X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Flanguage%2Fstats%2Flogistic.c;h=b8ebb70cf7f452c10dafe81b8f787b03a2974861;hb=d4ff0e074d703dbeb8af5aa3ac470ddda5ebe301;hp=fb9a26521a7273a948641de57fc07a0438d0c020;hpb=9d1bfb34842de4a129140622ee3d800297c0e69d;p=pspp diff --git a/src/language/stats/logistic.c b/src/language/stats/logistic.c index fb9a26521a..b8ebb70cf7 100644 --- a/src/language/stats/logistic.c +++ b/src/language/stats/logistic.c @@ -15,21 +15,21 @@ along with this program. If not, see . */ -/* - References: +/* + References: 1. "Coding Logistic Regression with Newton-Raphson", James McCaffrey http://msdn.microsoft.com/en-us/magazine/jj618304.aspx 2. "SPSS Statistical Algorithms" Chapter LOGISTIC REGRESSION Algorithms - The Newton Raphson method finds successive approximations to $\bf b$ where + The Newton Raphson method finds successive approximations to $\bf b$ where approximation ${\bf b}_t$ is (hopefully) better than the previous ${\bf b}_{t-1}$. $ {\bf b}_t = {\bf b}_{t -1} + ({\bf X}^T{\bf W}_{t-1}{\bf X})^{-1}{\bf X}^T({\bf y} - {\bf \pi}_{t-1})$ where: - $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, + $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, $p$ the number of parameters, \par $\bf W$ is the diagonal matrix whose diagonal elements are $\hat{\pi}_0(1 - \hat{\pi}_0), \, \hat{\pi}_1(1 - \hat{\pi}_2)\dots \hat{\pi}_{n-1}(1 - \hat{\pi}_{n-1})$ @@ -39,7 +39,7 @@ #include -#include +#include #include #include @@ -64,6 +64,10 @@ #include "libpspp/message.h" #include "libpspp/misc.h" #include "math/categoricals.h" +#include "math/interaction.h" +#include "libpspp/hmap.h" +#include "libpspp/hash-functions.h" + #include "output/tab.h" #include "gettext.h" @@ -91,8 +95,19 @@ struct lr_spec /* The dependent variable */ const struct variable *dep_var; - size_t n_predictor_vars; + /* The predictor variables (excluding categorical ones) */ const struct variable **predictor_vars; + size_t n_predictor_vars; + + /* The categorical predictors */ + struct interaction **cat_predictors; + size_t n_cat_predictors; + + + /* The union of the categorical and non-categorical variables */ + const struct variable **indep_vars; + size_t n_indep_vars; + /* Which classes of missing vars are to be excluded */ enum mv_class exclude; @@ -100,6 +115,7 @@ struct lr_spec /* The weight variable */ const struct variable *wv; + /* The dictionary of the dataset */ const struct dictionary *dict; /* True iff the constant (intercept) is to be included in the model */ @@ -119,18 +135,21 @@ struct lr_spec /* What results should be presented */ unsigned int print; - double cut_point; + /* Inverse logit of the cut point */ + double ilogit_cut_point; }; + /* The results and intermediate result of the procedure. These are mutated as the procedure runs. Used for temporary variables etc. */ struct lr_result { + /* Used to indicate if a pass should flag a warning when + invalid (ie negative or missing) weight values are encountered */ bool warn_bad_weight; - /* The two values of the dependent variable. */ union value y0; union value y1; @@ -139,37 +158,58 @@ struct lr_result /* The sum of caseweights */ double cc; + /* The number of missing and nonmissing cases */ casenumber n_missing; casenumber n_nonmissing; + + + gsl_matrix *hessian; + + /* The categoricals and their payload. Null if the analysis has no + categorical predictors */ + struct categoricals *cats; + struct payload cp; + + + /* The estimates of the predictor coefficients */ + gsl_vector *beta_hat; + + /* The predicted classifications: + True Negative, True Positive, False Negative, False Positive */ + double tn, tp, fn, fp; }; /* - Convert INPUT into a dichotomous scalar. For simple cases, this is a 1:1 mapping + Convert INPUT into a dichotomous scalar, according to how the dependent variable's + values are mapped. + For simple cases, this is a 1:1 mapping The return value is always either 0 or 1 */ static double map_dependent_var (const struct lr_spec *cmd, const struct lr_result *res, const union value *input) { - int width = var_get_width (cmd->dep_var); + const int width = var_get_width (cmd->dep_var); if (value_equal (input, &res->y0, width)) return 0; if (value_equal (input, &res->y1, width)) return 1; - + + /* This should never happen. If it does, then y0 and/or y1 have probably not been set */ NOT_REACHED (); return SYSMIS; } +static void output_classification_table (const struct lr_spec *cmd, const struct lr_result *res); +static void output_categories (const struct lr_spec *cmd, const struct lr_result *res); static void output_depvarmap (const struct lr_spec *cmd, const struct lr_result *); -static void output_variables (const struct lr_spec *cmd, - const gsl_vector *, - const gsl_vector *); +static void output_variables (const struct lr_spec *cmd, + const struct lr_result *); static void output_model_summary (const struct lr_result *, double initial_likelihood, double likelihood); @@ -177,26 +217,55 @@ static void output_model_summary (const struct lr_result *, static void case_processing_summary (const struct lr_result *); +/* Return the value of case C corresponding to the INDEX'th entry in the + model */ +static double +predictor_value (const struct ccase *c, + const struct variable **x, size_t n_x, + const struct categoricals *cats, + size_t index) +{ + /* Values of the scalar predictor variables */ + if (index < n_x) + return case_data (c, x[index])->f; + + /* Coded values of categorical predictor variables (or interactions) */ + if (cats && index - n_x < categoricals_df_total (cats)) + { + double x = categoricals_get_dummy_code_for_case (cats, index - n_x, c); + return x; + } + + /* The constant term */ + return 1.0; +} + + /* - Return the probability estimator (that is the estimator of logit(y) ) - corresponding to the coefficient estimator beta_hat for case C + Return the probability beta_hat (that is the estimator logit(y) ) + corresponding to the coefficient estimator for case C */ -static double -pi_hat (const struct lr_spec *cmd, - const gsl_vector *beta_hat, +static double +pi_hat (const struct lr_spec *cmd, + const struct lr_result *res, const struct variable **x, size_t n_x, const struct ccase *c) { int v0; double pi = 0; - for (v0 = 0; v0 < n_x; ++v0) + size_t n_coeffs = res->beta_hat->size; + + if (cmd->constant) { - pi += gsl_vector_get (beta_hat, v0) * - case_data (c, x[v0])->f; + pi += gsl_vector_get (res->beta_hat, res->beta_hat->size - 1); + n_coeffs--; } - if (cmd->constant) - pi += gsl_vector_get (beta_hat, beta_hat->size - 1); + for (v0 = 0; v0 < n_coeffs; ++v0) + { + pi += gsl_vector_get (res->beta_hat, v0) * + predictor_value (c, x, n_x, res->cats, v0); + } pi = 1.0 / (1.0 + exp(-pi)); @@ -207,32 +276,31 @@ pi_hat (const struct lr_spec *cmd, /* Calculates the Hessian matrix X' V X, where: X is the n by N_X matrix comprising the n cases in INPUT - V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} + V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} (the partial derivative of the predicted values) If ALL predicted values derivatives are close to zero or one, then CONVERGED will be set to true. */ -static gsl_matrix * -hessian (const struct lr_spec *cmd, +static void +hessian (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input, const struct variable **x, size_t n_x, - const gsl_vector *beta_hat, - bool *converged - ) + bool *converged) { struct casereader *reader; struct ccase *c; - gsl_matrix *output = gsl_matrix_calloc (beta_hat->size, beta_hat->size); double max_w = -DBL_MAX; + gsl_matrix_set_zero (res->hessian); + for (reader = casereader_clone (input); (c = casereader_read (reader)) != NULL; case_unref (c)) { int v0, v1; - double pi = pi_hat (cmd, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double w = pi * (1 - pi); @@ -240,36 +308,35 @@ hessian (const struct lr_spec *cmd, max_w = w; w *= weight; - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { - double in0 = v0 < n_x ? case_data (c, x[v0])->f : 1.0; - for (v1 = 0; v1 < beta_hat->size; ++v1) + double in0 = predictor_value (c, x, n_x, res->cats, v0); + for (v1 = 0; v1 < res->beta_hat->size; ++v1) { - double in1 = v1 < n_x ? case_data (c, x[v1])->f : 1.0 ; - double *o = gsl_matrix_ptr (output, v0, v1); + double in1 = predictor_value (c, x, n_x, res->cats, v1); + double *o = gsl_matrix_ptr (res->hessian, v0, v1); *o += in0 * w * in1; } } } casereader_destroy (reader); - if ( max_w < cmd->min_epsilon) { *converged = true; msg (MN, _("All predicted values are either 1 or 0")); } - - return output; } /* Calculates the value X' (y - pi) - where X is the design model, + where X is the design model, y is the vector of observed independent variables pi is the vector of estimates for y - As a side effect, the likelihood is stored in LIKELIHOOD + Side effects: + the likelihood is stored in LIKELIHOOD; + the predicted values are placed in the respective tn, fn, tp fp values in RES */ static gsl_vector * xt_times_y_pi (const struct lr_spec *cmd, @@ -277,31 +344,50 @@ xt_times_y_pi (const struct lr_spec *cmd, struct casereader *input, const struct variable **x, size_t n_x, const struct variable *y_var, - const gsl_vector *beta_hat, - double *likelihood) + double *llikelihood) { struct casereader *reader; struct ccase *c; - gsl_vector *output = gsl_vector_calloc (beta_hat->size); + gsl_vector *output = gsl_vector_calloc (res->beta_hat->size); - *likelihood = 1.0; + *llikelihood = 0.0; + res->tn = res->tp = res->fn = res->fp = 0; for (reader = casereader_clone (input); (c = casereader_read (reader)) != NULL; case_unref (c)) { + double pred_y = 0; int v0; - double pi = pi_hat (cmd, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double y = map_dependent_var (cmd, res, case_data (c, y_var)); - *likelihood *= pow (pi, weight * y) * pow (1 - pi, weight * (1 - y)); + *llikelihood += (weight * y) * log (pi) + log (1 - pi) * weight * (1 - y); - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { - double in0 = v0 < n_x ? case_data (c, x[v0])->f : 1.0; + double in0 = predictor_value (c, x, n_x, res->cats, v0); double *o = gsl_vector_ptr (output, v0); *o += in0 * (y - pi) * weight; + pred_y += gsl_vector_get (res->beta_hat, v0) * in0; + } + + /* Count the number of cases which would be correctly/incorrectly classified by this + estimated model */ + if (pred_y <= cmd->ilogit_cut_point) + { + if (y == 0) + res->tn += weight; + else + res->fn += weight; + } + else + { + if (y == 0) + res->fp += weight; + else + res->tp += weight; } } @@ -310,21 +396,54 @@ xt_times_y_pi (const struct lr_spec *cmd, return output; } + -/* - Makes an initial pass though the data, checks that the dependent variable is - dichotomous, and calculates necessary initial values. +/* "payload" functions for the categoricals. + The only function is to accumulate the frequency of each + category. + */ - Returns an initial value for \hat\beta the vector of estimators of \beta +static void * +frq_create (const void *aux1 UNUSED, void *aux2 UNUSED) +{ + return xzalloc (sizeof (double)); +} + +static void +frq_update (const void *aux1 UNUSED, void *aux2 UNUSED, + void *ud, const struct ccase *c UNUSED , double weight) +{ + double *freq = ud; + *freq += weight; +} + +static void +frq_destroy (const void *aux1 UNUSED, void *aux2 UNUSED, void *user_data UNUSED) +{ + free (user_data); +} + + + +/* + Makes an initial pass though the data, doing the following: + + * Checks that the dependent variable is dichotomous, + * Creates and initialises the categoricals, + * Accumulates summary results, + * Calculates necessary initial values. + * Creates an initial value for \hat\beta the vector of beta_hats of \beta + + Returns true if successful */ -static gsl_vector * -beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) +static bool +initial_pass (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) { const int width = var_get_width (cmd->dep_var); struct ccase *c; struct casereader *reader; - gsl_vector *b0 ; + double sum; double sumA = 0.0; double sumB = 0.0; @@ -336,7 +455,19 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser if (cmd->constant) n_coefficients++; - b0 = gsl_vector_calloc (n_coefficients); + /* Create categoricals if appropriate */ + if (cmd->n_cat_predictors > 0) + { + res->cp.create = frq_create; + res->cp.update = frq_update; + res->cp.calculate = NULL; + res->cp.destroy = frq_destroy; + + res->cats = categoricals_create (cmd->cat_predictors, cmd->n_cat_predictors, + cmd->wv, cmd->exclude, MV_ANY); + + categoricals_set_payload (res->cats, &res->cp, cmd, res); + } res->cc = 0; for (reader = casereader_clone (input); @@ -347,24 +478,30 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); const union value *depval = case_data (c, cmd->dep_var); - for (v = 0; v < cmd->n_predictor_vars; ++v) + if (var_is_value_missing (cmd->dep_var, depval, cmd->exclude)) { - const union value *val = case_data (c, cmd->predictor_vars[v]); - if (var_is_value_missing (cmd->predictor_vars[v], val, cmd->exclude)) + missing = true; + } + else + for (v = 0; v < cmd->n_indep_vars; ++v) + { + const union value *val = case_data (c, cmd->indep_vars[v]); + if (var_is_value_missing (cmd->indep_vars[v], val, cmd->exclude)) { missing = true; break; } } + /* Accumulate the missing and non-missing counts */ if (missing) { res->n_missing++; continue; } - res->n_nonmissing++; + /* Find the values of the dependent variable */ if (!v0set) { value_clone (&res->y0, depval, width); @@ -386,21 +523,26 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser ) { msg (ME, _("Dependent variable's values are not dichotomous.")); + case_unref (c); goto error; } } - if (value_equal (&res->y0, depval, width)) + if (v0set && value_equal (&res->y0, depval, width)) sumA += weight; - if (value_equal (&res->y1, depval, width)) + if (v1set && value_equal (&res->y1, depval, width)) sumB += weight; res->cc += weight; + + categoricals_update (res->cats, c); } casereader_destroy (reader); + categoricals_done (res->cats); + sum = sumB; /* Ensure that Y0 is less than Y1. Otherwise the mapping gets @@ -415,97 +557,115 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser sum = sumA; } - if ( cmd->constant) + n_coefficients += categoricals_df_total (res->cats); + res->beta_hat = gsl_vector_calloc (n_coefficients); + + if (cmd->constant) { double mean = sum / res->cc; - gsl_vector_set (b0, b0->size - 1, log (mean / (1 - mean))); + gsl_vector_set (res->beta_hat, res->beta_hat->size - 1, log (mean / (1 - mean))); } - return b0; + return true; error: casereader_destroy (reader); - return NULL; + return false; } +/* Start of the logistic regression routine proper */ static bool run_lr (const struct lr_spec *cmd, struct casereader *input, const struct dataset *ds UNUSED) { - int i,j; - - gsl_vector *beta_hat; - gsl_vector *se ; + int i; bool converged = false; - double likelihood = -1; - double prev_likelihood = -1; - double initial_likelihood = -1; + + /* Set the log likelihoods to a sentinel value */ + double log_likelihood = SYSMIS; + double prev_log_likelihood = SYSMIS; + double initial_log_likelihood = SYSMIS; struct lr_result work; work.n_missing = 0; work.n_nonmissing = 0; work.warn_bad_weight = true; + work.cats = NULL; + work.beta_hat = NULL; + work.hessian = NULL; + /* Get the initial estimates of \beta and their standard errors. + And perform other auxilliary initialisation. */ + if (! initial_pass (cmd, &work, input)) + goto error; - /* Get the initial estimates of \beta and their standard errors */ - beta_hat = beta_hat_initial (cmd, &work, input); - if (NULL == beta_hat) - return false; + for (i = 0; i < cmd->n_cat_predictors; ++i) + { + if (1 >= categoricals_n_count (work.cats, i)) + { + struct string str; + ds_init_empty (&str); - output_depvarmap (cmd, &work); + interaction_to_string (cmd->cat_predictors[i], &str); - se = gsl_vector_alloc (beta_hat->size); + msg (ME, _("Category %s does not have at least two distinct values. Logistic regression will not be run."), + ds_cstr(&str)); + ds_destroy (&str); + goto error; + } + } + + output_depvarmap (cmd, &work); case_processing_summary (&work); input = casereader_create_filter_missing (input, - cmd->predictor_vars, - cmd->n_predictor_vars, + cmd->indep_vars, + cmd->n_indep_vars, + cmd->exclude, + NULL, + NULL); + + input = casereader_create_filter_missing (input, + &cmd->dep_var, + 1, cmd->exclude, NULL, NULL); + work.hessian = gsl_matrix_calloc (work.beta_hat->size, work.beta_hat->size); /* Start the Newton Raphson iteration process... */ for( i = 0 ; i < cmd->max_iter ; ++i) { double min, max; - gsl_matrix *m ; gsl_vector *v ; - m = hessian (cmd, &work, input, - cmd->predictor_vars, cmd->n_predictor_vars, - beta_hat, - &converged); - gsl_linalg_cholesky_decomp (m); - gsl_linalg_cholesky_invert (m); + hessian (cmd, &work, input, + cmd->predictor_vars, cmd->n_predictor_vars, + &converged); + + gsl_linalg_cholesky_decomp (work.hessian); + gsl_linalg_cholesky_invert (work.hessian); v = xt_times_y_pi (cmd, &work, input, cmd->predictor_vars, cmd->n_predictor_vars, cmd->dep_var, - beta_hat, - &likelihood); + &log_likelihood); { /* delta = M.v */ gsl_vector *delta = gsl_vector_alloc (v->size); - gsl_blas_dgemv (CblasNoTrans, 1.0, m, v, 0, delta); + gsl_blas_dgemv (CblasNoTrans, 1.0, work.hessian, v, 0, delta); gsl_vector_free (v); - for (j = 0; j < se->size; ++j) - { - double *ptr = gsl_vector_ptr (se, j); - *ptr = gsl_matrix_get (m, j, j); - } - gsl_matrix_free (m); - - gsl_vector_add (beta_hat, delta); + gsl_vector_add (work.beta_hat, delta); gsl_vector_minmax (delta, &min, &max); @@ -519,43 +679,86 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, gsl_vector_free (delta); } - if ( prev_likelihood >= 0) + if (i > 0) { - if (-log (likelihood) > -(1.0 - cmd->lcon) * log (prev_likelihood)) + if (-log_likelihood > -(1.0 - cmd->lcon) * prev_log_likelihood) { msg (MN, _("Estimation terminated at iteration number %d because Log Likelihood decreased by less than %g%%"), i + 1, 100 * cmd->lcon); converged = true; } } if (i == 0) - initial_likelihood = likelihood; - prev_likelihood = likelihood; + initial_log_likelihood = log_likelihood; + prev_log_likelihood = log_likelihood; if (converged) break; } - casereader_destroy (input); - assert (initial_likelihood >= 0); - for (i = 0; i < se->size; ++i) - { - double *ptr = gsl_vector_ptr (se, i); - *ptr = sqrt (*ptr); - } - output_model_summary (&work, initial_likelihood, likelihood); - output_variables (cmd, beta_hat, se); - gsl_vector_free (beta_hat); - gsl_vector_free (se); + if ( ! converged) + msg (MW, _("Estimation terminated at