This makes it easier to run tests just for these.
AT_BANNER([EXAMINE])
AT_SETUP([EXAMINE])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [
DATA LIST LIST /QUALITY * W * BRAND * .
BEGIN DATA
AT_CLEANUP
AT_SETUP([EXAMINE -- extremes])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
data list free /V1 W
begin data.
AT_SETUP([EXAMINE -- extremes with fractional weights])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([extreme.sps], [dnl
set format=F20.3.
data list notable list /w * x *.
dnl In particular test that it behaves properly when there are only
dnl a few cases.
AT_SETUP([EXAMINE -- percentiles])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /X *.
BEGIN DATA.
AT_CLEANUP
AT_SETUP([EXAMINE -- missing values])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /x * y *.
BEGIN DATA.
AT_SETUP([EXAMINE -- user missing values])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-m.sps], [dnl
DATA LIST notable LIST /x * y *.
BEGIN DATA.
AT_CLEANUP
AT_SETUP([EXAMINE -- missing values and percentiles])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /X *.
BEGIN DATA.
dnl Tests the trimmed mean calculation in the case
dnl where the data is weighted towards the centre.
AT_SETUP([EXAMINE -- trimmed mean])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /X * C *.
BEGIN DATA.
AT_CLEANUP
AT_SETUP([EXAMINE -- crash bug])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
data list list /a * x * y *.
begin data.
dnl Test that two consecutive EXAMINE commands don't crash PSPP.
AT_SETUP([EXAMINE -- consecutive runs don't crash])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
data list list /y * z *.
begin data.
dnl Test that /DESCRIPTIVES does not crash in presence of missing values.
AT_SETUP([EXAMINE -- missing values don't crash])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
data list list /x * y *.
begin data.
dnl Test that having only a single case doesn't crash.
AT_SETUP([EXAMINE -- single case doesn't crash])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /quality * .
BEGIN DATA
dnl Test that all-missing data doesn't crash.
AT_SETUP([EXAMINE -- all-missing data doesn't crash])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
DATA LIST LIST /x *.
BEGIN DATA.
dnl Test that big input doesn't crash (bug 11307).
AT_SETUP([EXAMINE -- big input doesn't crash])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine.sps], [dnl
INPUT PROGRAM.
LOOP #I=1 TO 50000.
dnl Another test that big input doesn't crash.
dnl The actual bug that this checks for has been lost.
AT_SETUP([EXAMINE -- big input doesn't crash 2])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([make-big-input.pl],
[for ($i=0; $i<100000; $i++) { print "AB12\n" };
for ($i=0; $i<100000; $i++) { print "AB04\n" };
dnl Test that the ID command works with non-numberic variables
AT_SETUP([EXAMINE -- non-numeric ID])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-id.sps], [dnl
data list notable list /x * y (a12).
dnl Test for a crash which happened on cleanup from a bad input syntax
AT_SETUP([EXAMINE -- Bad Input])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-bad.sps], [dnl
data list list /h * g *.
dnl Check the MISSING=REPORT option
AT_SETUP([EXAMINE -- MISSING=REPORT])
-
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-report.sps], [dnl
set format = F22.0.
dnl dataset and comparing with "real" results kindly
dnl provided by Olaf Nöhring
AT_SETUP([EXAMINE -- sample unweighted])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([sample.sps], [dnl
set format = F22.4.
dnl Test for a crash which happened on bad input syntax
AT_SETUP([EXAMINE -- Empty Parentheses])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-empty-parens.sps], [dnl
DATA LIST notable LIST /X *
dnl Test for another crash which happened on bad input syntax
AT_SETUP([EXAMINE -- Bad variable])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-bad-variable.sps], [dnl
data list list /h * g *.
dnl Test for yet another crash. This time for extremes vs. missing weight values.\0
AT_SETUP([EXAMINE -- Extremes vs. Missing Weights])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([examine-missing-weights.sps], [dnl
data list notable list /h * g *.
AT_BANNER([GLM procedure])
AT_SETUP([GLM latin square design])
+AT_KEYWORDS([categorical categoricals])
dnl This example comes from :
dnl http://ssnds.uwo.ca/statsexamples/spssanova/latinsquareresults.html
AT_CLEANUP
AT_SETUP([GLM 2 by 2 factorial design])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([2by2.sps], [dnl
set format = F20.3.
AT_SETUP([GLM Type I and II Sums of Squares])
+AT_KEYWORDS([categorical categoricals])
dnl The following example comes from
dnl http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Type1-3.pdf
AT_SETUP([GLM excluded intercept])
+AT_KEYWORDS([categorical categoricals])
dnl The following example comes from
dnl
AT_SETUP([GLM missing values])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([glm.data], [dnl
1 1 6 3.5
dnl of the 2nd and 3rd variables. We use this for weight testing.
AT_SETUP([LOGISTIC REGRESSION basic test])
+AT_KEYWORDS([categorical categoricals])
LOGIT_TEST_DATA
AT_CLEANUP
AT_SETUP([LOGISTIC REGRESSION missing values])
+AT_KEYWORDS([categorical categoricals])
LOGIT_TEST_DATA
dnl To do this, the same data set is used, one weighted, one not.
dnl The weighted dataset omits certain cases which are identical
AT_SETUP([LOGISTIC REGRESSION weights])
+AT_KEYWORDS([categorical categoricals])
LOGIT_TEST_DATA
dnl The results this produces are very similar to those
dnl at the example in http://www.ats.ucla.edu/stat/SPSS/faq/logregconst.htm
AT_SETUP([LOGISTIC REGRESSION without constant])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([non-const.sps], [dnl
set format=F20.3.
dnl Check that if somebody passes a dependent variable which is not dichtomous,
dnl then an error is raised.
