/* PSPP - a program for statistical analysis. Copyright (C) 1997-9, 2000, 2006, 2009, 2010, 2011, 2012, 2013, 2014, 2016 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* FIXME: - How to calculate significance of some symmetric and directional measures? - How to calculate ASE for symmetric Somers ' d? - How to calculate ASE for Goodman and Kruskal's tau? - How to calculate approx. T of symmetric uncertainty coefficient? */ #include #include #include #include #include #include #include "data/case.h" #include "data/casegrouper.h" #include "data/casereader.h" #include "data/data-out.h" #include "data/dataset.h" #include "data/dictionary.h" #include "data/format.h" #include "data/value-labels.h" #include "data/variable.h" #include "language/command.h" #include "language/stats/freq.h" #include "language/dictionary/split-file.h" #include "language/lexer/lexer.h" #include "language/lexer/variable-parser.h" #include "libpspp/array.h" #include "libpspp/assertion.h" #include "libpspp/compiler.h" #include "libpspp/hash-functions.h" #include "libpspp/hmap.h" #include "libpspp/hmapx.h" #include "libpspp/message.h" #include "libpspp/misc.h" #include "libpspp/pool.h" #include "libpspp/str.h" #include "output/pivot-table.h" #include "output/charts/barchart.h" #include "gl/minmax.h" #include "gl/xalloc.h" #include "gl/xsize.h" #include "gettext.h" #define _(msgid) gettext (msgid) #define N_(msgid) msgid /* (headers) */ /* (specification) crosstabs (crs_): *^tables=custom; +variables=custom; missing=miss:!table/include/report; count=roundwhat:asis/case/!cell, roundhow:!round/truncate; +write[wr_]=none,cells,all; +format=val:!avalue/dvalue, indx:!noindex/index, tabl:!tables/notables, box:!box/nobox, pivot:!pivot/nopivot; +barchart=; +cells[cl_]=count,expected,row,column,total,residual,sresidual, asresidual,all,none; +statistics[st_]=chisq,phi,cc,lambda,uc,none,btau,ctau,risk,gamma,d, kappa,eta,corr,all. */ /* (declarations) */ /* (functions) */ /* Number of chi-square statistics. */ #define N_CHISQ 5 /* Number of symmetric statistics. */ #define N_SYMMETRIC 9 /* Number of directional statistics. */ #define N_DIRECTIONAL 13 /* Indexes into the 'vars' member of struct crosstabulation and struct crosstab member. */ enum { ROW_VAR = 0, /* Row variable. */ COL_VAR = 1 /* Column variable. */ /* Higher indexes cause multiple tables to be output. */ }; struct xtab_var { const struct variable *var; union value *values; size_t n_values; }; /* A crosstabulation of 2 or more variables. */ struct crosstabulation { struct crosstabs_proc *proc; struct fmt_spec weight_format; /* Format for weight variable. */ double missing; /* Weight of missing cases. */ /* Variables (2 or more). */ int n_vars; struct xtab_var *vars; /* Constants (0 or more). */ int n_consts; struct xtab_var *const_vars; size_t *const_indexes; /* Data. */ struct hmap data; struct freq **entries; size_t n_entries; /* Number of statistically interesting columns/rows (columns/rows with data in them). */ int ns_cols, ns_rows; /* Matrix contents. */ double *mat; /* Matrix proper. */ double *row_tot; /* Row totals. */ double *col_tot; /* Column totals. */ double total; /* Grand total. */ }; /* Integer mode variable info. */ struct var_range { struct hmap_node hmap_node; /* In struct crosstabs_proc var_ranges map. */ const struct variable *var; /* The variable. */ int min; /* Minimum value. */ int max; /* Maximum value + 1. */ int count; /* max - min. */ }; struct crosstabs_proc { const struct dictionary *dict; enum { INTEGER, GENERAL } mode; enum mv_class exclude; bool pivot; bool barchart; bool bad_warn; struct fmt_spec weight_format; /* Variables specifies on VARIABLES. */ const struct variable **variables; size_t n_variables; struct hmap var_ranges; /* TABLES. */ struct crosstabulation *pivots; int n_pivots; /* CELLS. */ int n_cells; /* Number of cells requested. */ unsigned int cells; /* Bit k is 1 if cell k is requested. */ int a_cells[CRS_CL_count]; /* 0...n_cells-1 are the requested cells. */ /* Rounding of cells. */ bool round_case_weights; /* Round case weights? */ bool round_cells; /* If !round_case_weights, round cells? */ bool round_down; /* Round down? (otherwise to nearest) */ /* STATISTICS. */ unsigned int statistics; /* Bit k is 1 if statistic k is requested. */ bool descending; /* True if descending sort order is requested. */ }; const struct var_range *get_var_range (const struct crosstabs_proc *, const struct variable *); static bool should_tabulate_case (const struct crosstabulation *, const struct ccase *, enum mv_class exclude); static void tabulate_general_case (struct crosstabulation *, const struct ccase *, double weight); static void tabulate_integer_case (struct crosstabulation *, const struct ccase *, double weight); static void postcalc (struct crosstabs_proc *); static double round_weight (const struct crosstabs_proc *proc, double weight) { return proc->round_down ? floor (weight) : floor (weight + 0.5); } #define FOR_EACH_POPULATED_COLUMN(C, XT) \ for (int C = next_populated_column (0, XT); \ C < (XT)->vars[COL_VAR].n_values; \ C = next_populated_column (C + 1, XT)) static int next_populated_column (int c, const struct crosstabulation *xt) { int n_columns = xt->vars[COL_VAR].n_values; for (; c < n_columns; c++) if (xt->col_tot[c]) break; return c; } #define FOR_EACH_POPULATED_ROW(R, XT) \ for (int R = next_populated_row (0, XT); R < (XT)->vars[ROW_VAR].n_values; \ R = next_populated_row (R + 1, XT)) static int next_populated_row (int r, const struct crosstabulation *xt) { int n_rows = xt->vars[ROW_VAR].n_values; for (; r < n_rows; r++) if (xt->row_tot[r]) break; return r; } /* Parses and executes the CROSSTABS procedure. */ int cmd_crosstabs (struct lexer *lexer, struct dataset *ds) { struct var_range *range, *next_range; struct crosstabs_proc proc; struct casegrouper *grouper; struct casereader *input, *group; struct cmd_crosstabs cmd; struct crosstabulation *xt; int result; bool ok; int i; proc.dict = dataset_dict (ds); proc.bad_warn = true; proc.variables = NULL; proc.n_variables = 0; hmap_init (&proc.var_ranges); proc.pivots = NULL; proc.n_pivots = 0; proc.descending = false; proc.weight_format = *dict_get_weight_format (dataset_dict (ds)); if (!parse_crosstabs (lexer, ds, &cmd, &proc)) { result = CMD_FAILURE; goto exit; } proc.mode = proc.n_variables ? INTEGER : GENERAL; proc.barchart = cmd.sbc_barchart > 0; proc.descending = cmd.val == CRS_DVALUE; proc.round_case_weights = cmd.sbc_count && cmd.roundwhat == CRS_CASE; proc.round_cells = cmd.sbc_count && cmd.roundwhat == CRS_CELL; proc.round_down = cmd.roundhow == CRS_TRUNCATE; /* CELLS. */ if (!cmd.sbc_cells) proc.cells = 1u << CRS_CL_COUNT; else if (cmd.a_cells[CRS_CL_ALL]) proc.cells = UINT_MAX; else { proc.cells = 0; for (i = 0; i < CRS_CL_count; i++) if (cmd.a_cells[i]) proc.cells |= 1u << i; if (proc.cells == 0) proc.cells = ((1u << CRS_CL_COUNT) | (1u << CRS_CL_ROW) | (1u << CRS_CL_COLUMN) | (1u << CRS_CL_TOTAL)); } proc.cells &= ((1u << CRS_CL_count) - 1); proc.cells &= ~((1u << CRS_CL_NONE) | (1u << CRS_CL_ALL)); proc.n_cells = 0; for (i = 0; i < CRS_CL_count; i++) if (proc.cells & (1u << i)) proc.a_cells[proc.n_cells++] = i; /* STATISTICS. */ if (cmd.a_statistics[CRS_ST_ALL]) proc.statistics = UINT_MAX; else if (cmd.sbc_statistics) { int i; proc.statistics = 0; for (i = 0; i < CRS_ST_count; i++) if (cmd.a_statistics[i]) proc.statistics |= 1u << i; if (proc.statistics == 0) proc.statistics |= 1u << CRS_ST_CHISQ; } else proc.statistics = 0; /* MISSING. */ proc.exclude = (cmd.miss == CRS_TABLE ? MV_ANY : cmd.miss == CRS_INCLUDE ? MV_SYSTEM : MV_NEVER); if (proc.mode == GENERAL && proc.exclude == MV_NEVER) { msg (SE, _("Missing mode %s not allowed in general mode. " "Assuming %s."), "REPORT", "MISSING=TABLE"); proc.exclude = MV_ANY; } /* PIVOT. */ proc.pivot = cmd.pivot == CRS_PIVOT; input = casereader_create_filter_weight (proc_open (ds), dataset_dict (ds), NULL, NULL); grouper = casegrouper_create_splits (input, dataset_dict (ds)); while (casegrouper_get_next_group (grouper, &group)) { struct ccase *c; /* Output SPLIT FILE variables. */ c = casereader_peek (group, 0); if (c != NULL) { output_split_file_values (ds, c); case_unref (c); } /* Initialize hash tables. */ for (xt = &proc.pivots[0]; xt < &proc.pivots[proc.n_pivots]; xt++) hmap_init (&xt->data); /* Tabulate. */ for (; (c = casereader_read (group)) != NULL; case_unref (c)) for (xt = &proc.pivots[0]; xt < &proc.pivots[proc.n_pivots]; xt++) { double weight = dict_get_case_weight (dataset_dict (ds), c, &proc.bad_warn); if (cmd.roundwhat == CRS_CASE) { weight = round_weight (&proc, weight); if (weight == 0.) continue; } if (should_tabulate_case (xt, c, proc.exclude)) { if (proc.mode == GENERAL) tabulate_general_case (xt, c, weight); else tabulate_integer_case (xt, c, weight); } else xt->missing += weight; } casereader_destroy (group); /* Output. */ postcalc (&proc); } ok = casegrouper_destroy (grouper); ok = proc_commit (ds) && ok; result = ok ? CMD_SUCCESS : CMD_CASCADING_FAILURE; exit: free (proc.variables); HMAP_FOR_EACH_SAFE (range, next_range, struct var_range, hmap_node, &proc.var_ranges) { hmap_delete (&proc.var_ranges, &range->hmap_node); free (range); } for (xt = &proc.pivots[0]; xt < &proc.pivots[proc.n_pivots]; xt++) { free (xt->vars); free (xt->const_vars); free (xt->const_indexes); } free (proc.pivots); return result; } /* Parses the TABLES subcommand. */ static int crs_custom_tables (struct lexer *lexer, struct dataset *ds, struct cmd_crosstabs *cmd UNUSED, void *proc_) { struct crosstabs_proc *proc = proc_; struct const_var_set *var_set; int n_by; const struct variable ***by = NULL; int *by_iter; size_t *by_nvar = NULL; size_t nx = 1; bool ok = false; int i; /* Ensure that this is a TABLES subcommand. */ if (!lex_match_id (lexer, "TABLES") && (lex_token (lexer) != T_ID || dict_lookup_var (dataset_dict (ds), lex_tokcstr (lexer)) == NULL) && lex_token (lexer) != T_ALL) return 2; lex_match (lexer, T_EQUALS); if (proc->variables != NULL) var_set = const_var_set_create_from_array (proc->variables, proc->n_variables); else var_set = const_var_set_create_from_dict (dataset_dict (ds)); assert (var_set != NULL); for (n_by = 0; ;) { by = xnrealloc (by, n_by + 1, sizeof *by); by_nvar = xnrealloc (by_nvar, n_by + 1, sizeof *by_nvar); if (!parse_const_var_set_vars (lexer, var_set, &by[n_by], &by_nvar[n_by], PV_NO_DUPLICATE | PV_NO_SCRATCH)) goto done; if (xalloc_oversized (nx, by_nvar[n_by])) { msg (SE, _("Too many cross-tabulation variables or dimensions.")); goto done; } nx *= by_nvar[n_by]; n_by++; if (!lex_match (lexer, T_BY)) { if (n_by < 2) goto done; else break; } } by_iter = xcalloc (n_by, sizeof *by_iter); proc->pivots = xnrealloc (proc->pivots, proc->n_pivots + nx, sizeof *proc->pivots); for (i = 0; i < nx; i++) { struct crosstabulation *xt = &proc->pivots[proc->n_pivots++]; int j; xt->proc = proc; xt->weight_format = proc->weight_format; xt->missing = 0.; xt->n_vars = n_by; xt->vars = xcalloc (n_by, sizeof *xt->vars); xt->n_consts = 0; xt->const_vars = NULL; xt->const_indexes = NULL; for (j = 0; j < n_by; j++) xt->vars[j].var = by[j][by_iter[j]]; for (j = n_by - 1; j >= 0; j--) { if (++by_iter[j] < by_nvar[j]) break; by_iter[j] = 0; } } free (by_iter); ok = true; done: /* All return paths lead here. */ for (i = 0; i < n_by; i++) free (by[i]); free (by); free (by_nvar); const_var_set_destroy (var_set); return ok; } /* Parses the VARIABLES subcommand. */ static int crs_custom_variables (struct lexer *lexer, struct dataset *ds, struct cmd_crosstabs *cmd UNUSED, void *proc_) { struct crosstabs_proc *proc = proc_; if (proc->n_pivots) { msg (SE, _("%s must be specified before %s."), "VARIABLES", "TABLES"); return 0; } lex_match (lexer, T_EQUALS); for (;;) { size_t orig_nv = proc->n_variables; size_t i; long min, max; if (!parse_variables_const (lexer, dataset_dict (ds), &proc->variables, &proc->n_variables, (PV_APPEND | PV_NUMERIC | PV_NO_DUPLICATE | PV_NO_SCRATCH))) return 0; if (!lex_force_match (lexer, T_LPAREN)) goto lossage; if (!lex_force_int (lexer)) goto lossage; min = lex_integer (lexer); lex_get (lexer); lex_match (lexer, T_COMMA); if (!lex_force_int (lexer)) goto lossage; max = lex_integer (lexer); if (max < min) { msg (SE, _("Maximum value (%ld) less than minimum value (%ld)."), max, min); goto lossage; } lex_get (lexer); if (!lex_force_match (lexer, T_RPAREN)) goto lossage; for (i = orig_nv; i < proc->n_variables; i++) { const struct variable *var = proc->variables[i]; struct var_range *vr = xmalloc (sizeof *vr); vr->var = var; vr->min = min; vr->max = max; vr->count = max - min + 1; hmap_insert (&proc->var_ranges, &vr->hmap_node, hash_pointer (var, 0)); } if (lex_token (lexer) == T_SLASH) break; } return 1; lossage: free (proc->variables); proc->variables = NULL; proc->n_variables = 0; return 0; } /* Data file processing. */ const struct var_range * get_var_range (const struct crosstabs_proc *proc, const struct variable *var) { if (!hmap_is_empty (&proc->var_ranges)) { const struct var_range *range; HMAP_FOR_EACH_IN_BUCKET (range, struct var_range, hmap_node, hash_pointer (var, 0), &proc->var_ranges) if (range->var == var) return range; } return NULL; } static bool should_tabulate_case (const struct crosstabulation *xt, const struct ccase *c, enum mv_class exclude) { int j; for (j = 0; j < xt->n_vars; j++) { const struct variable *var = xt->vars[j].var; const struct var_range *range = get_var_range (xt->proc, var); if (var_is_value_missing (var, case_data (c, var), exclude)) return false; if (range != NULL) { double num = case_num (c, var); if (num < range->min || num >= range->max + 1.) return false; } } return true; } static void tabulate_integer_case (struct crosstabulation *xt, const struct ccase *c, double weight) { struct freq *te; size_t hash; int j; hash = 0; for (j = 0; j < xt->n_vars; j++) { /* Throw away fractional parts of values. */ hash = hash_int (case_num (c, xt->vars[j].var), hash); } HMAP_FOR_EACH_WITH_HASH (te, struct freq, node, hash, &xt->data) { for (j = 0; j < xt->n_vars; j++) if ((int) case_num (c, xt->vars[j].var) != (int) te->values[j].f) goto no_match; /* Found an existing entry. */ te->count += weight; return; no_match: ; } /* No existing entry. Create a new one. */ te = xmalloc (table_entry_size (xt->n_vars)); te->count = weight; for (j = 0; j < xt->n_vars; j++) te->values[j].f = (int) case_num (c, xt->vars[j].var); hmap_insert (&xt->data, &te->node, hash); } static void tabulate_general_case (struct crosstabulation *xt, const struct ccase *c, double weight) { struct freq *te; size_t hash; int j; hash = 0; for (j = 0; j < xt->n_vars; j++) { const struct variable *var = xt->vars[j].var; hash = value_hash (case_data (c, var), var_get_width (var), hash); } HMAP_FOR_EACH_WITH_HASH (te, struct freq, node, hash, &xt->data) { for (j = 0; j < xt->n_vars; j++) { const struct variable *var = xt->vars[j].var; if (!value_equal (case_data (c, var), &te->values[j], var_get_width (var))) goto no_match; } /* Found an existing entry. */ te->count += weight; return; no_match: ; } /* No existing entry. Create a new one. */ te = xmalloc (table_entry_size (xt->n_vars)); te->count = weight; for (j = 0; j < xt->n_vars; j++) { const struct variable *var = xt->vars[j].var; value_clone (&te->values[j], case_data (c, var), var_get_width (var)); } hmap_insert (&xt->data, &te->node, hash); } /* Post-data reading calculations. */ static int compare_table_entry_vars_3way (const struct freq *a, const struct freq *b, const struct crosstabulation *xt, int idx0, int idx1); static int compare_table_entry_3way (const void *ap_, const void *bp_, const void *xt_); static int compare_table_entry_3way_inv (const void *ap_, const void *bp_, const void *xt_); static void enum_var_values (const struct crosstabulation *, int var_idx, bool descending); static void free_var_values (const struct crosstabulation *, int var_idx); static void output_crosstabulation (struct crosstabs_proc *, struct crosstabulation *); static void make_crosstabulation_subset (struct crosstabulation *xt, size_t row0, size_t row1, struct crosstabulation *subset); static void make_summary_table (struct crosstabs_proc *); static bool find_crosstab (struct crosstabulation *, size_t *row0p, size_t *row1p); static void postcalc (struct crosstabs_proc *proc) { /* Round hash table entries, if requested If this causes any of the cell counts to fall to zero, delete those cells. */ if (proc->round_cells) for (struct crosstabulation *xt = proc->pivots; xt < &proc->pivots[proc->n_pivots]; xt++) { struct freq *e, *next; HMAP_FOR_EACH_SAFE (e, next, struct freq, node, &xt->data) { e->count = round_weight (proc, e->count); if (e->count == 0.0) { hmap_delete (&xt->data, &e->node); free (e); } } } /* Convert hash tables into sorted arrays of entries. */ for (struct crosstabulation *xt = proc->pivots; xt < &proc->pivots[proc->n_pivots]; xt++) { struct freq *e; xt->n_entries = hmap_count (&xt->data); xt->entries = xnmalloc (xt->n_entries, sizeof *xt->entries); size_t i = 0; HMAP_FOR_EACH (e, struct freq, node, &xt->data) xt->entries[i++] = e; hmap_destroy (&xt->data); sort (xt->entries, xt->n_entries, sizeof *xt->entries, proc->descending ? compare_table_entry_3way_inv : compare_table_entry_3way, xt); } make_summary_table (proc); /* Output each pivot table. */ for (struct crosstabulation *xt = proc->pivots; xt < &proc->pivots[proc->n_pivots]; xt++) { if (proc->pivot || xt->n_vars == 2) output_crosstabulation (proc, xt); else { size_t row0 = 0, row1 = 0; while (find_crosstab (xt, &row0, &row1)) { struct crosstabulation subset; make_crosstabulation_subset (xt, row0, row1, &subset); output_crosstabulation (proc, &subset); free (subset.const_indexes); } } if (proc->barchart) { int n_vars = (xt->n_vars > 2 ? 