iteration number %d because maximum iterations has been reached"), i ); + + + output_model_summary (&work, initial_log_likelihood, log_likelihood); + + if (work.cats) + output_categories (cmd, &work); + + output_classification_table (cmd, &work); + output_variables (cmd, &work); + + casereader_destroy (input); + gsl_matrix_free (work.hessian); + gsl_vector_free (work.beta_hat); + categoricals_destroy (work.cats); return true; + + error: + casereader_destroy (input); + gsl_matrix_free (work.hessian); + gsl_vector_free (work.beta_hat); + categoricals_destroy (work.cats); + + return false; +} + +struct variable_node +{ + struct hmap_node node; /* Node in hash map. */ + const struct variable *var; /* The variable */ +}; + +static struct variable_node * +lookup_variable (const struct hmap *map, const struct variable *var, unsigned int hash) +{ + struct variable_node *vn = NULL; + HMAP_FOR_EACH_WITH_HASH (vn, struct variable_node, node, hash, map) + { + if (vn->var == var) + break; + + fprintf (stderr, "Warning: Hash table collision\n"); + } + + return vn; } + /* Parse the LOGISTIC REGRESSION command syntax */ int cmd_logistic (struct lexer *lexer, struct dataset *ds) { + int i; + /* Temporary location for the predictor variables. + These may or may not include the categorical predictors */ + const struct variable **pred_vars; + size_t n_pred_vars; + double cp = 0.5; + + int v, x; struct lr_spec lr; lr.dict = dataset_dict (ds); lr.n_predictor_vars = 0; @@ -566,10 +769,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.lcon = 0.0000; lr.bcon = 0.001; lr.min_epsilon = 0.00000001; - lr.cut_point = 0.5; lr.constant = true; lr.confidence = 95; lr.print = PRINT_DEFAULT; + lr.cat_predictors = NULL; + lr.n_cat_predictors = 0; + lr.indep_vars = NULL; if (lex_match_id (lexer, "VARIABLES")) @@ -578,11 +783,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) if (! (lr.dep_var = parse_variable_const (lexer, lr.dict))) goto error; - lex_force_match (lexer, T_WITH); + if (! lex_force_match (lexer, T_WITH)) + goto error; if (!parse_variables_const (lexer, lr.dict, - &lr.predictor_vars, &lr.n_predictor_vars, - PV_NO_DUPLICATE | PV_NUMERIC)) + &pred_vars, &n_pred_vars, + PV_NO_DUPLICATE)) goto error; @@ -627,6 +833,19 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) { /* This is for compatibility. It does nothing */ } + else if (lex_match_id (lexer, "CATEGORICAL")) + { + lex_match (lexer, T_EQUALS); + do + { + lr.cat_predictors = xrealloc (lr.cat_predictors, + sizeof (*lr.cat_predictors) * ++lr.n_cat_predictors); + lr.cat_predictors[lr.n_cat_predictors - 1] = 0; + } + while (parse_design_interaction (lexer, lr.dict, + lr.cat_predictors + lr.n_cat_predictors - 1)); + lr.n_cat_predictors--; + } else if (lex_match_id (lexer, "PRINT")) { lex_match (lexer, T_EQUALS); @@ -659,12 +878,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.print |= PRINT_CI; if (lex_force_match (lexer, T_LPAREN)) { - if (! lex_force_int (lexer)) + if (! lex_force_num (lexer)) { lex_error (lexer, NULL); goto error; } - lr.confidence = lex_integer (lexer); + lr.confidence = lex_number (lexer); lex_get (lexer); if ( ! lex_force_match (lexer, T_RPAREN)) { @@ -761,6 +980,30 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } } } + else if (lex_match_id (lexer, "CUT")) + { + if (lex_force_match (lexer, T_LPAREN)) + { + if (! lex_force_num (lexer)) + { + lex_error (lexer, NULL); + goto error; + } + cp = lex_number (lexer); + + if (cp < 0 || cp > 1.0) + { + msg (ME, _("Cut point value must be in the range [0,1]")); + goto error; + } + lex_get (lexer); + if ( ! lex_force_match (lexer, T_RPAREN)) + { + lex_error (lexer, NULL); + goto error; + } + } + } else { lex_error (lexer, NULL); @@ -775,8 +1018,80 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } } + lr.ilogit_cut_point = - log (1/cp - 1); + /* Copy the predictor variables from the temporary location into the + final one, dropping any categorical variables which appear there. + FIXME: This is O(NxM). + */ + { + struct variable_node *vn, *next; + struct hmap allvars; + hmap_init (&allvars); + for (v = x = 0; v < n_pred_vars; ++v) + { + bool drop = false; + const struct variable *var = pred_vars[v]; + int cv = 0; + + unsigned int hash = hash_pointer (var, 0); + struct variable_node *vn = lookup_variable (&allvars, var, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = var; + hmap_insert (&allvars, &vn->node, hash); + } + + for (cv = 0; cv < lr.n_cat_predictors ; ++cv) + { + int iv; + const struct interaction *iact = lr.cat_predictors[cv]; + for (iv = 0 ; iv < iact->n_vars ; ++iv) + { + const struct variable *ivar = iact->vars[iv]; + unsigned