--- /dev/null
+/* PSPP - a program for statistical analysis.
+ Copyright (C) 2011, 2012, 2013, 2019 Free Software Foundation, Inc.
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include <config.h>
+
+#include "data/case.h"
+#include "data/format.h"
+#include "data/variable.h"
+
+#include "libpspp/bt.h"
+#include "libpspp/hmap.h"
+#include "libpspp/misc.h"
+#include "libpspp/pool.h"
+
+#include "math/moments.h"
+
+#include <math.h>
+
+#include "means.h"
+
+#include "gettext.h"
+#define _(msgid) gettext (msgid)
+#define N_(msgid) (msgid)
+
+struct per_var_data
+{
+};
+
+struct per_var_data_simple
+{
+ struct per_var_data parent;
+ double acc;
+};
+
+struct per_var_data_moment
+{
+ struct per_var_data parent;
+ struct moments1 *mom;
+};
+
+static struct per_var_data *
+default_create (struct pool *pool)
+{
+ struct per_var_data_moment *pvd = pool_alloc (pool, sizeof *pvd);
+
+ pvd->mom = moments1_create (MOMENT_KURTOSIS);
+
+ return (struct per_var_data *) pvd;
+}
+
+static void
+default_update (struct per_var_data *stat, double w, double x)
+{
+ struct per_var_data_moment *pvd = (struct per_var_data_moment *)stat;
+
+ moments1_add (pvd->mom, x, w);
+}
+
+\f
+
+/* HARMONIC MEAN: The reciprocal of the sum of the reciprocals:
+ 1 / ( 1/(x_0) + 1/(x_1) + ... + 1/(x_{n-1}) ) */
+
+struct harmonic_mean
+{
+ struct per_var_data parent;
+ double rsum;
+ double n;
+};
+
+static struct per_var_data *
+harmonic_create (struct pool *pool)
+{
+ struct harmonic_mean *hm = pool_alloc (pool, sizeof *hm);
+
+ hm->rsum = 0;
+ hm->n = 0;
+
+ return (struct per_var_data *) hm;
+}
+
+
+static void
+harmonic_update (struct per_var_data *stat, double w, double x)
+{
+ struct harmonic_mean *hm = (struct harmonic_mean *)stat;
+ hm->rsum += w / x;
+ hm->n += w;
+}
+
+
+static double
+harmonic_get (const struct per_var_data *pvd)
+{
+ const struct harmonic_mean *hm = (const struct harmonic_mean *) pvd;
+
+ return hm->n / hm->rsum;
+}
+
+\f
+
+/* GEOMETRIC MEAN: The nth root of the product of all n observations
+ pow ((x_0 * x_1 * ... x_{n - 1}), 1/n) */
+struct geometric_mean
+{
+ struct per_var_data parent;
+ double prod;
+ double n;
+};
+
+static struct per_var_data *
+geometric_create (struct pool *pool)
+{
+ struct geometric_mean *gm = pool_alloc (pool, sizeof *gm);
+
+ gm->prod = 1.0;
+ gm->n = 0;
+
+ return (struct per_var_data *) gm;
+}
+
+static void
+geometric_update (struct per_var_data *pvd, double w, double x)
+{
+ struct geometric_mean *gm = (struct geometric_mean *)pvd;
+ gm->prod *= pow (x, w);
+ gm->n += w;
+}
+
+
+static double
+geometric_get (const struct per_var_data *pvd)
+{
+ const struct geometric_mean *gm = (const struct geometric_mean *)pvd;
+ return pow (gm->prod, 1.0 / gm->n);
+}
+
+\f
+
+static double
+sum_get (const struct per_var_data *pvd)
+{
+ double n, mean;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, &mean, 0, 0, 0);
+
+ return mean * n;
+}
+
+
+static double
+n_get (const struct per_var_data *pvd)
+{
+ double n;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, 0, 0, 0, 0);
+
+ return n;
+}
+
+static double
+arithmean_get (const struct per_var_data *pvd)
+{
+ double n, mean;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, &mean, 0, 0, 0);
+
+ return mean;
+}
+
+static double
+variance_get (const struct per_var_data *pvd)
+{
+ double n, mean, variance;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, &mean, &variance, 0, 0);
+
+ return variance;
+}
+
+
+static double
+stddev_get (const struct per_var_data *pvd)
+{
+ return sqrt (variance_get (pvd));
+}
+
+
+\f
+
+static double
+skew_get (const struct per_var_data *pvd)
+{
+ double skew;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, NULL, NULL, NULL, &skew, 0);
+
+ return skew;
+}
+
+static double
+sekurt_get (const struct per_var_data *pvd)
+{
+ double n;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, NULL, NULL, NULL, NULL);
+
+ return calc_sekurt (n);
+}
+
+static double
+seskew_get (const struct per_var_data *pvd)
+{
+ double n;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, NULL, NULL, NULL, NULL);
+
+ return calc_seskew (n);
+}
+
+static double
+kurt_get (const struct per_var_data *pvd)
+{
+ double kurt;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, NULL, NULL, NULL, NULL, &kurt);
+
+ return kurt;
+}
+
+static double
+semean_get (const struct per_var_data *pvd)
+{
+ double n, var;
+
+ moments1_calculate (((struct per_var_data_moment *)pvd)->mom, &n, NULL, &var, NULL, NULL);
+
+ return sqrt (var / n);
+}
+
+\f
+
+/* MIN: The smallest (closest to minus infinity) value. */
+
+static struct per_var_data *
+min_create (struct pool *pool)
+{
+ struct per_var_data_simple *pvd = pool_alloc (pool, sizeof *pvd);
+
+ pvd->acc = DBL_MAX;
+
+ return (struct per_var_data *) pvd;
+}
+
+static void
+min_update (struct per_var_data *pvd, double w UNUSED, double x)
+{
+ double *r = &((struct per_var_data_simple *)pvd)->acc;
+
+ if (x < *r)
+ *r = x;
+}
+
+static double
+min_get (const struct per_var_data *pvd)
+{
+ double *r = &((struct per_var_data_simple *)pvd)->acc;
+
+ return *r;
+}
+
+/* MAX: The largest (closest to plus infinity) value. */
+
+static struct per_var_data *
+max_create (struct pool *pool)
+{
+ struct per_var_data_simple *pvd = pool_alloc (pool, sizeof *pvd);
+
+ pvd->acc = -DBL_MAX;
+
+ return (struct per_var_data *) pvd;
+}
+
+static void
+max_update (struct per_var_data *pvd, double w UNUSED, double x)
+{
+ double *r = &((struct per_var_data_simple *)pvd)->acc;