2 : xt->n_vars); const struct variable **vars = xcalloc (n_vars, sizeof *vars); for (size_t i = 0; i < n_vars; i++) vars[i] = xt->vars[i].var; chart_submit (barchart_create (vars, n_vars, _("Count"), false, xt->entries, xt->n_entries)); free (vars); } } /* Free output and prepare for next split file. */ for (struct crosstabulation *xt = proc->pivots; xt < &proc->pivots[proc->n_pivots]; xt++) { xt->missing = 0.0; /* Free the members that were allocated in this function(and the values owned by the entries. The other pointer members are either both allocated and destroyed at a lower level (in output_crosstabulation), or both allocated and destroyed at a higher level (in crs_custom_tables and free_proc, respectively). */ for (size_t i = 0; i < xt->n_vars; i++) { int width = var_get_width (xt->vars[i].var); if (value_needs_init (width)) { size_t j; for (j = 0; j < xt->n_entries; j++) value_destroy (&xt->entries[j]->values[i], width); } } for (size_t i = 0; i < xt->n_entries; i++) free (xt->entries[i]); free (xt->entries); } } static void make_crosstabulation_subset (struct crosstabulation *xt, size_t row0, size_t row1, struct crosstabulation *subset) { *subset = *xt; if (xt->n_vars > 2) { assert (xt->n_consts == 0); subset->n_vars = 2; subset->vars = xt->vars; subset->n_consts = xt->n_vars - 2; subset->const_vars = xt->vars + 2; subset->const_indexes = xcalloc (subset->n_consts, sizeof *subset->const_indexes); for (size_t i = 0; i < subset->n_consts; i++) { const union value *value = &xt->entries[row0]->values[2 + i]; for (size_t j = 0; j < xt->vars[2 + i].n_values; j++) if (value_equal (&xt->vars[2 + i].values[j], value, var_get_width (xt->vars[2 + i].var))) { subset->const_indexes[i] = j; goto found; } NOT_REACHED (); found: ; } } subset->entries = &xt->entries[row0]; subset->n_entries = row1 - row0; } static int compare_table_entry_var_3way (const struct freq *a, const struct freq *b, const struct crosstabulation *xt, int idx) { return value_compare_3way (&a->values[idx], &b->values[idx], var_get_width (xt->vars[idx].var)); } static int compare_table_entry_vars_3way (const struct freq *a, const struct freq *b, const struct crosstabulation *xt, int idx0, int idx1) { int i; for (i = idx1 - 1; i >= idx0; i--) { int cmp = compare_table_entry_var_3way (a, b, xt, i); if (cmp != 0) return cmp; } return 0; } /* Compare the struct freq at *AP to the one at *BP and return a strcmp()-type result. */ static int compare_table_entry_3way (const void *ap_, const void *bp_, const void *xt_) { const struct freq *const *ap = ap_; const struct freq *const *bp = bp_; const struct freq *a = *ap; const struct freq *b = *bp; const struct crosstabulation *xt = xt_; int cmp; cmp = compare_table_entry_vars_3way (a, b, xt, 2, xt->n_vars); if (cmp != 0) return cmp; cmp = compare_table_entry_var_3way (a, b, xt, ROW_VAR); if (cmp != 0) return cmp; return compare_table_entry_var_3way (a, b, xt, COL_VAR); } /* Inverted version of compare_table_entry_3way */ static int compare_table_entry_3way_inv (const void *ap_, const void *bp_, const void *xt_) { return -compare_table_entry_3way (ap_, bp_, xt_); } /* Output a table summarizing the cases processed. */ static void make_summary_table (struct crosstabs_proc *proc) { struct pivot_table *table = pivot_table_create (N_("Summary")); pivot_table_set_weight_var (table, dict_get_weight (proc->dict)); pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"), N_("N"), PIVOT_RC_COUNT, N_("Percent"), PIVOT_RC_PERCENT); struct pivot_dimension *cases = pivot_dimension_create ( table, PIVOT_AXIS_COLUMN, N_("Cases"), N_("Valid"), N_("Missing"), N_("Total")); cases->root->show_label = true; struct pivot_dimension *tables = pivot_dimension_create ( table, PIVOT_AXIS_ROW, N_("Crosstabulation")); for (struct crosstabulation *xt = &proc->pivots[0]; xt < &proc->pivots[proc->n_pivots]; xt++) { struct string name = DS_EMPTY_INITIALIZER; for (size_t i = 0; i < xt->n_vars; i++) { if (i > 0) ds_put_cstr (&name, " × "); ds_put_cstr (&name, var_to_string (xt->vars[i].var)); } int row = pivot_category_create_leaf ( tables->root, pivot_value_new_user_text_nocopy (ds_steal_cstr (&name))); double valid = 0.; for (size_t i = 0; i < xt->n_entries; i++) valid += xt->entries[i]->count; double n[3]; n[0] = valid; n[1] = xt->missing; n[2] = n[0] + n[1]; for (int i = 0; i < 3; i++) { pivot_table_put3 (table, 0, i, row, pivot_value_new_number (n[i])); pivot_table_put3 (table, 1, i, row, pivot_value_new_number (n[i] / n[2] * 100.0)); } } pivot_table_submit (table); } /* Output. */ static struct pivot_table *create_crosstab_table ( struct crosstabs_proc *, struct crosstabulation *, size_t crs_leaves[CRS_CL_count]); static struct pivot_table *create_chisq_table (struct crosstabulation *); static struct pivot_table *create_sym_table (struct crosstabulation *); static struct pivot_table *create_risk_table ( struct crosstabulation *, struct pivot_dimension **risk_statistics); static struct pivot_table *create_direct_table (struct crosstabulation *); static void display_crosstabulation (struct crosstabs_proc *, struct crosstabulation *, struct pivot_table *, size_t crs_leaves[CRS_CL_count]); static void display_chisq (struct crosstabulation *, struct pivot_table *); static void display_symmetric (struct crosstabs_proc *, struct crosstabulation *, struct pivot_table *); static void display_risk (struct crosstabulation *, struct pivot_table *, struct pivot_dimension *risk_statistics); static void display_directional (struct crosstabs_proc *, struct crosstabulation *, struct pivot_table *); static void delete_missing (struct crosstabulation *); static void build_matrix (struct crosstabulation *); /* Output pivot table XT in the context of PROC. */ static void output_crosstabulation (struct crosstabs_proc *proc, struct crosstabulation *xt) { for (size_t i = 0; i < xt->n_vars; i++) enum_var_values (xt, i, proc->descending); if (xt->vars[COL_VAR].n_values == 0) { struct string vars; int i; ds_init_cstr (&vars, var_to_string (xt->vars[0].var)); for (i = 1; i < xt->n_vars; i++) ds_put_format (&vars, " × %s", var_to_string (xt->vars[i].var)); /* TRANSLATORS: The %s here describes a crosstabulation. It takes the form "var1 * var2 * var3 * ...". */ msg (SW, _("Crosstabulation %s contained no non-missing cases."), ds_cstr (&vars)); ds_destroy (&vars); for (size_t i = 0; i < xt->n_vars; i++) free_var_values (xt, i); return; } size_t crs_leaves[CRS_CL_count]; struct pivot_table *table = (proc->cells ? create_crosstab_table (proc, xt, crs_leaves) : NULL); struct pivot_table *chisq = (proc->statistics & (1u << CRS_ST_CHISQ) ? create_chisq_table (xt) : NULL); struct pivot_table *sym = (proc->statistics & ((1u << CRS_ST_PHI) | (1u << CRS_ST_CC) | (1u << CRS_ST_BTAU) | (1u << CRS_ST_CTAU) | (1u << CRS_ST_GAMMA) | (1u << CRS_ST_CORR) | (1u << CRS_ST_KAPPA)) ? create_sym_table (xt) : NULL); struct pivot_dimension *risk_statistics = NULL; struct pivot_table *risk = (proc->statistics & (1u << CRS_ST_RISK) ? create_risk_table (xt, &risk_statistics) : NULL); struct pivot_table *direct = (proc->statistics & ((1u << CRS_ST_LAMBDA) | (1u << CRS_ST_UC) | (1u << CRS_ST_D) | (1u << CRS_ST_ETA)) ? create_direct_table (xt) : NULL); size_t row0 = 0; size_t row1 = 0; while (find_crosstab (xt, &row0, &row1)) { struct crosstabulation x; make_crosstabulation_subset (xt, row0, row1, &x); size_t n_rows = x.vars[ROW_VAR].n_values; size_t n_cols = x.vars[COL_VAR].n_values; if (size_overflow_p (xtimes (xtimes (n_rows, n_cols), sizeof (double)))) xalloc_die (); x.row_tot = xmalloc (n_rows * sizeof *x.row_tot); x.col_tot = xmalloc (n_cols * sizeof *x.col_tot); x.mat = xmalloc (n_rows * n_cols * sizeof *x.mat); build_matrix (&x); /* Find the first variable that differs from the last subtable. */ if (table) display_crosstabulation (proc, &x, table, crs_leaves); if (proc->exclude == MV_NEVER) delete_missing (&x); if (chisq) display_chisq (&x, chisq); if (sym) display_symmetric (proc, &x, sym); if (risk) display_risk (&x, risk, risk_statistics); if (direct) display_directional (proc, &x, direct); free (x.mat); free (x.row_tot); free (x.col_tot); free (x.const_indexes); } if (table) pivot_table_submit (table); if (chisq) pivot_table_submit (chisq); if (sym) pivot_table_submit (sym); if (risk) { if (!pivot_table_is_empty (risk)) pivot_table_submit (risk); else pivot_table_unref (risk); } if (direct) pivot_table_submit (direct); for (size_t i = 0; i < xt->n_vars; i++) free_var_values (xt, i); } static void build_matrix (struct crosstabulation *x) { const int col_var_width = var_get_width (x->vars[COL_VAR].var); const int row_var_width = var_get_width (x->vars[ROW_VAR].var); size_t n_rows = x->vars[ROW_VAR].n_values; size_t n_cols = x->vars[COL_VAR].n_values; int col, row; double *mp; struct freq **p; mp = x->mat; col = row = 0; for (p = x->entries; p < &x->entries[x->n_entries]; p++) { const struct freq *te = *p; while (!value_equal (&x->vars[ROW_VAR].values[row], &te->values[ROW_VAR], row_var_width)) { for (; col < n_cols; col++) *mp++ = 0.0; col = 0; row++; } while (!value_equal (&x->vars[COL_VAR].values[col], &te->values[COL_VAR], col_var_width)) { *mp++ = 0.0; col++; } *mp++ = te->count; if (++col >= n_cols) { col = 0; row++; } } while (mp < &x->mat[n_cols * n_rows]) *mp++ = 0.0; assert (mp == &x->mat[n_cols * n_rows]); /* Column totals, row totals, ns_rows. */ mp = x->mat; for (col = 0; col < n_cols; col++) x->col_tot[col] = 0.0; for (row = 0; row < n_rows; row++) x->row_tot[row] = 0.0; x->ns_rows = 0; for (row = 0; row < n_rows; row++) { bool row_is_empty = true; for (col = 0; col < n_cols; col++) { if (*mp != 0.0) { row_is_empty = false; x->col_tot[col] += *mp; x->row_tot[row] += *mp; } mp++; } if (!row_is_empty) x->ns_rows++; } assert (mp == &x->mat[n_cols * n_rows]); /* ns_cols. */ x->ns_cols = 0; for (col = 0; col < n_cols; col++) for (row = 0; row < n_rows; row++) if (x->mat[col + row * n_cols] != 0.0) { x->ns_cols++; break; } /* Grand total. */ x->total = 0.0; for (col = 0; col < n_cols; col++) x->total += x->col_tot[col]; } static void add_var_dimension (struct pivot_table *table, const struct xtab_var *var, enum pivot_axis_type axis_type, bool total) { struct pivot_dimension *d = pivot_dimension_create__ ( table, axis_type, pivot_value_new_variable (var->var)); struct pivot_footnote *missing_footnote = pivot_table_create_footnote ( table, pivot_value_new_text (N_("Missing value"))); struct pivot_category *group = pivot_category_create_group__ ( d->root, pivot_value_new_variable (var->var)); for (size_t j = 0; j < var->n_values; j++) { struct pivot_value *value = pivot_value_new_var_value ( var->var, &var->values[j]); if (var_is_value_missing (var->var, &var->values[j], MV_ANY)) pivot_value_add_footnote (value, missing_footnote); pivot_category_create_leaf (group, value); } if (total) pivot_category_create_leaf (d->root, pivot_value_new_text (N_("Total"))); } static struct pivot_table * create_crosstab_table (struct crosstabs_proc *proc, struct crosstabulation *xt, size_t crs_leaves[CRS_CL_count]) { /* Title. */ struct string title = DS_EMPTY_INITIALIZER; for (size_t i = 0; i < xt->n_vars; i++) { if (i) ds_put_cstr (&title, " × "); ds_put_cstr (&title, var_to_string (xt->vars[i].var)); } for (size_t i = 0; i < xt->n_consts; i++) { const struct variable *var = xt->const_vars[i].var; const union value *value = &xt->entries[0]->values[2 + i]; char *s; ds_put_format (&title, ", %s=", var_to_string (var)); /* Insert the formatted value of VAR without any leading spaces. */ s = data_out (value, var_get_encoding (var), var_get_print_format (var), settings_get_fmt_settings ()); ds_put_cstr (&title, s + strspn (s, " ")); free (s); } struct pivot_table *table = pivot_table_create__ ( pivot_value_new_user_text_nocopy (ds_steal_cstr (&title)), "Crosstabulation"); pivot_table_set_weight_format (table, &proc->weight_format); struct pivot_dimension *statistics = pivot_dimension_create ( table, PIVOT_AXIS_ROW, N_("Statistics")); struct statistic { const char *label; const char *rc; }; static const struct statistic stats[CRS_CL_count] = { [CRS_CL_COUNT] = { N_("Count"), PIVOT_RC_COUNT }, [CRS_CL_ROW] = { N_("Row %"), PIVOT_RC_PERCENT }, [CRS_CL_COLUMN] = { N_("Column %"), PIVOT_RC_PERCENT }, [CRS_CL_TOTAL] = { N_("Total %"), PIVOT_RC_PERCENT }, [CRS_CL_EXPECTED] = { N_("Expected"), PIVOT_RC_OTHER }, [CRS_CL_RESIDUAL] = { N_("Residual"), PIVOT_RC_RESIDUAL }, [CRS_CL_SRESIDUAL] = { N_("Std. Residual"), PIVOT_RC_RESIDUAL }, [CRS_CL_ASRESIDUAL] = { N_("Adjusted Residual"), PIVOT_RC_RESIDUAL }, }; for (size_t i = 0; i < CRS_CL_count; i++) if (proc->cells & (1u << i) && stats[i].label) crs_leaves[i] = pivot_category_create_leaf_rc ( statistics->root, pivot_value_new_text (stats[i].label), stats[i].rc); for (size_t i = 0; i < xt->n_vars; i++) add_var_dimension (table, &xt->vars[i], i == COL_VAR ? PIVOT_AXIS_COLUMN : PIVOT_AXIS_ROW, true); return table; } static struct pivot_table * create_chisq_table (struct crosstabulation *xt) { struct pivot_table *chisq = pivot_table_create (N_("Chi-Square Tests")); pivot_table_set_weight_format (chisq, &xt->weight_format); pivot_dimension_create ( chisq, PIVOT_AXIS_ROW, N_("Statistics"), N_("Pearson Chi-Square"), N_("Likelihood Ratio"), N_("Fisher's Exact Test"), N_("Continuity Correction"), N_("Linear-by-Linear Association"), N_("N of Valid Cases"), PIVOT_RC_COUNT); pivot_dimension_create ( chisq, PIVOT_AXIS_COLUMN, N_("Statistics"), N_("Value"), PIVOT_RC_OTHER, N_("df"), PIVOT_RC_COUNT, N_("Asymptotic Sig. (2-tailed)"), PIVOT_RC_SIGNIFICANCE, N_("Exact Sig. (2-tailed)"), PIVOT_RC_SIGNIFICANCE, N_("Exact Sig. (1-tailed)"), PIVOT_RC_SIGNIFICANCE); for (size_t i = 2; i < xt->n_vars; i++) add_var_dimension (chisq, &xt->vars[i], PIVOT_AXIS_ROW, false); return chisq; } /* Symmetric measures. */ static struct pivot_table * create_sym_table (struct crosstabulation *xt) { struct pivot_table *sym = pivot_table_create (N_("Symmetric Measures")); pivot_table_set_weight_format (sym, &xt->weight_format); pivot_dimension_create ( sym, PIVOT_AXIS_COLUMN, N_("Values"), N_("Value"), PIVOT_RC_OTHER, N_("Asymp. Std. Error"), PIVOT_RC_OTHER, N_("Approx. T"), PIVOT_RC_OTHER, N_("Approx. Sig."), PIVOT_RC_SIGNIFICANCE); struct pivot_dimension *statistics = pivot_dimension_create ( sym, PIVOT_AXIS_ROW, N_("Statistics")); pivot_category_create_group ( statistics->root, N_("Nominal by Nominal"), N_("Phi"), N_("Cramer's V"), N_("Contingency Coefficient")); pivot_category_create_group ( statistics->root, N_("Ordinal by Ordinal"), N_("Kendall's tau-b"), N_("Kendall's tau-c"), N_("Gamma"), N_("Spearman Correlation")); pivot_category_create_group ( statistics->root, N_("Interval by Interval"), N_("Pearson's R")); pivot_category_create_group ( statistics->root, N_("Measure of Agreement"), N_("Kappa")); pivot_category_create_leaves (statistics->root, N_("N of Valid Cases"), PIVOT_RC_COUNT); for (size_t i = 2; i < xt->n_vars; i++) add_var_dimension (sym, &xt->vars[i], PIVOT_AXIS_ROW, false); return sym; } /* Risk estimate. */ static struct pivot_table * create_risk_table (struct crosstabulation *xt, struct pivot_dimension **risk_statistics) { struct pivot_table *risk = pivot_table_create (N_("Risk Estimate")); pivot_table_set_weight_format (risk, &xt->weight_format); struct pivot_dimension *values = pivot_dimension_create ( risk, PIVOT_AXIS_COLUMN, N_("Values"), N_("Value"), PIVOT_RC_OTHER); pivot_category_create_group ( /* xgettext:no-c-format */ values->root, N_("95% Confidence Interval"), N_("Lower"), PIVOT_RC_OTHER, N_("Upper"), PIVOT_RC_OTHER); *risk_statistics = pivot_dimension_create ( risk, PIVOT_AXIS_ROW, N_("Statistics")); for (size_t i = 2; i < xt->n_vars; i++) add_var_dimension (risk, &xt->vars[i], PIVOT_AXIS_ROW, false); return risk; } static void create_direct_stat (struct pivot_category *parent, const struct crosstabulation *xt, const char *name, bool symmetric) { struct pivot_category *group = pivot_category_create_group ( parent, name); if (symmetric) pivot_category_create_leaf (group, pivot_value_new_text (N_("Symmetric"))); char *row_label = xasprintf (_("%s Dependent"), var_to_string (xt->vars[ROW_VAR].var)); pivot_category_create_leaf (group, pivot_value_new_user_text_nocopy ( row_label)); char *col_label = xasprintf (_("%s Dependent"), var_to_string (xt->vars[COL_VAR].var)); pivot_category_create_leaf (group, pivot_value_new_user_text_nocopy ( col_label)); } /* Directional measures. */ static struct pivot_table * create_direct_table (struct crosstabulation *xt) { struct pivot_table *direct = pivot_table_create (N_("Directional Measures")); pivot_table_set_weight_format (direct, &xt->weight_format); pivot_dimension_create ( direct, PIVOT_AXIS_COLUMN, N_("Values"), N_("Value"), PIVOT_RC_OTHER, N_("Asymp. Std. Error"), PIVOT_RC_OTHER, N_("Approx. T"), PIVOT_RC_OTHER, N_("Approx. Sig."), PIVOT_RC_SIGNIFICANCE); struct pivot_dimension *statistics = pivot_dimension_create ( direct, PIVOT_AXIS_ROW, N_("Statistics")); struct pivot_category *nn = pivot_category_create_group ( statistics->root, N_("Nominal by Nominal")); create_direct_stat (nn, xt, N_("Lambda"), true); create_direct_stat (nn, xt, N_("Goodman and Kruskal tau"), false); create_direct_stat (nn, xt, N_("Uncertainty Coefficient"), true); struct pivot_category *oo = pivot_category_create_group ( statistics->root, N_("Ordinal by Ordinal")); create_direct_stat (oo, xt, N_("Somers' d"), true); struct pivot_category *ni = pivot_category_create_group ( statistics->root, N_("Nominal by Interval")); create_direct_stat (ni, xt, N_("Eta"), false); for (size_t i = 2; i < xt->n_vars; i++) add_var_dimension (direct, &xt->vars[i], PIVOT_AXIS_ROW, false); return direct; } /* Delete missing rows and columns for statistical analysis when /MISSING=REPORT. */ static void delete_missing (struct crosstabulation *xt) { size_t n_rows = xt->vars[ROW_VAR].n_values; size_t n_cols = xt->vars[COL_VAR].n_values; int r, c; for (r = 0; r < n_rows; r++) if (var_is_num_missing (xt->vars[ROW_VAR].var, xt->vars[ROW_VAR].values[r].f, MV_USER)) { for (c = 0; c < n_cols; c++) xt->mat[c + r * n_cols] = 0.; xt->ns_rows--; } for (c = 0; c < n_cols; c++) if (var_is_num_missing (xt->vars[COL_VAR].var, xt->vars[COL_VAR].values[c].f, MV_USER)) { for (r = 0; r < n_rows; r++) xt->mat[c + r * n_cols] = 0.; xt->ns_cols--; } } static bool find_crosstab (struct crosstabulation *xt, size_t *row0p, size_t *row1p) { size_t row0 = *row1p; size_t row1; if (row0 >= xt->n_entries) return false; for (row1 = row0 + 1; row1 < xt->n_entries; row1++) { struct freq *a = xt->entries[row0]; struct freq *b = xt->entries[row1]; if (compare_table_entry_vars_3way (a, b, xt, 2, xt->n_vars) != 0) break; } *row0p = row0; *row1p = row1; return true; } /* Compares `union value's A_ and B_ and returns a strcmp()-like result. WIDTH_ points to an int which is either 0 for a numeric value or a string width for a string value. */ static int compare_value_3way (const void *a_, const void *b_, const void *width_) { const union value *a = a_; const union value *b = b_; const int *width = width_; return value_compare_3way (a, b, *width); } /* Inverted version of the above */ static int compare_value_3way_inv (const void *a_, const void *b_, const void *width_) { return -compare_value_3way (a_, b_, width_); } /* Given an array of ENTRY_CNT table_entry structures starting at ENTRIES, creates a sorted list of the values that the variable with index VAR_IDX takes on. Stores the array of the values in XT->values and the number of values in XT->n_values. */ static void enum_var_values (const struct crosstabulation *xt, int var_idx, bool descending) { struct xtab_var *xv = &xt->vars[var_idx]; const struct var_range *range = get_var_range (xt->proc, xv->var); if (range) { xv->values = xnmalloc (range->count, sizeof *xv->values); xv->n_values = range->count; for (size_t i = 0; i < range->count; i++) xv->values[i].f = range->min + i; } else { int width = var_get_width (xv->var); struct hmapx_node *node; const union value *iter; struct hmapx set; hmapx_init (&set); for (size_t i = 0; i < xt->n_entries; i++) { const struct freq *te = xt->entries[i]; const union value *value = &te->values[var_idx]; size_t hash = value_hash (value, width, 0); HMAPX_FOR_EACH_WITH_HASH (iter, node, hash, &set) if (value_equal (iter, value, width)) goto next_entry; hmapx_insert (&set, (union value *) value, hash); next_entry: ; } xv->n_values = hmapx_count (&set); xv->values = xnmalloc (xv->n_values, sizeof *xv->values); size_t i = 0; HMAPX_FOR_EACH (iter, node, &set) xv->values[i++] = *iter; hmapx_destroy (&set); sort (xv->values, xv->n_values, sizeof *xv->values, descending ? compare_value_3way_inv : compare_value_3way, &width); } } static void free_var_values (const struct crosstabulation *xt, int var_idx) { struct xtab_var *xv = &xt->vars[var_idx]; free (xv->values); xv->values = NULL; xv->n_values = 0; } /* Displays the crosstabulation table. */ static void display_crosstabulation (struct crosstabs_proc *proc, struct crosstabulation *xt, struct pivot_table *table, size_t crs_leaves[CRS_CL_count]) { size_t n_rows = xt->vars[ROW_VAR].n_values; size_t n_cols = xt->vars[COL_VAR].n_values; size_t *indexes = xnmalloc (table->n_dimensions, sizeof *indexes); assert (xt->n_vars == 2); for (size_t i = 0; i < xt->n_consts; i++) indexes[i + 3] = xt->const_indexes[i]; /* Put in the actual cells. */ double *mp = xt->mat; for (size_t r = 0; r < n_rows; r++) { if (!xt->row_tot[r] && proc->mode != INTEGER) continue; indexes[ROW_VAR + 1] = r; for (size_t c = 0; c < n_cols; c++) { if (!xt->col_tot[c] && proc->mode != INTEGER) continue; indexes[COL_VAR + 1] = c; double expected_value = xt->row_tot[r] * xt->col_tot[c] / xt->total; double residual = *mp - expected_value; double sresidual = residual / sqrt (expected_value); double asresidual = (sresidual * (1. - xt->row_tot[r] / xt->total) * (1. - xt->col_tot[c] / xt->total)); double entries[] = { [CRS_CL_COUNT] = *mp, [CRS_CL_ROW] = *mp / xt->row_tot[r] * 100., [CRS_CL_COLUMN] = *mp / xt->col_tot[c] * 100., [CRS_CL_TOTAL] = *mp / xt->total * 100., [CRS_CL_EXPECTED] = expected_value, [CRS_CL_RESIDUAL] = residual, [CRS_CL_SRESIDUAL] = sresidual, [CRS_CL_ASRESIDUAL] = asresidual, }; for (size_t i = 0; i < proc->n_cells; i++) { int cell = proc->a_cells[i]; indexes[0] = crs_leaves[cell]; pivot_table_put (table, indexes, table->n_dimensions, pivot_value_new_number (entries[cell])); } mp++; } } /* Row totals. */ for (size_t r = 0; r < n_rows; r++) { if (!xt->row_tot[r] && proc->mode != INTEGER) continue; double expected_value = xt->row_tot[r] / xt->total; double entries[] = { [CRS_CL_COUNT] = xt->row_tot[r], [CRS_CL_ROW] = 100.0, [CRS_CL_COLUMN] = expected_value * 100., [CRS_CL_TOTAL] = expected_value * 100., [CRS_CL_EXPECTED] = expected_value, [CRS_CL_RESIDUAL] = SYSMIS, [CRS_CL_SRESIDUAL] = SYSMIS, [CRS_CL_ASRESIDUAL] = SYSMIS, }; for (size_t i = 0; i < proc->n_cells; i++) { int cell = proc->a_cells[i]; double entry = entries[cell]; if (entry != SYSMIS) { indexes[ROW_VAR + 1] = r; indexes[COL_VAR + 1] = n_cols; indexes[0] = crs_leaves[cell]; pivot_table_put (table, indexes, table->n_dimensions, pivot_value_new_number (entry)); } } } for (size_t c = 0; c <= n_cols; c++) { if (c < n_cols && !xt->col_tot[c] && proc->mode != INTEGER) continue; double ct = c < n_cols ? xt->col_tot[c] : xt->total; double expected_value = ct / xt->total; double entries[] = { [CRS_CL_COUNT] = ct, [CRS_CL_ROW] = expected_value * 100.0, [CRS_CL_COLUMN] = 100.0, [CRS_CL_TOTAL] = expected_value * 100., [CRS_CL_EXPECTED] = expected_value, [CRS_CL_RESIDUAL] = SYSMIS, [CRS_CL_SRESIDUAL] = SYSMIS, [CRS_CL_ASRESIDUAL] = SYSMIS, }; for (size_t i = 0; i < proc->n_cells; i++) { int cell = proc->a_cells[i]; double entry = entries[cell]; if (entry != SYSMIS) { indexes[ROW_VAR + 1] = n_rows; indexes[COL_VAR + 1] = c; indexes[0] = crs_leaves[cell]; pivot_table_put (table, indexes, table->n_dimensions, pivot_value_new_number (entry)); } } } free (indexes); } static void calc_r (struct crosstabulation *, double *XT, double *Y, double *, double *, double *); static void calc_chisq (struct crosstabulation *, double[N_CHISQ], int[N_CHISQ], double *, double *); /* Display chi-square statistics. */ static void display_chisq (struct crosstabulation *xt, struct pivot_table *chisq) { double chisq_v[N_CHISQ]; double fisher1, fisher2; int df[N_CHISQ]; calc_chisq (xt, chisq_v, df, &fisher1, &fisher2); size_t *indexes = xnmalloc (chisq->n_dimensions, sizeof *indexes); assert (xt->n_vars == 2); for (size_t i = 0; i < xt->n_consts; i++) indexes[i + 2] = xt->const_indexes[i]; for (int i = 0; i < N_CHISQ; i++) { indexes[0] = i; double entries[5] = { SYSMIS, SYSMIS, SYSMIS, SYSMIS, SYSMIS }; if (i == 2) { entries[3] = fisher2; entries[4] = fisher1; } else if (chisq_v[i] != SYSMIS) { entries[0] = chisq_v[i]; entries[1] = df[i]; entries[2] = gsl_cdf_chisq_Q (chisq_v[i], df[i]); } for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) if (entries[j] != SYSMIS) { indexes[1] = j; pivot_table_put (chisq, indexes, chisq->n_dimensions, pivot_value_new_number (entries[j])); } } indexes[0] = 5; indexes[1] = 0; pivot_table_put (chisq, indexes, chisq->n_dimensions, pivot_value_new_number (xt->total)); free (indexes); } static int calc_symmetric (struct crosstabs_proc *, struct crosstabulation *, double[N_SYMMETRIC], double[N_SYMMETRIC], double[N_SYMMETRIC], double[3], double[3], double[3]); /* Display symmetric measures. */ static void display_symmetric (struct crosstabs_proc *proc, struct crosstabulation *xt, struct pivot_table *sym) { double sym_v[N_SYMMETRIC], sym_ase[N_SYMMETRIC], sym_t[N_SYMMETRIC]; double somers_d_v[3], somers_d_ase[3], somers_d_t[3]; if (!calc_symmetric (proc, xt, sym_v, sym_ase, sym_t, somers_d_v, somers_d_ase, somers_d_t)) return; size_t *indexes = xnmalloc (sym->n_dimensions, sizeof *indexes); assert (xt->n_vars == 2); for (size_t i = 0; i < xt->n_consts; i++) indexes[i + 2] = xt->const_indexes[i]; for (int i = 0; i < N_SYMMETRIC; i++) { if (sym_v[i] == SYSMIS) continue; indexes[1] = i; double entries[] = { sym_v[i], sym_ase[i], sym_t[i] }; for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) if (entries[j] != SYSMIS) { indexes[0] = j; pivot_table_put (sym, indexes, sym->n_dimensions, pivot_value_new_number (entries[j])); } } indexes[1] = N_SYMMETRIC; indexes[0] = 0; struct pivot_value *total = pivot_value_new_number (xt->total); pivot_value_set_rc (sym, total, PIVOT_RC_COUNT); pivot_table_put (sym, indexes, sym->n_dimensions, total); free (indexes); } static bool calc_risk (struct crosstabulation *, double[], double[], double[], union value *, double *); /* Display risk estimate. */ static void display_risk (struct crosstabulation *xt, struct pivot_table *risk, struct pivot_dimension *risk_statistics) { double risk_v[3], lower[3], upper[3], n_valid; union value c[2]; if (!calc_risk (xt, risk_v, upper, lower, c, &n_valid)) return; size_t *indexes = xnmalloc (risk->n_dimensions, sizeof *indexes); assert (xt->n_vars == 2); for (size_t i = 0; i < xt->n_consts; i++) indexes[i + 2] = xt->const_indexes[i]; for (int i = 0; i < 3; i++) { const struct variable *cv = xt->vars[COL_VAR].var; const struct variable *rv = xt->vars[ROW_VAR].var; if (risk_v[i] == SYSMIS) continue; struct string label = DS_EMPTY_INITIALIZER; switch (i) { case 0: ds_put_format (&label, _("Odds Ratio for %s"), var_to_string (rv)); ds_put_cstr (&label, " ("); var_append_value_name (rv, &c[0], &label); ds_put_cstr (&label, " / "); var_append_value_name (rv, &c[1], &label); ds_put_cstr (&label, ")"); break; case 1: case 2: ds_put_format (&label, _("For cohort %s = "), var_to_string (cv)); var_append_value_name (cv, &xt->vars[ROW_VAR].values[i - 1], &label); break; } indexes[1] = pivot_category_create_leaf ( risk_statistics->root, pivot_value_new_user_text_nocopy (ds_steal_cstr (&label))); double entries[] = { risk_v[i], lower[i], upper[i] }; for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) { indexes[0] = j; pivot_table_put (risk, indexes, risk->n_dimensions, pivot_value_new_number (entries[i])); } } indexes[1] = pivot_category_create_leaf ( risk_statistics->root, pivot_value_new_text (N_("N of Valid Cases"))); indexes[0] = 0; pivot_table_put (risk, indexes, risk->n_dimensions, pivot_value_new_number (n_valid)); free (indexes); } static int calc_directional (struct crosstabs_proc *, struct crosstabulation *, double[N_DIRECTIONAL], double[N_DIRECTIONAL], double[N_DIRECTIONAL], double[N_DIRECTIONAL]); /* Display directional measures. */ static void display_directional (struct crosstabs_proc *proc, struct crosstabulation *xt, struct pivot_table *direct) { double direct_v[N_DIRECTIONAL]; double direct_ase[N_DIRECTIONAL]; double direct_t[N_DIRECTIONAL]; double sig[N_DIRECTIONAL]; if (!calc_directional (proc, xt, direct_v, direct_ase, direct_t, sig)) return; size_t *indexes = xnmalloc (direct->n_dimensions, sizeof *indexes); assert (xt->n_vars == 2); for (size_t i = 0; i < xt->n_consts; i++) indexes[i + 2] = xt->const_indexes[i]; for (int i = 0; i < N_DIRECTIONAL; i++) { if (direct_v[i] == SYSMIS) continue; indexes[1] = i; double entries[] = { direct_v[i], direct_ase[i], direct_t[i], sig[i], }; for (size_t j = 0; j < sizeof entries / sizeof *entries; j++) if (entries[j] != SYSMIS) { indexes[0] = j; pivot_table_put (direct, indexes, direct->n_dimensions, pivot_value_new_number (entries[j])); } } free (indexes); } /* Statistical calculations. */ /* Returns the value of the logarithm of gamma (factorial) function for an integer argument XT. */ static double log_gamma_int (double xt) { double r = 0; int i; for (i = 2; i < xt; i++) r += log(i); return r; } /* Calculate P_r as specified in _SPSS Statistical Algorithms_, Appendix 5. */ static inline double Pr (int a, int b, int c, int d) { return exp (log_gamma_int (a + b + 1.) - log_gamma_int (a + 1.) + log_gamma_int (c + d + 1.) - log_gamma_int (b + 1.) + log_gamma_int (a + c + 1.) - log_gamma_int (c + 1.) + log_gamma_int (b + d + 1.) - log_gamma_int (d + 1.) - log_gamma_int (a + b + c + d + 1.)); } /* Swap the contents of A and B. */ static inline void swap (int *a, int *b) { int t = *a; *a = *b; *b = t; } /* Calculate significance for Fisher's exact test as specified in _SPSS Statistical Algorithms_, Appendix 5. */ static void calc_fisher (int a, int b, int c, int d, double *fisher1, double *fisher2) { int xt; double pn1; if (MIN (c, d) < MIN (a, b)) swap (&a, &c), swap (&b, &d); if (MIN (b, d) < MIN (a, c)) swap (&a, &b), swap (&c, &d); if (b * c < a * d) { if (b < c) swap (&a, &b), swap (&c, &d); else swap (&a, &c), swap (&b, &d); } pn1 = Pr (a, b, c, d); *fisher1 = pn1; for (xt = 1; xt <= a; xt++) { *fisher1 += Pr (a - xt, b + xt, c + xt, d - xt); } *fisher2 = *fisher1; for (xt = 1; xt <= b; xt++) { double p = Pr (a + xt, b - xt, c - xt, d + xt); if (p < pn1) *fisher2 += p; } } /* Calculates chi-squares into CHISQ. MAT is a matrix with N_COLS columns with values COLS and N_ROWS rows with values ROWS. Values in the matrix sum to xt->total. */ static void calc_chisq (struct crosstabulation *xt, double chisq[N_CHISQ], int df[N_CHISQ], double *fisher1, double *fisher2) { chisq[0] = chisq[1] = 0.; chisq[2] = chisq[3] = chisq[4] = SYSMIS; *fisher1 = *fisher2 = SYSMIS; df[0] = df[1] = (xt->ns_cols - 1) * (xt->ns_rows - 1); if (xt->ns_rows <= 1 || xt->ns_cols <= 1) { chisq[0] = chisq[1] = SYSMIS; return; } size_t n_cols = xt->vars[COL_VAR].n_values; FOR_EACH_POPULATED_ROW (r, xt) FOR_EACH_POPULATED_COLUMN (c, xt) { const double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total; const double freq = xt->mat[n_cols * r + c]; const double residual = freq - expected; chisq[0] += residual * residual / expected; if (freq) chisq[1] += freq * log (expected / freq); } if (chisq[0] == 0.) chisq[0] = SYSMIS; if (chisq[1] != 0.) chisq[1] *= -2.; else chisq[1] = SYSMIS; /* Calculate Yates and Fisher exact test. */ if (xt->ns_cols == 2 && xt->ns_rows == 2) { double f11, f12, f21, f22; { int nz_cols[2]; int j = 0; FOR_EACH_POPULATED_COLUMN (c, xt) { nz_cols[j++] = c; if (j == 2) break; } assert (j == 2); f11 = xt->mat[nz_cols[0]]; f12 = xt->mat[nz_cols[1]]; f21 = xt->mat[nz_cols[0] + n_cols]; f22 = xt->mat[nz_cols[1] + n_cols]; } /* Yates. */ { const double xt_ = fabs (f11 * f22 - f12 * f21) - 0.5 * xt->total; if (xt_ > 0.) chisq[3] = (xt->total * pow2 (xt_) / (f11 + f12) / (f21 + f22) / (f11 + f21) / (f12 + f22)); else chisq[3] = 0.; df[3] = 1.; } /* Fisher. */ calc_fisher (f11 + .5, f12 + .5, f21 + .5, f22 + .5, fisher1, fisher2); } /* Calculate Mantel-Haenszel. */ if (var_is_numeric (xt->vars[ROW_VAR].var) && var_is_numeric (xt->vars[COL_VAR].var)) { double r, ase_0, ase_1; calc_r (xt, (double *) xt->vars[ROW_VAR].values, (double *) xt->vars[COL_VAR].values, &r, &ase_0, &ase_1); chisq[4] = (xt->total - 1.) * r * r; df[4] = 1; } } /* Calculate the value of Pearson's r. r is stored into R, its T value into T, and standard error into ERROR. The row and column values must be passed in XT and Y. */ static void calc_r (struct crosstabulation *xt, double *XT, double *Y, double *r, double *t, double *error) { size_t n_rows = xt->vars[ROW_VAR].n_values; size_t n_cols = xt->vars[COL_VAR].n_values; double SX, SY, S, T; double Xbar, Ybar; double sum_XYf, sum_X2Y2f; double sum_Xr, sum_X2r; double sum_Yc, sum_Y2c; int i, j; for (sum_X2Y2f = sum_XYf = 0., i = 0; i < n_rows; i++) for (j = 0; j < n_cols; j++) { double fij = xt->mat[j + i * n_cols]; double product = XT[i] * Y[j]; double temp = fij * product; sum_XYf += temp; sum_X2Y2f += temp * product; } for (sum_Xr = sum_X2r = 0., i = 0; i < n_rows; i++) { sum_Xr += XT[i] * xt->row_tot[i]; sum_X2r += pow2 (XT[i]) * xt->row_tot[i]; } Xbar = sum_Xr / xt->total; for (sum_Yc = sum_Y2c = 0., i = 0; i < n_cols; i++) { sum_Yc += Y[i] * xt->col_tot[i]; sum_Y2c += Y[i] * Y[i] * xt->col_tot[i]; } Ybar = sum_Yc / xt->total; S = sum_XYf - sum_Xr * sum_Yc / xt->total; SX = sum_X2r - pow2 (sum_Xr) / xt->total; SY = sum_Y2c - pow2 (sum_Yc) / xt->total; T = sqrt (SX * SY); *r = S / T; *t = *r / sqrt (1 - pow2 (*r)) * sqrt (xt->total - 2); { double s, c, y, t; for (s = c = 0., i = 0; i < n_rows; i++) for (j = 0; j < n_cols; j++) { double Xresid, Yresid; double temp; Xresid = XT[i] - Xbar; Yresid = Y[j] - Ybar; temp = (T * Xresid * Yresid - ((S / (2. * T)) * (Xresid * Xresid * SY + Yresid * Yresid * SX))); y = xt->mat[j + i * n_cols] * temp * temp - c; t = s + y; c = (t - s) - y; s = t; } *error = sqrt (s) / (T * T); } } /* Calculate symmetric statistics and their asymptotic standard errors. Returns 0 if none could be calculated. */ static int calc_symmetric (struct crosstabs_proc *proc, struct crosstabulation *xt, double v[N_SYMMETRIC], double ase[N_SYMMETRIC], double t[N_SYMMETRIC], double somers_d_v[3], double somers_d_ase[3], double somers_d_t[3]) { size_t n_rows = xt->vars[ROW_VAR].n_values; size_t n_cols = xt->vars[COL_VAR].n_values; int q, i; q = MIN (xt->ns_rows, xt->ns_cols); if (q <= 1) return 0; for (i = 0; i < N_SYMMETRIC; i++) v[i] = ase[i] = t[i] = SYSMIS; /* Phi, Cramer's V, contingency coefficient. */ if (proc->statistics & ((1u << CRS_ST_PHI) | (1u << CRS_ST_CC))) { double Xp = 0.; /* Pearson chi-square. */ FOR_EACH_POPULATED_ROW (r, xt) FOR_EACH_POPULATED_COLUMN (c, xt) { double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total; double freq = xt->mat[n_cols * r + c]; double residual = freq - expected; Xp += residual * residual / expected; } if (proc->statistics & (1u << CRS_ST_PHI)) { v[0] = sqrt (Xp / xt->total); v[1] = sqrt (Xp / (xt->total * (q - 1))); } if (proc->statistics & (1u << CRS_ST_CC)) v[2] = sqrt (Xp / (Xp + xt->total)); } if (proc->statistics & ((1u << CRS_ST_BTAU) | (1u << CRS_ST_CTAU) | (1u << CRS_ST_GAMMA) | (1u << CRS_ST_D))) { double *cum; double Dr, Dc; double P, Q; double btau_cum, ctau_cum, gamma_cum, d_yx_cum, d_xy_cum; double btau_var; int r, c; Dr = Dc = pow2 (xt->total); for (r = 0; r < n_rows; r++) Dr -= pow2 (xt->row_tot[r]); for (c = 0; c < n_cols; c++) Dc -= pow2 (xt->col_tot[c]); cum = xnmalloc (n_cols * n_rows, sizeof *cum); for (c = 0; c < n_cols; c++) { double ct = 0.; for (r = 0; r < n_rows; r++) cum[c + r * n_cols] = ct += xt->mat[c + r * n_cols]; } /* P and Q. */ { int i, j; double Cij, Dij; P = Q = 0.; for (i = 0; i < n_rows; i++) { Cij = Dij = 0.; for (j = 1; j < n_cols; j++) Cij += xt->col_tot[j] - cum[j + i * n_cols]; if (i > 0) for (j = 1; j < n_cols; j++) Dij += cum[j + (i - 1) * n_cols]; for (j = 0;;) { double fij = xt->mat[j + i * n_cols]; P += fij * Cij; Q += fij * Dij; if (++j == n_cols) break; assert (j < n_cols); Cij -= xt->col_tot[j] - cum[j + i * n_cols]; Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols]; if (i > 0) { Cij += cum[j - 1 + (i - 1) * n_cols]; Dij -= cum[j + (i - 1) * n_cols]; } } } } if (proc->statistics & (1u << CRS_ST_BTAU)) v[3] = (P - Q) / sqrt (Dr * Dc); if (proc->statistics & (1u << CRS_ST_CTAU)) v[4] = (q * (P - Q)) / (pow2 (xt->total) * (q - 1)); if (proc->statistics & (1u << CRS_ST_GAMMA)) v[5] = (P - Q) / (P + Q); /* ASE for tau-b, tau-c, gamma. Calculations could be eliminated here, at expense of memory. */ { int i, j; double Cij, Dij; btau_cum = ctau_cum = gamma_cum = d_yx_cum = d_xy_cum = 0.; for (i = 0; i < n_rows; i++) { Cij = Dij = 0.; for (j = 1; j < n_cols; j++) Cij += xt->col_tot[j] - cum[j + i * n_cols]; if (i > 0) for (j = 1; j < n_cols; j++) Dij += cum[j + (i - 1) * n_cols]; for (j = 0;;) { double fij = xt->mat[j + i * n_cols]; if (proc->statistics & (1u << CRS_ST_BTAU)) { const double temp = (2. * sqrt (Dr * Dc) * (Cij - Dij) + v[3] * (xt->row_tot[i] * Dc + xt->col_tot[j] * Dr)); btau_cum += fij * temp * temp; } { const double temp = Cij - Dij; ctau_cum += fij * temp * temp; } if (proc->statistics & (1u << CRS_ST_GAMMA)) { const double temp = Q * Cij - P * Dij; gamma_cum += fij * temp * temp; } if (proc->statistics & (1u << CRS_ST_D)) { d_yx_cum += fij * pow2 (Dr * (Cij - Dij) - (P - Q) * (xt->total - xt->row_tot[i])); d_xy_cum += fij * pow2 (Dc * (Dij - Cij) - (Q - P) * (xt->total - xt->col_tot[j])); } if (++j == n_cols) break; assert (j < n_cols); Cij -= xt->col_tot[j] - cum[j + i * n_cols]; Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols]; if (i > 0) { Cij += cum[j - 1 + (i - 1) * n_cols]; Dij -= cum[j + (i - 1) * n_cols]; } } } } btau_var = ((btau_cum - (xt->total * pow2 (xt->total * (P - Q) / sqrt (Dr * Dc) * (Dr + Dc)))) / pow2 (Dr * Dc)); if (proc->statistics & (1u << CRS_ST_BTAU)) { ase[3] = sqrt (btau_var); t[3] = v[3] / (2 * sqrt ((ctau_cum - (P - Q) * (P - Q) / xt->total) / (Dr * Dc))); } if (proc->statistics & (1u << CRS_ST_CTAU)) { ase[4] = ((2 * q / ((q - 1) * pow2 (xt->total))) * sqrt (ctau_cum - (P - Q) * (P - Q) / xt->total)); t[4] = v[4] / ase[4]; } if (proc->statistics & (1u << CRS_ST_GAMMA)) { ase[5] = ((4. / ((P + Q) * (P + Q))) * sqrt (gamma_cum)); t[5] = v[5] / (2. / (P + Q) * sqrt (ctau_cum - (P - Q) * (P - Q) / xt->total)); } if (proc->statistics & (1u << CRS_ST_D)) { somers_d_v[0] = (P - Q) / (.5 * (Dc + Dr)); somers_d_ase[0] = SYSMIS; somers_d_t[0] = (somers_d_v[0] / (4 / (Dc + Dr) * sqrt (ctau_cum - pow2 (P - Q) / xt->total))); somers_d_v[1] = (P - Q) / Dc; somers_d_ase[1] = 2. / pow2 (Dc) * sqrt (d_xy_cum); somers_d_t[1] = (somers_d_v[1] / (2. / Dc * sqrt (ctau_cum - pow2 (P - Q) / xt->total))); somers_d_v[2] = (P - Q) / Dr; somers_d_ase[2] = 2. / pow2 (Dr) * sqrt (d_yx_cum); somers_d_t[2] = (somers_d_v[2] / (2. / Dr * sqrt (ctau_cum - pow2 (P - Q) / xt->total))); } free (cum); } /* Spearman correlation, Pearson's r. */ if (proc->statistics & (1u << CRS_ST_CORR)) { double *R = xmalloc (sizeof *R * n_rows); double *C = xmalloc (sizeof *C * n_cols); { double y, t, c = 0., s = 0.; int i = 0; for (;;) { R[i] = s + (xt->row_tot[i] + 1.) / 2.; y = xt->row_tot[i] - c; t = s + y; c = (t - s) - y; s = t; if (++i == n_rows) break; assert (i < n_rows); } } { double y, t, c = 0., s = 0.; int j = 0; for (;;) { C[j] = s + (xt->col_tot[j] + 1.) / 2; y = xt->col_tot[j] - c; t = s + y; c = (t - s) - y; s = t; if (++j == n_cols) break; assert (j < n_cols); } } calc_r (xt, R, C, &v[6], &t[6], &ase[6]); free (R); free (C); calc_r (xt, (double *) xt->vars[ROW_VAR].values, (double *) xt->vars[COL_VAR].values, &v[7], &t[7], &ase[7]); } /* Cohen's kappa. */ if (proc->statistics & (1u << CRS_ST_KAPPA) && xt->ns_rows == xt->ns_cols) { double ase_under_h0; double sum_fii, sum_rici, sum_fiiri_ci, sum_fijri_ci2, sum_riciri_ci; int i, j; for (sum_fii = sum_rici = sum_fiiri_ci = sum_riciri_ci = 0., i = j = 0; i < xt->ns_rows; i++, j++) { double prod, sum; while (xt->col_tot[j] == 0.) j++; prod = xt->row_tot[i] * xt->col_tot[j]; sum = xt->row_tot[i] + xt->col_tot[j]; sum_fii += xt->mat[j + i * n_cols]; sum_rici += prod; sum_fiiri_ci += xt->mat[j + i * n_cols] * sum; sum_riciri_ci += prod * sum; } for (sum_fijri_ci2 = 0., i = 0; i < xt->ns_rows; i++) for (j = 0; j < xt->ns_cols; j++) { double sum = xt->row_tot[i] + xt->col_tot[j]; sum_fijri_ci2 += xt->mat[j + i * n_cols] * sum * sum; } v[8] = (xt->total * sum_fii - sum_rici) / (pow2 (xt->total) - sum_rici); ase_under_h0 = sqrt ((pow2 (xt->total) * sum_rici + sum_rici * sum_rici - xt->total * sum_riciri_ci) / (xt->total * (pow2 (xt->total) - sum_rici) * (pow2 (xt->total) - sum_rici))); ase[8] = sqrt (xt->total * (((sum_fii * (xt->total - sum_fii)) / pow2 (pow2 (xt->total) - sum_rici)) + ((2. * (xt->total - sum_fii) * (2. * sum_fii * sum_rici - xt->total * sum_fiiri_ci)) / pow3 (pow2 (xt->total) - sum_rici)) + (pow2 (xt->total - sum_fii) * (xt->total * sum_fijri_ci2 - 4. * sum_rici * sum_rici) / pow4 (pow2 (xt->total) - sum_rici)))); t[8] = v[8] / ase_under_h0; } return 1; } /* Calculate risk estimate. */ static bool calc_risk (struct crosstabulation *xt, double *value, double *upper, double *lower, union value *c, double *n_valid) { size_t n_cols = xt->vars[COL_VAR].n_values; double f11, f12, f21, f22; double v; for (int i = 0; i < 3; i++) value[i] = upper[i] = lower[i] = SYSMIS; if (xt->ns_rows != 2 || xt->ns_cols != 2) return false; { /* Find populated columns. */ int