+++ /dev/null
-2006-07-16 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (get_coef): Fixed diagonal elements and call to
- innovations_convolve().
- (subtract_mean): New function. Subtract the mean before computing
- the coefficients.
-
-2006-07-15 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (get_covariance): Fixed computation of
- covariance. Made COV[i] the lag i covariance.
- (update_cov): New function.
- (get_covariance): Use gsl_vector_view's to get rows of correct
- lag.
-
-2006-07-14 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (innovations_struct_init): Fix initialization of
- coefficient.
-
-2006-07-13 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (pspp_innovations): Altered function to use struct
- design_matrix.
-
-2006-07-06 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (get_covariance): Fixed subscripts.
- (innovations_update_scale): Added check for subscript.
-
-2006-07-05 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (innovations_struct_init): New function.
-
-2006-07-03 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (init_theta): Fixed subscripts.
- * innovations.c (innovations_update_coeff): Fixed subscripts.
- * innovations.c (get_covarience): Fixed subscripts.
- * innovations.c (pspp_innovations_free): New function.
- * innovations.c (pspp_innovations_free_one): New function.
-
-2006-07-02 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (get_coef): Moved instructions to
- innovations_update_coeff() and init_theta().
- * innovations.c (get_coef): Fixed allocation of theta.
- * innovations.c (innovations_update_theta): New function.
- * innovations.c (init_theta): New function.
- * innovations.c (innovations_convolve): Fixed upper bound of
- subscript in sum.
-
-2006-07-01 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c: Use gsl_matrices to avoid use of casefiles by
- backend math routine.
-
-2006-06-21 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (innovations_update_scale): New function.
- * innovations.c (get_coef): Save computed coefficients in est->coeff.
-
- * innovations.c (get_coef): Initialize and free the innovations
- coefficients. Call innovations_update_scale ().
-
-2006-06-16 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (innovations_convolve): New function.
- * innovations.c (get_coef): New function.
-
-2006-06-04 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c (get_covariance): Initial version
-
-2006-05-25 Jason Stover <jhs@math.gcsu.edu>
-
- * innovations.c: New file
-
+++ /dev/null
-/* PSPP - a program for statistical analysis.
- Copyright (C) 2006, 2011 Free Software Foundation, Inc.
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-/*
- Find preliminary ARMA coefficients via the innovations algorithm.
- Also compute the sample mean and covariance matrix for each series.
-
- Reference:
-
- P. J. Brockwell and R. A. Davis. Time Series: Theory and
- Methods. Second edition. Springer. New York. 1991. ISBN
- 0-387-97429-6. Sections 5.2, 8.3 and 8.4.
- */
-
-#include <config.h>
-
-#include "math/ts/innovations.h"
-
-#include <gsl/gsl_matrix.h>
-#include <gsl/gsl_vector.h>
-#include <math.h>
-#include <stdlib.h>
-
-#include "libpspp/compiler.h"
-#include "libpspp/misc.h"
-#include "math/coefficient.h"
-
-#include "gl/xalloc.h"
-
-static void
-get_mean (const gsl_matrix *data,
- struct innovations_estimate **est)
-
-{
- size_t n;
- size_t i;
- double d;
- double tmp;
-
- for (n = 0; n < data->size2; n++)
- {
- est[n]->n_obs = 0.0;
- est[n]->mean = 0.0;
- }
- for (i = 0; i < data->size1; i++)
- {
- for (n = 0; n < data->size2; n++)
- {
- tmp = gsl_matrix_get (data, i, n);
- if (!isnan (tmp))
- {
- est[n]->n_obs += 1.0;
- d = (tmp - est[n]->mean) / est[n]->n_obs;
- est[n]->mean += d;
- }
- }
- }
-}
-static void
-update_cov (struct innovations_estimate **est, gsl_vector_const_view x,
- gsl_vector_const_view y, size_t lag)
-{
- size_t j;
- double xj;
- double yj;
-
- for (j = 0; j < x.vector.size; j++)
- {
- xj = gsl_vector_get (&x.vector, j);
- yj = gsl_vector_get (&y.vector, j);
- if (!isnan (xj))
- {
- if (!isnan (yj))
- {
- xj -= est[j]->mean;
- yj -= est[j]->mean;
- *(est[j]->cov + lag) += xj * yj;
- }
- }
- }
-}
-static int
-get_covariance (const gsl_matrix *data,
- struct innovations_estimate **est, size_t max_lag)
-{
- size_t lag;
- size_t j;
- size_t i;
- int rc = 1;
-
- assert (data != NULL);
- assert (est != NULL);
-
- for (j = 0; j < data->size2; j++)
- {
- for (lag = 0; lag <= max_lag; lag++)
- {
- *(est[j]->cov + lag) = 0.0;
- }
- }
- /*
- The rows are in the outer loop because a gsl_matrix is stored in
- row-major order.
