TA-32 Intel® Architecture
Software Developer’s
Manual

Volume 3:
System Programming Guide

NOTE: The IA-32 Intel Architecture Software Developer’s Manual
consists of four volumes: Basic Architecture, Order Number
253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; and the
System Programming Guide, Order Number 253668. Refer to all
four volumes when evaluating your design needs.

2004

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL
PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable behavior or
failure in developer's software code when running on an Intel processor. Intel reserves these features or instructions
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their
unauthorized use.

The Intel® |A-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or
errors known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary
depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more
information including details on which processors support HT Technology.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium
are trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997 - 2004 Intel Corporation

intgl.

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1. IA-32 PROCESSORS COVERED INTHISMANUAL, 1-1
1.2. OVERVIEW OF THE IA-32 INTEL® ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3: SYSTEM PROGRAMMING GUIDE 1-2
1.3. NOTATIONAL CONVENTIONS. e 1-4
1.3.1 Bitand Byte Order. i 1-4
1.3.2 Reserved Bits and Software Compatibility 1-4
1.3.3. Instruction Operands.ottt 1-5
1.3.4. Hexadecimal and Binary Numbers 1-6
1.3.5. Segmented AdAresSSiNgo v vt it 1-6
1.3.6 EXCeptioNS.o 1-6
1.4. RELATED LITERATUREo e 1-7
CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE 2-1
211 Global and Local Descriptor Tables 2-3
21.2 System Segments, Segment Descriptors, and Gates. 2-3
2.1.3. Task-State Segmentsand Task Gates 2-4
2.1.4. Interrupt and Exception Handling i 2-4
2.1.5. Memory Management 2-5
2.1.6 System Registers 2-5
217 Other System ReSOUrCesot e 2-6
2.2 MODES OF OPERATION e e 2-6
2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER 2-8
2.4, MEMORY-MANAGEMENT REGISTERS i, 2-10
2.4.1. Global Descriptor Table Register (GDTR).t 2-11
242 Local Descriptor Table Register (LDTR) 2-11
2.4.3 IDTR Interrupt Descriptor Table Register 2-11
24.4 Task Register (TR)ot e e 2-11
2.5. CONTROL REGISTERS e 2-12
2.5.1 CPUID Qualification of Control RegisterFlags 2-18
2.6. SYSTEM INSTRUCTION SUMMARY 2-19
2.6.1 Loading and Storing System Registers. i 2-20
2.6.2 Verifying of Access Privileges 2-21
2.6.3 Loading and Storing Debug Registers. i 2-22
2.6.4 Invalidating Caches and TLBS. i 2-22
2.6.5 Controlling the Processorot e 2-22
2.6.6. Reading Performance-Monitoring and Time-Stamp Counters 2-23
2.6.7. Reading and Writing Model-Specific Registers. 2-24
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1. MEMORY MANAGEMENT OVERVIEW e 3-1
3.2. USING SEGMENTS. e e 3-3
3.2.1. Basic Flat Model e 3-3
3.2.2. Protected Flat Model 3-3