nz_cols[2]; int n = 0; FOR_EACH_POPULATED_COLUMN (c, xt) nz_cols[n++] = c; assert (n == 2); /* Find populated rows. */ int nz_rows[2]; n = 0; FOR_EACH_POPULATED_ROW (r, xt) nz_rows[n++] = r; assert (n == 2); f11 = xt->mat[nz_cols[0] + n_cols * nz_rows[0]]; f12 = xt->mat[nz_cols[1] + n_cols * nz_rows[0]]; f21 = xt->mat[nz_cols[0] + n_cols * nz_rows[1]]; f22 = xt->mat[nz_cols[1] + n_cols * nz_rows[1]]; *n_valid = f11 + f12 + f21 + f22; c[0] = xt->vars[COL_VAR].values[nz_cols[0]]; c[1] = xt->vars[COL_VAR].values[nz_cols[1]]; } value[0] = (f11 * f22) / (f12 * f21); v = sqrt (1. / f11 + 1. / f12 + 1. / f21 + 1. / f22); lower[0] = value[0] * exp (-1.960 * v); upper[0] = value[0] * exp (1.960 * v); value[1] = (f11 * (f21 + f22)) / (f21 * (f11 + f12)); v = sqrt ((f12 / (f11 * (f11 + f12))) + (f22 / (f21 * (f21 + f22)))); lower[1] = value[1] * exp (-1.960 * v); upper[1] = value[1] * exp (1.960 * v); value[2] = (f12 * (f21 + f22)) / (f22 * (f11 + f12)); v = sqrt ((f11 / (f12 * (f11 + f12))) + (f21 / (f22 * (f21 + f22)))); lower[2] = value[2] * exp (-1.960 * v); upper[2] = value[2] * exp (1.960 * v); return true; } /* Calculate directional measures. */ static int calc_directional (struct crosstabs_proc *proc, struct crosstabulation *xt, double v[N_DIRECTIONAL], double ase[N_DIRECTIONAL], double t[N_DIRECTIONAL], double sig[N_DIRECTIONAL]) { size_t n_rows = xt->vars[ROW_VAR].n_values; size_t n_cols = xt->vars[COL_VAR].n_values; for (int i = 0; i < N_DIRECTIONAL; i++) v[i] = ase[i] = t[i] = sig[i] = SYSMIS; /* Lambda. */ if (proc->statistics & (1u << CRS_ST_LAMBDA)) { /* Find maximum for each row and their sum. */ double *fim = xnmalloc (n_rows, sizeof *fim); int *fim_index = xnmalloc (n_rows, sizeof *fim_index); double sum_fim = 0.0; for (int i = 0; i < n_rows; i++) { double max = xt->mat[i * n_cols]; int index = 0; for (int j = 1; j < n_cols; j++) if (xt->mat[j + i * n_cols] > max) { max = xt->mat[j + i * n_cols]; index = j; } fim[i] = max; sum_fim += max; fim_index[i] = index; } /* Find maximum for each column. */ double *fmj = xnmalloc (n_cols, sizeof *fmj); int *fmj_index = xnmalloc (n_cols, sizeof *fmj_index); double sum_fmj = 0.0; for (int j = 0; j < n_cols; j++) { double max = xt->mat[j]; int index = 0; for (int i = 1; i < n_rows; i++) if (xt->mat[j + i * n_cols] > max) { max = xt->mat[j + i * n_cols]; index = i; } fmj[j] = max; sum_fmj += max; fmj_index[j] = index; } /* Find maximum row total. */ double rm = xt->row_tot[0]; int rm_index = 0; for (int i = 1; i < n_rows; i++) if (xt->row_tot[i] > rm) { rm = xt->row_tot[i]; rm_index = i; } /* Find maximum column total. */ double cm = xt->col_tot[0]; int cm_index = 0; for (int j = 1; j < n_cols; j++) if (xt->col_tot[j] > cm) { cm = xt->col_tot[j]; cm_index = j; } v[0] = (sum_fim + sum_fmj - cm - rm) / (2. * xt->total - rm - cm); v[1] = (sum_fmj - rm) / (xt->total - rm); v[2] = (sum_fim - cm) / (xt->total - cm); /* ASE1 for Y given XT. */ { double accum = 0.0; for (int i = 0; i < n_rows; i++) if (cm_index == fim_index[i]) accum += fim[i]; ase[2] = sqrt ((xt->total - sum_fim) * (sum_fim + cm - 2. * accum) / pow3 (xt->total - cm)); } /* ASE0 for Y given XT. */ { double accum = 0.0; for (int i = 0; i < n_rows; i++) if (cm_index != fim_index[i]) accum += (xt->mat[i * n_cols + fim_index[i]] + xt->mat[i * n_cols + cm_index]); t[2] = v[2] / (sqrt (accum - pow2 (sum_fim - cm) / xt->total) / (xt->total - cm)); } /* ASE1 for XT given Y. */ { double accum = 0.0; for (int j = 0; j < n_cols; j++) if (rm_index == fmj_index[j]) accum += fmj[j]; ase[1] = sqrt ((xt->total - sum_fmj) * (sum_fmj + rm - 2. * accum) / pow3 (xt->total - rm)); } /* ASE0 for XT given Y. */ { double accum = 0.0; for (int j = 0; j < n_cols; j++) if (rm_index != fmj_index[j]) accum += (xt->mat[j + n_cols * fmj_index[j]] + xt->mat[j + n_cols * rm_index]); t[1] = v[1] / (sqrt (accum - pow2 (sum_fmj - rm) / xt->total) / (xt->total - rm)); } /* Symmetric ASE0 and ASE1. */ { double accum0 = 0.0; double accum1 = 0.0; for (int i = 0; i < n_rows; i++) for (int j = 0; j < n_cols; j++) { int temp0 = (fmj_index[j] == i) + (fim_index[i] == j); int temp1 = (i == rm_index) + (j == cm_index); accum0 += xt->mat[j + i * n_cols] * pow2 (temp0 - temp1); accum1 += (xt->mat[j + i * n_cols] * pow2 (temp0 + (v[0] - 1.) * temp1)); } ase[0] = sqrt (accum1 - 4. * xt->total * v[0] * v[0]) / (2. * xt->total - rm - cm); t[0] = v[0] / (sqrt (accum0 - pow2 (sum_fim + sum_fmj - cm - rm) / xt->total) / (2. * xt->total - rm - cm)); } for (int i = 0; i < 3; i++) sig[i] = 2 * gsl_cdf_ugaussian_Q (t[i]); free (fim); free (fim_index); free (fmj); free (fmj_index); /* Tau. */ { double sum_fij2_ri = 0.0; double sum_fij2_ci = 0.0; FOR_EACH_POPULATED_ROW (i, xt) FOR_EACH_POPULATED_COLUMN (j, xt) { double temp = pow2 (xt->mat[j + i * n_cols]); sum_fij2_ri += temp / xt->row_tot[i]; sum_fij2_ci += temp / xt->col_tot[j]; } double sum_ri2 = 0.0; for (int i = 0; i < n_rows; i++) sum_ri2 += pow2 (xt->row_tot[i]); double sum_cj2 = 0.0; for (int j = 0; j < n_cols; j++) sum_cj2 += pow2 (xt->col_tot[j]); v[3] = (xt->total * sum_fij2_ci - sum_ri2) / (pow2 (xt->total) - sum_ri2); v[4] = (xt->total * sum_fij2_ri - sum_cj2) / (pow2 (xt->total) - sum_cj2); } } if (proc->statistics & (1u << CRS_ST_UC)) { double UX = 0.0; FOR_EACH_POPULATED_ROW (i, xt) UX -= xt->row_tot[i] / xt->total * log (xt->row_tot[i] / xt->total); double UY = 0.0; FOR_EACH_POPULATED_COLUMN (j, xt) UY -= xt->col_tot[j] / xt->total * log (xt->col_tot[j] / xt->total); double UXY = 0.0; double P = 0.0; for (int i = 0; i < n_rows; i++) for (int j = 0; j < n_cols; j++) { double entry = xt->mat[j + i * n_cols]; if (entry <= 0.) continue; P += entry * pow2 (log (xt->col_tot[j] * xt->row_tot[i] / (xt->total * entry))); UXY -= entry / xt->total * log (entry / xt->total); } double ase1_yx = 0.0; double ase1_xy = 0.0; double ase1_sym = 0.0; for (int i = 0; i < n_rows; i++) for (int j = 0; j < n_cols; j++) { double entry = xt->mat[j + i * n_cols]; if (entry <= 0.) continue; ase1_yx += entry * pow2 (UY * log (entry / xt->row_tot[i]) + (UX - UXY) * log (xt->col_tot[j] / xt->total)); ase1_xy += entry * pow2 (UX * log (entry / xt->col_tot[j]) + (UY - UXY) * log (xt->row_tot[i] / xt->total)); ase1_sym += entry * pow2 ((UXY * log (xt->row_tot[i] * xt->col_tot[j] / pow2 (xt->total))) - (UX + UY) * log (entry / xt->total)); } v[5] = 2. * ((UX + UY - UXY) / (UX + UY)); ase[5] = (2. / (xt->total * pow2 (UX + UY))) * sqrt (ase1_sym); t[5] = SYSMIS; v[6] = (UX + UY - UXY) / UX; ase[6] = sqrt (ase1_xy) / (xt->total * UX * UX); t[6] = v[6] / (sqrt (P - xt->total * pow2 (UX + UY - UXY)) / (xt->total * UX)); v[7] = (UX + UY - UXY) / UY; ase[7] = sqrt (ase1_yx) / (xt->total * UY * UY); t[7] = v[7] / (sqrt (P - xt->total * pow2 (UX + UY - UXY)) / (xt->total * UY)); } /* Somers' D. */ if (proc->statistics & (1u << CRS_ST_D)) { double v_dummy[N_SYMMETRIC]; double ase_dummy[N_SYMMETRIC]; double t_dummy[N_SYMMETRIC]; double somers_d_v[3]; double somers_d_ase[3]; double somers_d_t[3]; if (calc_symmetric (proc, xt, v_dummy, ase_dummy, t_dummy, somers_d_v, somers_d_ase, somers_d_t)) { for (int i = 0; i < 3; i++) { v[8 + i] = somers_d_v[i]; ase[8 + i] = somers_d_ase[i]; t[8 + i] = somers_d_t[i]; sig[8 + i] = 2 * gsl_cdf_ugaussian_Q (fabs (somers_d_t[i])); } } } /* Eta. */ if (proc->statistics & (1u << CRS_ST_ETA)) { /* X dependent. */ double sum_Xr = 0.0; double sum_X2r = 0.0; for (int i = 0; i < n_rows; i++) { sum_Xr += xt->vars[ROW_VAR].values[i].f * xt->row_tot[i]; sum_X2r += pow2 (xt->vars[ROW_VAR].values[i].f) * xt->row_tot[i]; } double SX = sum_X2r - pow2 (sum_Xr) / xt->total; double SXW = 0.0; FOR_EACH_POPULATED_COLUMN (j, xt) { double cum = 0.0; for (int i = 0; i < n_rows; i++) { SXW += (pow2 (xt->vars[ROW_VAR].values[i].f) * xt->mat[j + i * n_cols]); cum += (xt->vars[ROW_VAR].values[i].f * xt->mat[j + i * n_cols]); } SXW -= cum * cum / xt->col_tot[j]; } v[11] = sqrt (1. - SXW / SX); /* Y dependent. */ double sum_Yc = 0.0; double sum_Y2c = 0.0; for (int i = 0; i < n_cols; i++) { sum_Yc += xt->vars[COL_VAR].values[i].f * xt->col_tot[i]; sum_Y2c += pow2 (xt->vars[COL_VAR].values[i].f) * xt->col_tot[i]; } double SY = sum_Y2c - pow2 (sum_Yc) / xt->total; double SYW = 0.0; FOR_EACH_POPULATED_ROW (i, xt) { double cum = 0.0; for (int j = 0; j < n_cols; j++) { SYW += (pow2 (xt->vars[COL_VAR].values[j].f) * xt->mat[j + i * n_cols]); cum += (xt->vars[COL_VAR].values[j].f * xt->mat[j + i * n_cols]); } SYW -= cum * cum / xt->row_tot[i]; } v[12] = sqrt (1. - SYW / SY); } return 1; } /* Local Variables: mode: c End: */