+
+ if (x > *r)
+ *r = x;
+}
+
+static double
+max_get (const struct per_var_data *pvd)
+{
+ double *r = &((struct per_var_data_simple *)pvd)->acc;
+
+ return *r;
+}
+
+\f
+
+struct range
+{
+ struct per_var_data parent;
+ double min;
+ double max;
+};
+
+static struct per_var_data *
+range_create (struct pool *pool)
+{
+ struct range *r = pool_alloc (pool, sizeof *r);
+
+ r->min = DBL_MAX;
+ r->max = -DBL_MAX;
+
+ return (struct per_var_data *) r;
+}
+
+static void
+range_update (struct per_var_data *pvd, double w UNUSED, double x)
+{
+ struct range *r = (struct range *) pvd;
+
+ if (x > r->max)
+ r->max = x;
+
+ if (x < r->min)
+ r->min = x;
+}
+
+static double
+range_get (const struct per_var_data *pvd)
+{
+ const struct range *r = (struct range *) pvd;
+
+ return r->max - r->min;
+}
+
+\f
+
+/* LAST: The last value (the one closest to the end of the file). */
+
+static struct per_var_data *
+last_create (struct pool *pool)
+{
+ struct per_var_data_simple *pvd = pool_alloc (pool, sizeof *pvd);
+
+ return (struct per_var_data *) pvd;
+}
+
+static void
+last_update (struct per_var_data *pvd, double w UNUSED, double x)
+{
+ struct per_var_data_simple *stat = (struct per_var_data_simple *) pvd;
+
+ stat->acc = x;
+}
+
+static double
+last_get (const struct per_var_data *pvd)
+{
+ const struct per_var_data_simple *stat = (struct per_var_data_simple *) pvd;
+
+ return stat->acc;
+}
+
+/* FIRST: The first value (the one closest to the start of the file). */
+
+static struct per_var_data *
+first_create (struct pool *pool)
+{
+ struct per_var_data_simple *pvd = pool_alloc (pool, sizeof *pvd);
+
+ pvd->acc = SYSMIS;
+
+ return (struct per_var_data *) pvd;
+}
+
+static void
+first_update (struct per_var_data *pvd, double w UNUSED, double x)
+{
+ struct per_var_data_simple *stat = (struct per_var_data_simple *) pvd;
+
+ if (stat->acc == SYSMIS)
+ stat->acc = x;
+}
+
+static double
+first_get (const struct per_var_data *pvd)
+{
+ const struct per_var_data_simple *stat = (struct per_var_data_simple *) pvd;
+
+ return stat->acc;
+}
+
+/* Table of cell_specs */
+const struct cell_spec cell_spec[n_MEANS_STATISTICS] = {
+ {N_("Mean"), "MEAN", default_create, default_update, arithmean_get},
+ {N_("N"), "COUNT", default_create, default_update, n_get},
+ {N_("Std. Deviation"), "STDDEV", default_create, default_update, stddev_get},
+#if 0
+ {N_("Median"), "MEDIAN", default_create, default_update, NULL},
+ {N_("Group Median"), "GMEDIAN", default_create, default_update, NULL},
+#endif
+ {N_("S.E. Mean"), "SEMEAN", default_create, default_update, semean_get},
+ {N_("Sum"), "SUM", default_create, default_update, sum_get},
+ {N_("Minimum"), "MIN", min_create, min_update, min_get},
+ {N_("Maximum"), "MAX", max_create, max_update, max_get},
+ {N_("Range"), "RANGE", range_create, range_update, range_get},
+ {N_("Variance"), "VARIANCE", default_create, default_update, variance_get},
+ {N_("Kurtosis"), "KURT", default_create, default_update, kurt_get},
+ {N_("S.E. Kurt"), "SEKURT", default_create, default_update, sekurt_get},
+ {N_("Skewness"), "SKEW", default_create, default_update, skew_get},
+ {N_("S.E. Skew"), "SESKEW", default_create, default_update, seskew_get},
+ {N_("First"), "FIRST", first_create, first_update, first_get},
+ {N_("Last"), "LAST", last_create, last_update, last_get},
+#if 0
+ {N_("Percent N"), "NPCT", default_create, default_update, NULL},
+ {N_("Percent Sum"), "SPCT", default_create, default_update, NULL},
+#endif
+ {N_("Harmonic Mean"), "HARMONIC", harmonic_create, harmonic_update, harmonic_get},
+ {N_("Geom. Mean"), "GEOMETRIC", geometric_create, geometric_update, geometric_get}
+};
/* PSPP - a program for statistical analysis.
- Copyright (C) 2011, 2012, 2013 Free Software Foundation, Inc.
+ Copyright (C) 2011, 2012, 2013, 2019 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
#include "data/format.h"
#include "data/variable.h"
-#include "language/command.h"
-#include "language/lexer/lexer.h"
-#include "language/lexer/variable-parser.h"
-
-#include "libpspp/misc.h"
-#include "libpspp/pool.h"
-
-#include "math/categoricals.h"
-#include "math/interaction.h"
-#include "math/moments.h"
+#include "libpspp/hmap.h"
+#include "libpspp/bt.h"
#include "output/pivot-table.h"
-#include <math.h>
+#include "means.h"
+
#include "gettext.h"
#define _(msgid) gettext (msgid)
#define N_(msgid) (msgid)
+/* A "cell" in this procedure represents a distinct value of the
+ procedure's categorical variables, and a set of summary statistics
+ of all cases which whose categorical variables have that set of
+ values. For example, the dataset
-struct means;
-
-struct per_var_data
-{
- void **cell_stats;
- struct moments1 *mom;
-};
-
-
-typedef void *stat_create (struct pool *pool);
-typedef void stat_update (void *stat, double w, double x);
-typedef double stat_get (const struct per_var_data *, void *aux);
-
-struct cell_spec
-{
- /* Printable title for output */
- const char *title;
+ v1 v2 cat1 cat2
+ 100 202 0 1
+ 100 202 0 2
+ 100 202 1 0
+ 100 202 0 1
- /* Keyword for syntax */
- const char *keyword;
- stat_create *sc;
- stat_update *su;
- stat_get *sd;
-};
+ has three cells in layer 0 and two cells in layer 1 in addition
+ to a "grand summary" cell to which all (non-missing) cases
+ contribute.
-struct harmonic_mean
-{
- double rsum;
- double n;
-};
-
-static void *
-harmonic_create (struct pool *pool)
+ The cells form a n-ary tree structure with the "grand summary"
+ cell at the root.
