X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=ofproto%2Fin-band.c;h=c39e5caf72c35a48a2430369d0040117b584119a;hb=a68813c3dce6597c302c1d112f88b8020c4d2eba;hp=9b699ca3554eaebca11604af0765e7b882267a76;hpb=a5e54d9b6f8002f34cc792df69e6eda68cf95223;p=openvswitch diff --git a/ofproto/in-band.c b/ofproto/in-band.c index 9b699ca3..c39e5caf 100644 --- a/ofproto/in-band.c +++ b/ofproto/in-band.c @@ -22,6 +22,8 @@ #include #include #include +#include "dhcp.h" +#include "dpif.h" #include "flow.h" #include "mac-learning.h" #include "netdev.h" @@ -30,6 +32,7 @@ #include "ofproto.h" #include "ofpbuf.h" #include "openflow/openflow.h" +#include "openvswitch/datapath-protocol.h" #include "packets.h" #include "poll-loop.h" #include "rconn.h" @@ -40,17 +43,168 @@ #define THIS_MODULE VLM_in_band #include "vlog.h" +/* In-band control allows a single network to be used for OpenFlow + * traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and + * secchan(8) for a description of configuring in-band control. + * + * This comment is an attempt to describe how in-band control works at a + * wire- and implementation-level. Correctly implementing in-band + * control has proven difficult due to its many subtleties, and has thus + * gone through many iterations. Please read through and understand the + * reasoning behind the chosen rules before making modifications. + * + * In Open vSwitch, in-band control is implemented as "hidden" flows (in + * that they are not visible through OpenFlow) and at a higher priority + * than wildcarded flows can be set up by the controller. This is done + * so that the controller cannot interfere with them and possibly break + * connectivity with its switches. It is possible to see all flows, + * including in-band ones, with the ovs-appctl "bridge/dump-flows" + * command. + * + * The following rules are always enabled with the "normal" action by a + * switch with in-band control: + * + * a. DHCP requests sent from the local port. + * b. ARP replies to the local port's MAC address. + * c. ARP requests from the local port's MAC address. + * d. ARP replies to the remote side's MAC address. Note that the + * remote side is either the controller or the gateway to reach + * the controller. + * e. ARP requests from the remote side's MAC address. Note that + * like (d), the MAC is either for the controller or gateway. + * f. ARP replies containing the controller's IP address as a target. + * g. ARP requests containing the controller's IP address as a source. + * h. OpenFlow (6633/tcp) traffic to the controller's IP. + * i. OpenFlow (6633/tcp) traffic from the controller's IP. + * + * The goal of these rules is to be as narrow as possible to allow a + * switch to join a network and be able to communicate with a + * controller. As mentioned earlier, these rules have higher priority + * than the controller's rules, so if they are too broad, they may + * prevent the controller from implementing its policy. As such, + * in-band actively monitors some aspects of flow and packet processing + * so that the rules can be made more precise. + * + * In-band control monitors attempts to add flows into the datapath that + * could interfere with its duties. The datapath only allows exact + * match entries, so in-band control is able to be very precise about + * the flows it prevents. Flows that miss in the datapath are sent to + * userspace to be processed, so preventing these flows from being + * cached in the "fast path" does not affect correctness. The only type + * of flow that is currently prevented is one that would prevent DHCP + * replies from being seen by the local port. For example, a rule that + * forwarded all DHCP traffic to the controller would not be allowed, + * but one that forwarded to all ports (including the local port) would. + * + * As mentioned earlier, packets that miss in the datapath are sent to + * the userspace for processing. The userspace has its own flow table, + * the "classifier", so in-band checks whether any special processing + * is needed before the classifier is consulted. If a packet is a DHCP + * response to a request from the local port, the packet is forwarded to + * the local port, regardless of the flow table. Note that this requires + * L7 processing of DHCP replies to determine whether the 'chaddr' field + * matches the MAC address of the local port. + * + * It is interesting to note that for an L3-based in-band control + * mechanism, the majority of rules are devoted to ARP traffic. At first + * glance, some of these rules appear redundant. However, each serves an + * important role. First, in order to determine the MAC address of the + * remote side (controller or gateway) for other ARP rules, we must allow + * ARP traffic for our local port with rules (b) and (c). If we are + * between a switch and its connection to the controller, we have to + * allow the other switch's ARP traffic to through. This is done with + * rules (d) and (e), since we do not know the addresses of the other + * switches a priori, but do know the controller's or gateway's. Finally, + * if the controller is running in a local guest VM that is not reached + * through the local port, the switch that is connected to the VM must + * allow ARP traffic based on the controller's IP address, since it will + * not know the MAC address of the local port that is sending the traffic + * or the MAC address of the controller in the guest VM. + * + * With a few notable exceptions below, in-band should work in most + * network setups. The following are considered "supported' in the + * current implementation: + * + * - Locally Connected. The switch and controller are on the same + * subnet. This uses rules (a), (b), (c), (h), and (i). + * + * - Reached through Gateway. The switch and controller are on + * different subnets and must go through a gateway. This uses + * rules (a), (b), (c), (h), and (i). + * + * - Between Switch and Controller. This switch is between another + * switch and the controller, and we want to allow the other + * switch's traffic through. This uses rules (d), (e), (h), and + * (i). It uses (b) and (c) indirectly in order to know the MAC + * address for rules (d) and (e). Note that DHCP for the other + * switch will not work unless the controller explicitly lets this + * switch pass the traffic. + * + * - Between Switch and Gateway. This switch is between another + * switch and the gateway, and we want to allow the other switch's + * traffic through. This uses the same rules and logic as the + * "Between Switch and Controller" configuration described earlier. + * + * - Controller on Local VM. The controller is a guest VM on the + * system running in-band control. This uses rules (a), (b), (c), + * (h), and (i). + * + * - Controller on Local VM with Different Networks. The controller + * is a guest VM on the system running in-band control, but the + * local port is not used to connect to the controller. For + * example, an IP address is configured on eth0 of the switch. The + * controller's VM is connected through eth1 of the switch, but an + * IP address has not been configured for that port on the switch. + * As such, the switch will use eth0 to connect to the controller, + * and eth1's rules about the local port will not work. In the + * example, the switch attached to eth0 would use rules (a), (b), + * (c), (h), and (i) on eth0. The switch attached to eth1 would use + * rules (f), (g), (h), and (i). + * + * The following are explicitly *not* supported by in-band control: + * + * - Specify Controller by Name. Currently, the controller must be + * identified by IP address. A naive approach would be to permit + * all DNS traffic. Unfortunately, this would prevent the + * controller from defining any policy over DNS. Since switches + * that are located behind us need to connect to the controller, + * in-band cannot simply add a rule that allows DNS traffic from + * the local port. The "correct" way to support this is to parse + * DNS requests to allow all traffic related to a request for the + * controller's name through. Due to the potential security + * problems and amount of processing, we decided to hold off for + * the time-being. + * + * - Multiple Controllers. There is nothing intrinsic in the high- + * level design that prevents using multiple (known) controllers, + * however, the current implementation's data structures assume + * only one. + * + * - Differing Controllers for Switches. All switches must know + * the L3 addresses for all the controllers that other switches + * may use, since rules need to be set up to allow traffic related + * to those controllers through. See rules (f), (g), (h), and (i). + * + * - Differing Routes for Switches. In order for the switch to + * allow other switches to connect to a controller through a + * gateway, it allows the gateway's traffic through with rules (d) + * and (e). If the routes to the controller differ for the two + * switches, we will not know the MAC address of the alternate + * gateway. + */ + #define IB_BASE_PRIORITY 18181800 enum { - IBR_FROM_LOCAL_PORT, /* Sent by the local port. */ - IBR_OFP_TO_LOCAL, /* Sent to secure channel on local port. */ - IBR_ARP_FROM_LOCAL, /* ARP from the local port. */ - IBR_ARP_FROM_CTL, /* ARP from the controller. */ - IBR_TO_CTL_OFP_SRC, /* To controller, OpenFlow source port. */ - IBR_TO_CTL_OFP_DST, /* To controller, OpenFlow dest port. */ - IBR_FROM_CTL_OFP_SRC, /* From controller, OpenFlow source port. */ - IBR_FROM_CTL_OFP_DST, /* From controller, OpenFlow dest port. */ + IBR_FROM_LOCAL_DHCP, /* (a) From local port, DHCP. */ + IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ + IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ + IBR_TO_REMOTE_ARP, /* (d) To remote MAC, ARP. */ + IBR_FROM_REMOTE_ARP, /* (e) From remote MAC, ARP. */ + IBR_TO_CTL_ARP, /* (f) To controller IP, ARP. */ + IBR_FROM_CTL_ARP, /* (g) From controller IP, ARP. */ + IBR_TO_CTL_OFP, /* (h) To controller, OpenFlow port. */ + IBR_FROM_CTL_OFP, /* (i) From controller, OpenFlow port. */ #if OFP_TCP_PORT != OFP_SSL_PORT #error Need to support separate TCP and SSL flows. #endif @@ -69,17 +223,17 @@ struct in_band { struct rconn *controller; struct status_category *ss_cat; - /* Keeping track of controller's MAC address. */ - uint32_t ip; /* Current IP, 0 if unknown. */ - uint32_t last_ip; /* Last known IP, 0 if never known. */ - uint8_t mac[ETH_ADDR_LEN]; /* Current MAC, 0 if unknown. */ - uint8_t last_mac[ETH_ADDR_LEN]; /* Last known MAC, 0 if never known */ - char *dev_name; - time_t next_refresh; /* Next time to refresh MAC address. */ + /* Keep track of local port's information. */ + uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ + struct netdev *local_netdev; /* Local port's network device. */ + time_t next_local_refresh; - /* Keeping track of the local port's MAC address. */ - uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ - time_t next_local_refresh; /* Next time to refresh MAC address. */ + /* Keep track of controller and next hop's information. */ + uint32_t controller_ip; /* Controller IP, 0 if unknown. */ + uint8_t remote_mac[ETH_ADDR_LEN]; /* Remote MAC. */ + struct netdev *remote_netdev; + uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous remote MAC. */ + time_t