X-Git-Url: https://pintos-os.org/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=ofproto%2Fin-band.c;h=44bcd720a99bbe905361c0323bcde7ed280d4e23;hb=431585099e82a88a23d5dec28138b5a3a8bb11da;hp=857618fd0832b24bae0112711e2b77fdf11ff5cf;hpb=5f55c39b21e69025045437ffbd3bb98fe6ce2e89;p=openvswitch diff --git a/ofproto/in-band.c b/ofproto/in-band.c index 857618fd..44bcd720 100644 --- a/ofproto/in-band.c +++ b/ofproto/in-band.c @@ -19,30 +19,26 @@ #include #include #include +#include #include #include #include #include "dhcp.h" #include "dpif.h" #include "flow.h" -#include "mac-learning.h" #include "netdev.h" #include "odp-util.h" -#include "ofp-print.h" #include "ofproto.h" #include "ofpbuf.h" #include "openflow/openflow.h" -#include "openvswitch/datapath-protocol.h" #include "packets.h" #include "poll-loop.h" -#include "rconn.h" #include "status.h" #include "timeval.h" -#include "vconn.h" - -#define THIS_MODULE VLM_in_band #include "vlog.h" +VLOG_DEFINE_THIS_MODULE(in_band) + /* In-band control allows a single network to be used for OpenFlow * traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and * secchan(8) for a description of configuring in-band control. @@ -53,33 +49,48 @@ * gone through many iterations. Please read through and understand the * reasoning behind the chosen rules before making modifications. * - * In Open vSwitch, in-band control is implemented as "hidden" flows (in - * that they are not visible through OpenFlow) and at a higher priority - * than wildcarded flows can be set up by the controller. This is done - * so that the controller cannot interfere with them and possibly break - * connectivity with its switches. It is possible to see all flows, - * including in-band ones, with the ovs-appctl "bridge/dump-flows" - * command. + * In Open vSwitch, in-band control is implemented as "hidden" flows (in that + * they are not visible through OpenFlow) and at a higher priority than + * wildcarded flows can be set up by through OpenFlow. This is done so that + * the OpenFlow controller cannot interfere with them and possibly break + * connectivity with its switches. It is possible to see all flows, including + * in-band ones, with the ovs-appctl "bridge/dump-flows" command. + * + * The Open vSwitch implementation of in-band control can hide traffic to + * arbitrary "remotes", where each remote is one TCP port on one IP address. + * Currently the remotes are automatically configured as the in-band OpenFlow + * controllers plus the OVSDB managers, if any. (The latter is a requirement + * because OVSDB managers are responsible for configuring OpenFlow controllers, + * so if the manager cannot be reached then OpenFlow cannot be reconfigured.) + * + * The following rules (with the OFPP_NORMAL action) are set up on any bridge + * that has any remotes: + * + * (a) DHCP requests sent from the local port. + * (b) ARP replies to the local port's MAC address. + * (c) ARP requests from the local port's MAC address. + * + * In-band also sets up the following rules for each unique next-hop MAC + * address for the remotes' IPs (the "next hop" is either the remote + * itself, if it is on a local subnet, or the gateway to reach the remote): + * + * (d) ARP replies to the next hop's MAC address. + * (e) ARP requests from the next hop's MAC address. * - * The following rules are always enabled with the "normal" action by a - * switch with in-band control: + * In-band also sets up the following rules for each unique remote IP address: * - * a. DHCP requests sent from the local port. - * b. ARP replies to the local port's MAC address. - * c. ARP requests from the local port's MAC address. - * d. ARP replies to the remote side's MAC address. Note that the - * remote side is either the controller or the gateway to reach - * the controller. - * e. ARP requests from the remote side's MAC address. Note that - * like (d), the MAC is either for the controller or gateway. - * f. ARP replies containing the controller's IP address as a target. - * g. ARP requests containing the controller's IP address as a source. - * h. OpenFlow (6633/tcp) traffic to the controller's IP. - * i. OpenFlow (6633/tcp) traffic from the controller's IP. + * (f) ARP replies containing the remote's IP address as a target. + * (g) ARP requests containing the remote's IP address as a source. + * + * In-band also sets up the following rules for each unique remote (IP,port) + * pair: + * + * (h) TCP traffic to the remote's IP and port. + * (i) TCP traffic from the remote's IP and port. * * The goal of