+ */
+struct cell
{
- struct harmonic_mean *hm = pool_alloc (pool, sizeof *hm);
+ struct hmap_node hmap_node; /* Element in hash table. */
+ struct bt_node bt_node; /* Element in binary tree */
- hm->rsum = 0;
- hm->n = 0;
-
- return hm;
-}
+ struct cell_container children;
+ /* The level of the subtotal to which this cell pertains, or
+ -1 if it does not pertain to a subtotal. */
+ int subtotal;
-static void
-harmonic_update (void *stat, double w, double x)
-{
- struct harmonic_mean *hm = stat;
- hm->rsum += w / x;
- hm->n += w;
-}
-
-
-static double
-harmonic_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- struct harmonic_mean *hm = stat;
+ /* The statistics to be calculated for the cell. */
+ struct per_var_data **stat;
- return hm->n / hm->rsum;
-}
+ /* The parent of this cell, or NULL if this is the root cell. */
+ struct cell *parent_cell;
-\f
+ int n_subtotals;
+ struct cell_container *subtotals;
-struct geometric_mean
-{
- double prod;
- double n;
+ int n_values;
+ union value values[1]; /* The value(s). */
};
-
-static void *
-geometric_create (struct pool *pool)
-{
- struct geometric_mean *gm = pool_alloc (pool, sizeof *gm);
-
- gm->prod = 1.0;
- gm->n = 0;
-
- return gm;
-}
-
-
static void
-geometric_update (void *stat, double w, double x)
-{
- struct geometric_mean *gm = stat;
- gm->prod *= pow (x, w);
- gm->n += w;
-}
-
-
-static double
-geometric_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- struct geometric_mean *gm = stat;
-
- return pow (gm->prod, 1.0 / gm->n);
-}
-
-\f
-
-static double
-sum_get (const struct per_var_data *pvd, void *stat UNUSED)
-{
- double n, mean;
-
- moments1_calculate (pvd->mom, &n, &mean, 0, 0, 0);
-
- return mean * n;
-}
-
-
-static double
-n_get (const struct per_var_data *pvd, void *stat UNUSED)
-{
- double n;
-
- moments1_calculate (pvd->mom, &n, 0, 0, 0, 0);
-
- return n;
-}
-
-static double
-arithmean_get (const struct per_var_data *pvd, void *stat UNUSED)
+dump_cell (const struct cell *cell, int level)
{
- double n, mean;
-
- moments1_calculate (pvd->mom, &n, &mean, 0, 0, 0);
-
- return mean;
+ printf ("%p: ", cell);
+ for (int i = 0; i < cell->n_values; ++i)
+ printf ("%g; ", cell->values[i].f);
+ // printf ("--- Count: %g", cell->count);
+ // printf ("--- N Subtotals: %d", cell->n_subtotals);
+ printf ("--- Level: %d", level);
+ printf ("--- Subtotal: %d", cell->subtotal);
+ printf ("--- Parent: %p", cell->parent_cell);
+ printf ("\n");
}
-static double
-variance_get (const struct per_var_data *pvd, void *stat UNUSED)
+static void
+dump_tree (const struct cell *cell, int level)
{
- double n, mean, variance;
+ struct cell *sub_cell;
+ BT_FOR_EACH (sub_cell, struct cell, bt_node, &cell->children.bt)
+ {
+ dump_tree (sub_cell, level + 1);
+ }
- moments1_calculate (pvd->mom, &n, &mean, &variance, 0, 0);
+ for (int i = 0; i < cell->n_subtotals; ++i)
+ {
+ struct cell_container *container = cell->subtotals + i;
+ struct cell *scell;
+ BT_FOR_EACH (scell, struct cell, bt_node, &container->bt)
+ {
+ dump_cell (scell, level);
+ }
+ }
- return variance;
+ dump_cell (cell, level);
}
-
-static double
-stddev_get (const struct per_var_data *pvd, void *stat)
+struct instance
{
- return sqrt (variance_get (pvd, stat));
-}
+ struct hmap_node hmap_node; /* Element in hash table. */
+ struct bt_node bt_node; /* Element in binary tree */
+ /* A unique, consecutive, zero based index identifying this
+ instance. */
+ int index;
-\f
+ /* The top level value of this instance. */
+ union value value;
+};
-static double
-skew_get (const struct per_var_data *pvd, void *stat UNUSED)
+static void
+dump_layer (const struct layer *layer)
{
- double skew;
-
- moments1_calculate (pvd->mom, NULL, NULL, NULL, &skew, 0);
+ printf ("Layer: %p; fv0: %s; N %ld\n", layer,
+ layer->n_factor_vars
+ ? var_get_name (layer->factor_vars[0])
+ : "(null)",
+ hmap_count (&layer->instances.map)
+ );
- return skew;
+ struct instance *inst;
+ BT_FOR_EACH (inst, struct instance, bt_node, &layer->instances.bt)
+ {
+ printf ("Val %g; Index %d\n", inst->value.f, inst->index);
+ }
+ printf ("\n");
}
-static double
-sekurt_get (const struct per_var_data *pvd, void *stat UNUSED)
-{
- double n;
-
- moments1_calculate (pvd->mom, &n, NULL, NULL, NULL, NULL);
-
- return calc_sekurt (n);
-}
-static double
-seskew_get (const struct per_var_data *pvd, void *stat UNUSED)
+/* Generate a hash based on the values of the N variables in
+ the array VARS which are taken from the case C. */
+static size_t
+generate_hash (const struct ccase *c, int n,
+ const struct variable * const * vars)
{
- double n;
-
- moments1_calculate (pvd->mom, &n, NULL, NULL, NULL, NULL);
+ size_t hash = 0;
+ for (int i = 0; i < n; ++i)
+ {
+ const struct variable *var = vars[i];
+ const union value *vv = case_data (c, var);
+ int width = var_get_width (var);
+ hash = value_hash (vv, width, hash);
+ }
- return calc_seskew (n);
+ return hash;
}
-static double
-kurt_get (const struct per_var_data *pvd, void *stat UNUSED)
+/* Create a cell based on the N variables in the array VARS,
+ which are indeces into the case C.
+ The caller is responsible for destroying this cell when
+ no longer needed. */
+static struct cell *
+generate_cell (const struct means *means, const struct ccase *c, int n,
+ const struct variable * const * vars)
{
- double kurt;
+ struct cell *cell = xzalloc ((sizeof *cell)
+ + (n - 1) * sizeof (union value));
+ cell->subtotal = -1;
+ cell->n_values = n;
+ for (int i = 0; i < n; ++i)
+ {
+ const struct variable *var = vars[i];
+ const union value *vv = case_data (c, var);
+ int width = var_get_width (var);
+ value_clone (&cell->values[i], vv, width);
+ }
- moments1_calculate (pvd->mom, NULL, NULL, NULL, NULL, &kurt);
+ hmap_init (&cell->children.map);
- return kurt;
-}
-
-static double
-semean_get (const struct per_var_data *pvd, void *stat UNUSED)
-{
- double n, var;
+ cell->stat = xcalloc (means->n_statistics, sizeof *cell->stat);
+ for (int stat = 0; stat < means->n_statistics; ++stat)
+ {
+ stat_create *sc = cell_spec[means->statistics[stat]].sc;
- moments1_calculate (pvd->mom, &n, NULL, &var, NULL, NULL);
+ cell->stat[stat] = sc (means->pool);
+ }
- return sqrt (var / n);
+ return cell;
}
-\f
-static void *
-min_create (struct pool *pool)
+/* If a cell based on the N variables in the array VARS,
+ which are indeces into the case C and whose hash is HASH,
+ exists in HMAP, then return that cell.
+ Otherwise, return NULL. */
+static struct cell *
+lookup_cell (struct hmap *hmap, size_t hash,
+ const struct ccase *c,
+ int n, const struct variable * const * vars)
{
- double *r = pool_alloc (pool, sizeof *r);
-
- *r = DBL_MAX;
-
- return r;
+ struct cell *fcol = NULL;
+ HMAP_FOR_EACH_WITH_HASH (fcol, struct cell, hmap_node, hash, hmap)
+ {
+ bool match = true;
+ for (int i = 0; i < n; ++i)
+ {
+ const struct variable *var = vars[i];
+ const union value *vv = case_data (c, var);
+ int width = var_get_width (var);
+ if (!value_equal (vv, &fcol->values[i], width))
+ {
+ match = false;
+ break;
+ }
+ }
+ if (match)
+ return fcol;
+ }
+ return NULL;
}
-static void
-min_update (void *stat, double w UNUSED, double x)
-{
- double *r = stat;
-
- if (x < *r)
- *r = x;
-}
-static double
-min_get (const struct per_var_data *pvd UNUSED, void *stat)
+/* A comparison function used to sort cells in a binary tree. */
+static int
+my_compare_func (const struct bt_node *a,
+ const struct bt_node *b,
+ const void *aux)
{
- double *r = stat;
-
- return *r;
-}
+ const struct cell *fa = BT_DATA (a, struct cell, bt_node);
+ const struct cell *fb = BT_DATA (b, struct cell, bt_node);
-static void *
-max_create (struct pool *pool)
-{
- double *r = pool_alloc (pool, sizeof *r);
+ const struct variable *const *cv = aux;
- *r = -DBL_MAX;
+ int vidx = fa->n_values - 1;
+ assert (fa->n_values == fb->n_values);
+ // FIXME: Consider whether other layers need to be compared.
