }
+ }
+ else
+ {
+ /* The two halves of needle are distinct; no extra memory is
+ required, and any mismatch results in a maximal shift. */
+ period = MAX (suffix, needle_len - suffix) + 1;
+ j = 0;
+ while (AVAILABLE (haystack, haystack_len, j, needle_len))
+ {
+ /* Scan for matches in right half. */
+ i = suffix;
+ while (i < needle_len && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ ++i;
+ if (needle_len <= i)
+ {
+ /* Scan for matches in left half. */
+ i = suffix - 1;
+ while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ --i;
+ if (i == SIZE_MAX)
+ return (RETURN_TYPE) (haystack + j);
+ j += period;
+ }
+ else
+ j += i - suffix + 1;
+ }
+ }
+ return NULL;
+}
+
+/* Return the first location of non-empty NEEDLE within HAYSTACK, or
+ NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
+ method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
+ Performance is guaranteed to be linear, with an initialization cost
+ of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
+
+ If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
+ most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
+ and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
+ If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
+ HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
+ sublinear performance is not possible. */
+static RETURN_TYPE
+two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
+ const unsigned char *needle, size_t needle_len)
+{
+ size_t i; /* Index into current byte of NEEDLE. */
+ size_t j; /* Index into current window of HAYSTACK. */
+ size_t period; /* The period of the right half of needle. */
+ size_t suffix; /* The index of the right half of needle. */
+ size_t shift_table[1U << CHAR_BIT]; /* See below. */
+
+ /* Factor the needle into two halves, such that the left half is
+ smaller than the global period, and the right half is
+ periodic (with a period as large as NEEDLE_LEN - suffix). */
+ suffix = critical_factorization (needle, needle_len, &period);
+
+ /* Populate shift_table. For each possible byte value c,
+ shift_table[c] is the distance from the last occurrence of c to
+ the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
+ shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
+ for (i = 0; i < 1U << CHAR_BIT; i++)
+ shift_table[i] = needle_len;
+ for (i = 0; i < needle_len; i++)
+ shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
+
+ /* Perform the search. Each iteration compares the right half
+ first. */
+ if (CMP_FUNC (needle, needle + period, suffix) == 0)
+ {
+ /* Entire needle is periodic; a mismatch can only advance by the
+ period, so use memory to avoid rescanning known occurrences
+ of the period. */
+ size_t memory = 0;
+ size_t shift;
+ j = 0;
+ while (AVAILABLE (haystack, haystack_len, j, needle_len))
+ {
+ /* Check the last byte first; if it does not match, then
+ shift to the next possible match location. */
+ shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
+ if (0 < shift)
+ {
+ if (memory && shift < period)
+ {
+ /* Since needle is periodic, but the last period has
+ a byte out of place, there can be no match until
+ after the mismatch. */
+ shift = needle_len - period;
+ memory = 0;
+ }
+ j += shift;
+ continue;
+ }
+ /* Scan for matches in right half. The last byte has
+ already been matched, by virtue of the shift table. */
+ i = MAX (suffix, memory);
+ while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ ++i;
+ if (needle_len - 1 <= i)
+ {
+ /* Scan for matches in left half. */
+ i = suffix - 1;
+ while (memory < i + 1 && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ --i;
+ if (i + 1 < memory + 1)
+ return (RETURN_TYPE) (haystack + j);
+ /* No match, so remember how many repetitions of period
+ on the right half were scanned. */
+ j += period;
+ memory = needle_len - period;
+ }
+ else
+ {
+ j += i - suffix + 1;
+ memory = 0;
+ }
+ }
+ }
+ else
+ {
+ /* The two halves of needle are distinct; no extra memory is
+ required, and any mismatch results in a maximal shift. */
+ size_t shift;
+ period = MAX (suffix, needle_len - suffix) + 1;
+ j = 0;
+ while (AVAILABLE (haystack, haystack_len, j, needle_len))
+ {
+ /* Check the last byte first; if it does not match, then
+ shift to the next possible match location. */
+ shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
+ if (0 < shift)
+ {
+ j += shift;
+ continue;
+ }
+ /* Scan for matches in right half. The last byte has
+ already been matched, by virtue of the shift table. */
+ i = suffix;
+ while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ ++i;
+ if (needle_len - 1 <= i)
+ {
+ /* Scan for matches in left half. */
+ i = suffix - 1;
+ while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
+ == CANON_ELEMENT (haystack[i + j])))
+ --i;
+ if (i == SIZE_MAX)
+ return (RETURN_TYPE) (haystack + j);
+ j += period;
+ }
+ else
+ j += i - suffix + 1;
+ }
+ }
+ return NULL;
+}
+
+#undef AVAILABLE
+#undef CANON_ELEMENT
+#undef MAX
+#undef RETURN_TYPE
/* Specification of strstr. */
#include <string.h>
-#include <limits.h>
#include <stdbool.h>
-#include <stddef.h>
-#include <stdint.h>
#ifndef _LIBC
# define __builtin_expect(expr, val) (expr)
#endif
-/* We use the Two-Way string matching algorithm, which guarantees
- linear complexity with constant space. Additionally, for long
- needles, we also use a bad character shift table similar to the
- Boyer-Moore algorithm to achieve better performance.
