X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=src%2Flanguage%2Fstats%2Flogistic.c;h=75f1d2a13fb4f6a439fb0a6e4428b3cc3a45cec1;hb=2088d7438791ad96dda2037a6ac7e9b0f3998c8b;hp=1a9e313477c3fa6e5b294273d5a4c138386fe44c;hpb=3d9f94e464bd3b760898914304d16cc9c3990f11;p=pspp diff --git a/src/language/stats/logistic.c b/src/language/stats/logistic.c index 1a9e313477..75f1d2a13f 100644 --- a/src/language/stats/logistic.c +++ b/src/language/stats/logistic.c @@ -15,21 +15,21 @@ along with this program. If not, see . */ -/* - References: +/* + References: 1. "Coding Logistic Regression with Newton-Raphson", James McCaffrey http://msdn.microsoft.com/en-us/magazine/jj618304.aspx 2. "SPSS Statistical Algorithms" Chapter LOGISTIC REGRESSION Algorithms - The Newton Raphson method finds successive approximations to $\bf b$ where + The Newton Raphson method finds successive approximations to $\bf b$ where approximation ${\bf b}_t$ is (hopefully) better than the previous ${\bf b}_{t-1}$. $ {\bf b}_t = {\bf b}_{t -1} + ({\bf X}^T{\bf W}_{t-1}{\bf X})^{-1}{\bf X}^T({\bf y} - {\bf \pi}_{t-1})$ where: - $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, + $\bf X$ is the $n \times p$ design matrix, $n$ being the number of cases, $p$ the number of parameters, \par $\bf W$ is the diagonal matrix whose diagonal elements are $\hat{\pi}_0(1 - \hat{\pi}_0), \, \hat{\pi}_1(1 - \hat{\pi}_2)\dots \hat{\pi}_{n-1}(1 - \hat{\pi}_{n-1})$ @@ -39,7 +39,7 @@ #include -#include +#include #include #include @@ -60,13 +60,17 @@ #include "language/lexer/value-parser.h" #include "language/lexer/variable-parser.h" #include "libpspp/assertion.h" +#include "libpspp/hash-functions.h" +#include "libpspp/hmap.h" #include "libpspp/ll.h" #include "libpspp/message.h" #include "libpspp/misc.h" #include "math/categoricals.h" -#include "output/tab.h" +#include "math/interaction.h" +#include "output/pivot-table.h" #include "gettext.h" +#define N_(msgid) msgid #define _(msgid) gettext (msgid) @@ -91,8 +95,19 @@ struct lr_spec /* The dependent variable */ const struct variable *dep_var; - size_t n_predictor_vars; + /* The predictor variables (excluding categorical ones) */ const struct variable **predictor_vars; + size_t n_predictor_vars; + + /* The categorical predictors */ + struct interaction **cat_predictors; + size_t n_cat_predictors; + + + /* The union of the categorical and non-categorical variables */ + const struct variable **indep_vars; + size_t n_indep_vars; + /* Which classes of missing vars are to be excluded */ enum mv_class exclude; @@ -100,6 +115,7 @@ struct lr_spec /* The weight variable */ const struct variable *wv; + /* The dictionary of the dataset */ const struct dictionary *dict; /* True iff the constant (intercept) is to be included in the model */ @@ -119,18 +135,21 @@ struct lr_spec /* What results should be presented */ unsigned int print; - double cut_point; + /* Inverse logit of the cut point */ + double ilogit_cut_point; }; + /* The results and intermediate result of the procedure. These are mutated as the procedure runs. Used for temporary variables etc. */ struct lr_result { + /* Used to indicate if a pass should flag a warning when + invalid (ie negative or missing) weight values are encountered */ bool warn_bad_weight; - /* The two values of the dependent variable. */ union value y0; union value y1; @@ -139,37 +158,58 @@ struct lr_result /* The sum of caseweights */ double cc; + /* The number of missing and nonmissing cases */ casenumber n_missing; casenumber n_nonmissing; + + + gsl_matrix *hessian; + + /* The categoricals and their payload. Null if the analysis has no + categorical predictors */ + struct categoricals *cats; + struct payload cp; + + + /* The estimates of the predictor coefficients */ + gsl_vector *beta_hat; + + /* The predicted classifications: + True Negative, True Positive, False Negative, False Positive */ + double tn, tp, fn, fp; }; /* - Convert INPUT into a dichotomous scalar. For simple cases, this is a 1:1 mapping + Convert INPUT into a dichotomous scalar, according to how the dependent variable's + values are mapped. + For simple cases, this is a 1:1 mapping The return value is always either 0 or 1 */ static double map_dependent_var (const struct lr_spec *cmd, const struct lr_result *res, const union value *input) { - int width = var_get_width (cmd->dep_var); + const int width = var_get_width (cmd->dep_var); if (value_equal (input, &res->y0, width)) return 0; if (value_equal (input, &res->y1, width)) return 1; - + + /* This should never happen. If it does, then y0 and/or y1 have probably not been set */ NOT_REACHED (); return SYSMIS; } +static void output_classification_table (const struct lr_spec *cmd, const struct lr_result *res); +static void output_categories (const struct lr_spec *cmd, const struct lr_result *res); static void output_depvarmap (const struct lr_spec *cmd, const struct lr_result *); -static void output_variables (const struct lr_spec *cmd, - const gsl_vector *, - const gsl_vector *); +static void output_variables (const struct lr_spec *cmd, + const struct lr_result *); static void output_model_summary (const struct lr_result *, double initial_likelihood, double likelihood); @@ -177,26 +217,55 @@ static void output_model_summary (const struct lr_result *, static void case_processing_summary (const