these rules is to be as narrow as possible to allow a - * switch to join a network and be able to communicate with a - * controller. As mentioned earlier, these rules have higher priority + * switch to join a network and be able to communicate with the + * remotes. As mentioned earlier, these rules have higher priority * than the controller's rules, so if they are too broad, they may * prevent the controller from implementing its policy. As such, * in-band actively monitors some aspects of flow and packet processing @@ -111,51 +122,51 @@ * important role. First, in order to determine the MAC address of the * remote side (controller or gateway) for other ARP rules, we must allow * ARP traffic for our local port with rules (b) and (c). If we are - * between a switch and its connection to the controller, we have to + * between a switch and its connection to the remote, we have to * allow the other switch's ARP traffic to through. This is done with * rules (d) and (e), since we do not know the addresses of the other - * switches a priori, but do know the controller's or gateway's. Finally, - * if the controller is running in a local guest VM that is not reached + * switches a priori, but do know the remote's or gateway's. Finally, + * if the remote is running in a local guest VM that is not reached * through the local port, the switch that is connected to the VM must - * allow ARP traffic based on the controller's IP address, since it will + * allow ARP traffic based on the remote's IP address, since it will * not know the MAC address of the local port that is sending the traffic - * or the MAC address of the controller in the guest VM. + * or the MAC address of the remote in the guest VM. * * With a few notable exceptions below, in-band should work in most * network setups. The following are considered "supported' in the * current implementation: * - * - Locally Connected. The switch and controller are on the same + * - Locally Connected. The switch and remote are on the same * subnet. This uses rules (a), (b), (c), (h), and (i). * - * - Reached through Gateway. The switch and controller are on + * - Reached through Gateway. The switch and remote are on * different subnets and must go through a gateway. This uses * rules (a), (b), (c), (h), and (i). * - * - Between Switch and Controller. This switch is between another - * switch and the controller, and we want to allow the other + * - Between Switch and Remote. This switch is between another + * switch and the remote, and we want to allow the other * switch's traffic through. This uses rules (d), (e), (h), and * (i). It uses (b) and (c) indirectly in order to know the MAC * address for rules (d) and (e). Note that DHCP for the other - * switch will not work unless the controller explicitly lets this + * switch will not work unless an OpenFlow controller explicitly lets this * switch pass the traffic. * * - Between Switch and Gateway. This switch is between another * switch and the gateway, and we want to allow the other switch's * traffic through. This uses the same rules and logic as the - * "Between Switch and Controller" configuration described earlier. + * "Between Switch and Remote" configuration described earlier. * - * - Controller on Local VM. The controller is a guest VM on the + * - Remote on Local VM. The remote is a guest VM on the * system running in-band control. This uses rules (a), (b), (c), * (h), and (i). * - * - Controller on Local VM with Different Networks. The controller + * - Remote on Local VM with Different Networks. The remote * is a guest VM on the system running in-band control, but the - * local port is not used to connect to the controller. For + * local port is not used to connect to the remote. For * example, an IP address is configured on eth0 of the switch. The - * controller's VM is connected through eth1 of the switch, but an + * remote's VM is connected through eth1 of the switch, but an * IP address has not been configured for that port on the switch. - * As such, the switch will use eth0 to connect to the controller, + * As such, the switch will use eth0 to connect to the remote, * and eth1's rules about the local port will not work. In the * example, the switch attached to eth0 would use rules (a), (b), * (c), (h), and (i) on eth0. The switch attached to eth1 would use @@ -163,222 +174,222 @@ * * The following are explicitly *not* supported by in-band control: * - * - Specify Controller by Name. Currently, the controller must be + * - Specify Remote by Name. Currently, the