-
- See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
- and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
-*/
-
-/* Point at which computing a bad-byte shift table is likely to be
- worthwhile. Small needles should not compute a table, since it
- adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
- speedup no greater than a factor of NEEDLE_LEN. The larger the
- needle, the better the potential performance gain. On the other
- hand, on non-POSIX systems with CHAR_BIT larger than eight, the
- memory required for the table is prohibitive. */
-#if CHAR_BIT < 10
-# define LONG_NEEDLE_THRESHOLD 32U
-#else
-# define LONG_NEEDLE_THRESHOLD SIZE_MAX
-#endif
-
-#define MAX(a, b) ((a < b) ? (b) : (a))
-
-/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
- Return the index of the first byte in the right half, and set
- *PERIOD to the global period of the right half.
-
- The global period of a string is the smallest index (possibly its
- length) at which all remaining bytes in the string are repetitions
- of the prefix (the last repetition may be a subset of the prefix).
-
- When NEEDLE is factored into two halves, a local period is the
- length of the smallest word that shares a suffix with the left half
- and shares a prefix with the right half. All factorizations of a
- non-empty NEEDLE have a local period of at least 1 and no greater
- than NEEDLE_LEN.
-
- A critical factorization has the property that the local period
- equals the global period. All strings have at least one critical
- factorization with the left half smaller than the global period.
-
- Given an ordered alphabet, a critical factorization can be computed
- in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
- larger of two ordered maximal suffixes. The ordered maximal
- suffixes are determined by lexicographic comparison of
- periodicity. */
-static size_t
-critical_factorization (const unsigned char *needle, size_t needle_len,
- size_t *period)
-{
- /* Index of last byte of left half, or SIZE_MAX. */
- size_t max_suffix, max_suffix_rev;
- size_t j; /* Index into NEEDLE for current candidate suffix. */
- size_t k; /* Offset into current period. */
- size_t p; /* Intermediate period. */
- unsigned char a, b; /* Current comparison bytes. */
-
- /* Invariants:
- 0 <= j < NEEDLE_LEN - 1
- -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
- min(max_suffix, max_suffix_rev) < global period of NEEDLE
- 1 <= p <= global period of NEEDLE
- p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
- 1 <= k <= p
- */
-
- /* Perform lexicographic search. */
- max_suffix = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = needle[j + k];
- b = needle[max_suffix + k];
- if (a < b)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* b < a */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix = j++;
- k = p = 1;
- }
- }
- *period = p;
-
- /* Perform reverse lexicographic search. */
- max_suffix_rev = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = needle[j + k];
- b = needle[max_suffix_rev + k];
- if (b < a)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix_rev;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* a < b */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix_rev = j++;
- k = p = 1;
- }
- }
-
- /* Choose the longer suffix. Return the first byte of the right
- half, rather than the last byte of the left half. */
- if (max_suffix_rev + 1 < max_suffix + 1)
- return max_suffix + 1;
- *period = p;
- return max_suffix_rev + 1;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL. This
- method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
- for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD. Performance is linear,
- with 2 * NEEDLE_LEN comparisons in preparation, and at most 3 *
- HAYSTACK_LEN - NEEDLE_LEN comparisons in searching. */
-static char *
-two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
-{
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
-
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
-
- /* Perform the search. Each iteration compares the right half
- first. */
- if (memcmp (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch can only advance by the
