X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Flanguage%2Fstats%2Flogistic.c;h=75f1d2a13fb4f6a439fb0a6e4428b3cc3a45cec1;hb=50e00137bfcc4eb3d4ae753a5e57e7a444194c96;hp=91a16488bd2d548716487425ecfd804b4e2b5754;hpb=3cd65292e3cc6bd6532214dcc8c8ddc65bdc2972;p=pspp diff --git a/src/language/stats/logistic.c b/src/language/stats/logistic.c index 91a16488bd..75f1d2a13f 100644 --- a/src/language/stats/logistic.c +++ b/src/language/stats/logistic.c @@ -15,21 +15,21 @@ along with this program. If not, see . */ -/* - References: +/* + References: 1. "Coding Logistic Regression with Newton-Raphson", James McCaffrey http://msdn.microsoft.com/en-us/magazine/jj618304.aspx 2. "SPSS Statistical Algorithms" Chapter LOGISTIC REGRESSION Algorithms - The Newton Raphson method finds successive approximations to $\bf b$ where + The Newton Raphson method finds successive approximations to $\bf b$ where approximation ${\bf b}_t$ is (hopefully) better than the previous ${\bf b}_{t-1}$. $ {\bf b}_t = {\bf b}_{t -1} + ({\bf X}^T{\bf W}_{t-1}{\bf X})^{-1}{\bf X}^T({\bf y} - {\bf \pi}_{t-1})$ where: - $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, + $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, $p$ the number of parameters, \par $\bf W$ is the diagonal matrix whose diagonal elements are $\hat{\pi}_0(1 - \hat{\pi}_0), \, \hat{\pi}_1(1 - \hat{\pi}_2)\dots \hat{\pi}_{n-1}(1 - \hat{\pi}_{n-1})$ @@ -39,7 +39,7 @@ #include -#include +#include #include #include @@ -60,15 +60,17 @@ #include "language/lexer/value-parser.h" #include "language/lexer/variable-parser.h" #include "libpspp/assertion.h" +#include "libpspp/hash-functions.h" +#include "libpspp/hmap.h" #include "libpspp/ll.h" #include "libpspp/message.h" #include "libpspp/misc.h" #include "math/categoricals.h" #include "math/interaction.h" - -#include "output/tab.h" +#include "output/pivot-table.h" #include "gettext.h" +#define N_(msgid) msgid #define _(msgid) gettext (msgid) @@ -101,6 +103,12 @@ struct lr_spec struct interaction **cat_predictors; size_t n_cat_predictors; + + /* The union of the categorical and non-categorical variables */ + const struct variable **indep_vars; + size_t n_indep_vars; + + /* Which classes of missing vars are to be excluded */ enum mv_class exclude; @@ -127,7 +135,8 @@ struct lr_spec /* What results should be presented */ unsigned int print; - double cut_point; + /* Inverse logit of the cut point */ + double ilogit_cut_point; }; @@ -137,7 +146,7 @@ struct lr_spec */ struct lr_result { - /* Used to indicate if a pass should flag a warning when + /* Used to indicate if a pass should flag a warning when invalid (ie negative or missing) weight values are encountered */ bool warn_bad_weight; @@ -160,6 +169,14 @@ struct lr_result categorical predictors */ struct categoricals *cats; struct payload cp; + + + /* The estimates of the predictor coefficients */ + gsl_vector *beta_hat; + + /* The predicted classifications: + True Negative, True Positive, False Negative, False Positive */ + double tn, tp, fn, fp; }; @@ -185,14 +202,14 @@ map_dependent_var (const struct lr_spec *cmd, const struct lr_result *res, const return SYSMIS; } +static void output_classification_table (const struct lr_spec *cmd, const struct lr_result *res); static void output_categories (const struct lr_spec *cmd, const struct lr_result *res); static void output_depvarmap (const struct lr_spec *cmd, const struct lr_result *); -static void output_variables (const struct lr_spec *cmd, - const struct lr_result *, - const gsl_vector *); +static void output_variables (const struct lr_spec *cmd, + const struct lr_result *); static void output_model_summary (const struct lr_result *, double initial_likelihood, double likelihood); @@ -203,14 +220,14 @@ static void case_processing_summary (const struct lr_result *); /* Return the value of case C corresponding to the INDEX'th entry in the model */ static double -predictor_value (const struct ccase *c, - const struct variable **x, size_t n_x, +predictor_value (const struct ccase *c, + const struct variable **x, size_t n_x, const struct categoricals *cats, size_t index) { /* Values of the scalar predictor variables */ - if (index < n_x) - return case_data (c, x[index])->f; + if (index < n_x) + return case_num (c, x[index]); /* Coded values of categorical predictor variables (or interactions) */ if (cats && index - n_x < categoricals_df_total (cats)) @@ -225,29 +242,28 @@ predictor_value (const struct ccase *c, /* - Return the probability estimator (that is the estimator of logit(y) ) - corresponding to the coefficient estimator beta_hat for case C + Return the probability beta_hat (that is the estimator logit(y)) + corresponding to the coefficient estimator for case C */ -static double -pi_hat (const struct lr_spec *cmd, - struct lr_result *res, - const gsl_vector *beta_hat, +static double +pi_hat (const struct lr_spec *cmd, + const struct lr_result *res, const struct variable **x, size_t n_x, const struct ccase *c) { int v0; double pi = 