X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=ofproto%2Fin-band.c;h=710aadd9dae57453ab6bc8817c7e430f08e61236;hb=4cf41591f33c9c2ca0ac288ffafd3be68d62f823;hp=639f9f55a16397f9b2891dcbf40d21ebea4cba19;hpb=d98e60075528c3065ad453f7add4b30f22edcde3;p=openvswitch diff --git a/ofproto/in-band.c b/ofproto/in-band.c index 639f9f55..710aadd9 100644 --- a/ofproto/in-band.c +++ b/ofproto/in-band.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2008, 2009, 2010 Nicira Networks. + * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -23,182 +23,24 @@ #include #include #include +#include "classifier.h" #include "dhcp.h" #include "dpif.h" #include "flow.h" #include "netdev.h" +#include "netlink.h" #include "odp-util.h" #include "ofproto.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "packets.h" #include "poll-loop.h" -#include "status.h" +#include "private.h" #include "timeval.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(in_band); -/* In-band control allows a single network to be used for OpenFlow - * traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and - * secchan(8) for a description of configuring in-band control. - * - * This comment is an attempt to describe how in-band control works at a - * wire- and implementation-level. Correctly implementing in-band - * control has proven difficult due to its many subtleties, and has thus - * gone through many iterations. Please read through and understand the - * reasoning behind the chosen rules before making modifications. - * - * In Open vSwitch, in-band control is implemented as "hidden" flows (in that - * they are not visible through OpenFlow) and at a higher priority than - * wildcarded flows can be set up by through OpenFlow. This is done so that - * the OpenFlow controller cannot interfere with them and possibly break - * connectivity with its switches. It is possible to see all flows, including - * in-band ones, with the ovs-appctl "bridge/dump-flows" command. - * - * The Open vSwitch implementation of in-band control can hide traffic to - * arbitrary "remotes", where each remote is one TCP port on one IP address. - * Currently the remotes are automatically configured as the in-band OpenFlow - * controllers plus the OVSDB managers, if any. (The latter is a requirement - * because OVSDB managers are responsible for configuring OpenFlow controllers, - * so if the manager cannot be reached then OpenFlow cannot be reconfigured.) - * - * The following rules (with the OFPP_NORMAL action) are set up on any bridge - * that has any remotes: - * - * (a) DHCP requests sent from the local port. - * (b) ARP replies to the local port's MAC address. - * (c) ARP requests from the local port's MAC address. - * - * In-band also sets up the following rules for each unique next-hop MAC - * address for the remotes' IPs (the "next hop" is either the remote - * itself, if it is on a local subnet, or the gateway to reach the remote): - * - * (d) ARP replies to the next hop's MAC address. - * (e) ARP requests from the next hop's MAC address. - * - * In-band also sets up the following rules for each unique remote IP address: - * - * (f) ARP replies containing the remote's IP address as a target. - * (g) ARP requests containing the remote's IP address as a source. - * - * In-band also sets up the following rules for each unique remote (IP,port) - * pair: - * - * (h) TCP traffic to the remote's IP and port. - * (i) TCP traffic from the remote's IP and port. - * - * The goal of these rules is to be as narrow as possible to allow a - * switch to join a network and be able to communicate with the - * remotes. As mentioned earlier, these rules have higher priority - * than the controller's rules, so if they are too broad, they may - * prevent the controller from implementing its policy. As such, - * in-band actively monitors some aspects of flow and packet processing - * so that the rules can be made more precise. - * - * In-band control monitors attempts to add flows into the datapath that - * could interfere with its duties. The datapath only allows exact - * match entries, so in-band control is able to be very precise about - * the flows it prevents. Flows that miss in the datapath are sent to - * userspace to be processed, so preventing these flows from being - * cached in the "fast path" does not affect correctness. The only type - * of flow that is currently prevented is one that would prevent DHCP - * replies from being seen by the local port. For example, a rule that - * forwarded all DHCP traffic to the controller would not be allowed, - * but one that forwarded to