+ int r = value_compare_3way (&fa->values[vidx],
+ &fb->values[vidx],
+ var_get_width (cv[vidx]));
return r;
}
-static void
-max_update (void *stat, double w UNUSED, double x)
-{
- double *r = stat;
-
- if (x > *r)
- *r = x;
-}
-
-static double
-max_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- double *r = stat;
-
- return *r;
-}
-
-\f
-
-struct range
-{
- double min;
- double max;
-};
-
-static void *
-range_create (struct pool *pool)
+/* A comparison function used to sort cells in a binary tree. */
+static int
+my_other_compare_func (const struct bt_node *a,
+ const struct bt_node *b,
+ const void *aux)
{
- struct range *r = pool_alloc (pool, sizeof *r);
+ const struct instance *fa = BT_DATA (a, struct instance, bt_node);
+ const struct instance *fb = BT_DATA (b, struct instance, bt_node);
- r->min = DBL_MAX;
- r->max = -DBL_MAX;
+ const struct variable *var = aux;
+ int r = value_compare_3way (&fa->value,
+ &fb->value,
+ var_get_width (var));
return r;
}
-static void
-range_update (void *stat, double w UNUSED, double x)
-{
- struct range *r = stat;
-
- if (x > r->max)
- r->max = x;
-
- if (x < r->min)
- r->min = x;
-}
-
-static double
-range_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- struct range *r = stat;
-
- return r->max - r->min;
-}
-\f
+static void arrange_cells (struct cell *cell, const struct mtable *table);
-static void *
-last_create (struct pool *pool)
-{
- double *l = pool_alloc (pool, sizeof *l);
-
- return l;
-}
+/* Walk the tree starting at CELL, creating and populating the BT for
+ each cell. Also assigns the "rank", "parent_cell" and "subtotal" members
+ of each cell.*/
static void
-last_update (void *stat, double w UNUSED, double x)
-{
- double *l = stat;
-
- *l = x;
-}
-
-static double
-last_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- double *l = stat;
-
- return *l;
-}
-
-
-static void *
-first_create (struct pool *pool)
+arrange_cell (struct cell_container *container,
+ struct cell *cell, const struct mtable *table,
+ int subtotal)
{
- double *f = pool_alloc (pool, sizeof *f);
+ const struct variable **control_vars = table->control_vars;
+ struct bt *bt = &container->bt;
+ struct hmap *map = &container->map;
+ bt_init (bt, my_compare_func, control_vars);
- *f = SYSMIS;
+ struct cell *scell;
+ HMAP_FOR_EACH (scell, struct cell, hmap_node, map)
+ {
+ scell->parent_cell = cell;
+ scell->subtotal = subtotal;
+ bt_insert (bt, &scell->bt_node);
+ arrange_cells (scell, table);
+ }
- return f;
+ if (cell->n_values > 0 && cell->subtotal == -1)
+ {
+ struct layer *layer = table->layers[cell->n_values - 1];
+
+ const struct variable *var = control_vars[cell->n_values - 1];
+ int width = var_get_width (var);
+ unsigned int hash
+ = value_hash (&cell->values[cell->n_values - 1], width, 0);
+
+
+ struct instance *inst = NULL;
+ struct instance *next = NULL;
+ HMAP_FOR_EACH_WITH_HASH_SAFE (inst, next, struct instance, hmap_node,
+ hash, &layer->instances.map)
+ {
+ if (value_equal (&inst->value,
+ &cell->values[cell->n_values - 1],
+ width))
+ {
+ break;
+ }
+ }
+
+ if (!inst)
+ {
+ inst = xzalloc (sizeof *inst);
+ inst->index = -1;
+ value_copy (&inst->value, &cell->values[cell->n_values -1],
+ width);
+ hmap_insert (&layer->instances.map, &inst->hmap_node, hash);
+ }
+ }
}
+/* Arrange the children and then all the subtotals. */
static void
-first_update (void *stat, double w UNUSED, double x)
-{
- double *f = stat;
-
- if (*f == SYSMIS)
- *f = x;
-}
-
-static double
-first_get (const struct per_var_data *pvd UNUSED, void *stat)
-{
- double *f = stat;
-
- return *f;
-}
-
-enum
- {
- MEANS_MEAN = 0,
- MEANS_N,
- MEANS_STDDEV
- };
-
-/* Table of cell_specs */
-static const struct cell_spec cell_spec[] = {
- {N_("Mean"), "MEAN", NULL, NULL, arithmean_get},
- {N_("N"), "COUNT", NULL, NULL, n_get},
- {N_("Std. Deviation"), "STDDEV", NULL, NULL, stddev_get},
-#if 0
- {N_("Median"), "MEDIAN", NULL, NULL, NULL},
- {N_("Group Median"), "GMEDIAN", NULL, NULL, NULL},
-#endif
- {N_("S.E. Mean"), "SEMEAN", NULL, NULL, semean_get},
- {N_("Sum"), "SUM", NULL, NULL, sum_get},
- {N_("Min"), "MIN", min_create, min_update, min_get},
- {N_("Max"), "MAX", max_create, max_update, max_get},
- {N_("Range"), "RANGE", range_create, range_update, range_get},
- {N_("Variance"), "VARIANCE", NULL, NULL, variance_get},
- {N_("Kurtosis"), "KURT", NULL, NULL, kurt_get},
- {N_("S.E. Kurt"), "SEKURT", NULL, NULL, sekurt_get},
- {N_("Skewness"), "SKEW", NULL, NULL, skew_get},
- {N_("S.E. Skew"), "SESKEW", NULL, NULL, seskew_get},
- {N_("First"), "FIRST", first_create, first_update, first_get},
- {N_("Last"), "LAST", last_create, last_update, last_get},
-#if 0
- {N_("Percent N"), "NPCT", NULL, NULL, NULL},
- {N_("Percent Sum"), "SPCT", NULL, NULL, NULL},
-#endif
- {N_("Harmonic Mean"), "HARMONIC", harmonic_create, harmonic_update, harmonic_get},
- {N_("Geom. Mean"), "GEOMETRIC", geometric_create, geometric_update, geometric_get}
-};
-
-#define n_C (sizeof (cell_spec) / sizeof (struct cell_spec))
-
-
-struct summary
-{
- casenumber missing;
- casenumber non_missing;
-};
-
-
-struct layer
-{
- size_t n_factor_vars;
- const struct variable **factor_vars;
-};
-
-/* The thing parsed after TABLES= */
-struct mtable
+arrange_cells (struct cell *cell, const struct mtable *table)
{
- size_t n_dep_vars;
- const struct variable **dep_vars;
+ arrange_cell (&cell->children, cell, table, -1);
- int n_layers;
- struct layer *layers;
-
- struct interaction **interactions;
- struct summary *summary;
-
- int ii;
-
- struct categoricals *cats;
-};
-
-struct means
-{
- const struct dictionary *dict;
-
- struct mtable *table;
- size_t n_tables;
-
- /* Missing value class for categorical variables */
- enum mv_class exclude;
-
- /* Missing value class for dependent variables */
- enum mv_class dep_exclude;
-
- bool listwise_exclude;
-
- /* an array indicating which statistics are to be calculated */
- int *cells;
-
- /* Size of cells */
- int n_cells;
-
- /* Pool on which cell functions may allocate data */
- struct pool *pool;
-};
-
-
-static void
-run_means (struct means *cmd, struct casereader *input,
- const struct dataset *ds);
-
-
-
-static bool
-parse_means_table_syntax (struct lexer *lexer, const struct means *cmd, struct mtable *table)
-{
- table->ii = 0;
- table->n_layers = 0;
- table->layers = NULL;
- table->interactions = NULL;
-
- /* Dependent variable (s) */
- if (!parse_variables_const_pool (lexer, cmd->pool, cmd->dict,
- &table->dep_vars, &table->n_dep_vars,
- PV_NO_DUPLICATE | PV_NUMERIC))
- return false;
-
- /* Factor variable (s) */
- while (lex_match (lexer, T_BY))
+ for (int s = 0; s < cell->n_subtotals; ++ s)
{
- table->n_layers++;
- table->layers =
- pool_realloc (cmd->pool, table->layers,
- sizeof (*table->layers) * table->n_layers);
-
- if (!parse_variables_const_pool
- (lexer, cmd->pool, cmd->dict,
- &table->layers[table->n_layers - 1].factor_vars,
- &table->layers[table->n_layers - 1].n_factor_vars,
- PV_NO_DUPLICATE))
- return false;
+ arrange_cell (cell->subtotals + s, cell, table, s);
}
-
- /* There is always at least one layer.