remote must be * identified by IP address. A naive approach would be to permit * all DNS traffic. Unfortunately, this would prevent the * controller from defining any policy over DNS. Since switches - * that are located behind us need to connect to the controller, + * that are located behind us need to connect to the remote, * in-band cannot simply add a rule that allows DNS traffic from * the local port. The "correct" way to support this is to parse * DNS requests to allow all traffic related to a request for the - * controller's name through. Due to the potential security + * remote's name through. Due to the potential security * problems and amount of processing, we decided to hold off for * the time-being. * - * - Multiple Controllers. There is nothing intrinsic in the high- - * level design that prevents using multiple (known) controllers, - * however, the current implementation's data structures assume - * only one. - * - * - Differing Controllers for Switches. All switches must know - * the L3 addresses for all the controllers that other switches + * - Differing Remotes for Switches. All switches must know + * the L3 addresses for all the remotes that other switches * may use, since rules need to be set up to allow traffic related - * to those controllers through. See rules (f), (g), (h), and (i). + * to those remotes through. See rules (f), (g), (h), and (i). * * - Differing Routes for Switches. In order for the switch to - * allow other switches to connect to a controller through a + * allow other switches to connect to a remote through a * gateway, it allows the gateway's traffic through with rules (d) - * and (e). If the routes to the controller differ for the two + * and (e). If the routes to the remote differ for the two * switches, we will not know the MAC address of the alternate * gateway. */ -#define IB_BASE_PRIORITY 18181800 - +/* Priorities used in classifier for in-band rules. These values are higher + * than any that may be set with OpenFlow, and "18" kind of looks like "IB". + * The ordering of priorities is not important because all of the rules set up + * by in-band control have the same action. The only reason to use more than + * one priority is to make the kind of flow easier to see during debugging. */ enum { - IBR_FROM_LOCAL_DHCP, /* (a) From local port, DHCP. */ + /* One set per bridge. */ + IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */ IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ - IBR_TO_REMOTE_ARP, /* (d) To remote MAC, ARP. */ - IBR_FROM_REMOTE_ARP, /* (e) From remote MAC, ARP. */ - IBR_TO_CTL_ARP, /* (f) To controller IP, ARP. */ - IBR_FROM_CTL_ARP, /* (g) From controller IP, ARP. */ - IBR_TO_CTL_OFP, /* (h) To controller, OpenFlow port. */ - IBR_FROM_CTL_OFP, /* (i) From controller, OpenFlow port. */ -#if OFP_TCP_PORT != OFP_SSL_PORT -#error Need to support separate TCP and SSL flows. -#endif - N_IB_RULES + + /* One set per unique next-hop MAC. */ + IBR_TO_NEXT_HOP_ARP, /* (d) To remote MAC, ARP. */ + IBR_FROM_NEXT_HOP_ARP, /* (e) From remote MAC, ARP. */ + + /* One set per unique remote IP address. */ + IBR_TO_REMOTE_ARP, /* (f) To remote IP, ARP. */ + IBR_FROM_REMOTE_ARP, /* (g) From remote IP, ARP. */ + + /* One set per unique remote (IP,port) pair. */ + IBR_TO_REMOTE_TCP, /* (h) To remote IP, TCP port. */ + IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */ }; -struct ib_rule { - bool installed; +struct in_band_rule { flow_t flow; uint32_t wildcards; unsigned int priority; }; +/* Track one remote IP and next hop information. */ +struct in_band_remote { + struct sockaddr_in remote_addr; /* IP address, in network byte order. */ + uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */ + uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */ + struct netdev *remote_netdev; /* Device to send to next-hop MAC. */ +}; + struct in_band { struct ofproto *ofproto; - struct rconn *controller; struct status_category *ss_cat; - /* Keep track of local port's information. */ - uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ - struct netdev *local_netdev; /* Local port's network device. */ - time_t next_local_refresh; - - /* Keep track of controller and next hop's information. */ - uint32_t controller_ip; /* Controller IP, 0 if unknown. */ - uint8_t remote_mac[ETH_ADDR_LEN]; /* Remote MAC. */ - struct netdev *remote_netdev; - uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous remote MAC. */ - time_t next_remote_refresh; - - /* Rules that we set up. */ - struct ib_rule rules[N_IB_RULES]; + /* Remote