struct lr_result *); +/* Return the value of case C corresponding to the INDEX'th entry in the + model */ +static double +predictor_value (const struct ccase *c, + const struct variable **x, size_t n_x, + const struct categoricals *cats, + size_t index) +{ + /* Values of the scalar predictor variables */ + if (index < n_x) + return case_num (c, x[index]); + + /* Coded values of categorical predictor variables (or interactions) */ + if (cats && index - n_x < categoricals_df_total (cats)) + { + double x = categoricals_get_dummy_code_for_case (cats, index - n_x, c); + return x; + } + + /* The constant term */ + return 1.0; +} + + /* - Return the probability estimator (that is the estimator of logit(y) ) - corresponding to the coefficient estimator beta_hat for case C + Return the probability beta_hat (that is the estimator logit(y)) + corresponding to the coefficient estimator for case C */ -static double -pi_hat (const struct lr_spec *cmd, - const gsl_vector *beta_hat, +static double +pi_hat (const struct lr_spec *cmd, + const struct lr_result *res, const struct variable **x, size_t n_x, const struct ccase *c) { int v0; double pi = 0; - for (v0 = 0; v0 < n_x; ++v0) + size_t n_coeffs = res->beta_hat->size; + + if (cmd->constant) { - pi += gsl_vector_get (beta_hat, v0) * - case_data (c, x[v0])->f; + pi += gsl_vector_get (res->beta_hat, res->beta_hat->size - 1); + n_coeffs--; } - if (cmd->constant) - pi += gsl_vector_get (beta_hat, beta_hat->size - 1); + for (v0 = 0; v0 < n_coeffs; ++v0) + { + pi += gsl_vector_get (res->beta_hat, v0) * + predictor_value (c, x, n_x, res->cats, v0); + } pi = 1.0 / (1.0 + exp(-pi)); @@ -207,32 +276,31 @@ pi_hat (const struct lr_spec *cmd, /* Calculates the Hessian matrix X' V X, where: X is the n by N_X matrix comprising the n cases in INPUT - V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} + V is a diagonal matrix { (pi_hat_0)(1 - pi_hat_0), (pi_hat_1)(1 - pi_hat_1), ... (pi_hat_{N-1})(1 - pi_hat_{N-1})} (the partial derivative of the predicted values) If ALL predicted values derivatives are close to zero or one, then CONVERGED will be set to true. */ -static gsl_matrix * -hessian (const struct lr_spec *cmd, +static void +hessian (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input, const struct variable **x, size_t n_x, - const gsl_vector *beta_hat, - bool *converged - ) + bool *converged) { struct casereader *reader; struct ccase *c; - gsl_matrix *output = gsl_matrix_calloc (beta_hat->size, beta_hat->size); double max_w = -DBL_MAX; + gsl_matrix_set_zero (res->hessian); + for (reader = casereader_clone (input); (c = casereader_read (reader)) != NULL; case_unref (c)) { int v0, v1; - double pi = pi_hat (cmd, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double w = pi * (1 - pi); @@ -240,36 +308,35 @@ hessian (const struct lr_spec *cmd, max_w = w; w *= weight; - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { - double in0 = v0 < n_x ? case_data (c, x[v0])->f : 1.0; - for (v1 = 0; v1 < beta_hat->size; ++v1) + double in0 = predictor_value (c, x, n_x, res->cats, v0); + for (v1 = 0; v1 < res->beta_hat->size; ++v1) { - double in1 = v1 < n_x ? case_data (c, x[v1])->f : 1.0 ; - double *o = gsl_matrix_ptr (output, v0, v1); + double in1 = predictor_value (c, x, n_x, res->cats, v1); + double *o = gsl_matrix_ptr (res->hessian, v0, v1); *o += in0 * w * in1; } } } casereader_destroy (reader); - - if ( max_w < cmd->min_epsilon) + if (max_w < cmd->min_epsilon) { *converged = true; msg (MN, _("All predicted values are either 1 or 0")); } - - return output; } /* Calculates the value X' (y - pi) - where X is the design model, + where X is the design model, y is the vector of observed independent variables pi is the vector of estimates for y - As a side effect, the likelihood is stored in LIKELIHOOD + Side effects: + the likelihood is stored in LIKELIHOOD; + the predicted values are placed in the respective tn, fn, tp fp values in RES */ static gsl_vector * xt_times_y_pi (const struct lr_spec *cmd, @@ -277,31 +344,50 @@ xt_times_y_pi (const struct lr_spec *cmd, struct casereader *input, const struct variable **x, size_t n_x, const struct variable *y_var, - const gsl_vector *beta_hat, - double *likelihood) + double *llikelihood) { struct casereader *reader; struct ccase *c; - gsl_vector *output = gsl_vector_calloc (beta_hat->size); + gsl_vector *output = gsl_vector_calloc (res->beta_hat->size); - *likelihood = 1.0; + *llikelihood = 0.0; + res->tn = res->tp = res->fn = res->fp = 0; for (reader = casereader_clone (input); (c = casereader_read (reader)) != NULL; case_unref (c)) { + double pred_y = 0; int v0; - double pi = pi_hat (cmd, beta_hat, x, n_x, c); + double pi = pi_hat (cmd, res, x, n_x, c); double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); double y = map_dependent_var (cmd, res, case_data (c, y_var)); - *likelihood *= pow (pi, weight * y) * pow (1 - pi, weight * (1 - y)); + *llikelihood += (weight * y) * log (pi) + log (1 - pi) * weight * (1 - y); - for (v0 = 0; v0 < beta_hat->size; ++v0) + for (v0 = 0; v0 < res->beta_hat->size; ++v0) { - double in0 = v0 < n_x ? case_data (c, x[v0])->f : 1.0; + double in0 = predictor_value (c, x, n_x, res->cats, v0); double *o = gsl_vector_ptr (output, v0); *o += in0 * (y - pi) * weight; + pred_y += gsl_vector_get (res->beta_hat, v0) * in0; + } + + /* Count