all ports (including the local port) would. - * - * As mentioned earlier, packets that miss in the datapath are sent to - * the userspace for processing. The userspace has its own flow table, - * the "classifier", so in-band checks whether any special processing - * is needed before the classifier is consulted. If a packet is a DHCP - * response to a request from the local port, the packet is forwarded to - * the local port, regardless of the flow table. Note that this requires - * L7 processing of DHCP replies to determine whether the 'chaddr' field - * matches the MAC address of the local port. - * - * It is interesting to note that for an L3-based in-band control - * mechanism, the majority of rules are devoted to ARP traffic. At first - * glance, some of these rules appear redundant. However, each serves an - * important role. First, in order to determine the MAC address of the - * remote side (controller or gateway) for other ARP rules, we must allow - * ARP traffic for our local port with rules (b) and (c). If we are - * between a switch and its connection to the remote, we have to - * allow the other switch's ARP traffic to through. This is done with - * rules (d) and (e), since we do not know the addresses of the other - * switches a priori, but do know the remote's or gateway's. Finally, - * if the remote is running in a local guest VM that is not reached - * through the local port, the switch that is connected to the VM must - * allow ARP traffic based on the remote's IP address, since it will - * not know the MAC address of the local port that is sending the traffic - * or the MAC address of the remote in the guest VM. - * - * With a few notable exceptions below, in-band should work in most - * network setups. The following are considered "supported' in the - * current implementation: - * - * - Locally Connected. The switch and remote are on the same - * subnet. This uses rules (a), (b), (c), (h), and (i). - * - * - Reached through Gateway. The switch and remote are on - * different subnets and must go through a gateway. This uses - * rules (a), (b), (c), (h), and (i). - * - * - Between Switch and Remote. This switch is between another - * switch and the remote, and we want to allow the other - * switch's traffic through. This uses rules (d), (e), (h), and - * (i). It uses (b) and (c) indirectly in order to know the MAC - * address for rules (d) and (e). Note that DHCP for the other - * switch will not work unless an OpenFlow controller explicitly lets this - * switch pass the traffic. - * - * - Between Switch and Gateway. This switch is between another - * switch and the gateway, and we want to allow the other switch's - * traffic through. This uses the same rules and logic as the - * "Between Switch and Remote" configuration described earlier. - * - * - Remote on Local VM. The remote is a guest VM on the - * system running in-band control. This uses rules (a), (b), (c), - * (h), and (i). - * - * - Remote on Local VM with Different Networks. The remote - * is a guest VM on the system running in-band control, but the - * local port is not used to connect to the remote. For - * example, an IP address is configured on eth0 of the switch. The - * remote's VM is connected through eth1 of the switch, but an - * IP address has not been configured for that port on the switch. - * As such, the switch will use eth0 to connect to the remote, - * and eth1's rules about the local port will not work. In the - * example, the switch attached to eth0 would use rules (a), (b), - * (c), (h), and (i) on eth0. The switch attached to eth1 would use - * rules (f), (g), (h), and (i). - * - * The following are explicitly *not* supported by in-band control: - * - * - Specify Remote by Name. Currently, the remote must be - * identified by IP address. A naive approach would be to permit - * all DNS traffic. Unfortunately, this would prevent the - * controller from defining any policy over DNS. Since switches - * that are located behind us need to connect to the remote, - * in-band cannot simply add a rule that allows DNS traffic from - * the local port. The "correct" way to support this is to parse - * DNS requests to allow all traffic related to a request for the - * remote's name through. Due to the potential security - * problems and amount of processing, we decided to hold off for - * the time-being. - * - * - Differing Remotes for Switches. All switches must know - * the L3 addresses for all the remotes that other switches - * may use, since rules need to be set up to allow traffic related - * to those remotes through. See