information. */ + time_t next_remote_refresh; /* Refresh timer. */ + struct in_band_remote *remotes; + size_t n_remotes; + + /* Local information. */ + time_t next_local_refresh; /* Refresh timer. */ + uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ + struct netdev *local_netdev; /* Local port's network device. */ + + /* Local and remote addresses that are installed as flows. */ + uint8_t installed_local_mac[ETH_ADDR_LEN]; + struct sockaddr_in *remote_addrs; + size_t n_remote_addrs; + uint8_t *remote_macs; + size_t n_remote_macs; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); -static const uint8_t * -get_remote_mac(struct in_band *ib) +static int +refresh_remote(struct in_band *ib, struct in_band_remote *r) { - int retval; - bool have_mac; - struct in_addr c_in4; /* Controller's IP address. */ - struct in_addr r_in4; /* Next hop IP address. */ + struct in_addr next_hop_inaddr; char *next_hop_dev; - time_t now = time_now(); - - if (now >= ib->next_remote_refresh) { - /* Find the next-hop IP address. */ - c_in4.s_addr = ib->controller_ip; - memset(ib->remote_mac, 0, sizeof ib->remote_mac); - retval = netdev_get_next_hop(ib->local_netdev, - &c_in4, &r_in4, &next_hop_dev); - if (retval) { - VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", - IP_ARGS(&ib->controller_ip), strerror(retval)); - ib->next_remote_refresh = now + 1; - return NULL; - } - if (!r_in4.s_addr) { - r_in4.s_addr = c_in4.s_addr; - } + int retval; - /* Get the next-hop IP and network device. */ - if (!ib->remote_netdev - || strcmp(netdev_get_name(ib->remote_netdev), next_hop_dev)) - { - netdev_close(ib->remote_netdev); - - retval = netdev_open_default(next_hop_dev, &ib->remote_netdev); - if (retval) { - VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " - "to controller "IP_FMT"): %s", - next_hop_dev, IP_ARGS(&ib->controller_ip), - strerror(retval)); - ib->next_remote_refresh = now + 1; - return NULL; - } - } + /* Find the next-hop IP address. */ + memset(r->remote_mac, 0, sizeof r->remote_mac); + retval = netdev_get_next_hop(ib->local_netdev, &r->remote_addr.sin_addr, + &next_hop_inaddr, &next_hop_dev); + if (retval) { + VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", + IP_ARGS(&r->remote_addr.sin_addr), strerror(retval)); + return 1; + } + if (!next_hop_inaddr.s_addr) { + next_hop_inaddr = r->remote_addr.sin_addr; + } - /* Look up the MAC address of the next-hop IP address. */ - retval = netdev_arp_lookup(ib->remote_netdev, r_in4.s_addr, - ib->remote_mac); + /* Open the next-hop network device. */ + if (!r->remote_netdev + || strcmp(netdev_get_name(r->remote_netdev), next_hop_dev)) + { + netdev_close(r->remote_netdev); + + retval = netdev_open_default(next_hop_dev, &r->remote_netdev); if (retval) { - VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", - IP_ARGS(&r_in4.s_addr), strerror(retval)); - } - have_mac = !eth_addr_is_zero(ib->remote_mac); - free(next_hop_dev); - if (have_mac - && !eth_addr_equals(ib->last_remote_mac, ib->remote_mac)) { - VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT" to " - ETH_ADDR_FMT, - ETH_ADDR_ARGS(ib->last_remote_mac), - ETH_ADDR_ARGS(ib->remote_mac)); - memcpy(ib->last_remote_mac, ib->remote_mac, ETH_ADDR_LEN); + VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " + "to controller "IP_FMT"): %s", + next_hop_dev, IP_ARGS(&r->remote_addr.sin_addr), + strerror(retval)); + free(next_hop_dev); + return 1; } - - /* Schedule next refresh. - * - * If we have an IP address but not a MAC address, then refresh - * quickly, since we probably will get a MAC address soon (via ARP). - * Otherwise, we can afford to wait a little while. */ - ib->next_remote_refresh - = now + (!ib->controller_ip || have_mac ? 10 : 1); + } + free(next_hop_dev); + + /* Look up the MAC address of the next-hop IP address. */ + retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr, + r->remote_mac); + if (retval) { + VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", + IP_ARGS(&next_hop_inaddr.s_addr), strerror(retval)); } - return !eth_addr_is_zero(ib->remote_mac) ? ib->remote_mac : NULL; + /* If we don't have a MAC address, then refresh quickly, since we probably + * will get a MAC address soon (via ARP). Otherwise, we can afford to wait + * a little while. */ + return eth_addr_is_zero(r->remote_mac) ? 