0; - size_t n_coeffs = beta_hat->size; + size_t n_coeffs = res->beta_hat->size; if (cmd->constant) { - pi += gsl_vector_get (beta_hat, beta_hat->size - 1); + pi += gsl_vector_get (res->beta_hat, res->beta_hat->size - 1); n_coeffs--; } - + for (v0 = 0; v0 < n_coeffs; ++v0) { - pi += gsl_vector_get (beta_hat, v0) * + pi += gsl_vector_get (res->beta_hat, v0) * predictor_value (c, x, n_x, res->cats, v0); } @@ -260,18 +276,17 @@ pi_hat (const struct lr_spec *cmd, /* Calculates the Hessian matrix X' V X, where: X is the n by N_X matrix comprising the n cases in INPUT - V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} + V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} (the partial derivative of the predicted values) If ALL predicted values derivatives are close to zero or one, then CONVERGED will be set to true. */ static void -hessian (const struct lr_spec *cmd, +hessian (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input, const struct variable **x, size_t n_x, - const gsl_vector *beta_hat, bool *converged) { struct casereader *reader; @@ -285,7 +300,7 @@ hessian (const struct lr_spec *cmd, (c = casereader_read (reader)) != NULL; case_unref (c)) { int v0, v1; - double pi = pi_hat (cmd, res, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double w = pi * (1 - pi); @@ -293,10 +308,10 @@ hessian (const struct lr_spec *cmd, max_w = w; w *= weight; - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { double in0 = predictor_value (c, x, n_x, res->cats, v0); - for (v1 = 0; v1 < beta_hat->size; ++v1) + for (v1 = 0; v1 < res->beta_hat->size; ++v1) { double in1 = predictor_value (c, x, n_x, res->cats, v1); double *o = gsl_matrix_ptr (res->hessian, v0, v1); @@ -306,7 +321,7 @@ hessian (const struct lr_spec *cmd, } casereader_destroy (reader); - if ( max_w < cmd->min_epsilon) + if (max_w < cmd->min_epsilon) { *converged = true; msg (MN, _("All predicted values are either 1 or 0")); @@ -315,11 +330,13 @@ hessian (const struct lr_spec *cmd, /* Calculates the value X' (y - pi) - where X is the design model, + where X is the design model, y is the vector of observed independent variables pi is the vector of estimates for y - As a side effect, the likelihood is stored in LIKELIHOOD + Side effects: + the likelihood is stored in LIKELIHOOD; + the predicted values are placed in the respective tn, fn, tp fp values in RES */ static gsl_vector * xt_times_y_pi (const struct lr_spec *cmd, @@ -327,31 +344,50 @@ xt_times_y_pi (const struct lr_spec *cmd, struct casereader *input, const struct variable **x, size_t n_x, const struct variable *y_var, - const gsl_vector *beta_hat, - double *likelihood) + double *llikelihood) { struct casereader *reader; struct ccase *c; - gsl_vector *output = gsl_vector_calloc (beta_hat->size); + gsl_vector *output = gsl_vector_calloc (res->beta_hat->size); - *likelihood = 1.0; + *llikelihood = 0.0; + res->tn = res->tp = res->fn = res->fp = 0; for (reader = casereader_clone (input); (c = casereader_read (reader)) != NULL; case_unref (c)) { + double pred_y = 0; int v0; - double pi = pi_hat (cmd, res, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double y = map_dependent_var (cmd, res, case_data (c, y_var)); - *likelihood *= pow (pi, weight * y) * pow (1 - pi, weight * (1 - y)); + *llikelihood += (weight * y) * log (pi) + log (1 - pi) * weight * (1 - y); - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { double in0 = predictor_value (c, x, n_x, res->cats, v0); double *o = gsl_vector_ptr (output, v0); *o += in0 * (y - pi) * weight; + pred_y += gsl_vector_get (res->beta_hat, v0) * in0; + } + + /* Count the number of cases which would be correctly/incorrectly classified by this + estimated model */ + if (pred_y <= cmd->ilogit_cut_point) + { + if (y == 0) + res->tn += weight; + else + res->fn += weight; + } + else + { + if (y == 0) + res->fp += weight; + else + res->tp += weight; } } @@ -381,32 +417,33 @@ frq_update (const void *aux1 UNUSED, void *aux2 UNUSED, *freq += weight; } -static void -frq_destroy (const void *aux1 UNUSED, void *aux2 UNUSED, void *user_data UNUSED) +static void +frq_destroy (const void *aux1 UNUSED, void *aux2 UNUSED, void *user_data) { free (user_data); } -/* +/* Makes an initial pass though the data, doing the following: * Checks that the dependent variable is dichotomous, * Creates and initialises the categoricals, * Accumulates summary results, * Calculates necessary initial values. + * Creates an initial value for \hat\beta the vector of beta_hats of \beta - Returns an initial value for \hat\beta the vector of estimators of \beta + Returns true if successful */ -static gsl_vector * -beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) +static bool +initial_pass (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) { const int width = var_get_width (cmd->dep_var); struct ccase *c; struct casereader *reader; - gsl_vector *b0 ; + double sum; double sumA = 0.0; double sumB = 0.0; @@ -427,7 +464,7 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser res->cp.destroy = frq_destroy; res->cats = categoricals_create (cmd->cat_predictors, cmd->n_cat_predictors, - cmd->wv, cmd->exclude, MV_ANY); + cmd->wv, MV_ANY); categoricals_set_payload (res->cats, &res->cp, cmd, res); } @@ -441,10 +478,15 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); const union value *depval = case_data (c, cmd->dep_var); - for (v = 0; v < cmd->n_predictor_vars; ++v) + if (var_is_value_missing (cmd->dep_var, depval) & cmd->exclude) { - const union value *val = case_data (c, cmd->predictor_vars[v]); - if (var_is_value_missing (cmd->predictor_vars[v], val, cmd->exclude)) + missing = true; + } + else + for (v = 0; v < cmd->n_indep_vars; ++v) + { + const union value *val = case_data (c, cmd->indep_vars[v]); + if (var_is_value_missing (cmd->indep_vars[v], val) & cmd->exclude) { missing = true; break; @@ -467,7 +509,7 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser } else if (!v1set) { - if ( !value_equal (&res->y0, depval, width)) + if (!value_equal (&res->y0, depval, width)) { value_clone (&res->y1, depval, width); v1set = true; @@ -478,9 +520,10 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser if (! value_equal (&res->y0, depval, width) && ! value_equal (&res->y1, depval, width) - ) + ) { msg (ME, _("Dependent variable's values are not dichotomous.")); + case_unref (c); goto error; } } @@ -515,19 +558,19 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser } n_coefficients += categoricals_df_total (res->cats); - b0 = gsl_vector_calloc (n_coefficients); + res->beta_hat = gsl_vector_calloc (n_coefficients); - if ( cmd->constant) + if (cmd->constant) { double mean = sum / res->cc; - gsl_vector_set (b0, b0->size - 1, log (mean / (1 - mean))); + gsl_vector_set (res->beta_hat, res->beta_hat->size - 1, log (mean / (1 - mean))); } - return b0; + return true; error: casereader_destroy (reader); - return NULL; + return false; } @@ -539,26 +582,41 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, { int i; - gsl_vector *beta_hat; - bool converged = false; - /* Set the likelihoods to a negative sentinel value */ - double likelihood = -1; - double prev_likelihood = -1; - double initial_likelihood = -1; + /* Set the log likelihoods to a sentinel value */ + double log_likelihood = SYSMIS; + double prev_log_likelihood = SYSMIS; + double initial_log_likelihood = SYSMIS; struct lr_result work; work.n_missing = 0; work.n_nonmissing = 0; work.warn_bad_weight = true; work.cats = NULL; + work.beta_hat = NULL; + work.hessian = NULL; + + /* Get the initial estimates of \beta and their standard errors. + And perform other auxiliary initialisation. */ + if (! initial_pass (cmd, &work, input)) + goto error; + + for (i = 0; i < cmd->n_cat_predictors; ++i) + { + if (1 >= categoricals_n_count (work.cats, i)) + { + struct string str; + ds_init_empty (&str); + interaction_to_string (cmd->cat_predictors[i], &str); - /* Get the initial estimates of \beta and their standard errors */ - beta_hat = beta_hat_initial (cmd, &work, input); - if (NULL == beta_hat) - return false; + msg (ME, _("Category %s does not have at least two distinct values. Logistic regression will not be run."), + ds_cstr(&str)); + ds_destroy (&str); + goto error; + } + } output_depvarmap (cmd, &work); @@ -566,26 +624,31 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, input = casereader_create_filter_missing (input, - cmd->predictor_vars, - cmd->n_predictor_vars, + cmd->indep_vars, + cmd->n_indep_vars, cmd->exclude, NULL, NULL); + input = casereader_create_filter_missing (input, + &cmd->dep_var, + 1, + cmd->exclude, + NULL, + NULL); - work.hessian = gsl_matrix_calloc (beta_hat->size, beta_hat->size); + work.hessian = gsl_matrix_calloc (work.beta_hat->size, work.beta_hat->size); /* Start the Newton Raphson iteration process... */ - for( i = 0 ; i < cmd->max_iter ; ++i) + for(i = 0 ; i < cmd->max_iter ; ++i) { double min, max; gsl_vector *v ; - + hessian (cmd, &work, input, - cmd->predictor_vars, cmd->n_predictor_vars, - beta_hat, - &converged); + cmd->predictor_vars, cmd->n_predictor_vars, + &converged); gsl_linalg_cholesky_decomp (work.hessian); gsl_linalg_cholesky_invert (work.hessian); @@ -593,8 +656,7 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, v = xt_times_y_pi (cmd, &work, input, cmd->predictor_vars, cmd->n_predictor_vars, cmd->dep_var, - beta_hat, - &likelihood); + &log_likelihood); { /* delta = M.v */ @@ -603,11 +665,11 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, gsl_vector_free (v); - gsl_vector_add (beta_hat, delta); + gsl_vector_add (work.beta_hat, delta); gsl_vector_minmax (delta, &min, &max); - if ( fabs (min) < cmd->bcon && fabs (max) < cmd->bcon) + if (fabs (min) < cmd->bcon && fabs (max) < cmd->bcon) { msg (MN, _("Estimation terminated at iteration number %d because parameter estimates changed by less than %g"), i + 1, cmd->bcon); @@ -617,51 +679,82 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, gsl_vector_free (delta); } - if ( prev_likelihood >= 0) + if (i > 0) { - if (-log (likelihood) > -(1.0 - cmd->lcon) * log (prev_likelihood)) + if (-log_likelihood > -(1.0 - cmd->lcon) * prev_log_likelihood) { msg (MN, _("Estimation terminated at iteration number %d because Log Likelihood decreased by less than %g%%"), i + 1, 100 * cmd->lcon); converged = true; } } if (i == 0) - initial_likelihood = likelihood; - prev_likelihood = likelihood; + initial_log_likelihood = log_likelihood; + prev_log_likelihood = log_likelihood; if (converged) break; } - casereader_destroy (input); - assert (initial_likelihood >= 0); - if ( ! converged) - msg (MW, _("Estimation terminated at iteration number %d because maximum iterations has been reached"), i ); - output_model_summary (&work, initial_likelihood, likelihood); + if (! converged) + msg (MW, _("Estimation terminated at iteration number %d because maximum iterations has been reached"), i); + + + output_model_summary (&work, initial_log_likelihood, log_likelihood); if (work.cats) output_categories (cmd, &work); - output_variables (cmd, &work, beta_hat); + output_classification_table (cmd, &work); + output_variables (cmd, &work); + casereader_destroy (input); gsl_matrix_free (work.hessian); - gsl_vector_free (beta_hat); - + gsl_vector_free (work.beta_hat); categoricals_destroy (work.cats); return true; + + error: + casereader_destroy (input); + gsl_matrix_free (work.hessian); + gsl_vector_free (work.beta_hat); + categoricals_destroy (work.cats); + + return false; } +struct variable_node +{ + struct hmap_node node; /* Node in hash map. */ + const struct variable *var; /* The variable */ +}; + +static struct variable_node * +lookup_variable (const struct hmap *map, const struct variable *var, unsigned int hash) +{ + struct variable_node *vn = NULL; + HMAP_FOR_EACH_WITH_HASH (vn, struct variable_node, node, hash, map) + { + if (vn->var == var) + break; + } + + return vn; +} + + /* Parse the LOGISTIC REGRESSION command syntax */ int cmd_logistic (struct lexer *lexer, struct dataset *ds) { + int i; /* Temporary location for the predictor variables. These may or may not include the categorical predictors */ const struct variable **pred_vars; size_t n_pred_vars; + double cp = 0.5; int v, x; struct lr_spec lr; @@ -674,13 +767,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.lcon = 0.0000; lr.bcon = 0.001; lr.min_epsilon = 0.00000001; - lr.cut_point = 0.5; lr.constant = true; lr.confidence = 95; lr.print = PRINT_DEFAULT; lr.cat_predictors = NULL; lr.n_cat_predictors = 0; - + lr.indep_vars = NULL; if (lex_match_id (lexer, "VARIABLES")) @@ -689,7 +781,8 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) if (! (lr.dep_var = parse_variable_const (lexer, lr.dict))) goto error; - lex_force_match (lexer, T_WITH); + if (! lex_force_match (lexer, T_WITH)) + goto error; if (!parse_variables_const (lexer, lr.dict, &pred_vars, &n_pred_vars, @@ -747,7 +840,7 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) sizeof (*lr.cat_predictors) * ++lr.n_cat_predictors); lr.cat_predictors[lr.n_cat_predictors - 1] = 0; } - while (parse_design_interaction (lexer, lr.dict, + while (parse_design_interaction (lexer, lr.dict, lr.cat_predictors + lr.n_cat_predictors - 1)); lr.n_cat_predictors--; } @@ -783,14 +876,14 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.print |= PRINT_CI; if (lex_force_match (lexer, T_LPAREN)) { - if (! lex_force_int (lexer)) + if (! lex_force_num (lexer)) { lex_error (lexer, NULL); goto error; } - lr.confidence = lex_integer (lexer); + lr.confidence = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -824,7 +917,7 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.bcon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -835,14 +928,14 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) { if (lex_force_match (lexer, T_LPAREN)) { - if (! lex_force_int (lexer)) + if (! lex_force_int_range (lexer, "ITERATE", 0, INT_MAX)) { lex_error (lexer, NULL); goto error; } lr.max_iter = lex_integer (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -860,7 +953,7 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.lcon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -878,7 +971,24 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.min_epsilon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) + { + lex_error (lexer, NULL); + goto error; + } + } + } + else if (lex_match_id (lexer, "CUT")) + { + if (lex_force_match (lexer, T_LPAREN)) + { + if (!lex_force_num_range_closed (lexer, "CUT", 0, 1)) + goto error; + + cp = lex_number (lexer); + + lex_get (lexer); + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -899,30 +1009,56 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } } - /* Copy the predictor variables from the temporary location into the + lr.ilogit_cut_point = - log (1/cp - 1); + + + /* Copy the predictor variables from the temporary location into the final one, dropping any categorical variables which appear there. FIXME: This is O(NxM). */ + { + struct variable_node *vn, *next; + struct hmap allvars; + hmap_init (&allvars); for (v = x = 0; v < n_pred_vars; ++v) { bool drop = false; const struct variable *var = pred_vars[v]; int cv = 0; + + unsigned int hash = hash_pointer (var, 0); + struct variable_node *vn = lookup_variable (&allvars, var, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = var; + hmap_insert (&allvars, &vn->node, hash); + } + for (cv = 0; cv < lr.n_cat_predictors ; ++cv) { int iv; const struct interaction *iact = lr.cat_predictors[cv]; for (iv = 0 ; iv < iact->n_vars ; ++iv) { - if (var == iact->vars[iv]) + const struct variable *ivar = iact->vars[iv]; + unsigned int hash = hash_pointer (ivar, 0); + struct variable_node *vn = lookup_variable (&allvars, ivar, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = ivar; + + hmap_insert (&allvars, &vn->node, hash); + } + + if (var == ivar) { drop = true; - goto dropped; } } } - dropped: if (drop) continue; @@ -932,8 +1068,21 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } free (pred_vars); + lr.n_indep_vars = hmap_count (&allvars); + lr.indep_vars = xmalloc (lr.n_indep_vars * sizeof *lr.indep_vars); + + /* Interate over each variable and push it into the array */ + x = 0; + HMAP_FOR_EACH_SAFE (vn, next, struct variable_node, node, &allvars) + { + lr.indep_vars[x++] = vn->var; + free (vn); + } + hmap_destroy (&allvars); + } + - /* Run logistical regression for each split group */ + /* logistical regression for each split group */ { struct casegrouper *grouper; struct casereader *group; @@ -946,14 +1095,26 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) ok = proc_commit (ds) && ok; } + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_SUCCESS; error: + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_FAILURE; } @@ -967,141 +1128,101 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) static void output_depvarmap (const struct lr_spec *cmd, const struct lr_result *res) { - const int heading_columns = 0; - const int heading_rows = 1; - struct tab_table *t; - struct string str; - - const int nc = 2; - int nr = heading_rows + 2; - - t = tab_create (nc, nr); - tab_title (t, _("Dependent Variable Encoding")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - tab_text (t, 0, 0, TAB_CENTER | TAT_TITLE, _("Original Value")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("Internal Value")); - + struct pivot_table *table = pivot_table_create ( + N_("Dependent Variable Encoding")); + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Mapping"), + N_("Internal Value")); - ds_init_empty (&str); - var_append_value_name (cmd->dep_var, &res->y0, &str); - tab_text (t, 0, 0 + heading_rows, 0, ds_cstr (&str)); + struct pivot_dimension *original = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Original Value")); + original->root->show_label = true; - ds_clear (&str); - var_append_value_name (cmd->dep_var, &res->y1, &str); - tab_text (t, 0, 1 + heading_rows, 0, ds_cstr (&str)); - - - tab_double (t, 1, 0 + heading_rows, 0, map_dependent_var (cmd, res, &res->y0), &F_8_0); - tab_double (t, 1, 1 + heading_rows, 0, map_dependent_var (cmd, res, &res->y1), &F_8_0); - ds_destroy (&str); + for (int i = 0; i < 2; i++) + { + const union value *v = i ? &res->y1 : &res->y0; + int orig_idx = pivot_category_create_leaf ( + original->root, pivot_value_new_var_value (cmd->dep_var, v)); + pivot_table_put2 (table, 0, orig_idx, pivot_value_new_number ( + map_dependent_var (cmd, res, v))); + } - tab_submit (t); + pivot_table_submit (table); } /* Show the Variables in the Equation box */ static void -output_variables (const struct lr_spec *cmd, - const struct lr_result *res, - const gsl_vector *beta) +output_variables (const struct lr_spec *cmd, + const struct lr_result *res) { - int row = 0; - const int heading_columns = 1; - int heading_rows = 1; - struct tab_table *t; + struct pivot_table *table = pivot_table_create ( + N_("Variables in the Equation")); + + struct pivot_dimension *statistics = pivot_dimension_create ( + table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("B"), PIVOT_RC_OTHER, + N_("S.E."), PIVOT_RC_OTHER, + N_("Wald"), PIVOT_RC_OTHER, + N_("df"), PIVOT_RC_INTEGER, + N_("Sig."), PIVOT_RC_SIGNIFICANCE, + N_("Exp(B)"), PIVOT_RC_OTHER); + if (cmd->print & PRINT_CI) + { + struct pivot_category *group = pivot_category_create_group__ ( + statistics->root, + pivot_value_new_text_format (N_("%d%% CI for Exp(B)"), + cmd->confidence)); + pivot_category_create_leaves (group, N_("Lower"), N_("Upper")); + } + + struct pivot_dimension *variables = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Variables")); + struct pivot_category *step1 = pivot_category_create_group ( + variables->root, N_("Step 1")); - int nc = 8; - int nr ; - int i = 0; int ivar = 0; int idx_correction = 0; + int i = 0; - if (cmd->print & PRINT_CI) - { - nc += 2; - heading_rows += 1; - row++; - } - nr = heading_rows + cmd->n_predictor_vars; + int nr = cmd->n_predictor_vars; if (cmd->constant) nr++; - if (res->cats) nr += categoricals_df_total (res->cats) + cmd->n_cat_predictors; - t = tab_create (nc, nr); - tab_title (t, _("Variables in the Equation")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - tab_text (t, 0, row + 1, TAB_CENTER | TAT_TITLE, _("Step 1")); - - tab_text (t, 2, row, TAB_CENTER | TAT_TITLE, _("B")); - tab_text (t, 3, row, TAB_CENTER | TAT_TITLE, _("S.E.")); - tab_text (t, 4, row, TAB_CENTER | TAT_TITLE, _("Wald")); - tab_text (t, 5, row, TAB_CENTER | TAT_TITLE, _("df")); - tab_text (t, 6, row, TAB_CENTER | TAT_TITLE, _("Sig.")); - tab_text (t, 7, row, TAB_CENTER | TAT_TITLE, _("Exp(B)")); - - if (cmd->print & PRINT_CI) + for (int row = 0; row < nr; row++) { - tab_joint_text_format (t, 8, 0, 9, 0, - TAB_CENTER | TAT_TITLE, _("%d%% CI for Exp(B)"), cmd->confidence); - - tab_text (t, 8, row, TAB_CENTER | TAT_TITLE, _("Lower")); - tab_text (t, 9, row, TAB_CENTER | TAT_TITLE, _("Upper")); - } - - for (row = heading_rows ; row < nr; ++row) - { - const int idx = row - heading_rows - idx_correction; - - const double b = gsl_vector_get (beta, idx); - const double sigma2 = gsl_matrix_get (res->hessian, idx, idx); - const double wald = pow2 (b) / sigma2; - const double df = 1; + const int idx = row - idx_correction; + int var_idx; if (idx < cmd->n_predictor_vars) - { - tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, - var_to_string (cmd->predictor_vars[idx])); - } + var_idx = pivot_category_create_leaf ( + step1, pivot_value_new_variable (cmd->predictor_vars[idx])); else if (i < cmd->n_cat_predictors) { - double wald; - bool summary = false; - struct string str; const struct interaction *cat_predictors = cmd->cat_predictors[i]; - const int df = categoricals_df (res->cats, i); - - ds_init_empty (&str); + struct string str = DS_EMPTY_INITIALIZER; interaction_to_string (cat_predictors, &str); - - if (ivar == 0) + if (ivar != 0) + ds_put_format (&str, "(%d)", ivar); + var_idx = pivot_category_create_leaf ( + step1, pivot_value_new_user_text_nocopy (ds_steal_cstr (&str))); + + int df = categoricals_df (res->cats, i); + bool summary = ivar == 0; + if (summary) { /* Calculate the Wald statistic, which is \beta' C^-1 \beta . where \beta is the vector of the coefficient estimates comprising this - categorial variable. and C is the corresponding submatrix of the + categorial variable. and C is the corresponding submatrix of the hessian matrix. */ gsl_matrix_const_view mv = gsl_matrix_const_submatrix (res->hessian, idx, idx, df, df); gsl_matrix *subhessian = gsl_matrix_alloc (mv.matrix.size1, mv.matrix.size2); - gsl_vector_const_view vv = gsl_vector_const_subvector (beta, idx, df); + gsl_vector_const_view vv = gsl_vector_const_subvector (res->beta_hat, idx, df); gsl_vector *temp = gsl_vector_alloc (df); gsl_matrix_memcpy (subhessian, &mv.matrix); @@ -1109,167 +1230,137 @@ output_variables (const struct lr_spec *cmd, gsl_linalg_cholesky_invert (subhessian); gsl_blas_dgemv (CblasTrans, 1.0, subhessian, &vv.vector, 0, temp); + double wald; gsl_blas_ddot (temp, &vv.vector, &wald); - tab_double (t, 4, row, 0, wald, 0); - tab_double (t, 5, row, 0, df, &F_8_0); - tab_double (t, 6, row, 0, gsl_cdf_chisq_Q (wald, df), 0); + double entries[] = { wald, df, gsl_cdf_chisq_Q (wald, df) }; + for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) + pivot_table_put2 (table, j + 2, var_idx, + pivot_value_new_number (entries[j])); - idx_correction ++; - summary = true; + idx_correction++; gsl_matrix_free (subhessian); gsl_vector_free (temp); } - else - { - ds_put_format (&str, "(%d)", ivar); - } - tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, ds_cstr (&str)); if (ivar++ == df) { ++i; /* next interaction */ ivar = 0; } - ds_destroy (&str); - if (summary) continue; } else - { - tab_text (t, 1, row, TAB_LEFT | TAT_TITLE, _("Constant")); - } - - tab_double (t, 2, row, 0, b, 0); - tab_double (t, 3, row, 0, sqrt (sigma2), 0); - tab_double (t, 4, row, 0, wald, 0); - tab_double (t, 5, row, 0, df, &F_8_0); - tab_double (t, 6, row, 0, gsl_cdf_chisq_Q (wald, df), 0); - tab_double (t, 7, row, 0, exp (b), 0); - - if (cmd->print & PRINT_CI) - { - double wc = gsl_cdf_ugaussian_Pinv (0.5 + cmd->confidence / 200.0); - wc *= sqrt (sigma2); - - if (idx < cmd->n_predictor_vars) - { - tab_double (t, 8, row, 0, exp (b - wc), 0); - tab_double (t, 9, row, 0, exp (b + wc), 0); - } - } + var_idx = pivot_category_create_leaves (step1, N_("Constant")); + + double b = gsl_vector_get (res->beta_hat, idx); + double sigma2 = gsl_matrix_get (res->hessian, idx, idx); + double wald = pow2 (b) / sigma2; + double df = 1; + double wc = (gsl_cdf_ugaussian_Pinv (0.5 + cmd->confidence / 200.0) + * sqrt (sigma2)); + bool show_ci = cmd->print & PRINT_CI && row < nr - cmd->constant; + + double entries[] = { + b, + sqrt (sigma2), + wald, + df, + gsl_cdf_chisq_Q (wald, df), + exp (b), + show_ci ? exp (b - wc) : SYSMIS, + show_ci ? exp (b + wc) : SYSMIS, + }; + for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) + if (entries[j] != SYSMIS) + pivot_table_put2 (table, j, var_idx, + pivot_value_new_number (entries[j])); } - tab_submit (t); + pivot_table_submit (table); } /* Show the model summary box */ static void output_model_summary (const struct lr_result *res, - double initial_likelihood, double likelihood) + double initial_log_likelihood, double log_likelihood) { - const int heading_columns = 0; - const int heading_rows = 1; - struct tab_table *t; - - const int nc = 4; - int nr = heading_rows + 1; - double cox; - - t = tab_create (nc, nr); - tab_title (t, _("Model Summary")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Step 1")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("-2 Log likelihood")); - tab_double (t, 1, 1, 0, -2 * log (likelihood), 0); - - - tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Cox & Snell R Square")); - cox = 1.0 - pow (initial_likelihood /likelihood, 2 / res->cc); - tab_double (t, 2, 1, 0, cox, 0); - - tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Nagelkerke R Square")); - tab_double (t, 3, 1, 0, cox / ( 1.0 - pow (initial_likelihood, 2 / res->cc)), 0); - - - tab_submit (t); + struct pivot_table *table = pivot_table_create (N_("Model Summary")); + + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("-2 Log likelihood"), PIVOT_RC_OTHER, + N_("Cox & Snell R Square"), PIVOT_RC_OTHER, + N_("Nagelkerke R Square"), PIVOT_RC_OTHER); + + struct pivot_dimension *step = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Step")); + step->root->show_label = true; + pivot_category_create_leaf (step->root, pivot_value_new_integer (1)); + + double cox = (1.0 - exp ((initial_log_likelihood - log_likelihood) + * (2 / res->cc))); + double entries[] = { + -2 * log_likelihood, + cox, + cox / (1.0 - exp(initial_log_likelihood * (2 / res->cc))) + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + pivot_table_put2 (table, i, 0, pivot_value_new_number (entries[i])); + + pivot_table_submit (table); } /* Show the case processing summary box */ static void case_processing_summary (const struct lr_result *res) { - const int heading_columns = 1; - const int heading_rows = 1; - struct tab_table *t; + struct pivot_table *table = pivot_table_create ( + N_("Case Processing Summary")); - const int nc = 3; - const int nr = heading_rows + 3; - casenumber total; + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("N"), PIVOT_RC_COUNT, + N_("Percent"), PIVOT_RC_PERCENT); - t = tab_create (nc, nr); - tab_title (t, _("Case Processing Summary")); + struct pivot_dimension *cases = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Unweighted Cases"), + N_("Included in Analysis"), N_("Missing Cases"), N_("Total")); + cases->root->show_label = true; - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Unweighted Cases")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("N")); - tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Percent")); - - - tab_text (t, 0, 1, TAB_LEFT | TAT_TITLE, _("Included in Analysis")); - tab_text (t, 0, 2, TAB_LEFT | TAT_TITLE, _("Missing Cases")); - tab_text (t, 0, 3, TAB_LEFT | TAT_TITLE, _("Total")); - - tab_double (t, 1, 1, 0, res->n_nonmissing, &F_8_0); - tab_double (t, 1, 2, 0, res->n_missing, &F_8_0); - - total = res->n_nonmissing + res->n_missing; - tab_double (t, 1, 3, 0, total , &F_8_0); - - tab_double (t, 2, 1, 0, 100 * res->n_nonmissing / (double) total, 0); - tab_double (t, 2, 2, 0, 100 * res->n_missing / (double) total, 0); - tab_double (t, 2, 3, 0, 100 * total / (double) total, 0); - - tab_submit (t); + double total = res->n_nonmissing + res->n_missing; + struct entry + { + int stat_idx; + int case_idx; + double x; + } + entries[] = { + { 0, 0, res->n_nonmissing }, + { 0, 1, res->n_missing }, + { 0, 2, total }, + { 1, 0, 100.0 * res->n_nonmissing / total }, + { 1, 1, 100.0 * res->n_missing / total }, + { 1, 2, 100.0 }, + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + pivot_table_put2 (table, entries[i].stat_idx, entries[i].case_idx, + pivot_value_new_number (entries[i].x)); + + pivot_table_submit (table); } static void output_categories (const struct lr_spec *cmd, const struct lr_result *res) { - const struct fmt_spec *wfmt = - cmd->wv ? var_get_print_format (cmd->wv) : &F_8_0; - - int cumulative_df; - int i = 0; - const int heading_columns = 2; - const int heading_rows = 2; - struct tab_table *t; - - int nc ; - int nr ; - - int v; - int r = 0; + struct pivot_table *table = pivot_table_create ( + N_("Categorical Variables' Codings")); + pivot_table_set_weight_var (table, dict_get_weight (cmd->dict)); int max_df = 0; int total_cats = 0; - for (i = 0; i < cmd->n_cat_predictors; ++i) + for (int i = 0; i < cmd->n_cat_predictors; ++i) { size_t n = categoricals_n_count (res->cats, i); size_t df = categoricals_df (res->cats, i); @@ -1278,78 +1369,121 @@ output_categories (const struct lr_spec *cmd, const struct lr_result *res) total_cats += n; } - nc = heading_columns + 1 + max_df; - nr = heading_rows + total_cats; - - t = tab_create (nc, nr); - tab_title (t, _("Categorical Variables' Codings")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - - tab_text (t, heading_columns, 