#include <gsl/gsl_matrix.h>
#include <data/dataset.h>
+#include <data/casewriter.h>
#include "language/command.h"
#include "language/lexer/lexer.h"
bool pred;
};
-struct regression_workspace
+struct per_split_ws
{
linreg **models;
};
-static void run_regression (const struct regression *cmd,
- linreg **models,
- struct casereader *input);
+struct regression_workspace
+{
+ struct per_split_ws *psw;
+ struct casewriter *writer;
+ struct casereader *reader;
+ int res_idx;
+ int pred_idx;
+ int extras;
-/*
- Transformations for saving predicted values
- and residuals, etc.
-*/
-struct reg_trns
-{
- linreg *c; /* Linear model for this trns. */
- const struct variable *var;
+ const struct variable **predvars;
+ const struct variable **residvars;
};
-/*
- Gets the predicted values.
-*/
-static int
-regression_trns_pred_proc (void *t_, struct ccase **c,
- casenumber case_idx UNUSED)
-{
- size_t i;
- size_t n_vals;
- struct reg_trns *trns = t_;
- const linreg *model;
- union value *output = NULL;
- const union value *tmp;
- double *vals;
- const struct variable **vars = NULL;
-
- assert (trns != NULL);
- model = trns->c;
- assert (model != NULL);
- assert (model->depvar != NULL);
-
- vars = linreg_get_vars (model);
- n_vals = linreg_n_coeffs (model);
- vals = xnmalloc (n_vals, sizeof (*vals));
- *c = case_unshare (*c);
-
- output = case_data_rw (*c, trns->var);
-
- for (i = 0; i < n_vals; i++)
- {
- tmp = case_data (*c, vars[i]);
- vals[i] = tmp->f;
- }
- output->f = linreg_predict (model, vals, n_vals);
- free (vals);
- return TRNS_CONTINUE;
-}
-
-/*
- Gets the residuals.
-*/
-static int
-regression_trns_resid_proc (void *t_, struct ccase **c,
- casenumber case_idx UNUSED)
-{
- size_t i;
- size_t n_vals;
- struct reg_trns *trns = t_;
- const linreg *model;
- union value *output = NULL;
- const union value *tmp;
- double *vals = NULL;
- double obs;
- const struct variable **vars = NULL;
-
- assert (trns != NULL);
- model = trns->c;
- assert (model != NULL);
- assert (model->depvar != NULL);
-
- vars = linreg_get_vars (model);
- n_vals = linreg_n_coeffs (model);
-
- vals = xnmalloc (n_vals, sizeof (*vals));
- *c = case_unshare (*c);
- output = case_data_rw (*c, trns->var);
- assert (output != NULL);
-
- for (i = 0; i < n_vals; i++)
- {
- tmp = case_data (*c, vars[i]);
- vals[i] = tmp->f;
- }
- tmp = case_data (*c, model->depvar);
- obs = tmp->f;
- output->f = linreg_residual (model, obs, vals, n_vals);
- free (vals);
+static void run_regression (const struct regression *cmd,
+ struct per_split_ws *psw,
+ struct regression_workspace *ws,
+ struct casereader *input);
- return TRNS_CONTINUE;
-}
static char *
}
}
-/*
- Free the transformation. Free its linear model if this
- transformation is the last one.
