X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Fmath%2Fcovariance-matrix.c;h=2a00a56d95d5c7a20a1a540bc714f539b7a9d58a;hb=5c3291dc396b795696e94f47780308fd7ace6fc4;hp=f929a370cf5470456ba0c33018a7f292d2e4e3a4;hpb=46dfa3ec7417bbb7452f152a6b62435006259633;p=pspp-builds.git diff --git a/src/math/covariance-matrix.c b/src/math/covariance-matrix.c index f929a370..2a00a56d 100644 --- a/src/math/covariance-matrix.c +++ b/src/math/covariance-matrix.c @@ -1,5 +1,5 @@ /* PSPP - a program for statistical analysis. - Copyright (C) 2008 Free Software Foundation, Inc. + Copyright (C) 2008, 2009 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -19,23 +19,203 @@ */ #include #include +#include +#include #include #include -#include "covariance-matrix.h" -#include "moments.h" +#include +#include +#include +#include +#include +#include +/* + Structure used to accumulate the covariance matrix in a single data + pass. Before passing the data, we do not know how many categories + there are in each categorical variable. Therefore we do not know the + size of the covariance matrix. To get around this problem, we + accumulate the elements of the covariance matrix in pointers to + COVARIANC_ACCUMULATOR. These values are then used to populate + the covariance matrix. + */ +struct covariance_accumulator +{ + const struct variable *v1; + const struct variable *v2; + const union value *val1; + const union value *val2; + double dot_product; + double sum1; + double sum2; + double ssize; +}; + + + +struct covariance_matrix +{ + struct design_matrix *cov; + struct design_matrix *ssize; + struct hsh_table *ca; + struct moments1 **m1; + struct moments **m; + const struct variable **v_variables; + size_t n_variables; + int n_pass; + int missing_handling; + enum mv_class missing_value; + void (*accumulate) (struct covariance_matrix *, const struct ccase *, + const struct interaction_variable **, size_t); + void (*update_moments) (struct covariance_matrix *, size_t, double); +}; + + + +static struct hsh_table *covariance_hsh_create (size_t *); +static hsh_hash_func covariance_accumulator_hash; +static unsigned int hash_numeric_alpha (const struct variable *, + const struct variable *, + const union value *, size_t); +static hsh_compare_func covariance_accumulator_compare; +static hsh_free_func covariance_accumulator_free; +static void update_moments1 (struct covariance_matrix *, size_t, double); +static void update_moments2 (struct covariance_matrix *, size_t, double); +static struct covariance_accumulator *get_new_covariance_accumulator (const + struct + variable + *, + const + struct + variable + *, + const + union + value *, + const + union + value + *); +static void covariance_accumulate_listwise (struct covariance_matrix *, + const struct ccase *, + const struct interaction_variable **, + size_t); +static void covariance_accumulate_pairwise (struct covariance_matrix *, + const struct ccase *, + const struct interaction_variable **, + size_t); + +struct covariance_matrix * +covariance_matrix_init (size_t n_variables, + const struct variable *v_variables[], int n_pass, + int missing_handling, enum mv_class missing_value) +{ + size_t i; + struct covariance_matrix *result = NULL; + + result = xmalloc (sizeof (*result)); + result->cov = NULL; + result->n_variables = n_variables; + result->ca = covariance_hsh_create (&result->n_variables); + result->m = NULL; + result->m1 = NULL; + result->missing_handling = missing_handling; + result->missing_value = missing_value; + result->accumulate = (result->missing_handling == LISTWISE) ? + covariance_accumulate_listwise : covariance_accumulate_pairwise; + if (n_pass == ONE_PASS) + { + result->update_moments = update_moments1; + result->m1 = xnmalloc (n_variables, sizeof (*result->m1)); + for (i = 0; i < n_variables; i++) + { + result->m1[i] = moments1_create (MOMENT_MEAN); + } + } + else + { + result->update_moments = update_moments2; + result->m = xnmalloc (n_variables, sizeof (*result->m)); + for (i = 0; i < n_variables; i++) + { + result->m[i] = moments_create (MOMENT_MEAN); + } + } + result->v_variables = v_variables; + + result->n_pass = n_pass; + + return result; +} +static size_t +get_n_rows (size_t n_variables, const struct variable *v_variables[]) +{ + size_t i; + size_t result = 0; + for (i = 0; i < n_variables; i++) + { + if (var_is_numeric (v_variables[i])) + { + result++; + } + else if (var_is_alpha (v_variables[i])) + { + size_t n_categories = cat_get_n_categories (v_variables[i]); + result += n_categories - 1; + } + } + return result; +} /* The covariances are stored in a DESIGN_MATRIX structure. */ struct design_matrix * -covariance_matrix_create (int n_variables, const struct variable *v_variables[]) +covariance_matrix_create (size_t n_variables, + const struct variable *v_variables[]) { - return design_matrix_create (n_variables, v_variables, (size_t) n_variables); + size_t n_rows = get_n_rows (n_variables, v_variables); + return design_matrix_create (n_variables, v_variables, n_rows); } -void covariance_matrix_destroy (struct design_matrix *x) +static void +update_moments1 (struct covariance_matrix *cov, size_t i, double x) { - design_matrix_destroy (x); + assert (cov->m1 != NULL); + moments1_add (cov->m1[i], x, 1.0); +} + +static void +update_moments2 (struct covariance_matrix *cov, size_t i, double x) +{ + assert (cov->m != NULL); + moments_pass_one (cov->m[i], x, 1.0); +} + +void +covariance_matrix_destroy (struct covariance_matrix *cov) +{ + size_t i; + + assert (cov != NULL); + design_matrix_destroy (cov->cov); + design_matrix_destroy (cov->ssize); + hsh_destroy (cov->ca); + if (cov->n_pass == ONE_PASS) + { + for (i = 0; i < cov->n_variables; i++) + { + moments1_destroy (cov->m1[i]); + } + free (cov->m1); + } + else + { + for (i = 0; i < cov->n_variables; i++) + { + moments_destroy (cov->m[i]); + } + free (cov->m); + } } /* @@ -44,53 +224,58 @@ void covariance_matrix_destroy (struct design_matrix *x) */ static void covariance_update_categorical_numeric (struct design_matrix *cov, double mean, - size_t row, - const struct variable *v2, double x, const union value *val2) + size_t row, + const struct variable *v2, double x, + const union value *val2) { size_t col; double tmp; - + assert (var_is_numeric (v2)); col = design_matrix_var_to_column (cov, v2); assert (val2 != NULL); - tmp = gsl_matrix_get (cov->m, row, col); - gsl_matrix_set (cov->m, row, col, (val2->f - mean) * x + tmp); - gsl_matrix_set (cov->m, col, row, (val2->f - mean) * x + tmp); + tmp = design_matrix_get_element (cov, row, col); + design_matrix_set_element (cov, row, col, (val2->f - mean) * x + tmp); + design_matrix_set_element (cov, col, row, (val2->f - mean) * x + tmp); } static void column_iterate (struct design_matrix *cov, const struct variable *v, double ssize, double x, const union value *val1, size_t row) { + int width = var_get_width (v); size_t col; size_t i; double y; double tmp; const union value *tmp_val; - col = design_matrix_var_to_column (cov, v); + col = design_matrix_var_to_column (cov, v); for (i = 0; i < cat_get_n_categories (v) - 1; i++) { col += i; y = -1.0 * cat_get_category_count (i, v) / ssize; tmp_val = cat_subscript_to_value (i, v); - if (compare_values (tmp_val, val1, v)) + if (!value_equal (tmp_val, val1, width)) { y += -1.0; } - tmp = gsl_matrix_get (cov->m, row, col); - gsl_matrix_set (cov->m, row, col, x * y + tmp); - gsl_matrix_set (cov->m, col, row, x * y + tmp); + tmp = design_matrix_get_element (cov, row, col); + design_matrix_set_element (cov, row, col, x * y + tmp); + design_matrix_set_element (cov, col, row, x * y + tmp); } } + /* Call this function in the second data pass. The central moments are MEAN1 and MEAN2. Any categorical variables should already have their values summarized in in its OBS_VALS element. */ -void covariance_pass_two (struct design_matrix *cov, double mean1, double mean2, - double ssize, const struct variable *v1, - const struct variable *v2, const union value *val1, const union value *val2) +void +covariance_pass_two (struct design_matrix *cov, double mean1, double mean2, + double ssize, const struct variable *v1, + const struct variable *v2, const union value *val1, + const union value *val2) { size_t row; size_t col; @@ -106,13 +291,13 @@ void covariance_pass_two (struct design_matrix *cov, double mean1, double mean2, row += i; x = -1.0 * cat_get_category_count (i, v1) / ssize; tmp_val = cat_subscript_to_value (i, v1); - if (compare_values (tmp_val, val1, v1)) + if (!value_equal (tmp_val, val1, var_get_width (v1))) { x += 1.0; } if (var_is_numeric (v2)) { - covariance_update_categorical_numeric (cov, mean2, row, + covariance_update_categorical_numeric (cov, mean2, row, v2, x, val2); } else @@ -125,22 +310,630 @@ void covariance_pass_two (struct design_matrix *cov, double mean1, double mean2, else if (var_is_alpha (v2)) { /* - Reverse the orders of V1, V2, etc. and put ourselves back - in the previous IF scope. + Reverse the orders of V1, V2, etc. and put ourselves back + in the previous IF scope. */ covariance_pass_two (cov, mean2, mean1, ssize, v2, v1, val2, val1); } else { /* - Both variables are numeric. - */ - row = design_matrix_var_to_column (cov, v1); + Both variables are numeric. + */ + row = design_matrix_var_to_column (cov, v1); col = design_matrix_var_to_column (cov, v2); x = (val1->f - mean1) * (val2->f - mean2); - x += gsl_matrix_get (cov->m, col, row); - gsl_matrix_set (cov->m, row, col, x); - gsl_matrix_set (cov->m, col, row, x); + x += design_matrix_get_element (cov, col, row); + design_matrix_set_element (cov, row, col, x); + design_matrix_set_element (cov, col, row, x); + } +} + +static unsigned int +covariance_accumulator_hash (const void *h, const void *aux) +{ + struct covariance_accumulator *ca = (struct covariance_accumulator *) h; + size_t *n_vars = (size_t *) aux; + size_t idx_max; + size_t idx_min; + const struct variable *v_min; + const struct variable *v_max; + const union value *val_min; + const union value *val_max; + + /* + Order everything by the variables' indices. This ensures we get the + same key regardless of the order in which the variables are stored + and passed around. + */ + v_min = + (var_get_dict_index (ca->v1) < + var_get_dict_index (ca->v2)) ? ca->v1 : ca->v2; + v_max = (ca->v1 == v_min) ? ca->v2 : ca->v1; + + val_min = (v_min == ca->v1) ? ca->val1 : ca->val2; + val_max = (ca->val1 == val_min) ? ca->val2 : ca->val1; + + idx_min = var_get_dict_index (v_min); + idx_max = var_get_dict_index (v_max); + + if (var_is_numeric (v_max) && var_is_numeric (v_min)) + { + return (*n_vars * idx_max + idx_min); + } + if (var_is_numeric (v_max) && var_is_alpha (v_min)) + { + return hash_numeric_alpha (v_max, v_min, val_min, *n_vars); + } + if (var_is_alpha (v_max) && var_is_numeric (v_min)) + { + return (hash_numeric_alpha (v_min, v_max, val_max, *n_vars)); } + if (var_is_alpha (v_max) && var_is_alpha (v_min)) + { + unsigned hash = value_hash (val_max, var_get_width (v_max), 0); + hash = value_hash (val_min, var_get_width (v_min), hash); + return hash_int (*n_vars * (*n_vars + 1 + idx_max) + idx_min, hash); + } + return -1u; +} + +/* + Make a hash table consisting of struct covariance_accumulators. + This allows the accumulation of the elements of a covariance matrix + in a single data pass. Call covariance_accumulate () for each case + in the data. + */ +static struct hsh_table * +covariance_hsh_create (size_t *n_vars) +{ + return hsh_create (*n_vars * *n_vars, covariance_accumulator_compare, + covariance_accumulator_hash, covariance_accumulator_free, + n_vars); +} + +static void +covariance_accumulator_free (void *c_, const void *aux UNUSED) +{ + struct covariance_accumulator *c = c_; + assert (c != NULL); + free (c); +} + +static int +ordered_match_nodes (const struct covariance_accumulator *c, const struct variable *v1, + const struct variable *v2, const union value *val1, const union value *val2) +{ + size_t result; + size_t m; + + result = var_get_dict_index (v1) ^ var_get_dict_index (c->v1); + m = var_get_dict_index (v2) ^ var_get_dict_index (c->v2); + result = result|m; + if (var_is_alpha (v1)) + { + result |= value_compare_3way (val1, c->val1, var_get_width (v1)); + if (var_is_alpha (v2)) + { + result |= value_compare_3way (val2, c->val2, var_get_width (v2)); + } + } + else if (var_is_alpha (v2)) + { + result |= value_compare_3way (val2, c->val2, var_get_width (v2)); + } + return result; +} + +/* + Hash comparison. Returns 0 for a match, or a non-zero int + otherwise. The sign of a non-zero return value *should* indicate the + position of C relative to the covariance_accumulator described by + the other arguments. But for now, it just returns 1 for any + non-match. This should be changed when someone figures out how to + compute a sensible sign for the return value. + */ +static int +match_nodes (const struct covariance_accumulator *c, + const struct variable *v1, const struct variable *v2, + const union value *val1, const union value *val2) +{ + size_t n; + size_t m; + + n = ordered_match_nodes (c, v1, v2, val1, val2); + m = ordered_match_nodes (c, v2, v1, val2, val1); + return (n & m); +} + +/* + This function is meant to be used as a comparison function for + a struct hsh_table in src/libpspp/hash.c. +*/ +static int +covariance_accumulator_compare (const void *a1_, const void *a2_, + const void *aux UNUSED) +{ + const struct covariance_accumulator *a1 = a1_; + const struct covariance_accumulator *a2 = a2_; + + if (a1 == NULL && a2 == NULL) + return 0; + + if (a1 == NULL || a2 == NULL) + return 1; + + return match_nodes (a1, a2->v1, a2->v2, a2->val1, a2->val2); +} + +static unsigned int +hash_numeric_alpha (const struct variable *v1, const struct variable *v2, + const union value *val, size_t n_vars) +{ + unsigned int result = -1u; + if (var_is_numeric (v1) && var_is_alpha (v2)) + { + result = n_vars * ((n_vars + 1) + var_get_dict_index (v1)) + + var_get_dict_index (v2) + value_hash (val, var_get_width (v2), 0); + } + else if (var_is_alpha (v1) && var_is_numeric (v2)) + { + result = hash_numeric_alpha (v2, v1, val, n_vars); + } + return result; +} + + +static double +update_product (const struct variable *v1, const struct variable *v2, + const union value *val1, const union value *val2) +{ + assert (v1 != NULL); + assert (v2 != NULL); + assert (val1 != NULL); + assert (val2 != NULL); + if (var_is_alpha (v1) && var_is_alpha (v2)) + { + return 1.0; + } + if (var_is_numeric (v1) && var_is_numeric (v2)) + { + return (val1->f * val2->f); + } + if (var_is_numeric (v1) && var_is_alpha (v2)) + { + return val1->f; + } + if (var_is_numeric (v2) && var_is_alpha (v1)) + { + return val2->f; + } + else + { + return 0.0; + } +} +static double +update_sum (const struct variable *var, const union value *val, double weight) +{ + assert (var != NULL); + assert (val != NULL); + if (var_is_alpha (var)) + { + return weight; + } + return val->f; +} +static struct covariance_accumulator * +get_new_covariance_accumulator (const struct variable *v1, + const struct variable *v2, + const union value *val1, + const union value *val2) +{ + if ((v1 != NULL) && (v2 != NULL) && (val1 != NULL) && (val2 != NULL)) + { + struct covariance_accumulator *ca; + ca = xmalloc (sizeof (*ca)); + ca->v1 = v1; + ca->v2 = v2; + ca->val1 = val1; + ca->val2 = val2; + return ca; + } + return NULL; +} + +static const struct variable ** +get_covariance_variables (const struct covariance_matrix *cov) +{ + return cov->v_variables; +} + +static void +update_hash_entry (struct hsh_table *c, + const struct variable *v1, + const struct variable *v2, + const union value *val1, const union value *val2, + const struct interaction_value *i_val1, + const struct interaction_value *i_val2) +{ + struct covariance_accumulator *ca; + struct covariance_accumulator *new_entry; + double iv_f1; + double iv_f2; + + iv_f1 = interaction_value_get_nonzero_entry (i_val1); + iv_f2 = interaction_value_get_nonzero_entry (i_val2); + ca = get_new_covariance_accumulator (v1, v2, val1, val2); + ca->dot_product = update_product (ca->v1, ca->v2, ca->val1, ca->val2); + ca->dot_product *= iv_f1 * iv_f2; + ca->sum1 = update_sum (ca->v1, ca->val1, iv_f1); + ca->sum2 = update_sum (ca->v2, ca->val2, iv_f2); + ca->ssize = 1.0; + new_entry = hsh_insert (c, ca); + + if (new_entry != NULL) + { + new_entry->dot_product += ca->dot_product; + new_entry->ssize += 1.0; + new_entry->sum1 += ca->sum1; + new_entry->sum2 += ca->sum2; + /* + If DOT_PRODUCT is null, CA was not already in the hash + hable, so we don't free it because it was just inserted. + If DOT_PRODUCT was not null, CA is already in the hash table. + Unnecessary now, it must be freed here. + */ + free (ca); + } +} + +/* + Compute the covariance matrix in a single data-pass. Cases with + missing values are dropped pairwise, in other words, only if one of + the two values necessary to accumulate the inner product is missing. + + Do not call this function directly. Call it through the struct + covariance_matrix ACCUMULATE member function, for example, + cov->accumulate (cov, ccase). + */ +static void +covariance_accumulate_pairwise (struct covariance_matrix *cov, + const struct ccase *ccase, + const struct interaction_variable **i_var, + size_t n_intr) +{ + size_t i; + size_t j; + const union value *val1; + const union value *val2; + const struct variable **v_variables; + struct interaction_value *i_val1 = NULL; + struct interaction_value *i_val2 = NULL; + + assert (cov != NULL); + assert (ccase != NULL); + + v_variables = get_covariance_variables (cov); + assert (v_variables != NULL); + + for (i = 0; i < cov->n_variables; ++i) + { + if (is_interaction (v_variables[i], i_var, n_intr)) + { + i_val1 = interaction_case_data (ccase, v_variables[i], i_var, n_intr); + val1 = interaction_value_get (i_val1); + } + else + { + val1 = case_data (ccase, v_variables[i]); + } + if (!var_is_value_missing (v_variables[i], val1, cov->missing_value)) + { + cat_value_update (v_variables[i], val1); + if (var_is_numeric (v_variables[i])) + cov->update_moments (cov, i, val1->f); + + for (j = i; j < cov->n_variables; j++) + { + if (is_interaction (v_variables[j], i_var, n_intr)) + { + i_val2 = interaction_case_data (ccase, v_variables[j], i_var, n_intr); + val2 = interaction_value_get (i_val2); + } + else + { + val2 = case_data (ccase, v_variables[j]); + } + if (!var_is_value_missing + (v_variables[j], val2, cov->missing_value)) + { + update_hash_entry (cov->ca, v_variables[i], v_variables[j], + val1, val2, i_val1, i_val2); + } + } + } + } +} + +/* + Compute the covariance matrix in a single data-pass. Cases with + missing values are dropped listwise. In other words, if one of the + values for any variable in a case is missing, the entire case is + skipped. + + The caller must use a casefilter to remove the cases with missing + values before calling covariance_accumulate_listwise. This function + assumes that CCASE has already passed through this filter, and + contains no missing values. + + Do not call this function directly. Call it through the struct + covariance_matrix ACCUMULATE member function, for example, + cov->accumulate (cov, ccase). + */ +static void +covariance_accumulate_listwise (struct covariance_matrix *cov, + const struct ccase *ccase, + const struct interaction_variable **i_var, + size_t n_intr) +{ + size_t i; + size_t j; + const union value *val1; + const union value *val2; + const struct variable **v_variables; + struct interaction_value *i_val1 = NULL; + struct interaction_value *i_val2 = NULL; + + assert (cov != NULL); + assert (ccase != NULL); + + v_variables = get_covariance_variables (cov); + assert (v_variables != NULL); + + for (i = 0; i < cov->n_variables; ++i) + { + if (is_interaction (v_variables[i], i_var, n_intr)) + { + i_val1 = interaction_case_data (ccase, v_variables[i], i_var, n_intr); + val1 = interaction_value_get (i_val1); + } + else + { + val1 = case_data (ccase, v_variables[i]); + } + cat_value_update (v_variables[i], val1); + if (var_is_numeric (v_variables[i])) + cov->update_moments (cov, i, val1->f); + + for (j = i; j < cov->n_variables; j++) + { + if (is_interaction (v_variables[j], i_var, n_intr)) + { + i_val2 = interaction_case_data (ccase, v_variables[j], i_var, n_intr); + val2 = interaction_value_get (i_val2); + } + else + { + val2 = case_data (ccase, v_variables[j]); + } + update_hash_entry (cov->ca, v_variables[i], v_variables[j], + val1, val2, i_val1, i_val2); + } + } +} + +/* + Call this function during the data pass. Each case will be added to + a hash containing all values of the covariance matrix. After the + data have been passed, call covariance_matrix_compute to put the + values in the struct covariance_matrix. + */ +void +covariance_matrix_accumulate (struct covariance_matrix *cov, + const struct ccase *ccase, void **aux, size_t n_intr) +{ + cov->accumulate (cov, ccase, (const struct interaction_variable **) aux, n_intr); +} + +/* + Return the value corresponding to subscript TARGET. If that value corresponds + to the origin, return NULL. + */ +static const union value * +get_value_from_subscript (const struct design_matrix *dm, size_t target) +{ + const union value *result = NULL; + const struct variable *var; + size_t i; + + var = design_matrix_col_to_var (dm, target); + if (var_is_numeric (var)) + { + return NULL; + } + for (i = 0; i < cat_get_n_categories (var); i++) + { + result = cat_subscript_to_value (i, var); + if (dm_get_exact_subscript (dm, var, result) == target) + { + return result; + } + } + return NULL; +} + +static bool +is_covariance_contributor (const struct covariance_accumulator *ca, const struct design_matrix *dm, + size_t i, size_t j) +{ + size_t k; + const struct variable *v1; + const struct variable *v2; + + assert (dm != NULL); + v1 = design_matrix_col_to_var (dm, i); + v2 = design_matrix_col_to_var (dm, j); + if (var_get_dict_index (v1) == var_get_dict_index(ca->v1)) + { + if (var_get_dict_index (v2) == var_get_dict_index (ca->v2)) + { + k = dm_get_exact_subscript (dm, v1, ca->val1); + if (k == i) + { + k = dm_get_exact_subscript (dm, v2, ca->val2); + if (k == j) + { + return true; + } + } + } + } + else if (var_get_dict_index (v1) == var_get_dict_index (ca->v2)) + { + if (var_get_dict_index (v2) == var_get_dict_index (ca->v1)) + { + k = dm_get_exact_subscript (dm, v1, ca->val2); + if (k == i) + { + k = dm_get_exact_subscript (dm, v2, ca->val1); + if (k == j) + { + return true; + } + } + } + } + + return false; +} +static double +get_sum (const struct covariance_matrix *cov, size_t i) +{ + size_t k; + double mean; + double n; + const struct variable *var; + const union value *val = NULL; + + assert ( cov != NULL); + var = design_matrix_col_to_var (cov->cov, i); + if (var != NULL) + { + if (var_is_alpha (var)) + { + val = get_value_from_subscript (cov->cov, i); + k = cat_value_find (var, val); + return cat_get_category_count (k, var); + } + else + { + k = 0; + while (var_get_dict_index (cov->v_variables[k]) != var_get_dict_index (var)) + { + k++; + } + moments1_calculate (cov->m1[k], &n, &mean, NULL, NULL, NULL); + return mean * n; + } + } + + return 0.0; +} +static void +update_ssize (struct design_matrix *dm, size_t i, size_t j, struct covariance_accumulator *ca) +{ + const struct variable *var; + double tmp; + var = design_matrix_col_to_var (dm, i); + if (var_get_dict_index (ca->v1) == var_get_dict_index (var)) + { + var = design_matrix_col_to_var (dm, j); + if (var_get_dict_index (ca->v2) == var_get_dict_index (var)) + { + tmp = design_matrix_get_element (dm, i, j); + tmp += ca->ssize; + design_matrix_set_element (dm, i, j, tmp); + } + } +} +static void +covariance_accumulator_to_matrix (struct covariance_matrix *cov) +{ + size_t i; + size_t j; + double sum_i = 0.0; + double sum_j = 0.0; + double tmp = 0.0; + struct covariance_accumulator *entry; + struct hsh_iterator iter; + + cov->cov = covariance_matrix_create (cov->n_variables, cov->v_variables); + cov->ssize = covariance_matrix_create (cov->n_variables, cov->v_variables); + entry = hsh_first (cov->ca, &iter); + while (entry != NULL) + { + entry = hsh_next (cov->ca, &iter); + } + + for (i = 0; i < design_matrix_get_n_cols (cov->cov); i++) + { + sum_i = get_sum (cov, i); + for (j = i; j < design_matrix_get_n_cols (cov->cov); j++) + { + sum_j = get_sum (cov, j); + entry = hsh_first (cov->ca, &iter); + while (entry != NULL) + { + update_ssize (cov->ssize, i, j, entry); + /* + We compute the centered, un-normalized covariance matrix. + */ + if (is_covariance_contributor (entry, cov->cov, i, j)) + { + design_matrix_set_element (cov->cov, i, j, entry->dot_product); + } + entry = hsh_next (cov->ca, &iter); + } + tmp = design_matrix_get_element (cov->cov, i, j); + tmp -= sum_i * sum_j / design_matrix_get_element (cov->ssize, i, j); + design_matrix_set_element (cov->cov, i, j, tmp); + design_matrix_set_element (cov->cov, j, i, tmp); + } + } +} + + +/* + Call this function after passing the data. + */ +void +covariance_matrix_compute (struct covariance_matrix *cov) +{ + if (cov->n_pass == ONE_PASS) + { + covariance_accumulator_to_matrix (cov); + } +} + +struct design_matrix * +covariance_to_design (const struct covariance_matrix *c) +{ + if (c != NULL) + { + return c->cov; + } + return NULL; +} +size_t +covariance_matrix_get_n_rows (const struct covariance_matrix *c) +{ + return design_matrix_get_n_rows (c->cov); +} + +double +covariance_matrix_get_element (const struct covariance_matrix *c, size_t row, size_t col) +{ + return (design_matrix_get_element (c->cov, row, col)); }