struct casereader *input,
const struct variable **x, size_t n_x,
const struct variable *y_var,
- double *likelihood)
+ double *llikelihood)
{
struct casereader *reader;
struct ccase *c;
gsl_vector *output = gsl_vector_calloc (res->beta_hat->size);
- *likelihood = 1.0;
+ *llikelihood = 0.0;
res->tn = res->tp = res->fn = res->fp = 0;
for (reader = casereader_clone (input);
(c = casereader_read (reader)) != NULL; case_unref (c))
double y = map_dependent_var (cmd, res, case_data (c, y_var));
- *likelihood *= pow (pi, weight * y) * pow (1 - pi, weight * (1 - y));
+ *llikelihood += (weight * y) * log (pi) + log (1 - pi) * weight * (1 - y);
for (v0 = 0; v0 < res->beta_hat->size; ++v0)
{
bool converged = false;
- /* Set the likelihoods to a negative sentinel value */
- double likelihood = -1;
- double prev_likelihood = -1;
- double initial_likelihood = -1;
+ /* Set the log likelihoods to a sentinel value */
+ double log_likelihood = SYSMIS;
+ double prev_log_likelihood = SYSMIS;
+ double initial_log_likelihood = SYSMIS;
struct lr_result work;
work.n_missing = 0;
v = xt_times_y_pi (cmd, &work, input,
cmd->predictor_vars, cmd->n_predictor_vars,
cmd->dep_var,
- &likelihood);
+ &log_likelihood);
{
/* delta = M.v */
gsl_vector_free (delta);
}
- if ( prev_likelihood >= 0)
+ if (i > 0)
{
- if (-log (likelihood) > -(1.0 - cmd->lcon) * log (prev_likelihood))
+ if (-log_likelihood > -(1.0 - cmd->lcon) * prev_log_likelihood)
{
msg (MN, _("Estimation terminated at iteration number %d because Log Likelihood decreased by less than %g%%"), i + 1, 100 * cmd->lcon);
converged = true;
}
}
if (i == 0)
- initial_likelihood = likelihood;
- prev_likelihood = likelihood;
+ initial_log_likelihood = log_likelihood;
+ prev_log_likelihood = log_likelihood;
if (converged)
break;
}
casereader_destroy (input);
- assert (initial_likelihood >= 0);
+
if ( ! converged)
msg (MW, _("Estimation terminated at iteration number %d because maximum iterations has been reached"), i );
- output_model_summary (&work, initial_likelihood, likelihood);
+ output_model_summary (&work, initial_log_likelihood, log_likelihood);
if (work.cats)
output_categories (cmd, &work);
/* Show the model summary box */
static void
output_model_summary (const struct lr_result *res,
- double initial_likelihood, double likelihood)
+ double initial_log_likelihood, double log_likelihood)
{
const int heading_columns = 0;
const int heading_rows = 1;
tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Step 1"));
tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("-2 Log likelihood"));
- tab_double (t, 1, 1, 0, -2 * log (likelihood), 0);
+ tab_double (t, 1, 1, 0, -2 * log_likelihood, 0);
tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Cox & Snell R Square"));
- cox = 1.0 - pow (initial_likelihood /likelihood, 2 / res->cc);
+ cox = 1.0 - exp((initial_log_likelihood - log_likelihood) * (2 / res->cc));
tab_double (t, 2, 1, 0, cox, 0);
tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Nagelkerke R Square"));
- tab_double (t, 3, 1, 0, cox / ( 1.0 - pow (initial_likelihood, 2 / res->cc)), 0);
+ tab_double (t, 3, 1, 0, cox / ( 1.0 - exp(initial_log_likelihood * (2 / res->cc))), 0);
tab_submit (t);