- However the final layer is the total, and not
- normally considered by the user as a
- layer.
- */
-
- table->n_layers++;
- table->layers =
- pool_realloc (cmd->pool, table->layers,
- sizeof (*table->layers) * table->n_layers);
- table->layers[table->n_layers - 1].factor_vars = NULL;
- table->layers[table->n_layers - 1].n_factor_vars = 0;
-
- return true;
}
-/* Match a variable.
- If the match succeeds, the variable will be placed in VAR.
- Returns true if successful */
-static bool
-lex_is_variable (struct lexer *lexer, const struct dictionary *dict,
- int n)
-{
- const char *tstr;
- if (lex_next_token (lexer, n) != T_ID)
- return false;
-
- tstr = lex_next_tokcstr (lexer, n);
-
- if (NULL == dict_lookup_var (dict, tstr) )
- return false;
-
- return true;
-}
-
-
-int
-cmd_means (struct lexer *lexer, struct dataset *ds)
-{
- int t;
- int i;
- int l;
- struct means means;
- bool more_tables = true;
-
- means.pool = pool_create ();
-
- means.exclude = MV_ANY;
- means.dep_exclude = MV_ANY;
- means.listwise_exclude = false;
- means.table = NULL;
- means.n_tables = 0;
-
- means.dict = dataset_dict (ds);
-
- means.n_cells = 3;
- means.cells = pool_calloc (means.pool, means.n_cells, sizeof (*means.cells));
-
-
- /* The first three items (MEAN, COUNT, STDDEV) are the default */
- for (i = 0; i < 3; ++i)
- means.cells[i] = i;
+\f
- /* Optional TABLES = */
- if (lex_match_id (lexer, "TABLES"))
+/* If the top level value in CELL, has an instance in LAYER, then
+ return that instance. Otherwise return NULL. */
+static const struct instance *
+lookup_instance (const struct layer *layer, const struct cell *cell)
+{
+ const struct variable *var = layer->factor_vars[0];
+ const union value *val = cell->values + cell->n_values - 1;
+ int width = var_get_width (var);
+ unsigned int hash = value_hash (val, width, 0);
+ struct instance *inst = NULL;
+ struct instance *next;
+ HMAP_FOR_EACH_WITH_HASH_SAFE (inst, next,
+ struct instance, hmap_node,
+ hash, &layer->instances.map)
{
- if (! lex_force_match (lexer, T_EQUALS))
- goto error;
+ if (value_equal (val, &inst->value, width))
+ break;
}
+ return inst;
+}
-
- more_tables = true;
- /* Parse the "tables" */
- while (more_tables)
+static void
+populate_table (const struct cell *cell, const struct means *means,
+ struct pivot_table *table, int level)
+{
+ /* It is easier to overallocate this table by 2, than to adjust the
+ logic when assigning its contents, and it is cheap to do so. */
+ size_t *indexes = xcalloc (table->n_dimensions + 2, sizeof *indexes);
+ for (int s = 0; s < means->n_statistics; ++s)
{
- means.n_tables ++;
- means.table = pool_realloc (means.pool, means.table, means.n_tables * sizeof (*means.table));
-
- if (! parse_means_table_syntax (lexer, &means,
- &means.table[means.n_tables - 1]))
+ bool kludge = false; // FIXME: Remove this for production.
+ indexes[0] = s;
+ int stat = means->statistics[s];
+ if (cell->subtotal != -1)
{
- goto error;
+ // for (int i = 1; i < table->n_dimensions; ++i)
+ {
+ int i = 1;
+ const struct layer *layer
+ = means->table->layers[table->n_dimensions - 1 - i];
+ assert (layer);
+ const struct instance *inst = lookup_instance (layer, cell);
+ assert (inst);
+ indexes[i] = inst->index;
+ }
+ int i = 2;
+ const struct layer *layer
+ = means->table->layers[table->n_dimensions - 1 - i];
+ indexes[i] = hmap_count (&layer->instances.map);
+ kludge = true;
}
-
- /* Look ahead to see if there are more tables to be parsed */
- more_tables = false;
- if ( T_SLASH == lex_next_token (lexer, 0) )
+ else if (hmap_is_empty (&cell->children.map))
{
- if (lex_is_variable (lexer, means.dict, 1) )
+ const struct cell *pc = cell;
+ for (int i = 1; i < table->n_dimensions; ++i)
{
- more_tables = true;
- lex_match (lexer, T_SLASH);
+ const struct layer *layer
+ = means->table->layers[table->n_dimensions - 1 - i];
+
+ const struct instance *inst = lookup_instance (layer, pc);
+ assert (inst);
+ indexes[i] = inst->index;
+ pc = pc->parent_cell;
}
+ kludge = true;
}
- }
-
- /* /MISSING subcommand */
- while (lex_token (lexer) != T_ENDCMD)
- {
- lex_match (lexer, T_SLASH);
-
- if (lex_match_id (lexer, "MISSING"))
+ else
{
- /*
- If no MISSING subcommand is specified, each combination of
- a dependent variable and categorical variables is handled
- separately.
- */
- lex_match (lexer, T_EQUALS);
- if (lex_match_id (lexer, "INCLUDE"))
+ const struct layer *layer;
+ int i = 0;
+ for (int st = 0; st < cell->n_subtotals; ++st)
{
- /*
- Use the subcommand "/MISSING=INCLUDE" to include user-missing
- values in the analysis.
- */
-
- means.exclude = MV_SYSTEM;
- means.dep_exclude = MV_SYSTEM;
+ layer = means->table->layers[table->n_dimensions - i - 2];
+ indexes[++i] = hmap_count (&layer->instances.map);
}
- else if (lex_match_id (lexer, "TABLE"))
- /*
- This is the default. (I think).
- Every case containing a complete set of variables for a given
- table. If any variable, categorical or dependent for in a table
- is missing (as defined by what?), then that variable will
- be dropped FOR THAT TABLE ONLY.
- */
+ layer = means->table->layers[table->n_dimensions - i - 2];
+ indexes[++i] = hmap_count (&layer->instances.map);
+ if (++i < table->n_dimensions)
{
- means.listwise_exclude = true;
- }
- else if (lex_match_id (lexer, "DEPENDENT"))
- /*
- Use the command "/MISSING=DEPENDENT" to
- include user-missing values for the categorical variables,
- while excluding them for the dependent variables.
-
- Cases are dropped only when user-missing values
- appear in dependent variables. User-missing
- values for categorical variables are treated according to
- their face value.
-
- Cases are ALWAYS dropped when System Missing values appear
- in the categorical variables.