the number of cases which would be correctly/incorrectly classified by this + estimated model */ + if (pred_y <= cmd->ilogit_cut_point) + { + if (y == 0) + res->tn += weight; + else + res->fn += weight; + } + else + { + if (y == 0) + res->fp += weight; + else + res->tp += weight; } } @@ -310,21 +396,54 @@ xt_times_y_pi (const struct lr_spec *cmd, return output; } + + +/* "payload" functions for the categoricals. + The only function is to accumulate the frequency of each + category. + */ + +static void * +frq_create (const void *aux1 UNUSED, void *aux2 UNUSED) +{ + return xzalloc (sizeof (double)); +} + +static void +frq_update (const void *aux1 UNUSED, void *aux2 UNUSED, + void *ud, const struct ccase *c UNUSED , double weight) +{ + double *freq = ud; + *freq += weight; +} + +static void +frq_destroy (const void *aux1 UNUSED, void *aux2 UNUSED, void *user_data) +{ + free (user_data); +} + + + +/* + Makes an initial pass though the data, doing the following: -/* - Makes an initial pass though the data, checks that the dependent variable is - dichotomous, and calculates necessary initial values. + * Checks that the dependent variable is dichotomous, + * Creates and initialises the categoricals, + * Accumulates summary results, + * Calculates necessary initial values. + * Creates an initial value for \hat\beta the vector of beta_hats of \beta - Returns an initial value for \hat\beta the vector of estimators of \beta + Returns true if successful */ -static gsl_vector * -beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) +static bool +initial_pass (const struct lr_spec *cmd, struct lr_result *res, struct casereader *input) { const int width = var_get_width (cmd->dep_var); struct ccase *c; struct casereader *reader; - gsl_vector *b0 ; + double sum; double sumA = 0.0; double sumB = 0.0; @@ -336,7 +455,19 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser if (cmd->constant) n_coefficients++; - b0 = gsl_vector_calloc (n_coefficients); + /* Create categoricals if appropriate */ + if (cmd->n_cat_predictors > 0) + { + res->cp.create = frq_create; + res->cp.update = frq_update; + res->cp.calculate = NULL; + res->cp.destroy = frq_destroy; + + res->cats = categoricals_create (cmd->cat_predictors, cmd->n_cat_predictors, + cmd->wv, MV_ANY); + + categoricals_set_payload (res->cats, &res->cp, cmd, res); + } res->cc = 0; for (reader = casereader_clone (input); @@ -347,24 +478,30 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser double weight = dict_get_case_weight (cmd->dict, c, &res->warn_bad_weight); const union value *depval = case_data (c, cmd->dep_var); - for (v = 0; v < cmd->n_predictor_vars; ++v) + if (var_is_value_missing (cmd->dep_var, depval) & cmd->exclude) { - const union value *val = case_data (c, cmd->predictor_vars[v]); - if (var_is_value_missing (cmd->predictor_vars[v], val, cmd->exclude)) + missing = true; + } + else + for (v = 0; v < cmd->n_indep_vars; ++v) + { + const union value *val = case_data (c, cmd->indep_vars[v]); + if (var_is_value_missing (cmd->indep_vars[v], val) & cmd->exclude) { missing = true; break; } } + /* Accumulate the missing and non-missing counts */ if (missing) { res->n_missing++; continue; } - res->n_nonmissing++; + /* Find the values of the dependent variable */ if (!v0set) { value_clone (&res->y0, depval, width); @@ -372,7 +509,7 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser } else if (!v1set) { - if ( !value_equal (&res->y0, depval, width)) + if (!value_equal (&res->y0, depval, width)) { value_clone (&res->y1, depval, width); v1set = true; @@ -383,24 +520,29 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser if (! value_equal (&res->y0, depval, width) && ! value_equal (&res->y1, depval, width) - ) + ) { msg (ME, _("Dependent variable's values are not dichotomous.")); + case_unref (c); goto error; } } - if (value_equal (&res->y0, depval, width)) + if (v0set && value_equal (&res->y0, depval, width)) sumA += weight; - if (value_equal (&res->y1, depval, width)) + if (v1set && value_equal (&res->y1, depval, width)) sumB += weight; res->cc += weight; + + categoricals_update (res->cats, c); } casereader_destroy (reader); + categoricals_done (res->cats); + sum = sumB; /* Ensure that Y0 is less than Y1. Otherwise the mapping gets @@ -415,101 +557,119 @@ beta_hat_initial (const struct lr_spec *cmd, struct lr_result *res, struct caser sum = sumA; } - if ( cmd->constant) + n_coefficients += categoricals_df_total (res->cats); + res->beta_hat = gsl_vector_calloc (n_coefficients); + + if (cmd->constant) { double mean = sum / res->cc; - gsl_vector_set (b0, b0->size - 1, log (mean / (1 - mean))); + gsl_vector_set (res->beta_hat, res->beta_hat->size - 1, log (mean / (1 - mean))); } - return b0; + return true; error: casereader_destroy (reader); - return NULL; + return false; } +/* Start of the logistic regression routine proper */ static bool run_lr (const struct lr_spec *cmd, struct casereader *input, const struct dataset *ds UNUSED) { - int i,j; - - gsl_vector *beta_hat; - gsl_vector *se ; + int i; bool converged = false; - double likelihood; - double prev_likelihood = -1; - double initial_likelihood ; + + /* Set the log likelihoods to a sentinel value */ + double log_likelihood = SYSMIS; + double prev_log_likelihood = SYSMIS; + double initial_log_likelihood = SYSMIS; struct lr_result work; work.n_missing = 0; work.n_nonmissing = 0; work.warn_bad_weight = true; + work.cats = NULL; + work.beta_hat = NULL; + work.hessian = NULL; + /* Get the initial estimates of \beta and their standard errors. + And perform other auxiliary initialisation. */ + if (! initial_pass (cmd, &work, input)) + goto error; - /* Get the initial estimates of \beta and their standard errors */ - beta_hat = beta_hat_initial (cmd, &work, input); - if (NULL == beta_hat) - return false; + for (i = 0; i < cmd->n_cat_predictors; ++i) + { + if (1 >= categoricals_n_count (work.cats, i)) + { + struct string str; + ds_init_empty (&str); - output_depvarmap (cmd, &work); + interaction_to_string (cmd->cat_predictors[i], &str); - se = gsl_vector_alloc (beta_hat->size); + msg (ME, _("Category %s does not have at least two distinct values. Logistic regression will not be run."), + ds_cstr(&str)); + ds_destroy (&str); + goto error; + } + } + + output_depvarmap (cmd, &work); case_processing_summary (&work); input = casereader_create_filter_missing (input, - cmd->predictor_vars, - cmd->n_predictor_vars, + cmd->indep_vars, + cmd->n_indep_vars, + cmd->exclude, + NULL, + NULL); + + input = casereader_create_filter_missing (input, + &cmd->dep_var, + 1, cmd->exclude, NULL, NULL); + work.hessian = gsl_matrix_calloc (work.beta_hat->size, work.beta_hat->size); /* Start the Newton Raphson iteration process... */ - for( i = 0 ; i < cmd->max_iter ; ++i) + for(i = 0 ; i < cmd->max_iter ; ++i) { double min, max; - gsl_matrix *m ; gsl_vector *v ; - m = hessian (cmd, &work, input, - cmd->predictor_vars, cmd->n_predictor_vars, - beta_hat, - &converged); - gsl_linalg_cholesky_decomp (m); - gsl_linalg_cholesky_invert (m); + hessian (cmd, &work, input, + cmd->predictor_vars, cmd->n_predictor_vars, + &converged); + + gsl_linalg_cholesky_decomp (work.hessian); + gsl_linalg_cholesky_invert (work.hessian); v = xt_times_y_pi (cmd, &work, input, cmd->predictor_vars, cmd->n_predictor_vars, cmd->dep_var, - beta_hat, - &likelihood); + &log_likelihood); { /* delta = M.v */ gsl_vector *delta = gsl_vector_alloc (v->size); - gsl_blas_dgemv (CblasNoTrans, 1.0, m, v, 0, delta); + gsl_blas_dgemv (CblasNoTrans, 1.0, work.hessian, v, 0, delta); gsl_vector_free (v); - for (j = 0; j < se->size; ++j) - { - double *ptr = gsl_vector_ptr (se, j); - *ptr = gsl_matrix_get (m, j, j); - } - - gsl_matrix_free (m); - gsl_vector_add (beta_hat, delta); + gsl_vector_add (work.beta_hat, delta); gsl_vector_minmax (delta, &min, &max); - if ( fabs (min) < cmd->bcon && fabs (max) < cmd->bcon) + if (fabs (min) < cmd->bcon && fabs (max) < cmd->bcon) { msg (MN, _("Estimation terminated at iteration number %d because parameter estimates changed by less than %g"), i + 1, cmd->bcon); @@ -519,42 +679,84 @@ run_lr (const struct lr_spec *cmd, struct casereader *input, gsl_vector_free (delta); } - if ( prev_likelihood >= 0) + if (i > 0) { - if (-log (likelihood) > -(1.0 - cmd->lcon) * log (prev_likelihood)) + if (-log_likelihood > -(1.0 - cmd->lcon) * prev_log_likelihood) { msg (MN, _("Estimation terminated at iteration number %d because Log Likelihood decreased by less than %g%%"), i + 1, 100 * cmd->lcon); converged = true; } } if (i == 0) - initial_likelihood = likelihood; - prev_likelihood = likelihood; + initial_log_likelihood = log_likelihood; + prev_log_likelihood = log_likelihood; if (converged) break; } - casereader_destroy (input); - for (i = 0; i < se->size; ++i) - { - double *ptr = gsl_vector_ptr (se, i); - *ptr = sqrt (*ptr); - } - output_model_summary (&work, initial_likelihood, likelihood); - output_variables (cmd, beta_hat, se); - gsl_vector_free (beta_hat); - gsl_vector_free (se); + if (! converged) + msg (MW, _("Estimation terminated at iteration number %d because maximum iterations has been reached"), i); + + + output_model_summary (&work, initial_log_likelihood, log_likelihood); + + if (work.cats) + output_categories (cmd, &work); + + output_classification_table (cmd, &work); + output_variables (cmd, &work); + + casereader_destroy (input); + gsl_matrix_free (work.hessian); + gsl_vector_free (work.beta_hat); + categoricals_destroy (work.cats); return true; + + error: + casereader_destroy (input); + gsl_matrix_free (work.hessian); + gsl_vector_free (work.beta_hat); + categoricals_destroy (work.cats); + + return false; } +struct variable_node +{ + struct hmap_node node; /* Node in hash map. */ + const struct variable *var; /* The variable */ +}; + +static struct variable_node * +lookup_variable (const struct hmap *map, const struct variable *var, unsigned int hash) +{ + struct variable_node *vn = NULL; + HMAP_FOR_EACH_WITH_HASH (vn, struct variable_node, node, hash, map) + { + if (vn->var == var) + break; + } + + return vn; +} + + /* Parse the LOGISTIC REGRESSION command syntax */ int cmd_logistic (struct lexer *lexer, struct dataset *ds) { + int i; + /* Temporary location for the predictor variables. + These may or may not include the categorical predictors */ + const struct variable **pred_vars; + size_t n_pred_vars; + double cp = 0.5; + + int v, x; struct lr_spec lr; lr.dict = dataset_dict (ds); lr.n_predictor_vars = 0; @@ -565,10 +767,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.lcon = 0.0000; lr.bcon = 0.001; lr.min_epsilon = 0.00000001; - lr.cut_point = 0.5; lr.constant = true; lr.confidence = 95; lr.print = PRINT_DEFAULT; + lr.cat_predictors = NULL; + lr.n_cat_predictors = 0; + lr.indep_vars = NULL; if (lex_match_id (lexer, "VARIABLES")) @@ -577,11 +781,12 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) if (! (lr.dep_var = parse_variable_const (lexer, lr.dict))) goto error; - lex_force_match (lexer, T_WITH); + if (! lex_force_match (lexer, T_WITH)) + goto error; if (!parse_variables_const (lexer, lr.dict, - &lr.predictor_vars, &lr.n_predictor_vars, - PV_NO_DUPLICATE | PV_NUMERIC)) + &pred_vars, &n_pred_vars, + PV_NO_DUPLICATE)) goto error; @@ -626,6 +831,19 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) { /* This is for compatibility. It does nothing */ } + else if (lex_match_id (lexer, "CATEGORICAL")) + { + lex_match (lexer, T_EQUALS); + do + { + lr.cat_predictors = xrealloc (lr.cat_predictors, + sizeof (*lr.cat_predictors) * ++lr.n_cat_predictors); + lr.cat_predictors[lr.n_cat_predictors - 1] = 0; + } + while (parse_design_interaction (lexer, lr.dict, + lr.cat_predictors + lr.n_cat_predictors - 1)); + lr.n_cat_predictors--; + } else if (lex_match_id (lexer, "PRINT")) { lex_match (lexer, T_EQUALS); @@ -658,14 +876,14 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) lr.print |= PRINT_CI; if (lex_force_match (lexer, T_LPAREN)) { - if (! lex_force_int (lexer)) + if (! lex_force_num (lexer)) { lex_error (lexer, NULL); goto error; } - lr.confidence = lex_integer (lexer); + lr.confidence = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -699,7 +917,7 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.bcon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -710,14 +928,14 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) { if (lex_force_match (lexer, T_LPAREN)) { - if (! lex_force_int (lexer)) + if (! lex_force_int_range (lexer, "ITERATE", 0, INT_MAX)) { lex_error (lexer, NULL); goto error; } lr.max_iter = lex_integer (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -735,7 +953,7 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.lcon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -753,7 +971,24 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } lr.min_epsilon = lex_number (lexer); lex_get (lexer); - if ( ! lex_force_match (lexer, T_RPAREN)) + if (! lex_force_match (lexer, T_RPAREN)) + { + lex_error (lexer, NULL); + goto error; + } + } + } + else if (lex_match_id (lexer, "CUT")) + { + if (lex_force_match (lexer, T_LPAREN)) + { + if (!lex_force_num_range_closed (lexer, "CUT", 0, 1)) + goto error; + + cp = lex_number (lexer); + + lex_get (lexer); + if (! lex_force_match (lexer, T_RPAREN)) { lex_error (lexer, NULL); goto error; @@ -774,8 +1009,80 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) } } + lr.ilogit_cut_point = - log (1/cp - 1); + /* Copy the predictor variables from the temporary location into the + final one, dropping any categorical variables which appear there. + FIXME: This is O(NxM). + */ + { + struct variable_node *vn, *next; + struct hmap allvars; + hmap_init (&allvars); + for (v = x = 0; v < n_pred_vars; ++v) + { + bool drop = false; + const struct variable *var = pred_vars[v]; + int cv = 0; + + unsigned int hash = hash_pointer (var, 0); + struct variable_node *vn = lookup_variable (&allvars, var, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = var; + hmap_insert (&allvars, &vn->node, hash); + } + + for (cv = 0; cv < lr.n_cat_predictors ; ++cv) + { + int iv; + const struct interaction *iact = lr.cat_predictors[cv]; + for (iv = 0 ; iv < iact->n_vars ; ++iv) + { + const struct variable *ivar = iact->vars[iv]; + unsigned int hash = hash_pointer (ivar, 0); + struct variable_node *vn = lookup_variable (&allvars, ivar, hash); + if (vn == NULL) + { + vn = xmalloc (sizeof *vn); + vn->var = ivar; + + hmap_insert (&allvars, &vn->node, hash); + } + + if (var == ivar) + { + drop = true; + } + } + } + + if (drop) + continue; + + lr.predictor_vars = xrealloc (lr.predictor_vars, sizeof *lr.predictor_vars * (x + 1)); + lr.predictor_vars[x++] = var; + lr.n_predictor_vars++; + } + free (pred_vars); + + lr.n_indep_vars = hmap_count (&allvars); + lr.indep_vars = xmalloc (lr.n_indep_vars * sizeof *lr.indep_vars); + + /* Interate over each variable and push it into the array */ + x = 0; + HMAP_FOR_EACH_SAFE (vn, next, struct variable_node, node, &allvars) + { + lr.indep_vars[x++] = vn->var; + free (vn); + } + hmap_destroy (&allvars); + } + + + /* logistical regression for each split group */ { struct casegrouper *grouper; struct casereader *group; @@ -788,12 +1095,26 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) ok = proc_commit (ds) && ok; } + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); + free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_SUCCESS; error: + for (i = 0 ; i < lr.n_cat_predictors; ++i) + { + interaction_destroy (lr.cat_predictors[i]); + } free (lr.predictor_vars); + free (lr.cat_predictors); + free (lr.indep_vars); + return CMD_FAILURE; } @@ -807,223 +1128,362 @@ cmd_logistic (struct lexer *lexer, struct dataset *ds) static void output_depvarmap (const struct lr_spec *cmd, const struct lr_result *res) { - const int heading_columns = 0; - const int heading_rows = 1; - struct tab_table *t; - struct string str; - - const int nc = 2; - int nr = heading_rows + 2; - - t = tab_create (nc, nr); - tab_title (t, _("Dependent Variable Encoding")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); + struct pivot_table *table = pivot_table_create ( + N_("Dependent Variable Encoding")); - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Mapping"), + N_("Internal Value")); - tab_text (t, 0, 0, TAB_CENTER | TAT_TITLE, _("Original Value")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("Internal Value")); + struct pivot_dimension *original = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Original Value")); + original->root->show_label = true; + for (int i = 0; i < 2; i++) + { + const union value *v = i ? &res->y1 : &res->y0; + int orig_idx = pivot_category_create_leaf ( + original->root, pivot_value_new_var_value (cmd->dep_var, v)); + pivot_table_put2 (table, 0, orig_idx, pivot_value_new_number ( + map_dependent_var (cmd, res, v))); + } - - ds_init_empty (&str); - var_append_value_name (cmd->dep_var, &res->y0, &str); - tab_text (t, 0, 0 + heading_rows, 0, ds_cstr (&str)); - - ds_clear (&str); - var_append_value_name (cmd->dep_var, &res->y1, &str); - tab_text (t, 0, 1 + heading_rows, 0, ds_cstr (&str)); - - - tab_double (t, 1, 0 + heading_rows, 0, map_dependent_var (cmd, res, &res->y0), &F_8_0); - tab_double (t, 1, 1 + heading_rows, 0, map_dependent_var (cmd, res, &res->y1), &F_8_0); - ds_destroy (&str); - - tab_submit (t); + pivot_table_submit (table); } /* Show the Variables in the Equation box */ static void -output_variables (const struct lr_spec *cmd, - const gsl_vector *beta, - const gsl_vector *se) +output_variables (const struct lr_spec *cmd, + const struct lr_result *res) { - int row = 0; - const int heading_columns = 1; - int heading_rows = 1; - struct tab_table *t; - - int idx; - int n_rows = cmd->n_predictor_vars; - - int nc = 8; - int nr ; + struct pivot_table *table = pivot_table_create ( + N_("Variables in the Equation")); + + struct pivot_dimension *statistics = pivot_dimension_create ( + table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("B"), PIVOT_RC_OTHER, + N_("S.E."), PIVOT_RC_OTHER, + N_("Wald"), PIVOT_RC_OTHER, + N_("df"), PIVOT_RC_INTEGER, + N_("Sig."), PIVOT_RC_SIGNIFICANCE, + N_("Exp(B)"), PIVOT_RC_OTHER); if (cmd->print & PRINT_CI) { - nc += 2; - heading_rows += 1; - row++; + struct pivot_category *group = pivot_category_create_group__ ( + statistics->root, + pivot_value_new_text_format (N_("%d%% CI for Exp(B)"), + cmd->confidence)); + pivot_category_create_leaves (group, N_("Lower"), N_("Upper")); } - nr = heading_rows + cmd->n_predictor_vars; - if (cmd->constant) - nr++; - - t = tab_create (nc, nr); - tab_title (t, _("Variables in the Equation")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - tab_text (t, 0, row + 1, TAB_CENTER | TAT_TITLE, _("Step 1")); + struct pivot_dimension *variables = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Variables")); + struct pivot_category *step1 = pivot_category_create_group ( + variables->root, N_("Step 1")); - tab_text (t, 2, row, TAB_CENTER | TAT_TITLE, _("B")); - tab_text (t, 3, row, TAB_CENTER | TAT_TITLE, _("S.E.")); - tab_text (t, 4, row, TAB_CENTER | TAT_TITLE, _("Wald")); - tab_text (t, 5, row, TAB_CENTER | TAT_TITLE, _("df")); - tab_text (t, 6, row, TAB_CENTER | TAT_TITLE, _("Sig.")); - tab_text (t, 7, row, TAB_CENTER | TAT_TITLE, _("Exp(B)")); + int ivar = 0; + int idx_correction = 0; + int i = 0; - if (cmd->print & PRINT_CI) - { - tab_joint_text_format (t, 8, 0, 9, 0, - TAB_CENTER | TAT_TITLE, _("%d%% CI for Exp(B)"), cmd->confidence); - - tab_text (t, 8, row, TAB_CENTER | TAT_TITLE, _("Lower")); - tab_text (t, 9, row, TAB_CENTER | TAT_TITLE, _("Upper")); - } - + int nr = cmd->n_predictor_vars; if (cmd->constant) - n_rows++; + nr++; + if (res->cats) + nr += categoricals_df_total (res->cats) + cmd->n_cat_predictors; - for (idx = 0 ; idx < n_rows; ++idx) + for (int row = 0; row < nr; row++) { - const int r = idx + heading_rows; - - const double b = gsl_vector_get (beta, idx); - const double sigma = gsl_vector_get (se, idx); - const double wald = pow2 (b / sigma); - const double df = 1; + const int idx = row - idx_correction; + int var_idx; if (idx < cmd->n_predictor_vars) - tab_text (t, 1, r, TAB_LEFT | TAT_TITLE, - var_to_string (cmd->predictor_vars[idx])); - - tab_double (t, 2, r, 0, b, 0); - tab_double (t, 3, r, 0, sigma, 0); - tab_double (t, 4, r, 0, wald, 0); - tab_double (t, 5, r, 0, df, &F_8_0); - tab_double (t, 6, r, 0, gsl_cdf_chisq_Q (wald, df), 0); - tab_double (t, 7, r, 0, exp (b), 0); - - if (cmd->print & PRINT_CI) + var_idx = pivot_category_create_leaf ( + step1, pivot_value_new_variable (cmd->predictor_vars[idx])); + else if (i < cmd->n_cat_predictors) { - double wc = gsl_cdf_ugaussian_Pinv (0.5 + cmd->confidence / 200.0); - wc *= sigma; - - if (idx < cmd->n_predictor_vars) + const struct interaction *cat_predictors = cmd->cat_predictors[i]; + struct string str = DS_EMPTY_INITIALIZER; + interaction_to_string (cat_predictors, &str); + if (ivar != 0) + ds_put_format (&str, "(%d)", ivar); + var_idx = pivot_category_create_leaf ( + step1, pivot_value_new_user_text_nocopy (ds_steal_cstr (&str))); + + int df = categoricals_df (res->cats, i); + bool summary = ivar == 0; + if (summary) { - tab_double (t, 8, r, 0, exp (b - wc), 0); - tab_double (t, 9, r, 0, exp (b + wc), 0); + /* Calculate the Wald statistic, + which is \beta' C^-1 \beta . + where \beta is the vector of the coefficient estimates comprising this + categorial variable. and C is the corresponding submatrix of the + hessian matrix. + */ + gsl_matrix_const_view mv = + gsl_matrix_const_submatrix (res->hessian, idx, idx, df, df); + gsl_matrix *subhessian = gsl_matrix_alloc (mv.matrix.size1, mv.matrix.size2); + gsl_vector_const_view vv = gsl_vector_const_subvector (res->beta_hat, idx, df); + gsl_vector *temp = gsl_vector_alloc (df); + + gsl_matrix_memcpy (subhessian, &mv.matrix); + gsl_linalg_cholesky_decomp (subhessian); + gsl_linalg_cholesky_invert (subhessian); + + gsl_blas_dgemv (CblasTrans, 1.0, subhessian, &vv.vector, 0, temp); + double wald; + gsl_blas_ddot (temp, &vv.vector, &wald); + + double entries[] = { wald, df, gsl_cdf_chisq_Q (wald, df) }; + for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) + pivot_table_put2 (table, j + 2, var_idx, + pivot_value_new_number (entries[j])); + + idx_correction++; + gsl_matrix_free (subhessian); + gsl_vector_free (temp); + } + + if (ivar++ == df) + { + ++i; /* next interaction */ + ivar = 0; } + + if (summary) + continue; } + else + var_idx = pivot_category_create_leaves (step1, N_("Constant")); + + double b = gsl_vector_get (res->beta_hat, idx); + double sigma2 = gsl_matrix_get (res->hessian, idx, idx); + double wald = pow2 (b) / sigma2; + double df = 1; + double wc = (gsl_cdf_ugaussian_Pinv (0.5 + cmd->confidence / 200.0) + * sqrt (sigma2)); + bool show_ci = cmd->print & PRINT_CI && row < nr - cmd->constant; + + double entries[] = { + b, + sqrt (sigma2), + wald, + df, + gsl_cdf_chisq_Q (wald, df), + exp (b), + show_ci ? exp (b - wc) : SYSMIS, + show_ci ? exp (b + wc) : SYSMIS, + }; + for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) + if (entries[j] != SYSMIS) + pivot_table_put2 (table, j, var_idx, + pivot_value_new_number (entries[j])); } - if ( cmd->constant) - tab_text (t, 1, nr - 1, TAB_LEFT | TAT_TITLE, _("Constant")); - - tab_submit (t); + pivot_table_submit (table); } /* Show the model summary box */ static void output_model_summary (const struct lr_result *res, - double initial_likelihood, double likelihood) + double initial_log_likelihood, double log_likelihood) { - const int heading_columns = 0; - const int heading_rows = 1; - struct tab_table *t; - - const int nc = 4; - int nr = heading_rows + 1; - double cox; - - t = tab_create (nc, nr); - tab_title (t, _("Model Summary")); - - tab_headers (t, heading_columns, 0, heading_rows, 0); - - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); - - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); - - tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Step 1")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("-2 Log likelihood")); - tab_double (t, 1, 1, 0, -2 * log (likelihood), 0); - + struct pivot_table *table = pivot_table_create (N_("Model Summary")); + + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("-2 Log likelihood"), PIVOT_RC_OTHER, + N_("Cox & Snell R Square"), PIVOT_RC_OTHER, + N_("Nagelkerke R Square"), PIVOT_RC_OTHER); + + struct pivot_dimension *step = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Step")); + step->root->show_label = true; + pivot_category_create_leaf (step->root, pivot_value_new_integer (1)); + + double cox = (1.0 - exp ((initial_log_likelihood - log_likelihood) + * (2 / res->cc))); + double entries[] = { + -2 * log_likelihood, + cox, + cox / (1.0 - exp(initial_log_likelihood * (2 / res->cc))) + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + pivot_table_put2 (table, i, 0, pivot_value_new_number (entries[i])); + + pivot_table_submit (table); +} - tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Cox & Snell R Square")); - cox = 1.0 - pow (initial_likelihood /likelihood, 2 / res->cc); - tab_double (t, 2, 1, 0, cox, 0); +/* Show the case processing summary box */ +static void +case_processing_summary (const struct lr_result *res) +{ + struct pivot_table *table = pivot_table_create ( + N_("Case Processing Summary")); - tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Nagelkerke R Square")); - tab_double (t, 3, 1, 0, cox / ( 1.0 - pow (initial_likelihood, 2 / res->cc)), 0); + pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"), + N_("N"), PIVOT_RC_COUNT, + N_("Percent"), PIVOT_RC_PERCENT); + struct pivot_dimension *cases = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Unweighted Cases"), + N_("Included in Analysis"), N_("Missing Cases"), N_("Total")); + cases->root->show_label = true; - tab_submit (t); + double total = res->n_nonmissing + res->n_missing; + struct entry + { + int stat_idx; + int case_idx; + double x; + } + entries[] = { + { 0, 0, res->n_nonmissing }, + { 0, 1, res->n_missing }, + { 0, 2, total }, + { 1, 0, 100.0 * res->n_nonmissing / total }, + { 1, 1, 100.0 * res->n_missing / total }, + { 1, 2, 100.0 }, + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + pivot_table_put2 (table, entries[i].stat_idx, entries[i].case_idx, + pivot_value_new_number (entries[i].x)); + + pivot_table_submit (table); } -/* Show the case processing summary box */ static void -case_processing_summary (const struct lr_result *res) +output_categories (const struct lr_spec *cmd, const struct lr_result *res) { - const int heading_columns = 1; - const int heading_rows = 1; - struct tab_table *t; + struct pivot_table *table = pivot_table_create ( + N_("Categorical Variables' Codings")); + pivot_table_set_weight_var (table, dict_get_weight (cmd->dict)); - const int nc = 3; - const int nr = heading_rows + 3; - casenumber total; + int max_df = 0; + int total_cats = 0; + for (int i = 0; i < cmd->n_cat_predictors; ++i) + { + size_t n = categoricals_n_count (res->cats, i); + size_t df = categoricals_df (res->cats, i); + if (max_df < df) + max_df = df; + total_cats += n; + } + + struct pivot_dimension *codings = pivot_dimension_create ( + table, PIVOT_AXIS_COLUMN, N_("Codings"), + N_("Frequency"), PIVOT_RC_COUNT); + struct pivot_category *coding_group = pivot_category_create_group ( + codings->root, N_("Parameter coding")); + for (int i = 0; i < max_df; ++i) + pivot_category_create_leaf_rc ( + coding_group, + pivot_value_new_user_text_nocopy (xasprintf ("(%d)", i + 1)), + PIVOT_RC_INTEGER); + + struct pivot_dimension *categories = pivot_dimension_create ( + table, PIVOT_AXIS_ROW, N_("Categories")); + + int cumulative_df = 0; + for (int v = 0; v < cmd->n_cat_predictors; ++v) + { + int cat; + const struct interaction *cat_predictors = cmd->cat_predictors[v]; + int df = categoricals_df (res->cats, v); - t = tab_create (nc, nr); - tab_title (t, _("Case Processing Summary")); + struct string str = DS_EMPTY_INITIALIZER; + interaction_to_string (cat_predictors, &str); + struct pivot_category *var_group = pivot_category_create_group__ ( + categories->root, + pivot_value_new_user_text_nocopy (ds_steal_cstr (&str))); - tab_headers (t, heading_columns, 0, heading_rows, 0); + for (cat = 0; cat < categoricals_n_count (res->cats, v) ; ++cat) + { + const struct ccase *c = categoricals_get_case_by_category_real ( + res->cats, v, cat); + struct string label = DS_EMPTY_INITIALIZER; + for (int x = 0; x < cat_predictors->n_vars; ++x) + { + if (!ds_is_empty (&label)) + ds_put_byte (&label, ' '); + + const union value *val = case_data (c, cat_predictors->vars[x]); + var_append_value_name (cat_predictors->vars[x], val, &label); + } + int cat_idx = pivot_category_create_leaf ( + var_group, + pivot_value_new_user_text_nocopy (ds_steal_cstr (&label))); - tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, nc - 1, nr - 1); + double *freq = categoricals_get_user_data_by_category_real ( + res->cats, v, cat); + pivot_table_put2 (table, 0, cat_idx, pivot_value_new_number (*freq)); - tab_hline (t, TAL_2, 0, nc - 1, heading_rows); - tab_vline (t, TAL_2, heading_columns, 0, nr - 1); + for (int x = 0; x < df; ++x) + pivot_table_put2 (table, x + 1, cat_idx, + pivot_value_new_number (cat == x)); + } + cumulative_df += df; + } - tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("Unweighted Cases")); - tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("N")); - tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Percent")); + pivot_table_submit (table); +} +static void +create_classification_dimension (const struct lr_spec *cmd, + const struct lr_result *res, + struct pivot_table *table, + enum pivot_axis_type axis_type, + const char *label, const char *total) +{ + struct pivot_dimension *d = pivot_dimension_create ( + table, axis_type, label); + d->root->show_label = true; + struct pivot_category *pred_group = pivot_category_create_group__ ( + d->root, pivot_value_new_variable (cmd->dep_var)); + for (int i = 0; i < 2; i++) + { + const union value *y = i ? &res->y1 : &res->y0; + pivot_category_create_leaf_rc ( + pred_group, pivot_value_new_var_value (cmd->dep_var, y), + PIVOT_RC_COUNT); + } + pivot_category_create_leaves (d->root, total, PIVOT_RC_PERCENT); +} - tab_text (t, 0, 1, TAB_LEFT | TAT_TITLE, _("Included in Analysis")); - tab_text (t, 0, 2, TAB_LEFT | TAT_TITLE, _("Missing Cases")); - tab_text (t, 0, 3, TAB_LEFT | TAT_TITLE, _("Total")); +static void +output_classification_table (const struct lr_spec *cmd, const struct lr_result *res) +{ + struct pivot_table *table = pivot_table_create (N_("Classification Table")); + pivot_table_set_weight_var (table, cmd->wv); - tab_double (t, 1, 1, 0, res->n_nonmissing, &F_8_0); - tab_double (t, 1, 2, 0, res->n_missing, &F_8_0); + create_classification_dimension (cmd, res, table, PIVOT_AXIS_COLUMN, + N_("Predicted"), N_("Percentage Correct")); + create_classification_dimension (cmd, res, table, PIVOT_AXIS_ROW, + N_("Observed"), N_("Overall Percentage")); - total = res->n_nonmissing + res->n_missing; - tab_double (t, 1, 3, 0, total , &F_8_0); + pivot_dimension_create (table, PIVOT_AXIS_ROW, N_("Step"), N_("Step 1")); - tab_double (t, 2, 1, 0, 100 * res->n_nonmissing / (double) total, 0); - tab_double (t, 2, 2, 0, 100 * res->n_missing / (double) total, 0); - tab_double (t, 2, 3, 0, 100 * total / (double) total, 0); + struct entry + { + int pred_idx; + int obs_idx; + double x; + } + entries[] = { + { 0, 0, res->tn }, + { 0, 1, res->fn }, + { 1, 0, res->fp }, + { 1, 1, res->tp }, + { 2, 0, 100 * res->tn / (res->tn + res->fp) }, + { 2, 1, 100 * res->tp / (res->tp + res->fn) }, + { 2, 2, + 100 * (res->tp + res->tn) / (res->tp + res->tn + res->fp + res->fn)}, + }; + for (size_t i = 0; i < sizeof entries / sizeof *entries; i++) + { + const struct entry *e = &entries[i]; + pivot_table_put3 (table, e->pred_idx, e->obs_idx, 0, + pivot_value_new_number (e->x)); + } - tab_submit (t); + pivot_table_submit (table); } -