rules (f), (g), (h), and (i). - * - * - Differing Routes for Switches. In order for the switch to - * allow other switches to connect to a remote through a - * gateway, it allows the gateway's traffic through with rules (d) - * and (e). If the routes to the remote differ for the two - * switches, we will not know the MAC address of the alternate - * gateway. - */ - /* Priorities used in classifier for in-band rules. These values are higher * than any that may be set with OpenFlow, and "18" kind of looks like "IB". * The ordering of priorities is not important because all of the rules set up @@ -223,12 +65,6 @@ enum { IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */ }; -struct in_band_rule { - struct flow flow; - uint32_t wildcards; - unsigned int priority; -}; - /* Track one remote IP and next hop information. */ struct in_band_remote { struct sockaddr_in remote_addr; /* IP address, in network byte order. */ @@ -239,7 +75,7 @@ struct in_band_remote { struct in_band { struct ofproto *ofproto; - struct status_category *ss_cat; + int queue_id, prev_queue_id; /* Remote information. */ time_t next_remote_refresh; /* Refresh timer. */ @@ -376,37 +212,16 @@ refresh_local(struct in_band *ib) return true; } -static void -in_band_status_cb(struct status_reply *sr, void *in_band_) -{ - struct in_band *in_band = in_band_; - - if (!eth_addr_is_zero(in_band->local_mac)) { - status_reply_put(sr, "local-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->local_mac)); - } - - if (in_band->n_remotes - && !eth_addr_is_zero(in_band->remotes[0].remote_mac)) { - status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->remotes[0].remote_mac)); - } -} - /* Returns true if 'packet' should be sent to the local port regardless * of the flow table. */ bool in_band_msg_in_hook(struct in_band *in_band, const struct flow *flow, const struct ofpbuf *packet) { - if (!in_band) { - return false; - } - /* Regardless of how the flow table is configured, we want to be * able to see replies to our DHCP requests. */ if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP + && flow->nw_proto == IPPROTO_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT) && packet->l7) { @@ -431,24 +246,21 @@ in_band_msg_in_hook(struct in_band *in_band, const struct flow *flow, /* Returns true if the rule that would match 'flow' with 'actions' is * allowed to be set up in the datapath. */ bool -in_band_rule_check(struct in_band *in_band, const struct flow *flow, - const struct odp_actions *actions) +in_band_rule_check(const struct flow *flow, + const struct nlattr *actions, size_t actions_len) { - if (!in_band) { - return true; - } - /* Don't allow flows that would prevent DHCP replies from being seen * by the local port. */ if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP + && flow->nw_proto == IPPROTO_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { - int i; + const struct nlattr *a; + unsigned int left; - for (i=0; in_actions; i++) { - if (actions->actions[i].output.type == ODPAT_OUTPUT - && actions->actions[i].output.port == ODPP_LOCAL) { + NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) { + if (nl_attr_type(a) == ODP_ACTION_ATTR_OUTPUT + && nl_attr_get_u32(a) == ODPP_LOCAL) { return true; } } @@ -458,109 +270,36 @@ in_band_rule_check(struct in_band *in_band, const struct flow *flow, return true; } -static void -init_rule(struct in_band_rule *rule, unsigned int priority) -{ - rule->wildcards = OVSFW_ALL; - rule->priority = priority; - - /* Not strictly necessary but seems cleaner. */ - memset(&rule->flow, 0, sizeof rule->flow); -} - -static void -set_in_port(struct in_band_rule *rule, uint16_t odp_port) -{ - rule->wildcards &= ~OFPFW_IN_PORT; - rule->flow.in_port = odp_port; -} - -static void -set_dl_type(struct in_band_rule *rule, uint16_t dl_type) -{ - rule->wildcards &= ~OFPFW_DL_TYPE; - rule->flow.dl_type = dl_type; -} - -static void -set_dl_src(struct in_band_rule *rule, const uint8_t dl_src[ETH_ADDR_LEN]) -{ - rule->wildcards &= ~OFPFW_DL_SRC; - memcpy(rule->flow.dl_src, dl_src, ETH_ADDR_LEN); -} - -static void -set_dl_dst(struct in_band_rule *rule, const uint8_t dl_dst[ETH_ADDR_LEN]) -{ - rule->wildcards &= ~OFPFW_DL_DST; - memcpy(rule->flow.dl_dst, dl_dst, ETH_ADDR_LEN); -} - -static void -set_tp_src(struct in_band_rule *rule, uint16_t tp_src) -{ - rule->wildcards &= ~OFPFW_TP_SRC; - rule->flow.tp_src = tp_src; -} - -static void -set_tp_dst(struct in_band_rule *rule, uint16_t tp_dst) -{ - rule->wildcards &= ~OFPFW_TP_DST; - rule->flow.tp_dst = tp_dst; -} - -static void -set_nw_proto(struct in_band_rule *rule, uint8_t