- */
- {
- means.dep_exclude = MV_ANY;
- means.exclude = MV_SYSTEM;
- }
- else
- {
- lex_error (lexer, NULL);
- goto error;
+ layer = means->table->layers[table->n_dimensions - i - 1];
+ const struct instance *inst = lookup_instance (layer, cell);
+ assert (inst);
+ indexes[i] = inst->index;
}
+ kludge = true;
}
- else if (lex_match_id (lexer, "CELLS"))
- {
- lex_match (lexer, T_EQUALS);
- /* The default values become overwritten */
- means.n_cells = 0;
- while (lex_token (lexer) != T_ENDCMD
- && lex_token (lexer) != T_SLASH)
- {
- int k = 0;
- if (lex_match (lexer, T_ALL))
- {
- int x;
- means.cells =
- pool_realloc (means.pool, means.cells,
- (means.n_cells += n_C) * sizeof (*means.cells));
-
- for (x = 0; x < n_C; ++x)
- means.cells[means.n_cells - (n_C - 1 - x) - 1] = x;
- }
- else if (lex_match_id (lexer, "NONE"))
- {
- /* Do nothing */
- }
- else if (lex_match_id (lexer, "DEFAULT"))
- {
- means.cells =
- pool_realloc (means.pool, means.cells,
- (means.n_cells += 3) * sizeof (*means.cells));
-
- means.cells[means.n_cells - 2 - 1] = MEANS_MEAN;
- means.cells[means.n_cells - 1 - 1] = MEANS_N;
- means.cells[means.n_cells - 0 - 1] = MEANS_STDDEV;
- }
- else
- {
- for (; k < n_C; ++k)
- {
- if (lex_match_id (lexer, cell_spec[k].keyword))
- {
- means.cells =
- pool_realloc (means.pool, means.cells,
- ++means.n_cells * sizeof (*means.cells));
-
- means.cells[means.n_cells - 1] = k;
- break;
- }
- }
- }
- if (k >= n_C)
- {
- lex_error (lexer, NULL);
- goto error;
- }
- }
- }
- else
+ if (kludge)
{
- lex_error (lexer, NULL);
- goto error;
+ stat_get *sg = cell_spec[stat].sd;
+ pivot_table_put (table, indexes, table->n_dimensions,
+ pivot_value_new_number (sg (cell->stat[s])));
}
}
+ free (indexes);
-
-
- for (t = 0; t < means.n_tables; ++t)
+ const struct bt *bt = &cell->children.bt;
+ struct cell *child = NULL;
+ BT_FOR_EACH (child, struct cell, bt_node, bt)
{
- struct mtable *table = &means.table[t];
-
- table->interactions =
- pool_calloc (means.pool, table->n_layers, sizeof (*table->interactions));
-
- table->summary =
- pool_calloc (means.pool, table->n_dep_vars * table->n_layers, sizeof (*table->summary));
+ populate_table (child, means, table, level + 1);
+ }
- for (l = 0; l < table->n_layers; ++l)
+ // printf ("There are %d subtotals\n", cell->n_subtotals);
+ for (int i = 0; i < cell->n_subtotals; ++i)
+ {
+ // printf ("aa\n");
+ const struct cell_container *st = cell->subtotals + i;
+ struct cell *scell;
+ HMAP_FOR_EACH (scell, struct cell, hmap_node, &st->map)
{
- int v;
- const struct layer *lyr = &table->layers[l];
- const int n_vars = lyr->n_factor_vars;
- table->interactions[l] = interaction_create (NULL);
- for (v = 0; v < n_vars ; ++v)
- {
- interaction_add_variable (table->interactions[l],
- lyr->factor_vars[v]);
- }
+ // printf ("%s:%d xxx\n", __FILE__, __LINE__);
+ /* dump_cell (scell, 0); */
+ populate_table (scell, means, table, level + 1);
}
+ // printf ("zz\n");
}
+ // printf ("ooo\n");
+}
- {
- struct casegrouper *grouper;
- struct casereader *group;
- bool ok;
-
- grouper = casegrouper_create_splits (proc_open (ds), means.dict);
- while (casegrouper_get_next_group (grouper, &group))
- {
- run_means (&means, group, ds);
- }
- ok = casegrouper_destroy (grouper);
- ok = proc_commit (ds) && ok;
- }
+static void
+ann_dim (struct pivot_table *t, int d, size_t *indeces)
+{
+ if (d < 0)
+ return;
+ char label[10];
- for (t = 0; t < means.n_tables; ++t)
+ const struct pivot_dimension *dim = t->dimensions[d];
+ for (int l = 0; l < dim->n_leaves; ++l)
{
- int l;
- struct mtable *table = &means.table[t];
- if (table->interactions)
- for (l = 0; l < table->n_layers; ++l)
- {
- interaction_destroy (table->interactions[l]);
- }
+ indeces[d] = l;
+ int x;
+ for (x = 0; x < t->n_dimensions; ++x)
+ {
+ label[x] = '0' + indeces[x];
+ }
+ label[x] = '\0';
+ pivot_table_put (t, indeces, t->n_dimensions,
+ pivot_value_new_user_text (label, x));
+ ann_dim (t, d - 1, indeces);
}
+}
- pool_destroy (means.pool);
- return CMD_SUCCESS;
-
- error:
+static void
+annotate_table (struct pivot_table *t)
+{
+ size_t *indeces = xcalloc (t->n_dimensions, sizeof *indeces);
- for (t = 0; t < means.n_tables; ++t)
+ for (int d = 0; d < t->n_dimensions; ++d)
{
- int l;
- struct mtable *table = &means.table[t];
- if (table->interactions)
- for (l = 0; l < table->n_layers; ++l)
- {
- interaction_destroy (table->interactions[l]);
- }
+ ann_dim (t, d, indeces);
}
-
- pool_destroy (means.pool);
- return CMD_FAILURE;
+ free (indeces);
}
-
-static bool
-is_missing (const struct means *cmd,
- const struct variable *dvar,
- const struct interaction *iact,
- const struct ccase *c)
+static void
+create_table_structure (const struct mtable *mt, struct pivot_table *table)
{
- if ( interaction_case_is_missing (iact, c, cmd->exclude) )
- return true;
-
+ for (int l = mt->n_layers -1; l >=0 ; --l)
+ {
+ const struct layer *layer = mt->layers[l];
+ assert (layer->n_factor_vars > 0);
+ const struct variable *var = layer->factor_vars[0];
+ struct pivot_dimension *dim_layer
+ = pivot_dimension_create (table, PIVOT_AXIS_ROW,
+ var_to_string (var));
+ dim_layer->root->show_label = true;
- if (var_is_value_missing (dvar,
- case_data (c, dvar),
- cmd->dep_exclude))
- return true;
+ {
+ struct instance *inst = NULL;
+ BT_FOR_EACH (inst, struct instance, bt_node, &layer->instances.bt)
+ {
+ struct substring space = SS_LITERAL_INITIALIZER ("\t ");
+ struct string str;
+ ds_init_empty (&str);
+ var_append_value_name (var,
+ &inst->value,
+ &str);
- return false;
-}
+ ds_ltrim (&str, space);
-static void output_case_processing_summary (const struct mtable *,
- const struct variable *wv);
+ pivot_category_create_leaf
+ (dim_layer->root,
+ pivot_value_new_text (ds_cstr (&str)));
-static void output_report (const struct means *, int, const struct mtable *);
+ ds_destroy (&str);
+ }
+ }
+ pivot_category_create_leaf
+ (dim_layer->root,
+ pivot_value_new_text ("Total"));
+ }
+}
-struct per_cat_data
+void
+means_shipout (const struct mtable *mt, const struct means *means)
{
- struct per_var_data *pvd;
-
- bool warn;
-};
-
+ struct pivot_table *table = pivot_table_create (N_("Report"));
-static void
-destroy_n (const void *aux1 UNUSED, void *aux2, void *user_data)
-{
- struct mtable *table = aux2;
- int v;
- struct per_cat_data *per_cat_data = user_data;