int hash = hash_pointer (ivar, 0); + struct variable_node *vn = lookup_variable (&allvars, ivar, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = ivar; + + hmap_insert (&allvars, &vn->node, hash); + } + + if (var == ivar) + { + drop = true; + } + } + } + + if (drop) + continue; + + lr.predictor_vars = xrealloc (lr.predictor_vars, sizeof *lr.predictor_vars * (x + 1)); + lr.predictor_vars[x++] = var; + lr.n_predictor_vars++; + } + free (pred_vars); + + lr.n_indep_vars = hmap_count (&allvars); + lr.indep_vars = xmalloc (lr.n_indep_vars * sizeof *lr.indep_vars); + + /* Interate over each variable and push it into the array */ + x = 0; + HMAP_FOR_EACH_SAFE (vn, next, struct variable_node, node, &allvars) + { + lr.indep_vars[x++] = vn->var; + free (vn); + } + hmap_destroy (&allvars); + } + + + /* logistical regression for each split group */ { struct casegrouper *grouper; struct casereader *group; @@ -789,12 +1104,26 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) ok = proc_commit (ds) && ok; } + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); + free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_SUCCESS; error: + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); + free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_FAILURE; } @@ -840,8 +1169,8 @@ output_depvarmap (const struct lr_spec *cmd, const struct lr_result *res) tab_text (t, 0, 1 + heading_rows, 0, ds_cstr (&str)); - tab_double (t, 1, 0 + heading_rows, 0, map_dependent_var (cmd, res, &res->y0), &F_8_0); - tab_double (t, 1, 1 + heading_rows, 0, map_dependent_var (cmd, res, &res->y1), &F_8_0); + tab_double (t, 1, 0 + heading_rows, 0, map_dependent_var (cmd, res, &res->y0), NULL, RC_INTEGER); + tab_double (t, 1, 1 + heading_rows, 0, map_dependent_var (cmd, res, &res->y1), NULL, RC_INTEGER); ds_destroy (&str); tab_submit (t); @@ -850,20 +1179,20 @@ output_depvarmap (const struct lr_spec *cmd, const struct lr_result *res) /* Show the Variables in the Equation box */ static void -output_variables (const struct lr_spec *cmd, - const gsl_vector *beta, - const gsl_vector *se) +output_variables (const struct lr_spec *cmd, + const struct lr_result *res) { int row = 0; const int heading_columns = 1; int heading_rows = 1; struct tab_table *t; - int idx; - int n_rows = cmd->n_predictor_vars; - int nc = 8; int nr ; + int i = 0; + int ivar = 0; + int idx_correction = 0; + if (cmd->print & PRINT_CI) { nc += 2; @@ -874,6 +1203,9 @@ output_variables (const struct lr_spec *cmd, if (cmd->constant) nr++; + if (res->cats) + nr += categoricals_df_total (res->cats) + cmd->n_cat_predictors; + t = tab_create (nc, nr); tab_title (t, _("Variables in the Equation")); @@ -901,46 +1233,108 @@ output_variables (const struct lr_spec *cmd, tab_text (t, 8, row, TAB_CENTER | TAT_TITLE, _("Lower")); tab_text (t, 9, row, TAB_CENTER | TAT_TITLE, _("Upper")); } - - if (cmd->constant) - n_rows++; - for (idx = 0 ; idx < n_rows; ++idx) + for (row = heading_rows ; row < nr; ++row) { - const int r = idx + heading_rows; + const int idx = row - heading_rows - idx_correction; - const double b = gsl_vector_get (beta, idx); - const double sigma = gsl_vector_get (se, idx); - const double wald = pow2 (b / sigma); + const double b = gsl_vector_get (res->beta_hat, idx); + const double sigma2 = gsl_matrix_get (res->hessian, idx, idx); + const double wald = pow2 (b) / sigma2; const double df = 1; if (idx < cmd->n_predictor_vars) - tab_text (t, 1, r, TAB_LEFT | TAT_TITLE, - var_to_string (cmd->predictor_vars[idx])); + { + tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, + var_to_string (cmd->predictor_vars[idx])); + } + else if (i < cmd->n_cat_predictors) + { + double wald; + bool summary = false; + struct string str; + const struct interaction *cat_predictors = cmd->cat_predictors[i]; + const int df = categoricals_df (res->cats, i); + + ds_init_empty (&str); + interaction_to_string (cat_predictors, &str); - tab_double (t, 2, r, 0, b, 0); - tab_double (t, 3, r, 0, sigma, 0); - tab_double (t, 4, r, 0, wald, 0); - tab_double (t, 5, r, 0, df, &F_8_0); - tab_double (t, 6, r, 0, gsl_cdf_chisq_Q (wald, df), 0); - tab_double (t, 7, r, 0, exp (b), 0); + if (ivar == 0) + { + /* Calculate the Wald statistic, + which is \beta' C^-1 \beta . + where \beta is the vector of the coefficient estimates comprising this + categorial variable. and C is the corresponding submatrix of the + hessian matrix. + */ + gsl_matrix_const_view mv = + gsl_matrix_const_submatrix (res->hessian, idx, idx, df, df); + gsl_matrix *subhessian = gsl_matrix_alloc (mv.matrix.size1, mv.matrix.size2); + gsl_vector_const_view vv = gsl_vector_const_subvector (res->beta_hat, idx, df); + gsl_vector *temp = gsl_vector_alloc (df); + + gsl_matrix_memcpy (subhessian, &mv.matrix); + gsl_linalg_cholesky_decomp (subhessian); + gsl_linalg_cholesky_invert (subhessian); + + gsl_blas_dgemv (CblasTrans, 1.0, subhessian, &vv.vector, 0, temp); + gsl_blas_ddot (temp, &vv.vector, &wald); + + tab_double (t, 4, row, 0, wald, NULL, RC_OTHER); + tab_double (t, 5, row, 0, df, NULL, RC_INTEGER); + tab_double (t, 6, row, 0, gsl_cdf_chisq_Q (wald, df), NULL, RC_PVALUE); + + idx_correction ++; + summary = true; + gsl_matrix_free (subhessian); + gsl_vector_free (temp); + } + else + { + ds_put_format (&str, "(%d)", ivar); + } + + tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, ds_cstr (&str)); + if (ivar++ == df) + { + ++i; /* next interaction */ + ivar = 0; + } + + ds_destroy (&str); + + if (summary) + continue; + } + else + { + tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, _("Constant")); + } + + tab_double (t, 2, row, 0, b, NULL, RC_OTHER); + tab_double (t, 3, row, 0, sqrt (sigma2), NULL, RC_OTHER); + tab_double (t, 4, row, 0, wald, NULL, RC_OTHER); + tab_double (t, 5, row, 0, df, NULL, RC_INTEGER); + tab_double (t, 6, row, 0, gsl_cdf_chisq_Q (wald, df), NULL, RC_PVALUE); + tab_double (t, 7, row, 0, exp (b), NULL, RC_OTHER); if (cmd->print & PRINT_CI) { + int last_ci = nr; double wc = gsl_cdf_ugaussian_Pinv (0.5 + cmd->confidence / 200.0); - wc *= sigma; + wc *= sqrt (sigma2); + + if (cmd->constant) + last_ci--; - if (idx < cmd->n_predictor_vars) + if (row < last_ci) { - tab_double (t, 8, r, 0, exp (b - wc), 0); - tab_double (t, 9, r, 0, exp (b + wc), 0); + tab_double (t, 8, row, 0, exp (b - wc), NULL, RC_OTHER); + tab_double (t, 9, row, 0, exp (b + wc), NULL, RC_OTHER); } } } - if ( cmd->constant) - tab_text (t, 1, nr - 1, TAB_LEFT | TAT_TITLE, _("Constant")); - tab_submit (t); } @@ -948,7 +1342,7 @@ output_variables (const struct lr_spec *cmd, /* Show the model summary box */ static void output_model_summary (const struct lr_result *res, - double initial_likelihood, double likelihood) + double initial_log_likelihood, double log_likelihood) { const int heading_columns = 0; const int heading_rows = 1; @@ -970,15 +1364,15 @@ output_model_summary (const struct lr_result *res, tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Step 1")); tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("-2 Log likelihood")); - tab_double (t, 1, 1, 0, -2 * log (likelihood), 0); + tab_double (t, 1, 1, 0, -2 * log_likelihood, NULL, RC_OTHER); tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Cox & Snell R Square")); - cox = 1.0 - pow (initial_likelihood /likelihood, 2 / res->cc); - tab_double (t, 2, 1, 0, cox, 0); + cox = 1.0 - exp((initial_log_likelihood - log_likelihood) * (2 / res->cc)); + tab_double (t, 2, 1, 0, cox, NULL, RC_OTHER); tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Nagelkerke R Square")); - tab_double (t, 3, 1, 0, cox / ( 1.0 - pow (initial_likelihood, 2 / res->cc)), 0); + tab_double (t, 3, 1, 0, cox / ( 1.0 - exp(initial_log_likelihood * (2 / res->cc))), NULL, RC_OTHER); tab_submit (t); @@ -1015,16 +1409,206 @@ case_processing_summary (const struct lr_result *res) tab_text (t, 0, 2, TAB_LEFT | TAT_TITLE, _("Missing Cases")); tab_text (t, 0, 3, TAB_LEFT | TAT_TITLE, _("Total")); - tab_double (t, 1, 1, 0, res->n_nonmissing, &F_8_0); - tab_double (t, 1, 2, 0, res->n_missing, &F_8_0); + tab_double (t, 1, 1, 0, res->n_nonmissing, NULL, RC_INTEGER); + tab_double (t, 1, 2, 0, res->n_missing, NULL, RC_INTEGER); total = res->n_nonmissing + res->n_missing; - tab_double (t, 1, 3, 0, total , &F_8_0); + tab_double (t, 1, 3, 0, total , NULL, RC_INTEGER); + + tab_double (t, 2, 1, 0, 100 * res->n_nonmissing / (double) total, NULL, RC_OTHER); + tab_double (t, 2, 2, 0, 100 * res->n_missing / (double) total, NULL, RC_OTHER); + tab_double (t, 2, 3, 0, 100 * total / (double) total, NULL, RC_OTHER); + + tab_submit (t); +} + +static void +output_categories (const struct lr_spec *cmd, const struct lr_result *res) +{ + const struct fmt_spec *wfmt = + cmd->wv ? var_get_print_format (cmd->wv) : &F_8_0; + + int cumulative_df; + int i = 0; + const int heading_columns = 2; + const int heading_rows = 2; + struct tab_table *t; + + int nc ; + int nr ; + + int v; + int r = 0; + + int max_df = 0; + int total_cats = 0; + for (i = 0; i < cmd->n_cat_predictors; ++i) + { + size_t n = categoricals_n_count (res->cats, i); + size_t df = categoricals_df (res->cats, i); + if (max_df < df) + max_df = df; + total_cats += n; + } + + nc = heading_columns + 1 + max_df; + nr = heading_rows + total_cats; + + t = tab_create (nc, nr); + tab_set_format (t, RC_WEIGHT, wfmt); + + tab_title (t, _("Categorical Variables' Codings")); + + tab_headers (t, heading_columns, 0, heading_rows, 0); + + tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); + + tab_hline (t, TAL_2, 0, nc - 1, heading_rows); + tab_vline (t, TAL_2, heading_columns, 0, nr - 1); + + + tab_text (t, heading_columns, 1, TAB_CENTER | TAT_TITLE, _("Frequency")); + + tab_joint_text_format (t, heading_columns + 1, 0, nc - 1, 0, + TAB_CENTER | TAT_TITLE, _("Parameter coding")); + + + for (i = 0; i < max_df; ++i) + { + int c = heading_columns + 1 + i; + tab_text_format (t, c, 1, TAB_CENTER | TAT_TITLE, _("(%d)"), i + 1); + } + + cumulative_df = 0; + for (v = 0; v < cmd->n_cat_predictors; ++v) + { + int cat; + const struct interaction *cat_predictors = cmd->cat_predictors[v]; + int df = categoricals_df (res->cats, v); + struct string str; + ds_init_empty (&str); + + interaction_to_string (cat_predictors, &str); - tab_double (t, 2, 1, 0, 100 * res->n_nonmissing / (double) total, 0); - tab_double (t, 2, 2, 0, 100 * res->n_missing / (double) total, 0); - tab_double (t, 2, 3, 0, 100 * total / (double) total, 0); + tab_text (t, 0, heading_rows + r, TAB_LEFT | TAT_TITLE, ds_cstr (&str) ); + + ds_destroy (&str); + + for (cat = 0; cat < categoricals_n_count (res->cats, v) ; ++cat) + { + struct string str; + const struct ccase *c = categoricals_get_case_by_category_real (res->cats, v, cat); + const double *freq = categoricals_get_user_data_by_category_real (res->cats, v, cat); + + int x; + ds_init_empty (&str); + + for (x = 0; x < cat_predictors->n_vars; ++x) + { + const union value *val = case_data (c, cat_predictors->vars[x]); + var_append_value_name (cat_predictors->vars[x], val, &str); + + if (x < cat_predictors->n_vars - 1) + ds_put_cstr (&str, " "); + } + + tab_text (t, 1, heading_rows + r, 0, ds_cstr (&str)); + ds_destroy (&str); + tab_double (t, 2, heading_rows + r, 0, *freq, NULL, RC_WEIGHT); + + for (x = 0; x < df; ++x) + { + tab_double (t, heading_columns + 1 + x, heading_rows + r, 0, (cat == x), NULL, RC_INTEGER); + } + ++r; + } + cumulative_df += df; + } tab_submit (t); + } + +static void +output_classification_table (const struct lr_spec *cmd, const struct lr_result *res) +{ + const struct fmt_spec *wfmt = + cmd->wv ? var_get_print_format (cmd->wv) : &F_8_0; + + const int heading_columns = 3; + const int heading_rows = 3; + + struct string sv0, sv1; + + const int nc = heading_columns + 3; + const int nr = heading_rows + 3; + + struct tab_table *t = tab_create (nc, nr); + tab_set_format (t, RC_WEIGHT, wfmt); + + ds_init_empty (&sv0); + ds_init_empty (&sv1); + + tab_title (t, _("Classification Table")); + + tab_headers (t, heading_columns, 0, heading_rows, 0); + + tab_box (t, TAL_2, TAL_2, -1, -1, 0, 0, nc - 1, nr - 1); + tab_box (t, -1, -1, -1, TAL_1, heading_columns, 0, nc - 1, nr - 1); + + tab_hline (t, TAL_2, 0, nc - 1, heading_rows); + tab_vline (t, TAL_2, heading_columns, 0, nr - 1); + + tab_text (t, 0, heading_rows, TAB_CENTER | TAT_TITLE, _("Step 1")); + + + tab_joint_text (t, heading_columns, 0, nc - 1, 0, + TAB_CENTER | TAT_TITLE, _("Predicted")); + + tab_joint_text (t, heading_columns, 1, heading_columns + 1, 1, + 0, var_to_string (cmd->dep_var) ); + + tab_joint_text (t, 1, 2, 2, 2, + TAB_LEFT | TAT_TITLE, _("Observed")); + + tab_text (t, 1, 3, TAB_LEFT, var_to_string (cmd->dep_var) ); + + + tab_joint_text (t, nc - 1, 1, nc - 1, 2, + TAB_CENTER | TAT_TITLE, _("Percentage\nCorrect")); + + + tab_joint_text (t, 1, nr - 1, 2, nr - 1, + TAB_LEFT | TAT_TITLE, _("Overall Percentage")); + + + tab_hline (t, TAL_1, 1, nc - 1, nr - 1); + + var_append_value_name (cmd->dep_var, &res->y0, &sv0); + var_append_value_name (cmd->dep_var, &res->y1, &sv1); + + tab_text (t, 2, heading_rows, TAB_LEFT, ds_cstr (&sv0)); + tab_text (t, 2, heading_rows + 1, TAB_LEFT, ds_cstr (&sv1)); + + tab_text (t, heading_columns, 2, 0, ds_cstr (&sv0)); + tab_text (t, heading_columns + 1, 2, 0, ds_cstr (&sv1)); + + ds_destroy (&sv0); + ds_destroy (&sv1); + + tab_double (t, heading_columns, 3, 0, res->tn, NULL, RC_WEIGHT); + tab_double (t, heading_columns + 1, 4, 0, res->tp, NULL, RC_WEIGHT); + + tab_double (t, heading_columns + 1, 3, 0, res->fp, NULL, RC_WEIGHT); + tab_double (t, heading_columns, 4, 0, res->fn, NULL, RC_WEIGHT); + + tab_double (t, heading_columns + 2, 3, 0, 100 * res->tn / (res->tn + res->fp), NULL, RC_OTHER); + tab_double (t, heading_columns + 2, 4, 0, 100 * res->tp / (res->tp + res->fn), NULL, RC_OTHER); + + tab_double (t, heading_columns + 2, 5, 0, + 100 * (res->tp + res->tn) / (res->tp + res->tn + res->fp + res->fn), NULL, RC_OTHER); + + + tab_submit (t); +}