next_remote_refresh; /* Rules that we set up. */ struct ib_rule rules[N_IB_RULES]; @@ -88,51 +242,64 @@ struct in_band { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); static const uint8_t * -get_controller_mac(struct in_band *ib) +get_remote_mac(struct in_band *ib) { + int retval; + bool have_mac; + struct in_addr c_in4; /* Controller's IP address. */ + struct in_addr r_in4; /* Next hop IP address. */ + char *next_hop_dev; time_t now = time_now(); - uint32_t controller_ip; - controller_ip = rconn_get_remote_ip(ib->controller); - if (controller_ip != ib->ip || now >= ib->next_refresh) { - bool have_mac; - - ib->ip = controller_ip; - - /* Look up MAC address. */ - memset(ib->mac, 0, sizeof ib->mac); - if (ib->ip) { - uint32_t local_ip = rconn_get_local_ip(ib->controller); - struct in_addr in4; - int retval; - - in4.s_addr = local_ip; - if (netdev_find_dev_by_in4(&in4, &ib->dev_name)) { - retval = netdev_nodev_arp_lookup(ib->dev_name, ib->ip, - ib->mac); - if (retval) { - VLOG_DBG_RL(&rl, "cannot look up controller MAC address " - "("IP_FMT"): %s", - IP_ARGS(&ib->ip), strerror(retval)); - } - } else { - VLOG_DBG_RL(&rl, "cannot find device with IP address "IP_FMT, - IP_ARGS(&local_ip)); + if (now >= ib->next_remote_refresh) { + /* Find the next-hop IP address. */ + c_in4.s_addr = ib->controller_ip; + memset(ib->remote_mac, 0, sizeof ib->remote_mac); + retval = netdev_get_next_hop(ib->local_netdev, + &c_in4, &r_in4, &next_hop_dev); + if (retval) { + VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", + IP_ARGS(&ib->controller_ip), strerror(retval)); + ib->next_remote_refresh = now + 1; + return NULL; + } + if (!r_in4.s_addr) { + r_in4.s_addr = c_in4.s_addr; + } + + /* Get the next-hop IP and network device. */ + if (!ib->remote_netdev + || strcmp(netdev_get_name(ib->remote_netdev), next_hop_dev)) + { + netdev_close(ib->remote_netdev); + retval = netdev_open(next_hop_dev, NETDEV_ETH_TYPE_NONE, + &ib->remote_netdev); + if (retval) { + VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " + "to controller "IP_FMT"): %s", + next_hop_dev, IP_ARGS(&ib->controller_ip), + strerror(retval)); + ib->next_remote_refresh = now + 1; + return NULL; } } - have_mac = !eth_addr_is_zero(ib->mac); - /* Log changes in IP, MAC addresses. */ - if (ib->ip && ib->ip != ib->last_ip) { - VLOG_DBG("controller IP address changed from "IP_FMT - " to "IP_FMT, IP_ARGS(&ib->last_ip), IP_ARGS(&ib->ip)); - ib->last_ip = ib->ip; + /* Look up the MAC address of the next-hop IP address. */ + retval = netdev_arp_lookup(ib->remote_netdev, r_in4.s_addr, + ib->remote_mac); + if (retval) { + VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", + IP_ARGS(&r_in4.s_addr), strerror(retval)); } - if (have_mac && memcmp(ib->last_mac, ib->mac, ETH_ADDR_LEN)) { - VLOG_DBG("controller MAC address changed from "ETH_ADDR_FMT" to " + have_mac = !eth_addr_is_zero(ib->remote_mac); + free(next_hop_dev); + if (have_mac + && !eth_addr_equals(ib->last_remote_mac, ib->remote_mac)) { + VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT" to " ETH_ADDR_FMT, - ETH_ADDR_ARGS(ib->last_mac), ETH_ADDR_ARGS(ib->mac)); - memcpy(ib->last_mac, ib->mac, ETH_ADDR_LEN); + ETH_ADDR_ARGS(ib->last_remote_mac), + ETH_ADDR_ARGS(ib->remote_mac)); + memcpy(ib->last_remote_mac, ib->remote_mac, ETH_ADDR_LEN); } /* Schedule next refresh. @@ -140,9 +307,11 @@ get_controller_mac(struct in_band *ib) * If we have an IP address but not a MAC address, then refresh * quickly, since we probably will get a MAC address soon (via ARP). * Otherwise, we can afford to wait a little while. */ - ib->next_refresh = now + (!ib->ip || have_mac ? 10 : 1); + ib->next_remote_refresh + = now + (!ib->controller_ip || have_mac ? 