nw_proto) -{ - rule->wildcards &= ~OFPFW_NW_PROTO; - rule->flow.nw_proto = nw_proto; -} - -static void -set_nw_src(struct in_band_rule *rule, const struct in_addr nw_src) -{ - rule->wildcards &= ~OFPFW_NW_SRC_MASK; - rule->flow.nw_src = nw_src.s_addr; -} - -static void -set_nw_dst(struct in_band_rule *rule, const struct in_addr nw_dst) -{ - rule->wildcards &= ~OFPFW_NW_DST_MASK; - rule->flow.nw_dst = nw_dst.s_addr; -} - static void make_rules(struct in_band *ib, - void (*cb)(struct in_band *, const struct in_band_rule *)) + void (*cb)(struct in_band *, const struct cls_rule *)) { - struct in_band_rule rule; + struct cls_rule rule; size_t i; if (!eth_addr_is_zero(ib->installed_local_mac)) { /* (a) Allow DHCP requests sent from the local port. */ - init_rule(&rule, IBR_FROM_LOCAL_DHCP); - set_in_port(&rule, ODPP_LOCAL); - set_dl_type(&rule, htons(ETH_TYPE_IP)); - set_dl_src(&rule, ib->installed_local_mac); - set_nw_proto(&rule, IP_TYPE_UDP); - set_tp_src(&rule, htons(DHCP_CLIENT_PORT)); - set_tp_dst(&rule, htons(DHCP_SERVER_PORT)); + cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_DHCP); + cls_rule_set_in_port(&rule, ODPP_LOCAL); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_dl_src(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, IPPROTO_UDP); + cls_rule_set_tp_src(&rule, htons(DHCP_CLIENT_PORT)); + cls_rule_set_tp_dst(&rule, htons(DHCP_SERVER_PORT)); cb(ib, &rule); /* (b) Allow ARP replies to the local port's MAC address. */ - init_rule(&rule, IBR_TO_LOCAL_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_dl_dst(&rule, ib->installed_local_mac); - set_nw_proto(&rule, ARP_OP_REPLY); + cls_rule_init_catchall(&rule, IBR_TO_LOCAL_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_dst(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); cb(ib, &rule); /* (c) Allow ARP requests from the local port's MAC address. */ - init_rule(&rule, IBR_FROM_LOCAL_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_dl_src(&rule, ib->installed_local_mac); - set_nw_proto(&rule, ARP_OP_REQUEST); + cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_src(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); cb(ib, &rule); } @@ -576,17 +315,17 @@ make_rules(struct in_band *ib, } /* (d) Allow ARP replies to the next hop's MAC address. */ - init_rule(&rule, IBR_TO_NEXT_HOP_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_dl_dst(&rule, remote_mac); - set_nw_proto(&rule, ARP_OP_REPLY); + cls_rule_init_catchall(&rule, IBR_TO_NEXT_HOP_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_dst(&rule, remote_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); cb(ib, &rule); /* (e) Allow ARP requests from the next hop's MAC address. */ - init_rule(&rule, IBR_FROM_NEXT_HOP_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_dl_src(&rule, remote_mac); - set_nw_proto(&rule, ARP_OP_REQUEST); + cls_rule_init_catchall(&rule, IBR_FROM_NEXT_HOP_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_src(&rule, remote_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); cb(ib, &rule); } @@ -596,18 +335,18 @@ make_rules(struct in_band *ib, if (!i || a->sin_addr.s_addr != a[-1].sin_addr.s_addr) { /* (f) Allow ARP replies containing the remote's IP address as a * target. */ - init_rule(&rule, IBR_TO_REMOTE_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_nw_proto(&rule, ARP_OP_REPLY); - set_nw_dst(&rule, a->sin_addr); + cls_rule_init_catchall(&rule, IBR_TO_REMOTE_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); + cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); cb(ib, &rule); /* (g) Allow ARP requests containing the remote's IP address as a * source. */ - init_rule(&rule, IBR_FROM_REMOTE_ARP); - set_dl_type(&rule, htons(ETH_TYPE_ARP)); - set_nw_proto(&rule, ARP_OP_REQUEST); - set_nw_src(&rule, a->sin_addr); + cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); + cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); cb(ib, &rule); } @@ -615,29 +354,28 @@ make_rules(struct in_band *ib, || a->sin_addr.s_addr != a[-1].sin_addr.s_addr || a->sin_port != a[-1].sin_port) { /* (h) Allow TCP traffic to the remote's IP and port. */ - init_rule(&rule, IBR_TO_REMOTE_TCP); - set_dl_type(&rule, htons(ETH_TYPE_IP)); - set_nw_proto(&rule, IP_TYPE_TCP); - set_nw_dst(&rule, a->sin_addr); - set_tp_dst(&rule, a->sin_port); + cls_rule_init_catchall(&rule, IBR_TO_REMOTE_TCP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_nw_proto(&rule, IPPROTO_TCP); + cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); + cls_rule_set_tp_dst(&rule, a->sin_port); cb(ib, &rule); /* (i) Allow TCP traffic from the remote's