-*/
-static bool
-regression_trns_free (void *t_)
-{
- struct reg_trns *t = t_;
-
- linreg_unref (t->c);
-
- free (t);
-
- return true;
-}
-
static const struct variable *
create_aux_var (struct dataset *ds, const char *prefix)
return var;
}
-static void
-reg_save_var (struct dataset *ds, trns_proc_func * f,
- const struct variable *var,
- linreg *c)
+struct thing
{
- struct reg_trns *t = xmalloc (sizeof (*t));
- t->c = c;
- t->var = var;
- linreg_ref (c);
-
- add_transformation (ds, f, regression_trns_free, t);
-}
+ int n_dep_vars;
+ struct regression_workspace *ws;
+};
-static void
-subcommand_save (const struct regression *cmd,
- struct regression_workspace *workspace,
- size_t n_m)
+static int
+transX (void *aux, struct ccase **c, casenumber x UNUSED)
{
- int i;
- for (i = 0; i < cmd->n_dep_vars; ++i)
+ struct thing *thing = aux;
+ struct regression_workspace *ws = thing->ws;
+ const struct ccase *in = casereader_read (ws->reader);
+
+ if (in)
{
- int w;
- const struct variable *resvar = NULL;
- const struct variable *predvar = NULL;
-
- if (cmd->resid)
- resvar = create_aux_var (cmd->ds, "RES");
-
- if (cmd->pred)
- predvar = create_aux_var (cmd->ds, "PRED");
-
- for (w = 0 ; w < n_m; ++w)
- {
- linreg **models = workspace[w].models;
- linreg *lc = models[i];
- if (lc == NULL)
- continue;
-
- if (lc->depvar == NULL)
- continue;
-
- if (cmd->resid)
- {
- reg_save_var (cmd->ds, regression_trns_resid_proc, resvar, lc);
- }
-
- if (cmd->pred)
- {
- reg_save_var (cmd->ds, regression_trns_pred_proc, predvar, lc);
- }
- }
+ int k;
+ *c = case_unshare (*c);
+
+ for (k = 0; k < thing->n_dep_vars; ++k)
+ {
+ if (ws->pred_idx != -1)
+ {
+ double pred = case_data_idx (in, ws->extras * k + ws->pred_idx)->f;
+ case_data_rw (*c, ws->predvars[k])->f = pred;
+ }
+
+ if (ws->res_idx != -1)
+ {
+ double resid = case_data_idx (in, ws->extras * k + ws->res_idx)->f;
+ case_data_rw (*c, ws->residvars[k])->f = resid;
+ }
+ }
}
+
+ return TRNS_CONTINUE;
}
+
int
cmd_regression (struct lexer *lexer, struct dataset *ds)
{
- int w;
- struct regression_workspace *workspace = NULL;
- size_t n_workspaces = 0;
+ int n_splits = 0;
+ struct regression_workspace workspace;
struct regression regression;
const struct dictionary *dict = dataset_dict (ds);
bool save;
+ workspace.psw = NULL;
memset (®ression, 0, sizeof (struct regression));
dict_get_vars (dict, ®ression.vars, ®ression.n_vars, 0);
}
-
save = regression.pred || regression.resid;
+ workspace.extras = 0;
+ workspace.res_idx = -1;
+ workspace.pred_idx = -1;
+ workspace.writer = NULL;
+ workspace.reader = NULL;
if (save)
{
+ int i;
+ struct caseproto *proto = caseproto_create ();
+
+ if (regression.resid)
+ {
+ workspace.extras ++;
+ workspace.res_idx = 0;
+ workspace.residvars = xcalloc (regression.n_dep_vars, sizeof (*workspace.residvars));
+
+ for (i = 0; i < regression.n_dep_vars; ++i)
+ {
+ workspace.residvars[i] = create_aux_var (ds, "RES");
+ proto = caseproto_add_width (proto, 0);
+ }
+ }
+
+ if (regression.pred)
+ {
+ workspace.extras ++;
+ workspace.pred_idx = 1;
+ workspace.predvars = xcalloc (regression.n_dep_vars, sizeof (*workspace.predvars));
+
+ for (i = 0; i < regression.n_dep_vars; ++i)