- */
- for (i = 0; i < data->size1; i++)
- {
- for (lag = 0; lag <= max_lag && lag < data->size1 - i; lag++)
- {
- update_cov (est, gsl_matrix_const_row (data, i),
- gsl_matrix_const_row (data, i + lag), lag);
- }
- }
- for (j = 0; j < data->size2; j++)
- {
- for (lag = 0; lag <= max_lag; lag++)
- {
- *(est[j]->cov + lag) /= est[j]->n_obs;
- }
- }
-
- return rc;
-}
-
-static double
-innovations_convolve (double *x, double *y, struct innovations_estimate *est,
- int i)
-{
- int k;
- double result = 0.0;
-
- assert (x != NULL && y != NULL);
- assert (est != NULL);
- assert (est->scale != NULL);
- assert (i > 0);
- for (k = 0; k < i; k++)
- {
- result += x[k] * y[k] * est->scale[i-k-1];
- }
- return result;
-}
-static void
-innovations_update_scale (struct innovations_estimate *est, double *theta,
- size_t i)
-{
- double result = 0.0;
- size_t j;
- size_t k;
-
- if (i < (size_t) est->max_lag)
- {
- result = est->cov[0];
- for (j = 0; j < i; j++)
- {
- k = i - j - 1;
- result -= pow2 (theta[k]) * est->scale[j];
- }
- est->scale[i] = result;
- }
-}
-static void
-init_theta (double **theta, size_t max_lag)
-{
- size_t i;
- size_t j;
-
- for (i = 0; i < max_lag; i++)
- {
- for (j = 0; j <= i; j++)
- {
- theta[i][j] = 0.0;
- }
- }
-}
-static void
-innovations_update_coeff (double **theta, struct innovations_estimate *est,
- size_t max_lag)
-{
- size_t i;
- size_t j;
- size_t k;
-
- for (i = 0; i < max_lag; i++)
- {
- theta[i][i] = est->cov[i+1] / est->scale[0];
- for (j = 1; j <= i; j++)
- {
- k = i - j;
- theta[i][k] = (est->cov[k+1] -
- innovations_convolve (theta[i] + k + 1, theta[j - 1], est, j))
- / est->scale[j];
- }
- innovations_update_scale (est, theta[i], i + 1);
- }
-}
-static void
-get_coef (const gsl_matrix *data,
- struct innovations_estimate **est, size_t max_lag)
-{
- size_t i;
- size_t n;
- double **theta;
-
- theta = xnmalloc (max_lag, sizeof (*theta));
- for (i = 0; i < max_lag; i++)
- {
- theta[i] = xnmalloc (max_lag, sizeof (**(theta + i)));
- }
-
- for (n = 0; n < data->size2; n++)
- {
- init_theta (theta, max_lag);
- innovations_update_scale (est[n], theta[0], 0);
- innovations_update_coeff (theta, est[n], max_lag);
- /* Copy the final row of coefficients into EST->COEFF.*/
- for (i = 0; i < max_lag; i++)
- {
- /*
- The order of storage here means that the best predicted value
- for the time series is computed as follows:
-
- Let X[m], X[m-1],... denote the original series.