1, TAB_CENTER | TAT_TITLE, _("Frequency")); - - tab_joint_text_format (t, heading_columns + 1, 0, nc - 1, 0, - TAB_CENTER | TAT_TITLE, _("Parameter coding")); - - - for (i = 0; i < max_df; ++i) - { - int c = heading_columns + 1 + i; - tab_text_format (t, c, 1, TAB_CENTER | TAT_TITLE, _("(%d)"), i + 1); - } - - cumulative_df = 0; - for (v = 0; v < cmd->n_cat_predictors; ++v) + struct pivot_dimension *codings = pivot_dimension_create ( + table, PIVOT_AXIS_COLUMN, N_("Codings"), + N_("Frequency"), PIVOT_RC_COUNT); + struct pivot_category *coding_group = pivot_category_create_group ( + codings->root, N_("Parameter coding")); + for (int i = 0; i < max_df; ++i) + pivot_category_create_leaf_rc ( + coding_group, + pivot_value_new_user_text_nocopy (xasprintf ("(%d)", i + 1)), + PIVOT_RC_INTEGER); + + struct pivot_dimension *categories = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Categories")); + + int cumulative_df = 0; + for (int v = 0; v < cmd->n_cat_predictors; ++v) { int cat; const struct interaction *cat_predictors = cmd->cat_predictors[v]; - int df = categoricals_df (res->cats, v); - struct string str; - ds_init_empty (&str); + int df = categoricals_df (res->cats, v); + struct string str = DS_EMPTY_INITIALIZER; interaction_to_string (cat_predictors, &str); - - tab_text (t, 0, heading_rows + r, TAB_LEFT | TAT_TITLE, ds_cstr (&str) ); - - ds_destroy (&str); + struct pivot_category *var_group = pivot_category_create_group__ ( + categories->root, + pivot_value_new_user_text_nocopy (ds_steal_cstr (&str))); for (cat = 0; cat < categoricals_n_count (res->cats, v) ; ++cat) { - struct string str; - const struct ccase *c = categoricals_get_case_by_category_real (res->cats, v, cat); - const double *freq = categoricals_get_user_data_by_category_real (res->cats, v, cat); - - int x; - ds_init_empty (&str); - - for (x = 0; x < cat_predictors->n_vars; ++x) + const struct ccase *c = categoricals_get_case_by_category_real ( + res->cats, v, cat); + struct string label = DS_EMPTY_INITIALIZER; + for (int x = 0; x < cat_predictors->n_vars; ++x) { - const union value *val = case_data (c, cat_predictors->vars[x]); - var_append_value_name (cat_predictors->vars[x], val, &str); + if (!ds_is_empty (&label)) + ds_put_byte (&label, ' '); - if (x < cat_predictors->n_vars - 1) - ds_put_cstr (&str, " "); + const union value *val = case_data (c, cat_predictors->vars[x]); + var_append_value_name (cat_predictors->vars[x], val, &label); } - - tab_text (t, 1, heading_rows + r, 0, ds_cstr (&str)); - ds_destroy (&str); - tab_double (t, 2, heading_rows + r, 0, *freq, wfmt); + int cat_idx = pivot_category_create_leaf ( + var_group, + pivot_value_new_user_text_nocopy (ds_steal_cstr (&label))); - for (x = 0; x < df; ++x) - { - tab_double (t, heading_columns + 1 + x, heading_rows + r, 0, (cat == x), &F_8_0); - } - ++r; + double *freq = categoricals_get_user_data_by_category_real ( + res->cats, v, cat); + pivot_table_put2 (table, 0, cat_idx, pivot_value_new_number (*freq)); + + for (int x = 0; x < df; ++x) + pivot_table_put2 (table, x + 1, cat_idx, + pivot_value_new_number (cat == x)); } cumulative_df += df; } - tab_submit (t); + pivot_table_submit (table); +} + +static void +create_classification_dimension (const struct lr_spec *cmd, + const struct lr_result *res, + struct pivot_table *table, + enum pivot_axis_type axis_type, + const char *label, const char *total) +{ + struct pivot_dimension *d = pivot_dimension_create ( + table, axis_type, label); + d->root->show_label = true; + struct pivot_category *pred_group = pivot_category_create_group__ ( + d->root, pivot_value_new_variable (cmd->dep_var)); + for (int i = 0; i < 2; i++) + { + const union value *y = i ? &res->y1 : &res->y0; + pivot_category_create_leaf_rc ( + pred_group, pivot_value_new_var_value (cmd->dep_var, y), + PIVOT_RC_COUNT); + } + pivot_category_create_leaves (d->root, total, PIVOT_RC_PERCENT); +} + +static void +output_classification_table (const struct lr_spec *cmd, const struct lr_result *res) +{ + struct pivot_table *table = pivot_table_create (N_("Classification Table")); + pivot_table_set_weight_var (table, cmd->wv); + + create_classification_dimension (cmd, res, table, PIVOT_AXIS_COLUMN, + N_("Predicted"), N_("Percentage Correct")); + create_classification_dimension (cmd, res, table, PIVOT_AXIS_ROW, + N_("Observed"), N_("Overall Percentage")); + + pivot_dimension_create (table, PIVOT_AXIS_ROW, N_("Step"), N_("Step 1")); + + struct entry + { + int pred_idx; + int obs_idx; + double x; + } + entries[] = { + { 0, 0, res->tn }, + { 0, 1, res->fn }, + { 1, 0, res->fp }, + { 1, 1, res->tp }, + { 2, 0, 100 * res->tn / (res->tn + res->fp) }, + { 2, 1, 100 * res->tp / (res->tp + res->fn) }, + { 2, 2, + 100 * (res->tp + res->tn) / (res->tp + res->tn + res->fp + res->fn)}, + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + { + const struct entry *e = &entries[i]; + pivot_table_put3 (table, e->pred_idx, e->obs_idx, 0, + pivot_value_new_number (e->x)); + } + pivot_table_submit (table); }