+ {
+ workspace.predvars[i] = create_aux_var (ds, "PRED");
+ proto = caseproto_add_width (proto, 0);
+ }
+ }
+
if (proc_make_temporary_transformations_permanent (ds))
msg (SW, _("REGRESSION with SAVE ignores TEMPORARY. "
"Temporary transformations will be made permanent."));
+
+ workspace.writer = autopaging_writer_create (proto);
}
+
+ n_splits = 0;
{
struct casegrouper *grouper;
struct casereader *group;
bool ok;
- grouper = casegrouper_create_splits (proc_open_filtering (ds, !save),
- dict);
+ grouper = casegrouper_create_splits (proc_open_filtering (ds, !save), dict);
+
+
while (casegrouper_get_next_group (grouper, &group))
{
- workspace = xrealloc (workspace, sizeof (workspace) * (n_workspaces + 1));
- workspace[n_workspaces].models = xcalloc (regression.n_dep_vars, sizeof (linreg *));
- run_regression (®ression, workspace[n_workspaces++].models, group);
+ workspace.psw = xrealloc (workspace.psw, ++n_splits * sizeof (*workspace.psw));
+
+ run_regression (®ression, &workspace.psw[n_splits - 1],
+ &workspace,
+ group);
+
}
ok = casegrouper_destroy (grouper);
ok = proc_commit (ds) && ok;
}
- if (save)
{
- subcommand_save (®ression, workspace, n_workspaces);
+ if (workspace.writer)
+ {
+ struct thing *thing = xmalloc (sizeof *thing);
+ struct casereader *r = casewriter_make_reader (workspace.writer);
+ workspace.writer = NULL;
+ workspace.reader = r;
+ thing->ws = xmalloc (sizeof (workspace));
+ memcpy (thing->ws, &workspace, sizeof (workspace));
+ thing->n_dep_vars = regression.n_dep_vars;
+
+ add_transformation (ds, transX, NULL, thing);
+ }
}
- for (w = 0 ; w < n_workspaces; ++w)
- {
- int i;
- linreg **models = workspace[w].models;
- for (i = 0; i < regression.n_dep_vars; ++i)
- linreg_unref (models[i]);
- free (models);
- }
- free (workspace);
free (regression.vars);
free (regression.dep_vars);
return CMD_SUCCESS;
error:
- for (w = 0 ; w < n_workspaces; ++w)
- {
- int i;
- linreg **models = workspace[w].models;
- for (i = 0; i < regression.n_dep_vars; ++i)
- linreg_unref (models[i]);
- free (models);
- }
- free (workspace);
free (regression.vars);
free (regression.dep_vars);
static void
-run_regression (const struct regression *cmd, linreg **models, struct casereader *input)
+run_regression (const struct regression *cmd,
+ struct per_split_ws *psw,
+ struct regression_workspace *ws,
+ struct casereader *input)
{
size_t i;
- int n_indep = 0;
+
int k;
- double *means;
struct ccase *c;
struct covariance *cov;
- const struct variable **vars;
- const struct variable **all_vars;
struct casereader *reader;
- size_t n_all_vars;
+ size_t n_all_vars = get_n_all_vars (cmd);
+ const struct variable **all_vars = xnmalloc (n_all_vars, sizeof (*all_vars));
+
+ double *means = xnmalloc (n_all_vars, sizeof (*means));
- n_all_vars = get_n_all_vars (cmd);
- all_vars = xnmalloc (n_all_vars, sizeof (*all_vars));
fill_all_vars (all_vars, cmd);
- vars = xnmalloc (cmd->n_vars, sizeof (*vars));
- means = xnmalloc (n_all_vars, sizeof (*means));
cov = covariance_1pass_create (n_all_vars, all_vars,
dict_get_weight (dataset_dict (cmd->ds)),
MV_ANY);
MV_ANY, NULL, NULL);
- for (; (c = casereader_read (reader)) != NULL; case_unref (c))
- {