- struct per_var_data *pvd = per_cat_data->pvd;
+ struct pivot_dimension *dim_cells =
+ pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"));
- for (v = 0; v < table->n_dep_vars; ++v)
+ for (int i = 0; i < means->n_statistics; ++i)
{
- struct per_var_data *pp = &pvd[v];
- moments1_destroy (pp->mom);
+ const struct cell_spec *cs = cell_spec + means->statistics[i];
+ pivot_category_create_leaf
+ (dim_cells->root,
+ pivot_value_new_text (gettext (cs->title)));
}
+
+ create_table_structure (mt, table);
+
+ populate_table (mt->root_cell, means, table, 0);
+ // pivot_table_dump (table, 0);
+ // annotate_table (table);
+
+ pivot_table_submit (table);
}
-static void *
-create_n (const void *aux1, void *aux2)
-{
- int i, v;
- const struct means *means = aux1;
- struct mtable *table = aux2;
- struct per_cat_data *per_cat_data = pool_malloc (means->pool, sizeof *per_cat_data);
+\f
- struct per_var_data *pvd = pool_calloc (means->pool, table->n_dep_vars, sizeof *pvd);
+static bool
+missing_for_layer (const struct layer *layer, const struct ccase *c)
+{
+ if (layer->n_factor_vars == 0)
+ return false;
- for (v = 0; v < table->n_dep_vars; ++v)
- {
- enum moment maxmom = MOMENT_KURTOSIS;
- struct per_var_data *pp = &pvd[v];
+ const struct variable *var = layer->factor_vars[0];
+ const union value *vv = case_data (c, var);
- pp->cell_stats = pool_calloc (means->pool, means->n_cells, sizeof *pp->cell_stats);
+ return var_is_value_missing (var, vv, MV_ANY);
+}
- for (i = 0; i < means->n_cells; ++i)
- {
- int csi = means->cells[i];
- const struct cell_spec *cs = &cell_spec[csi];
- if (cs->sc)
- {
- pp->cell_stats[i] = cs->sc (means->pool);
- }
- }
- pp->mom = moments1_create (maxmom);
+static bool
+missing_for_any_layer (const struct mtable *table,
+ int startx,
+ const struct ccase *c)
+{
+ bool miss = false;
+ for (int l = startx; l < table->n_layers; ++l)
+ {
+ miss = missing_for_layer (table->layers[l], c);
}
+ if (miss)
+ return true;
- per_cat_data->pvd = pvd;
- per_cat_data->warn = true;
- return per_cat_data;
+ return false;
}
-static void
-update_n (const void *aux1, void *aux2, void *user_data, const struct ccase *c, double weight)
+static struct cell *
+update_map_from_data (const struct means *means,
+ const struct mtable *table,
+ int startx,
+ struct hmap *map,
+ const struct ccase *c,
+ int start_var,
+ int n_vars,
+ double weight)
{
- int i;
- int v = 0;
- const struct means *means = aux1;
- struct mtable *table = aux2;
- struct per_cat_data *per_cat_data = user_data;
-
- for (v = 0; v < table->n_dep_vars; ++v)
+ const struct variable **cv = table->control_vars + start_var;
+ if (! missing_for_any_layer (table, startx, c))
{
- struct per_var_data *pvd = &per_cat_data->pvd[v];
+ const struct variable *dep_var = table->dep_vars[0];
- const double x = case_data (c, table->dep_vars[v])->f;
+ size_t hash = generate_hash (c, n_vars, cv);
- for (i = 0; i < table->n_layers; ++i)
+ struct cell *fcol = lookup_cell (map, hash,
+ c, n_vars, cv);
+ if (!fcol)
{
- if ( is_missing (means, table->dep_vars[v],
- table->interactions[i], c))
- goto end;
+ fcol = generate_cell (means, c, n_vars, cv);
+ fcol->n_subtotals = table->n_layers - 2 - start_var;
+ if (fcol->n_subtotals < 0)
+ fcol->n_subtotals = 0;
+ fcol->subtotals = xcalloc (fcol->n_subtotals,
+ sizeof *fcol->subtotals);
+ for (int i = 0; i < fcol->n_subtotals; ++i)
+ {
+ struct cell_container *c = fcol->subtotals + i;
+ hmap_init (&c->map);
+ }
+
+ hmap_insert (map, &fcol->hmap_node, hash);
}
- for (i = 0; i < means->n_cells; ++i)
+ for (int stat = 0; stat < means->n_statistics; ++stat)
{
- const int csi = means->cells[i];
- const struct cell_spec *cs = &cell_spec[csi];
-
-
- if (cs->su)
- cs->su (pvd->cell_stats[i],
- weight, x);
+ stat_update *su = cell_spec[means->statistics[stat]].su;
+ su (fcol->stat[stat], weight, case_data (c, dep_var)->f);
}
- moments1_add (pvd->mom, x, weight);
-
- end:
- continue;
+ return fcol;
}
+ return NULL;
}
-static void
-calculate_n (const void *aux1, void *aux2, void *user_data)
-{
- int i;
- int v = 0;
- struct per_cat_data *per_cat_data = user_data;
- const struct means *means = aux1;
- struct mtable *table = aux2;
- for (v = 0; v < table->n_dep_vars; ++v)
- {
- struct per_var_data *pvd = &per_cat_data->pvd[v];
- for (i = 0; i < means->n_cells; ++i)
- {
- int csi = means->cells[i];
- const struct cell_spec *cs = &cell_spec[csi];
-
- if (cs->su)
- cs->sd (pvd, pvd->cell_stats[i]);
- }
- }
-}
-
-static void
+void
run_means (struct means *cmd, struct casereader *input,
const struct dataset *ds UNUSED)
{
- int t;
- const struct variable *wv = dict_get_weight (cmd->dict);
+ struct mtable *table = cmd->table + 0;
struct ccase *c;
struct casereader *reader;
- struct payload payload;
- payload.create = create_n;
- payload.update = update_n;
- payload.calculate = calculate_n;
- payload.destroy = destroy_n;
-
- for (t = 0; t < cmd->n_tables; ++t)
+ table->root_cell = generate_cell (cmd, 0, 0, 0);
+ table->root_cell->n_subtotals = table->n_layers - 1;
+ if (table->root_cell->n_subtotals < 0)
+ table->root_cell->n_subtotals = 0;
+ table->root_cell->subtotals
+ = xcalloc (table->root_cell->n_subtotals,
+ sizeof *table->root_cell->subtotals);
+ for (int i = 0; i < table->root_cell->n_subtotals; ++i)
{
- struct mtable *table = &cmd->table[t];
- table->cats
- = categoricals_create (table->interactions,
- table->n_layers, wv, cmd->exclude);
+ struct cell_container *c = table->root_cell->subtotals + i;
+ hmap_init (&c->map);
+ }
- categoricals_set_payload (table->cats, &payload, cmd, table);
+ table->control_vars
+ = calloc (table->n_layers, sizeof *table->control_vars);
+ for (int l = 0; l < table->n_layers; ++l)
+ {
+ const struct layer *layer = table->layers[l];
+ if (layer->n_factor_vars > 0)
+ table->control_vars[l] = layer->factor_vars[0];
}
+ struct cell *cell = table->root_cell;
+ const struct variable *dep_var = table->dep_vars[0];
for (reader = input;
(c = casereader_read (reader)) != NULL; case_unref (c))
{
- for (t = 0; t < cmd->n_tables; ++t)
+ const double weight = dict_get_case_weight (cmd->dict, c, NULL);
+ if (! missing_for_any_layer (table, 0, c))
{
- bool something_missing = false;
- int v;
- struct mtable *table = &cmd->table[t];
-
- for (v = 0; v < table->n_dep_vars; ++v)
+ for (int stat = 0; stat < cmd->n_statistics; ++stat)
{