10 : 1); } - return !eth_addr_is_zero(ib->mac) ? ib->mac : NULL; + + return !eth_addr_is_zero(ib->remote_mac) ? ib->remote_mac : NULL; } static const uint8_t * @@ -151,7 +320,7 @@ get_local_mac(struct in_band *ib) time_t now = time_now(); if (now >= ib->next_local_refresh) { uint8_t ea[ETH_ADDR_LEN]; - if (ib->dev_name && (!netdev_nodev_get_etheraddr(ib->dev_name, ea))) { + if (ib->local_netdev && !netdev_get_etheraddr(ib->local_netdev, ea)) { memcpy(ib->local_mac, ea, ETH_ADDR_LEN); } ib->next_local_refresh = now + 1; @@ -163,19 +332,15 @@ static void in_band_status_cb(struct status_reply *sr, void *in_band_) { struct in_band *in_band = in_band_; - const uint8_t *local_mac; - const uint8_t *controller_mac; - local_mac = get_local_mac(in_band); - if (local_mac) { + if (!eth_addr_is_zero(in_band->local_mac)) { status_reply_put(sr, "local-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(local_mac)); + ETH_ADDR_ARGS(in_band->local_mac)); } - controller_mac = get_controller_mac(in_band); - if (controller_mac) { - status_reply_put(sr, "controller-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(controller_mac)); + if (!eth_addr_is_zero(in_band->remote_mac)) { + status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, + ETH_ADDR_ARGS(in_band->remote_mac)); } } @@ -193,8 +358,8 @@ drop_flow(struct in_band *in_band, int rule_idx) /* out_port and fixed_fields are assumed never to change. */ static void -setup_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, - uint32_t fixed_fields, uint16_t out_port) +set_up_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, + uint32_t fixed_fields, uint16_t out_port) { struct ib_rule *rule = &in_band->rules[rule_idx]; @@ -217,54 +382,174 @@ setup_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, } } +/* Returns true if 'packet' should be sent to the local port regardless + * of the flow table. */ +bool +in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, + const struct ofpbuf *packet) +{ + if (!in_band) { + return false; + } + + /* Regardless of how the flow table is configured, we want to be + * able to see replies to our DHCP requests. */ + if (flow->dl_type == htons(ETH_TYPE_IP) + && flow->nw_proto == IP_TYPE_UDP + && flow->tp_src == htons(DHCP_SERVER_PORT) + && flow->tp_dst == htons(DHCP_CLIENT_PORT) + && packet->l7) { + struct dhcp_header *dhcp; + const uint8_t *local_mac; + + dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, + sizeof *dhcp); + if (!dhcp) { + return false; + } + + local_mac = get_local_mac(in_band); + if (eth_addr_equals(dhcp->chaddr, local_mac)) { + return true; + } + } + + return false; +} + +/* Returns true if the rule that would match 'flow' with 'actions' is + * allowed to be set up in the datapath. */ +bool +in_band_rule_check(struct in_band *in_band, const flow_t *flow, + const struct odp_actions *actions) +{ + if (!in_band) { + return true; + } + + /* Don't allow flows that would prevent DHCP replies from being seen + * by the local port. */ + if (flow->dl_type == htons(ETH_TYPE_IP) + && flow->nw_proto == IP_TYPE_UDP + && flow->tp_src == htons(DHCP_SERVER_PORT) + && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { + int i; + + for (i=0; in_actions; i++) { + if (actions->actions[i].output.type == ODPAT_OUTPUT + && actions->actions[i].output.port == ODPP_LOCAL) { + return true; + } + } + return false; + } + + return true; +} + void in_band_run(struct in_band *in_band) { - const uint8_t *controller_mac; + time_t now = time_now(); + uint32_t controller_ip; + const uint8_t *remote_mac; const uint8_t *local_mac; flow_t flow; - if (time_now() < MIN(in_band->next_refresh, in_band->next_local_refresh)) { + if (now < in_band->next_remote_refresh + && now < in_band->next_local_refresh) { return; } - controller_mac = get_controller_mac(in_band); - local_mac = get_local_mac(in_band); - /* Switch