AT_SETUP([LOGISTIC REGRESSION non-dichotomous dep var])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([non-dich.sps], [dnl
data list notable list /y x1 x2 x3 x4.
dnl variable. This examṕle was inspired from that at:
dnl http://www.ats.ucla.edu/stat/spss/dae/logit.htm
AT_SETUP([LOGISTIC REGRESSION with categorical])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([lr-cat.data], [dnl
620 3.07 2 4
dnl This example is inspired by http://www.ats.ucla.edu/stat/spss/output/logistic.htm
AT_SETUP([LOGISTIC REGRESSION with cat var 2])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([lr-cat2.data], [dnl
60.00 1.00 8.00 50.00
dnl Check that it doesn't crash if a categorical variable
dnl has only one distinct value
AT_SETUP([LOGISTIC REGRESSION identical categories])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash.sps], [dnl
data list notable list /y x1 x2*.
dnl Test that missing values on the categorical predictors are treated
dnl properly.
AT_SETUP([LOGISTIC REGRESSION missing categoricals])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([data.txt], [dnl
.00 3.69 .00
dnl one point. The data in this example comes from:
dnl http://people.ysu.edu/~gchang/SPSSE/SPSS_lab2Regression.pdf
AT_SETUP([LOGISTIC REGRESSION confidence interval])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([ci.sps], [dnl
set FORMAT=F20.3
AT_BANNER([MEANS procedure])
AT_SETUP([MEANS simple example])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-simple.sps], [dnl
SET FORMAT=F12.5.
AT_SETUP([MEANS very simple example])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-vsimple.sps], [dnl
SET FORMAT=F12.5.
AT_SETUP([MEANS default missing])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-dmiss.sps], [dnl
SET FORMAT=F12.2.
AT_SETUP([MEANS linear stats])
+AT_KEYWORDS([categorical categoricals])
dnl Slightly more involved example to test the linear statistics
AT_DATA([means-linear.sps], [dnl
AT_SETUP([MEANS standard errors])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-stderr.sps], [dnl
set format F12.4.
AT_SETUP([MEANS harmonic and geometric means])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-hg.sps], [dnl
set format F12.4.
AT_SETUP([MEANS all/none/default])
+AT_KEYWORDS([categorical categoricals])
dnl Make sure that /CELLS = {ALL,NONE,DEFAULT} work properly
AT_DATA([means-stat-keywords.sps], [dnl
AT_SETUP([MEANS missing=table ])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-miss-table.sps], [dnl
data list notable list /a * b * g1.
AT_SETUP([MEANS user missing values])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-missing.sps], [dnl
data list notable list /a * b * g1.
AT_SETUP([MEANS empty factor spec])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([means-bad.sps], [dnl
data list list /outcome *.
AT_SETUP([MEANS parser bug])
+AT_KEYWORDS([categorical categoricals])
dnl This bug caused an infinite loop
AT_DATA([means-bad.sps], [dnl
AT_BANNER([ONEWAY procedure])
AT_SETUP([ONEWAY basic operation])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
BEGIN DATA
AT_SETUP([ONEWAY with splits])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-splits.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * S *.
BEGIN DATA
AT_SETUP([ONEWAY with missing values])
+AT_KEYWORDS([categorical categoricals])
dnl Check that missing are treated properly
AT_DATA([oneway-missing1.sps],
[DATA LIST NOTABLE LIST /v1 * v2 * dep * vn *.
AT_SETUP([ONEWAY descriptives subcommand])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-descriptives.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
AT_SETUP([ONEWAY homogeneity subcommand])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-homogeneity.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
AT_SETUP([ONEWAY multiple variables])
+AT_KEYWORDS([categorical categoricals])
dnl check that everything works ok when several different dependent variables are specified.
dnl This of course does not mean that we're doing a multivariate analysis. It's just like
dnl running several tests at once.
dnl Tests that everything treats weights properly
AT_SETUP([ONEWAY vs. weights])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-unweighted.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * W *.
AT_SETUP([ONEWAY posthoc LSD and BONFERRONI])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-pig.sps],[dnl
SET FORMAT F12.3.
data list notable list /pigmentation * family *.
AT_SETUP([ONEWAY posthoc Tukey HSD and Games-Howell])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-tukey.sps],[dnl
set format = f11.3.
data list notable list /libido * dose *.
AT_CLEANUP
AT_SETUP([ONEWAY posthoc Sidak])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-sidak.sps],[dnl
SET FORMAT F20.4.
AT_CLEANUP
AT_SETUP([ONEWAY posthoc Scheffe])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-scheffe.sps],[dnl
set format = f11.3.
data list notable list /usage * group *.
AT_SETUP([ONEWAY bad contrast count])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-bad-contrast.sps],[dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.
AT_SETUP([ONEWAY crash on single category independent variable])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash.sps],[
input program.
loop #i = 1 to 10.
AT_SETUP([ONEWAY crash on missing dependent variable])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash2.sps],[dnl
data list notable list /dv1 * dv2 * y * .
begin data.
AT_SETUP([ONEWAY Games-Howell test with few cases])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash3.sps],[dnl
data list notable list /dv * y * .
begin data.
AT_SETUP([ONEWAY Crash on empty data])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash4.sps],[dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.
BEGIN DATA.
AT_SETUP([ONEWAY Crash on invalid dependent variable])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash5.sps],[dnl
data list notable list /a * b *.
begin data.
AT_SETUP([ONEWAY Crash on unterminated string])
+AT_KEYWORDS([categorical categoricals])
AT_DATA([crash6.sps], [dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.