- int i;
- for (i = 0; i < table->n_layers; ++i)
- {
- const bool missing =
- is_missing (cmd, table->dep_vars[v],
- table->interactions[i], c);
- if (missing)
- {
- something_missing = true;
- table->summary[v * table->n_layers + i].missing++;
- }
- else
- table->summary[v * table->n_layers + i].non_missing++;
- }
+ stat_update *su = cell_spec[cmd->statistics[stat]].su;
+ su (cell->stat[stat], weight, case_data (c, dep_var)->f);
}
- if ( something_missing && cmd->listwise_exclude)
- continue;
-
- categoricals_update (table->cats, c);
}
- }
- casereader_destroy (reader);
-
- for (t = 0; t < cmd->n_tables; ++t)
- {
- struct mtable *table = &cmd->table[t];
-
- categoricals_done (table->cats);
- }
-
-
- for (t = 0; t < cmd->n_tables; ++t)
- {
- int i;
- const struct mtable *table = &cmd->table[t];
-
- output_case_processing_summary (table, wv);
- for (i = 0; i < table->n_layers; ++i)
+ for (int i = 0; i < cell->n_subtotals; ++i)
{
- output_report (cmd, i, table);
+ struct cell_container *container = cell->subtotals + i;
+ update_map_from_data (cmd, table, 1, &container->map, c, 1, 1,
+ weight);
}
- categoricals_destroy (table->cats);
- }
-
-}
-
-
-static void
-output_case_processing_summary (const struct mtable *mt,
- const struct variable *wv)
-{
- struct pivot_table *table = pivot_table_create (
- N_("Case Processing Summary"));
- pivot_table_set_weight_var (table, wv);
-
- pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"),
- N_("N"), PIVOT_RC_COUNT,
- N_("Percent"), PIVOT_RC_PERCENT);
- pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Cases"),
- N_("Included"), N_("Excluded"), N_("Total"))
- ->root->show_label = true;
-
- struct pivot_dimension *tables = pivot_dimension_create (
- table, PIVOT_AXIS_ROW, N_("Tables"));
-
- for (size_t v = 0; v < mt->n_dep_vars; ++v)
- {
- const struct variable *var = mt->dep_vars[v];
- for (size_t i = 0; i < mt->n_layers; ++i)
+ struct hmap *map = &cell->children.map;
+ for (int l = 0; l < table->n_layers; ++l)
{
- const int row = v * mt->n_layers + i;
- const struct interaction *iact = mt->interactions[i];
-
- struct string str = DS_EMPTY_INITIALIZER;
- ds_put_format (&str, "%s: ", var_to_string (var));
- interaction_to_string (iact, &str);
- int table_idx = pivot_category_create_leaf (
- tables->root, pivot_value_new_user_text_nocopy (
- ds_steal_cstr (&str)));
-
- const struct summary *s = &mt->summary[row];
- double n_total = s->missing + s->non_missing;
- struct entry
- {
- int stat_idx;
- int case_idx;
- double x;
- }
- entries[] =
- {
- { 0, 0, s->non_missing },
- { 1, 0, s->non_missing / n_total * 100.0 },
- { 0, 1, s->missing },
- { 1, 1, s->missing / n_total * 100.0 },
- { 0, 2, n_total },
- { 1, 2, 100.0 },
- };
-
- for (size_t j = 0; j < sizeof entries / sizeof *entries; j++)
- {
- const struct entry *e = &entries[j];
- pivot_table_put3 (table, e->stat_idx, e->case_idx, table_idx,
- pivot_value_new_number (e->x));
- }
- }
- }
-
- pivot_table_submit (table);
-}
+ struct cell *cell
+ = update_map_from_data (cmd, table, l, map, c,
+ 0, l + 1, weight);
-static void
-create_interaction_dimensions (struct pivot_table *table,
- const struct categoricals *cats,
- const struct interaction *iact)
-{
- for (size_t i = iact->n_vars; i-- > 0; )
- {
- const struct variable *var = iact->vars[i];
- struct pivot_dimension *d = pivot_dimension_create__ (
- table, PIVOT_AXIS_ROW, pivot_value_new_variable (var));
- d->root->show_label = true;
-
- size_t n;
- union value *values = categoricals_get_var_values (cats, var, &n);
- for (size_t j = 0; j < n; j++)
- pivot_category_create_leaf (
- d->root, pivot_value_new_var_value (var, &values[j]));
+ if (cell)
+ map = &cell->children.map;
+ }
}
-}
-
-static void
-output_report (const struct means *cmd, int iact_idx,
- const struct mtable *mt)
-{
- struct pivot_table *table = pivot_table_create (N_("Report"));
- table->omit_empty = true;
-
- struct pivot_dimension *statistics = pivot_dimension_create (
- table, PIVOT_AXIS_COLUMN, N_("Statistics"));
- for (int i = 0; i < cmd->n_cells; ++i)
- pivot_category_create_leaf (
- statistics->root, pivot_value_new_text (cell_spec[cmd->cells[i]].title));
-
- const struct interaction *iact = mt->interactions[iact_idx];
- create_interaction_dimensions (table, mt->cats, iact);
-
- struct pivot_dimension *dep_dim = pivot_dimension_create (
- table, PIVOT_AXIS_ROW, N_("Dependent Variables"));
-
- size_t *indexes = xnmalloc (table->n_dimensions, sizeof *indexes);
+ casereader_destroy (reader);
- size_t n_cats = categoricals_n_count (mt->cats, iact_idx);
- for (size_t v = 0; v < mt->n_dep_vars; ++v)
+ arrange_cells (table->root_cell, table);
+ for (int l = 0; l < table->n_layers; ++l)
{
- indexes[table->n_dimensions - 1] = pivot_category_create_leaf (
- dep_dim->root, pivot_value_new_variable (mt->dep_vars[v]));
-
- for (size_t i = 0; i < n_cats; ++i)
- {
- for (size_t j = 0; j < iact->n_vars; j++)
- {
- int idx = categoricals_get_value_index_by_category_real (
- mt->cats, iact_idx, i, j);
- indexes[table->n_dimensions - 2 - j] = idx;
- }
-
- struct per_cat_data *per_cat_data
- = categoricals_get_user_data_by_category_real (
- mt->cats, iact_idx, i);
-
- const struct per_var_data *pvd = &per_cat_data->pvd[v];
- for (int stat_idx = 0; stat_idx < cmd->n_cells; ++stat_idx)
- {
- indexes[0] = stat_idx;
- const int csi = cmd->cells[stat_idx];
- const struct cell_spec *cs = &cell_spec[csi];
-
- double result = cs->sd (pvd, pvd->cell_stats[stat_idx]);
- pivot_table_put (table, indexes, table->n_dimensions,
- pivot_value_new_number (result));
- }
- }
+ struct layer *layer = table->layers[l];
+ bt_init (&layer->instances.bt, my_other_compare_func,
+ table->control_vars[l]);
+
+ /* Iterate the instance hash table, and insert each instance
+ into the binary tree BT. */
+ struct instance *inst;
+ HMAP_FOR_EACH (inst, struct instance, hmap_node,
+ &layer->instances.map)
+ {
+ bt_insert (&layer->instances.bt, &inst->bt_node);
+ }
+
+ /* Iterate the binary tree (in order) and assign the index
+ member accordingly. */
+ int index = 0;
+ BT_FOR_EACH (inst, struct instance, bt_node, &layer->instances.bt)
+ {
+ inst->index = index++;
+ }
}
- free (indexes);
- pivot_table_submit (table);
+ /* The root cell should have no parent. */
+ assert (table->root_cell->parent_cell == 0);
+ dump_tree (table->root_cell, 0);
}
-