1 : 10; } -static const uint8_t * -get_local_mac(struct in_band *ib) +static bool +refresh_remotes(struct in_band *ib) { - time_t now = time_now(); - if (now >= ib->next_local_refresh) { - uint8_t ea[ETH_ADDR_LEN]; - if (ib->local_netdev && !netdev_get_etheraddr(ib->local_netdev, ea)) { - memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + struct in_band_remote *r; + bool any_changes; + + if (time_now() < ib->next_remote_refresh) { + return false; + } + + any_changes = false; + ib->next_remote_refresh = TIME_MAX; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + uint8_t old_remote_mac[ETH_ADDR_LEN]; + time_t next_refresh; + + /* Save old MAC. */ + memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN); + + /* Refresh remote information. */ + next_refresh = refresh_remote(ib, r) + time_now(); + ib->next_remote_refresh = MIN(ib->next_remote_refresh, next_refresh); + + /* If the MAC changed, log the changes. */ + if (!eth_addr_equals(r->remote_mac, old_remote_mac)) { + any_changes = true; + if (!eth_addr_is_zero(r->remote_mac) + && !eth_addr_equals(r->last_remote_mac, r->remote_mac)) { + VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT + " to "ETH_ADDR_FMT, + ETH_ADDR_ARGS(r->last_remote_mac), + ETH_ADDR_ARGS(r->remote_mac)); + memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN); + } } - ib->next_local_refresh = now + 1; } - return !eth_addr_is_zero(ib->local_mac) ? ib->local_mac : NULL; + + return any_changes; } -static void -in_band_status_cb(struct status_reply *sr, void *in_band_) +/* Refreshes the MAC address of the local port into ib->local_mac, if it is due + * for a refresh. Returns true if anything changed, otherwise false. */ +static bool +refresh_local(struct in_band *ib) { - struct in_band *in_band = in_band_; + uint8_t ea[ETH_ADDR_LEN]; + time_t now; - if (!eth_addr_is_zero(in_band->local_mac)) { - status_reply_put(sr, "local-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->local_mac)); + now = time_now(); + if (now < ib->next_local_refresh) { + return false; } + ib->next_local_refresh = now + 1; - if (!eth_addr_is_zero(in_band->remote_mac)) { - status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->remote_mac)); + if (netdev_get_etheraddr(ib->local_netdev, ea) + || eth_addr_equals(ea, ib->local_mac)) { + return false; } -} - -static void -drop_flow(struct in_band *in_band, int rule_idx) -{ - struct ib_rule *rule = &in_band->rules[rule_idx]; - if (rule->installed) { - rule->installed = false; - ofproto_delete_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority); - } + memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + return true; } -/* out_port and fixed_fields are assumed never to change. */ static void -set_up_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, - uint32_t fixed_fields, uint16_t out_port) +in_band_status_cb(struct status_reply *sr, void *in_band_) { - struct ib_rule *rule = &in_band->rules[rule_idx]; - - if (!rule->installed || memcmp(flow, &rule->flow, sizeof *flow)) { - union ofp_action action; - - drop_flow(in_band, rule_idx); + struct in_band *in_band = in_band_; - rule->installed = true; - rule->flow = *flow; - rule->wildcards = OFPFW_ALL & ~fixed_fields; - rule->priority = IB_BASE_PRIORITY + (N_IB_RULES - rule_idx); + if (!eth_addr_is_zero(in_band->local_mac)) { + status_reply_put(sr, "local-mac="ETH_ADDR_FMT, + ETH_ADDR_ARGS(in_band->local_mac)); + } - action.type = htons(OFPAT_OUTPUT); - action.output.len = htons(sizeof action); - action.output.port = htons(out_port); - action.output.max_len = htons(0); - ofproto_add_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority, &action, 1, 0); + if (in_band->n_remotes + && !eth_addr_is_zero(in_band->remotes[0].remote_mac)) { + status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, + ETH_ADDR_ARGS(in_band->remotes[0].remote_mac)); } } @@ -400,7 +411,6 @@ in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, && flow->tp_dst == htons(DHCP_CLIENT_PORT) && packet->l7) { struct dhcp_header *dhcp; - const uint8_t *local_mac; dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, sizeof *dhcp); @@ -408,8 +418,9 @@ in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, return false; } - local_mac = get_local_mac(in_band); - if (eth_addr_equals(dhcp->chaddr, local_mac)) { + refresh_local(in_band); + if (!eth_addr_is_zero(in_band->local_mac) + && eth_addr_equals(dhcp->chaddr, in_band->local_mac)) { return true; } } @@ -447,162 +458,310 @@ in_band_rule_check(struct in_band *in_band, const flow_t *flow, return true; } -void -in_band_run(struct in_band *in_band) +static void +init_rule(struct in_band_rule *rule, unsigned int priority) { - time_t now = time_now(); - uint32_t controller_ip; - const uint8_t *remote_mac; - const uint8_t *local_mac; - flow_t