- Let X_hat[0] denote the best predicted value of X[0],
- X_hat[1] denote the projection of X[1] onto the subspace
- spanned by {X[0] - X_hat[0]}. Let X_hat[m] denote the
- projection of X[m] onto the subspace spanned by {X[m-1] - X_hat[m-1],
- X[m-2] - X_hat[m-2],...,X[0] - X_hat[0]}.
-
- Then X_hat[m] = est->coeff[m-1] * (X[m-1] - X_hat[m-1])
- + est->coeff[m-1] * (X[m-2] - X_hat[m-2])
- ...
- + est->coeff[m-max_lag] * (X[m - max_lag] - X_hat[m - max_lag])
- */
- pspp_coeff_set_estimate (est[n]->coeff[i], theta[max_lag - 1][i]);
- }
- }
-
- for (i = 0; i < max_lag; i++)
- {
- free (theta[i]);
- }
- free (theta);
-}
-
-static void
-innovations_struct_init (struct innovations_estimate *est,
- const struct design_matrix *dm,
- size_t lag)
-{
- size_t j;
-
- est->mean = 0.0;
- /* COV[0] stores the lag 0 covariance (i.e., the variance), COV[1]
- holds the lag-1 covariance, etc.
- */
- est->cov = xnmalloc (lag + 1, sizeof (*est->cov));
- est->scale = xnmalloc (lag + 1, sizeof (*est->scale));
- est->coeff = xnmalloc (lag, sizeof (*est->coeff)); /* No intercept. */
-
- /*
- The loop below is an unusual use of PSPP_COEFF_INIT(). In a
- typical model, one column of a DESIGN_MATRIX has one
- coefficient. But in a time-series model, one column has many
- coefficients.
- */
- for (j = 0; j < lag; j++)
- {
- pspp_coeff_init (est->coeff + j, dm);
- }
- est->max_lag = (double) lag;
-}
-/*
- The mean is subtracted from the original data before computing the
- coefficients. The mean is NOT added back, so if you want to predict
- a new value, you must add the mean to X_hat[m] to get the correct
- value.
- */
-static void
-subtract_mean (gsl_matrix *m, struct innovations_estimate **est)
-{
- size_t i;
- size_t j;
- double tmp;
-
- for (i = 0; i < m->size1; i++)
- {
- for (j = 0; j < m->size2; j++)
- {
- tmp = gsl_matrix_get (m, i, j) - est[j]->mean;
- gsl_matrix_set (m, i, j, tmp);
- }
- }
-}
-struct innovations_estimate **
-pspp_innovations (const struct design_matrix *dm, size_t lag)
-{
- struct innovations_estimate **est;
- size_t i;
-
- est = xnmalloc (dm->m->size2, sizeof *est);
- for (i = 0; i < dm->m->size2; i++)
- {
- est[i] = xmalloc (sizeof *est[i]);
-/* est[i]->variable = vars[i]; */
- innovations_struct_init (est[i], dm, lag);
- }
-
- get_mean (dm->m, est);
- subtract_mean (dm->m, est);
- get_covariance (dm->m, est, lag);
- get_coef (dm->m, est, lag);
-
- return est;
-}
-
-static void
-pspp_innovations_free_one (struct innovations_estimate *est)
-{
- size_t i;
-
- assert (est != NULL);
- for (i = 0; i < (size_t) est->max_lag; i++)
- {
- pspp_coeff_free (est->coeff[i]);
- }
- free (est->scale);
- free (est->cov);
- free (est);
-}
-
-void pspp_innovations_free (struct innovations_estimate **est, size_t n)
-{
- size_t i;
-
- assert (est != NULL);
- for (i = 0; i < n; i++)
- {
- pspp_innovations_free_one (est[i]);
- }
- free (est);
-}