traffic sent by the local port. */ - memset(&flow, 0, sizeof flow); - flow.in_port = ODPP_LOCAL; - setup_flow(in_band, IBR_FROM_LOCAL_PORT, &flow, OFPFW_IN_PORT, - OFPP_NORMAL); + controller_ip = rconn_get_remote_ip(in_band->controller); + if (in_band->controller_ip && controller_ip != in_band->controller_ip) { + VLOG_DBG("controller IP address changed from "IP_FMT" to "IP_FMT, + IP_ARGS(&in_band->controller_ip), + IP_ARGS(&controller_ip)); + } + in_band->controller_ip = controller_ip; + + remote_mac = get_remote_mac(in_band); + local_mac = get_local_mac(in_band); if (local_mac) { - /* Deliver traffic sent to the connection's interface. */ + /* Allow DHCP requests to be sent from the local port. */ + memset(&flow, 0, sizeof flow); + flow.in_port = ODPP_LOCAL; + flow.dl_type = htons(ETH_TYPE_IP); + memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); + flow.nw_proto = IP_TYPE_UDP; + flow.tp_src = htons(DHCP_CLIENT_PORT); + flow.tp_dst = htons(DHCP_SERVER_PORT); + set_up_flow(in_band, IBR_FROM_LOCAL_DHCP, &flow, + (OFPFW_IN_PORT | OFPFW_DL_TYPE | OFPFW_DL_SRC + | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST), + OFPP_NORMAL); + + /* Allow the connection's interface to receive directed ARP traffic. */ memset(&flow, 0, sizeof flow); + flow.dl_type = htons(ETH_TYPE_ARP); memcpy(flow.dl_dst, local_mac, ETH_ADDR_LEN); - setup_flow(in_band, IBR_OFP_TO_LOCAL, &flow, OFPFW_DL_DST, + flow.nw_proto = ARP_OP_REPLY; + set_up_flow(in_band, IBR_TO_LOCAL_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), OFPP_NORMAL); /* Allow the connection's interface to be the source of ARP traffic. */ memset(&flow, 0, sizeof flow); flow.dl_type = htons(ETH_TYPE_ARP); memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - setup_flow(in_band, IBR_ARP_FROM_LOCAL, &flow, - OFPFW_DL_TYPE | OFPFW_DL_SRC, OFPP_NORMAL); + flow.nw_proto = ARP_OP_REQUEST; + set_up_flow(in_band, IBR_FROM_LOCAL_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), + OFPP_NORMAL); + } else { + drop_flow(in_band, IBR_TO_LOCAL_ARP); + drop_flow(in_band, IBR_FROM_LOCAL_ARP); + } + + if (remote_mac) { + /* Allow ARP replies to the remote side's MAC. */ + memset(&flow, 0, sizeof flow); + flow.dl_type = htons(ETH_TYPE_ARP); + memcpy(flow.dl_dst, remote_mac, ETH_ADDR_LEN); + flow.nw_proto = ARP_OP_REPLY; + set_up_flow(in_band, IBR_TO_REMOTE_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), + OFPP_NORMAL); + + /* Allow ARP requests from the remote side's MAC. */ + memset(&flow, 0, sizeof flow); + flow.dl_type = htons(ETH_TYPE_ARP); + memcpy(flow.dl_src, remote_mac, ETH_ADDR_LEN); + flow.nw_proto = ARP_OP_REQUEST; + set_up_flow(in_band, IBR_FROM_REMOTE_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), + OFPP_NORMAL); } else { - drop_flow(in_band, IBR_OFP_TO_LOCAL); - drop_flow(in_band, IBR_ARP_FROM_LOCAL); + drop_flow(in_band, IBR_TO_REMOTE_ARP); + drop_flow(in_band, IBR_FROM_REMOTE_ARP); } - if (controller_mac) { - /* Switch ARP requests sent by the controller. (OFPP_NORMAL will "do - * the right thing" regarding VLANs here.) */ + if (controller_ip) { + /* Allow ARP replies to the controller's IP. */ memset(&flow, 0, sizeof flow); flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, eth_addr_broadcast, ETH_ADDR_LEN); - memcpy(flow.dl_src, controller_mac, ETH_ADDR_LEN); - setup_flow(in_band, IBR_ARP_FROM_CTL, &flow, - OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_DL_SRC, - OFPP_NORMAL); + flow.nw_proto = ARP_OP_REPLY; + flow.nw_dst = controller_ip; + set_up_flow(in_band, IBR_TO_CTL_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK), + OFPP_NORMAL); + /* Allow ARP requests from the controller's IP. */ + memset(&flow, 0, sizeof flow); + flow.dl_type = htons(ETH_TYPE_ARP); + flow.nw_proto = ARP_OP_REQUEST; + flow.nw_src = controller_ip; + set_up_flow(in_band, IBR_FROM_CTL_ARP, &flow, + (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK), + OFPP_NORMAL); + /* OpenFlow traffic to or from the controller. * * (A given field's value is completely ignored if it is wildcarded, @@ -272,29 +557,22 @@ in_band_run(struct in_band *in_band) * case here.) */ memset(&flow, 0, sizeof flow); flow.dl_type = htons(ETH_TYPE_IP); - memcpy(flow.dl_src, controller_mac, ETH_ADDR_LEN); - memcpy(flow.dl_dst, controller_mac, ETH_ADDR_LEN); flow.nw_proto = IP_TYPE_TCP; + flow.nw_src = controller_ip; + flow.nw_dst = controller_ip; flow.tp_src = htons(OFP_TCP_PORT); flow.tp_dst = htons(OFP_TCP_PORT); - setup_flow(in_band, IBR_TO_CTL_OFP_SRC, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO - | OFPFW_TP_SRC), OFPP_NORMAL); - setup_flow(in_band, IBR_TO_CTL_OFP_DST, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO - | OFPFW_TP_DST), OFPP_NORMAL); - setup_flow(in_band, IBR_FROM_CTL_OFP_SRC, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO - | OFPFW_TP_SRC), OFPP_NORMAL); - setup_flow(in_band, IBR_FROM_CTL_OFP_DST, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO - | OFPFW_TP_DST), OFPP_NORMAL); + set_up_flow(in_band, IBR_TO_CTL_OFP, &flow, + (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK + | OFPFW_TP_DST), OFPP_NORMAL); + set_up_flow(in_band, IBR_FROM_CTL_OFP, &flow, + (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK + | OFPFW_TP_SRC), OFPP_NORMAL); } else { - drop_flow(in_band, IBR_ARP_FROM_CTL); - drop_flow(in_band, IBR_TO_CTL_OFP_DST); - drop_flow(in_band, IBR_TO_CTL_OFP_SRC); - drop_flow(in_band, IBR_FROM_CTL_OFP_DST); - drop_flow(in_band, IBR_FROM_CTL_OFP_SRC); + drop_flow(in_band, IBR_TO_CTL_ARP); + drop_flow(in_band, IBR_FROM_CTL_ARP); + drop_flow(in_band, IBR_TO_CTL_OFP); + drop_flow(in_band, IBR_FROM_CTL_OFP); } } @@ -302,7 +580,8 @@ void in_band_wait(struct in_band *in_band) { time_t now = time_now(); - time_t wakeup = MIN(in_band->next_refresh, in_band->next_local_refresh); + time_t wakeup + = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); if (wakeup > now) { poll_timer_wait((wakeup - now) * 1000); } else { @@ -320,22 +599,44 @@ in_band_flushed(struct in_band *in_band) } } -void -in_band_create(struct ofproto *ofproto, struct switch_status *ss, - struct rconn *controller, struct in_band **in_bandp) +int +in_band_create(struct ofproto *ofproto, struct dpif *dpif, + struct switch_status *ss, struct rconn *controller, + struct in_band **in_bandp) { struct in_band *in_band; + char local_name[IF_NAMESIZE]; + struct netdev *local_netdev; + int error; + + error = dpif_port_get_name(dpif, ODPP_LOCAL, + local_name, sizeof local_name); + if (error) { + VLOG_ERR("failed to initialize in-band control: cannot get name " + "of datapath local port (%s)", strerror(error)); + return error; + } + + error = netdev_open(local_name, NETDEV_ETH_TYPE_NONE, &local_netdev); + if (error) { + VLOG_ERR("failed to initialize in-band control: cannot open " + "datapath local port %s (%s)", local_name, strerror(error)); + return error; + } in_band = xcalloc(1, sizeof *in_band); in_band->ofproto = ofproto; in_band->controller = controller; in_band->ss_cat = switch_status_register(ss, "in-band", in_band_status_cb, in_band); - in_band->next_refresh = TIME_MIN; + in_band->local_netdev = local_netdev; in_band->next_local_refresh = TIME_MIN; - in_band->dev_name = NULL; + in_band->remote_netdev = NULL; + in_band->next_remote_refresh = TIME_MIN; *in_bandp = in_band; + + return 0; } void @@ -343,6 +644,8 @@ in_band_destroy(struct in_band *in_band) { if (in_band) { switch_status_unregister(in_band->ss_cat); + netdev_close(in_band->local_netdev); + netdev_close(in_band->remote_netdev); /* We don't own the rconn. */ } }