flow; + rule->wildcards = OVSFW_ALL; + rule->priority = priority; - if (now < in_band->next_remote_refresh - && now < in_band->next_local_refresh) { - return; + /* Not strictly necessary but seems cleaner. */ + memset(&rule->flow, 0, sizeof rule->flow); +} + +static void +set_in_port(struct in_band_rule *rule, uint16_t odp_port) +{ + rule->wildcards &= ~OFPFW_IN_PORT; + rule->flow.in_port = odp_port; +} + +static void +set_dl_type(struct in_band_rule *rule, uint16_t dl_type) +{ + rule->wildcards &= ~OFPFW_DL_TYPE; + rule->flow.dl_type = dl_type; +} + +static void +set_dl_src(struct in_band_rule *rule, const uint8_t dl_src[ETH_ADDR_LEN]) +{ + rule->wildcards &= ~OFPFW_DL_SRC; + memcpy(rule->flow.dl_src, dl_src, ETH_ADDR_LEN); +} + +static void +set_dl_dst(struct in_band_rule *rule, const uint8_t dl_dst[ETH_ADDR_LEN]) +{ + rule->wildcards &= ~OFPFW_DL_DST; + memcpy(rule->flow.dl_dst, dl_dst, ETH_ADDR_LEN); +} + +static void +set_tp_src(struct in_band_rule *rule, uint16_t tp_src) +{ + rule->wildcards &= ~OFPFW_TP_SRC; + rule->flow.tp_src = tp_src; +} + +static void +set_tp_dst(struct in_band_rule *rule, uint16_t tp_dst) +{ + rule->wildcards &= ~OFPFW_TP_DST; + rule->flow.tp_dst = tp_dst; +} + +static void +set_nw_proto(struct in_band_rule *rule, uint8_t nw_proto) +{ + rule->wildcards &= ~OFPFW_NW_PROTO; + rule->flow.nw_proto = nw_proto; +} + +static void +set_nw_src(struct in_band_rule *rule, const struct in_addr nw_src) +{ + rule->wildcards &= ~OFPFW_NW_SRC_MASK; + rule->flow.nw_src = nw_src.s_addr; +} + +static void +set_nw_dst(struct in_band_rule *rule, const struct in_addr nw_dst) +{ + rule->wildcards &= ~OFPFW_NW_DST_MASK; + rule->flow.nw_dst = nw_dst.s_addr; +} + +static void +make_rules(struct in_band *ib, + void (*cb)(struct in_band *, const struct in_band_rule *)) +{ + struct in_band_rule rule; + size_t i; + + if (!eth_addr_is_zero(ib->installed_local_mac)) { + /* (a) Allow DHCP requests sent from the local port. */ + init_rule(&rule, IBR_FROM_LOCAL_DHCP); + set_in_port(&rule, ODPP_LOCAL); + set_dl_type(&rule, htons(ETH_TYPE_IP)); + set_dl_src(&rule, ib->installed_local_mac); + set_nw_proto(&rule, IP_TYPE_UDP); + set_tp_src(&rule, htons(DHCP_CLIENT_PORT)); + set_tp_dst(&rule, htons(DHCP_SERVER_PORT)); + cb(ib, &rule); + + /* (b) Allow ARP replies to the local port's MAC address. */ + init_rule(&rule, IBR_TO_LOCAL_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_dl_dst(&rule, ib->installed_local_mac); + set_nw_proto(&rule, ARP_OP_REPLY); + cb(ib, &rule); + + /* (c) Allow ARP requests from the local port's MAC address. */ + init_rule(&rule, IBR_FROM_LOCAL_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_dl_src(&rule, ib->installed_local_mac); + set_nw_proto(&rule, ARP_OP_REQUEST); + cb(ib, &rule); } - controller_ip = rconn_get_remote_ip(in_band->controller); - if (in_band->controller_ip && controller_ip != in_band->controller_ip) { - VLOG_DBG("controller IP address changed from "IP_FMT" to "IP_FMT, - IP_ARGS(&in_band->controller_ip), - IP_ARGS(&controller_ip)); + for (i = 0; i < ib->n_remote_macs; i++) { + const uint8_t *remote_mac = &ib->remote_macs[i * ETH_ADDR_LEN]; + + if (i > 0) { + const uint8_t *prev_mac = &ib->remote_macs[(i - 1) * ETH_ADDR_LEN]; + if (eth_addr_equals(remote_mac, prev_mac)) { + /* Skip duplicates. */ + continue; + } + } + + /* (d) Allow ARP replies to the next hop's MAC address. */ + init_rule(&rule, IBR_TO_NEXT_HOP_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_dl_dst(&rule, remote_mac); + set_nw_proto(&rule, ARP_OP_REPLY); + cb(ib, &rule); + + /* (e) Allow ARP requests from the next hop's MAC address. */ + init_rule(&rule, IBR_FROM_NEXT_HOP_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_dl_src(&rule, remote_mac); + set_nw_proto(&rule, ARP_OP_REQUEST); + cb(ib, &rule); + } + + for (i = 0; i < ib->n_remote_addrs; i++) { + const struct sockaddr_in *a = &ib->remote_addrs[i]; + + if (!i || a->sin_addr.s_addr != a[-1].sin_addr.s_addr) { + /* (f) Allow ARP replies containing the remote's IP address as a + * target. */ + init_rule(&rule, IBR_TO_REMOTE_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_nw_proto(&rule, ARP_OP_REPLY); + set_nw_dst(&rule, a->sin_addr); + cb(ib, &rule); + + /* (g) Allow ARP requests containing the remote's IP address as a + * source. */ + init_rule(&rule, IBR_FROM_REMOTE_ARP); + set_dl_type(&rule, htons(ETH_TYPE_ARP)); + set_nw_proto(&rule, ARP_OP_REQUEST); + set_nw_src(&rule, a->sin_addr); + cb(ib, &rule); + } + + if (!i + || a->sin_addr.s_addr != a[-1].sin_addr.s_addr + || a->sin_port != a[-1].sin_port) { + /* (h) Allow TCP traffic to the remote's IP and port. */ + init_rule(&rule, IBR_TO_REMOTE_TCP); + set_dl_type(&rule, htons(ETH_TYPE_IP)); + set_nw_proto(&rule, IP_TYPE_TCP); + set_nw_dst(&rule, a->sin_addr); + set_tp_dst(&rule, a->sin_port); + cb(ib, &rule); + + /* (i) Allow TCP traffic from the remote's IP and port. */ + init_rule(&rule, IBR_FROM_REMOTE_TCP); + set_dl_type(&rule, htons(ETH_TYPE_IP)); + set_nw_proto(&rule, IP_TYPE_TCP); + set_nw_src(&rule, a->sin_addr); + set_tp_src(&rule, a->sin_port); + cb(ib, &rule); + } } - in_band->controller_ip = controller_ip; - - remote_mac = get_remote_mac(in_band); - local_mac = get_local_mac(in_band); - - if (local_mac) { - /* Allow DHCP requests to be sent from the local port. */ - memset(&flow, 0, sizeof flow); - flow.in_port = ODPP_LOCAL; - flow.dl_type = htons(ETH_TYPE_IP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = IP_TYPE_UDP; - flow.tp_src = htons(DHCP_CLIENT_PORT); - flow.tp_dst = htons(DHCP_SERVER_PORT); - set_up_flow(in_band, IBR_FROM_LOCAL_DHCP, &flow, - (OFPFW_IN_PORT | OFPFW_DL_TYPE | OFPFW_DL_SRC - | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST), - OFPP_NORMAL); - - /* Allow the connection's interface to receive directed ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - set_up_flow(in_band, IBR_TO_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow the connection's interface to be the source of ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - set_up_flow(in_band, IBR_FROM_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_LOCAL_ARP); - drop_flow(in_band, IBR_FROM_LOCAL_ARP); +} + +static void +drop_rule(struct in_band *ib, const struct in_band_rule *rule) +{ + ofproto_delete_flow(ib->ofproto, &rule->flow, + rule->wildcards, rule->priority); +} + +/* Drops from the flow table all of the flows set up by 'ib', then clears out + * the information about the installed flows so that they can be filled in + * again if necessary. */ +static void +drop_rules(struct in_band *ib) +{ + /* Drop rules. */ + make_rules(ib, drop_rule); + + /* Clear out state. */ + memset(ib->installed_local_mac, 0, sizeof ib->installed_local_mac); + + free(ib->remote_addrs); + ib->remote_addrs = NULL; + ib->n_remote_addrs = 0; + + free(ib->remote_macs); + ib->remote_macs = NULL; + ib->n_remote_macs = 0; +} + +static void +add_rule(struct in_band *ib, const struct in_band_rule *rule) +{ + union ofp_action action; + + action.type = htons(OFPAT_OUTPUT); + action.output.len = htons(sizeof action); + action.output.port = htons(OFPP_NORMAL); + action.output.max_len = htons(0); + ofproto_add_flow(ib->ofproto, &rule->flow, rule->wildcards, + rule->priority, &action, 1, 0); +} + +/* Inserts flows into the flow table for the current state of 'ib'. */ +static void +add_rules(struct in_band *ib) +{ + make_rules(ib, add_rule); +} + +static int +compare_addrs(const void *a_, const void *b_) +{ + const struct sockaddr_in *a = a_; + const struct sockaddr_in *b = b_; + int cmp; + + cmp = memcmp(&a->sin_addr.s_addr, + &b->sin_addr.s_addr, + sizeof a->sin_addr.s_addr); + if (cmp) { + return cmp; } + return memcmp(&a->sin_port, &b->sin_port, sizeof a->sin_port); +} + +static int +compare_macs(const void *a, const void *b) +{ + return memcmp(a, b, ETH_ADDR_LEN); +} - if (remote_mac) { - /* Allow ARP replies to the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - set_up_flow(in_band, IBR_TO_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow ARP requests from the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - set_up_flow(in_band, IBR_FROM_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_REMOTE_ARP); - drop_flow(in_band, IBR_FROM_REMOTE_ARP); +void +in_band_run(struct in_band *ib) +{ + struct in_band_remote *r; + bool local_change, remote_change; + + local_change = refresh_local(ib); + remote_change = refresh_remotes(ib); + if (!local_change && !remote_change) { + /* Nothing changed, nothing to do. */ + return; } - if (controller_ip) { - /* Allow ARP replies to the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REPLY; - flow.nw_dst = controller_ip; - set_up_flow(in_band, IBR_TO_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK), - OFPP_NORMAL); - - /* Allow ARP requests from the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REQUEST; - flow.nw_src = controller_ip; - set_up_flow(in_band, IBR_FROM_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK), - OFPP_NORMAL); - - /* OpenFlow traffic to or from the controller. - * - * (A given field's value is