IP and port. */ - init_rule(&rule, IBR_FROM_REMOTE_TCP); - set_dl_type(&rule, htons(ETH_TYPE_IP)); - set_nw_proto(&rule, IP_TYPE_TCP); - set_nw_src(&rule, a->sin_addr); - set_tp_src(&rule, a->sin_port); + cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_TCP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_nw_proto(&rule, IPPROTO_TCP); + cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); + cls_rule_set_tp_src(&rule, a->sin_port); cb(ib, &rule); } } } static void -drop_rule(struct in_band *ib, const struct in_band_rule *rule) +drop_rule(struct in_band *ib, const struct cls_rule *rule) { - ofproto_delete_flow(ib->ofproto, &rule->flow, - rule->wildcards, rule->priority); + ofproto_delete_flow(ib->ofproto, rule); } /* Drops from the flow table all of the flows set up by 'ib', then clears out @@ -662,16 +400,32 @@ drop_rules(struct in_band *ib) } static void -add_rule(struct in_band *ib, const struct in_band_rule *rule) +add_rule(struct in_band *ib, const struct cls_rule *rule) { - union ofp_action action; - - action.type = htons(OFPAT_OUTPUT); - action.output.len = htons(sizeof action); - action.output.port = htons(OFPP_NORMAL); - action.output.max_len = htons(0); - ofproto_add_flow(ib->ofproto, &rule->flow, rule->wildcards, - rule->priority, &action, 1, 0); + struct { + struct nx_action_set_queue nxsq; + union ofp_action oa; + } actions; + + memset(&actions, 0, sizeof actions); + + actions.oa.output.type = htons(OFPAT_OUTPUT); + actions.oa.output.len = htons(sizeof actions.oa); + actions.oa.output.port = htons(OFPP_NORMAL); + actions.oa.output.max_len = htons(0); + + if (ib->queue_id < 0) { + ofproto_add_flow(ib->ofproto, rule, &actions.oa, 1); + } else { + actions.nxsq.type = htons(OFPAT_VENDOR); + actions.nxsq.len = htons(sizeof actions.nxsq); + actions.nxsq.vendor = htonl(NX_VENDOR_ID); + actions.nxsq.subtype = htons(NXAST_SET_QUEUE); + actions.nxsq.queue_id = htonl(ib->queue_id); + + ofproto_add_flow(ib->ofproto, rule, (union ofp_action *) &actions, + sizeof actions / sizeof(union ofp_action)); + } } /* Inserts flows into the flow table for the current state of 'ib'. */ @@ -700,21 +454,23 @@ compare_addrs(const void *a_, const void *b_) static int compare_macs(const void *a, const void *b) { - return memcmp(a, b, ETH_ADDR_LEN); + return eth_addr_compare_3way(a, b); } void in_band_run(struct in_band *ib) { + bool local_change, remote_change, queue_id_change; struct in_band_remote *r; - bool local_change, remote_change; local_change = refresh_local(ib); remote_change = refresh_remotes(ib); - if (!local_change && !remote_change) { + queue_id_change = ib->queue_id != ib->prev_queue_id; + if (!local_change && !remote_change && !queue_id_change) { /* Nothing changed, nothing to do. */ return; } + ib->prev_queue_id = ib->queue_id; /* Drop old rules. */ drop_rules(ib); @@ -760,22 +516,14 @@ in_band_flushed(struct in_band *in_band) } int -in_band_create(struct ofproto *ofproto, struct dpif *dpif, - struct switch_status *ss, struct in_band **in_bandp) +in_band_create(struct ofproto *ofproto, const char *local_name, + struct in_band **in_bandp) { struct in_band *in_band; - char local_name[IF_NAMESIZE]; struct netdev *local_netdev; int error; - error = dpif_port_get_name(dpif, ODPP_LOCAL, - local_name, sizeof local_name); - if (error) { - VLOG_ERR("failed to initialize in-band control: cannot get name " - "of datapath local port (%s)", strerror(error)); - return error; - } - + *in_bandp = NULL; error = netdev_open_default(local_name, &local_netdev); if (error) { VLOG_ERR("failed to initialize in-band control: cannot open " @@ -785,8 +533,7 @@ in_band_create(struct ofproto *ofproto, struct dpif *dpif, in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; - in_band->ss_cat = switch_status_register(ss, "in-band", - in_band_status_cb, in_band); + in_band->queue_id = in_band->prev_queue_id = -1; in_band->next_remote_refresh = TIME_MIN; in_band->next_local_refresh = TIME_MIN; in_band->local_netdev = local_netdev; @@ -802,7 +549,6 @@ in_band_destroy(struct in_band *ib) if (ib) { drop_rules(ib); in_band_set_remotes(ib, NULL, 0); - switch_status_unregister(ib->ss_cat); netdev_close(ib->local_netdev); free(ib); } @@ -857,3 +603,13 @@ in_band_set_remotes(struct in_band *ib, /* Force refresh in next call to in_band_run(). */ ib->next_remote_refresh = TIME_MIN; } + +/* Sets the OpenFlow queue used by flows set up by 'ib' to 'queue_id'. If + * 'queue_id' is negative, 'ib' will not set any queue (which is also the + * default). */ +void +in_band_set_queue(struct in_band *ib, int queue_id) +{ + ib->queue_id = queue_id; +} +