- period, so use memory to avoid rescanning known occurrences
- of the period. */
- size_t memory = 0;
- j = 0;
- while (!memchr (&haystack[haystack_len], '\0',
- j + needle_len - haystack_len)
- && (haystack_len = j + needle_len))
- {
- /* Scan for matches in right half. */
- i = MAX (suffix, memory);
- while (i < needle_len && needle[i] == haystack[i + j])
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && needle[i] == haystack[i + j])
- --i;
- if (i + 1 < memory + 1)
- return (char *) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (!memchr (&haystack[haystack_len], '\0',
- j + needle_len - haystack_len)
- && (haystack_len = j + needle_len))
- {
- /* Scan for matches in right half. */
- i = suffix;
- while (i < needle_len && needle[i] == haystack[i + j])
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && needle[i] == haystack[i + j])
- --i;
- if (i == SIZE_MAX)
- return (char *) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL. This
- method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
- for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN. Performance is linear,
- with 3 * NEEDLE_LEN + (1U << CHAR_BIT) operations in preparation,
- and at most 3 * HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.
- The extra initialization cost allows for as few as HAYSTACK_LEN +
- HAYSTACK_LEN / NEEDLE_LEN. */
-static char *
-two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
-{
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
- size_t shift_table[1U << CHAR_BIT]; /* See below. */
-
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
-
- /* Populate shift_table. For each possible byte value c,
- shift_table[c] is the distance from the last occurrence of c to
- the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
- shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
- for (i = 0; i < 1U << CHAR_BIT; i++)
- shift_table[i] = needle_len;
- for (i = 0; i < needle_len; i++)
- shift_table[needle[i]] = needle_len - i - 1;
-
- /* Perform the search. Each iteration compares the right half
- first. */
- if (memcmp (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch can only advance by the
- period, so use memory to avoid rescanning known occurrences
- of the period. */
- size_t memory = 0;
- j = 0;
- while (!memchr (&haystack[haystack_len], '\0',
- j + needle_len - haystack_len)
- && (haystack_len = j + needle_len))
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- size_t shift = shift_table[haystack[j + needle_len - 1]];
- if (0 < shift)
- {
- if (memory && shift < period)
- {
- /* Since needle is periodic, but the last period has
- a byte out of place, there can be no match until
- after the mismatch. */
- shift = needle_len - period;
- memory = 0;
- }
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = MAX (suffix, memory);
- while (i < needle_len - 1 && needle[i] == haystack[i + j])
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && needle[i] == haystack[i + j])
- --i;
- if (i + 1 < memory + 1)
- return (char *) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (!memchr (&haystack[haystack_len], '\0',
- j + needle_len - haystack_len)
- && (haystack_len = j + needle_len))
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- size_t shift = shift_table[haystack[j + needle_len - 1]];
- if (0 < shift)
- {
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = suffix;
- while (i < needle_len - 1 && needle[i] == haystack[i + j])
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && needle[i] == haystack[i + j])
- --i;
- if (i == SIZE_MAX)
- return (char *) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
-}
+#define RETURN_TYPE char *
+#define AVAILABLE(h, h_l, j, n_l) \
+ (!memchr ((h) + (h_l), '\0', (j) + (n_l) - (h_l)) \
+ && ((h_l) = (j) + (n_l)))
+#include "str-two-way.h"
/* Return the first occurrence of NEEDLE in HAYSTACK. Return HAYSTACK
if NEEDLE is empty, otherwise NULL if NEEDLE is not found in
}
#undef LONG_NEEDLE_THRESHOLD
-#undef MAX
memmem() function: locate first substring in a buffer.
Files:
+lib/str-two-way.h
lib/memmem.c
m4/memmem.m4
strstr() function: efficiently locate first substring in a buffer.
Files:
+lib/str-two-way.h
lib/strstr.c
m4/strstr.m4