completely ignored if it is wildcarded, - * which is why we can get away with using a single 'flow' in each - * case here.) */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_IP); - flow.nw_proto = IP_TYPE_TCP; - flow.nw_src = controller_ip; - flow.nw_dst = controller_ip; - flow.tp_src = htons(OFP_TCP_PORT); - flow.tp_dst = htons(OFP_TCP_PORT); - set_up_flow(in_band, IBR_TO_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK - | OFPFW_TP_DST), OFPP_NORMAL); - set_up_flow(in_band, IBR_FROM_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK - | OFPFW_TP_SRC), OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_CTL_ARP); - drop_flow(in_band, IBR_FROM_CTL_ARP); - drop_flow(in_band, IBR_TO_CTL_OFP); - drop_flow(in_band, IBR_FROM_CTL_OFP); + /* Drop old rules. */ + drop_rules(ib); + + /* Figure out new rules. */ + memcpy(ib->installed_local_mac, ib->local_mac, ETH_ADDR_LEN); + ib->remote_addrs = xmalloc(ib->n_remotes * sizeof *ib->remote_addrs); + ib->n_remote_addrs = 0; + ib->remote_macs = xmalloc(ib->n_remotes * ETH_ADDR_LEN); + ib->n_remote_macs = 0; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + ib->remote_addrs[ib->n_remote_addrs++] = r->remote_addr; + if (!eth_addr_is_zero(r->remote_mac)) { + memcpy(&ib->remote_macs[ib->n_remote_macs * ETH_ADDR_LEN], + r->remote_mac, ETH_ADDR_LEN); + ib->n_remote_macs++; + } } + + /* Sort, to allow make_rules() to easily skip duplicates. */ + qsort(ib->remote_addrs, ib->n_remote_addrs, sizeof *ib->remote_addrs, + compare_addrs); + qsort(ib->remote_macs, ib->n_remote_macs, ETH_ADDR_LEN, compare_macs); + + /* Add new rules. */ + add_rules(ib); } void in_band_wait(struct in_band *in_band) { - time_t now = time_now(); - time_t wakeup + long long int wakeup = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); - if (wakeup > now) { - poll_timer_wait((wakeup - now) * 1000); - } else { - poll_immediate_wake(); - } + poll_timer_wait_until(wakeup * 1000); } +/* ofproto has flushed all flows from the flow table and it is calling us back + * to allow us to reinstall the ones that are important to us. */ void in_band_flushed(struct in_band *in_band) { - int i; - - for (i = 0; i < N_IB_RULES; i++) { - in_band->rules[i].installed = false; - } + add_rules(in_band); } int in_band_create(struct ofproto *ofproto, struct dpif *dpif, - struct switch_status *ss, struct rconn *controller, - struct in_band **in_bandp) + struct switch_status *ss, struct in_band **in_bandp) { struct in_band *in_band; char local_name[IF_NAMESIZE]; @@ -626,13 +785,11 @@ in_band_create(struct ofproto *ofproto, struct dpif *dpif, in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; - in_band->controller = controller; in_band->ss_cat = switch_status_register(ss, "in-band", in_band_status_cb, in_band); - in_band->local_netdev = local_netdev; - in_band->next_local_refresh = TIME_MIN; - in_band->remote_netdev = NULL; in_band->next_remote_refresh = TIME_MIN; + in_band->next_local_refresh = TIME_MIN; + in_band->local_netdev = local_netdev; *in_bandp = in_band; @@ -640,13 +797,63 @@ in_band_create(struct ofproto *ofproto, struct dpif *dpif, } void -in_band_destroy(struct in_band *in_band) +in_band_destroy(struct in_band *ib) +{ + if (ib) { + drop_rules(ib); + in_band_set_remotes(ib, NULL, 0); + switch_status_unregister(ib->ss_cat); + netdev_close(ib->local_netdev); + free(ib); + } +} + +static bool +any_addresses_changed(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) { - if (in_band) { - switch_status_unregister(in_band->ss_cat); - netdev_close(in_band->local_netdev); - netdev_close(in_band->remote_netdev); - /* We don't own the rconn. */ + size_t i; + + if (n != ib->n_remotes) { + return true; } + + for (i = 0; i < n; i++) { + const struct sockaddr_in *old = &ib->remotes[i].remote_addr; + const struct sockaddr_in *new = &addresses[i]; + + if (old->sin_addr.s_addr != new->sin_addr.s_addr || + old->sin_port != new->sin_port) { + return true; + } + } + + return false; } +void +in_band_set_remotes(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) +{ + size_t i; + + if (!any_addresses_changed(ib, addresses, n)) { + return; + } + + /* Clear old remotes. */ + for (i = 0; i < ib->n_remotes; i++) { + netdev_close(ib->remotes[i].remote_netdev); + } + free(ib->remotes); + + /* Set up new remotes. */ + ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : NULL; + ib->n_remotes = n; + for (i = 0; i < n; i++) { + ib->remotes[i].remote_addr = addresses[i]; + } + + /* Force refresh in next call to in_band_run(). */ + ib->next_remote_refresh = TIME_MIN; +}