- covariance_accumulate (cov, c);
- }
+ {
+ struct casereader *r = casereader_clone (reader);
+
+ for (; (c = casereader_read (r)) != NULL; case_unref (c))
+ {
+ covariance_accumulate (cov, c);
+ }
+ casereader_destroy (r);
+ }
+ psw->models = xcalloc (cmd->n_dep_vars, sizeof (*psw->models));
for (k = 0; k < cmd->n_dep_vars; k++)
{
- double n_data;
- const struct variable *dep_var = cmd->dep_vars[k];
- gsl_matrix *this_cm;
-
- n_indep = identify_indep_vars (cmd, vars, dep_var);
- this_cm = gsl_matrix_alloc (n_indep + 1, n_indep + 1);
- n_data = fill_covariance (this_cm, cov, vars, n_indep,
+ const struct variable **vars = xnmalloc (cmd->n_vars, sizeof (*vars));
+ const struct variable *dep_var = cmd->dep_vars[k];
+ int n_indep = identify_indep_vars (cmd, vars, dep_var);
+ gsl_matrix *this_cm = gsl_matrix_alloc (n_indep + 1, n_indep + 1);
+ double n_data = fill_covariance (this_cm, cov, vars, n_indep,
dep_var, all_vars, n_all_vars, means);
- models[k] = linreg_alloc (dep_var, vars, n_data, n_indep);
- models[k]->depvar = dep_var;
+ psw->models[k] = linreg_alloc (dep_var, vars, n_data, n_indep);
+ psw->models[k]->depvar = dep_var;
for (i = 0; i < n_indep; i++)
{
- linreg_set_indep_variable_mean (models[k], i, means[i]);
+ linreg_set_indep_variable_mean (psw->models[k], i, means[i]);
}
- linreg_set_depvar_mean (models[k], means[i]);
+ linreg_set_depvar_mean (psw->models[k], means[i]);
/*
For large data sets, use QR decomposition.
*/
if (n_data > sqrt (n_indep) && n_data > REG_LARGE_DATA)
{
- models[k]->method = LINREG_QR;
+ psw->models[k]->method = LINREG_QR;
}
if (n_data > 0)
/*
Find the least-squares estimates and other statistics.
*/
- linreg_fit (this_cm, models[k]);
+ linreg_fit (this_cm, psw->models[k]);
if (!taint_has_tainted_successor (casereader_get_taint (input)))
{
- subcommand_statistics (cmd, models[k], this_cm, dep_var);
+ subcommand_statistics (cmd, psw->models[k], this_cm, dep_var);
}
}
else
msg (SE, _("No valid data found. This command was skipped."));
}
gsl_matrix_free (this_cm);
+ free (vars);
+ }
+
+
+ if (ws->extras > 0)
+ {
+ struct casereader *r = casereader_clone (reader);
+
+ for (; (c = casereader_read (r)) != NULL; case_unref (c))
+ {
+ struct ccase *outc = case_clone (c);
+ for (k = 0; k < cmd->n_dep_vars; k++)
+ {
+ const struct variable **vars = xnmalloc (cmd->n_vars, sizeof (*vars));
+ const struct variable *dep_var = cmd->dep_vars[k];
+ int n_indep = identify_indep_vars (cmd, vars, dep_var);
+ double *vals = xnmalloc (n_indep, sizeof (*vals));
+ for (i = 0; i < n_indep; i++)
+ {
+ const union value *tmp = case_data (c, vars[i]);
+ vals[i] = tmp->f;
+ }
+
+ if (cmd->pred)
+ {
+ double pred = linreg_predict (psw->models[k], vals, n_indep);
+ case_data_rw_idx (outc, k * ws->extras + ws->pred_idx)->f = pred;
+ }
+
+ if (cmd->resid)
+ {
+ double obs = case_data (c, psw->models[k]->depvar)->f;
+ double res = linreg_residual (psw->models[k], obs, vals, n_indep);
+ case_data_rw_idx (outc, k * ws->extras + ws->res_idx)->f = res;
+ }
+ }
+ casewriter_write (ws->writer, outc);
+ }
+ casereader_destroy (r);
}
casereader_destroy (reader);
- free (vars);
+
+
free (all_vars);
free (means);
casereader_destroy (input);