Vol. 3 iii

TABLE OF CONTENTS
PAGE
3.2.3 Multi-Segment Model. e 3-5
3.24 Paging and Segmentation. 3-6
3.3. PHYSICAL ADDRESS SPACE e 3-6
3.4. LOGICAL AND LINEARADDRESSES e 3-6
3.4.1 Segment Selectors 3-7
3.4.2 Segment Registers 3-8
3.4.3. Segment DesCriptors.ot 3-9
3.4.3.1. Code- and Data-Segment Descriptor Types.o iiii i 3-13
3.5. SYSTEM DESCRIPTOR TYPES e 3-14
3.5.1 Segment Descriptor Tables. 3-16
3.6. PAGING (VIRTUAL MEMORY) OVERVIEW e 3-17
3.6.1 Paging Options 3-18
3.6.2. Page Tables and Directories.t s 3-19
3.7. PAGE TRANSLATION USING 32-BIT PHYSICAL ADDRESSING 3-20
3.71 Linear Address Translation (4-KByte Pages) 3-20
3.7.2. Linear Address Translation (4-MByte Pages) 3-21
3.7.3. Mixing 4-KByte and 4-MByte Pages i 3-22
3.7.4 Memory AlIasingot 3-23
3.7.5 Base Address of the Page Directory i 3-23
3.7.6. Page-Directory and Page-Table Entries 3-23
3.7.7 Not Present Page-Directory and Page-Table Entries 3-28
3.8. 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING MECHANISM3-28
3.8.1 Linear Address Translation With PAE Enabled (4-KByte Pages) 3-29
3.8.2 Linear Address Translation With PAE Enabled (2-MByte Pages)............ 3-30
3.8.3. Accessing the Full Extended Physical Address Space With the
Extended Page-Table Structure i 3-31
3.8.4. Page-Directory and Page-Table Entries With Extended Addressing
Enabled 3-31
3.9. 36-BIT PHYSICAL ADDRESSING USING THE PSE-36 PAGING
MECHANISM . . . e 3-34
3.10. MAPPING SEGMENTSTOPAGES i 3-36
3.11. TRANSLATION LOOKASIDE BUFFERS (TLBS)c it 3-37
CHAPTER 4
PROTECTION
4.1. ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION........... 4-1
4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION e 4-2
4.3. LIMITCHECKING e e e 4-4
4.4, TYPE CHECKINGo e e 4-5
4.4.1. Null Segment Selector Checking. e 4-6
4.5. PRIVILEGE LEVELS e 4-7
4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS.o e 4-9
4.6.1. Accessing Datain Code Segments. i 4-11
4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER 4-11
4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM
CONTROL BETWEEN CODE SEGMENTS i 4-11
4.8.1. Direct Calls or Jumps to Code Segments 4-12
4.8.1.1. Accessing Nonconforming Code Segments. 4-13
4.8.1.2. Accessing Conforming Code Segments. 4-14
4.8.2. Gate DESCHIPIONS ot 4-15

iv Vol. 3

|nte|® TABLE OF CONTENTS

PAGE

4.8.3. Call Gates 4-16
4.84. Accessing a Code Segment Througha CallGate. 4-17
4.8.5. Stack Switching 4-20
4.8.6. Returning froma Called Procedure 4-23
4.8.7. Performing Fast Calls to System Procedures with the SYSENTER and

SYSEXIT INStructions e 4-24
4.9. PRIVILEGED INSTRUCTIONS e 4-25
4.10. POINTER VALIDATION . . . oo e e 4-26
4.10.1. Checking Access Rights (LAR Instruction) o... 4-26
4.10.2. Checking Read/Write Rights (VERR and VERW Instructions) 4-27
4.10.3. Checking That the Pointer Offset Is Within Limits (LSL Instruction) 4-28
4.10.4. Checking Caller Access Privileges (ARPL Instruction) 4-28
4.10.5. Checking Alignment. 4-30
4.11 PAGE-LEVEL PROTECTION. e 4-30
4111 Page-Protection Flags i 4-31
4.11.2. Restricting Addressable Domain 4-31
4.11.3. Page Type . .. e 4-32
4.11.4. Combining Protection of Both Levels of Page Tables 4-32
411.5 Overrides to Page Protection. 4-32
4.12 COMBINING PAGE AND SEGMENT PROTECTION 4-33
CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING
5.1. INTERRUPT AND EXCEPTION OVERVIEW i 5-1
5.2. EXCEPTION AND INTERRUPT VECTORS e 5-2
5.3. SOURCES OF INTERRUPTS e 5-2
5.3.1. External Interruptso 5-2
5.3.2. Maskable Hardware Interrupts. 5-4
5.3.3. Software-Generated Interrupts 5-4
5.4. SOURCES OF EXCEPTIONS e 5-5
5.4.1. Program-Error EXceptions 5-5
5.4.2. Software-Generated Exceptions 5-5
5.4.3. Machine-Check Exceptions i e 5-5
5.5. EXCEPTION CLASSIFICATIONS s 5-6
5.6. PROGRAM OR TASK RESTART. . ..ot e 5-6
5.7. NONMASKABLE INTERRUPT (NMI).o 5-8
5.7.1. Handling Multiple NMIs 5-8
5.8. ENABLING AND DISABLING INTERRUPTS. e 5-8
5.8.1. Masking Maskable Hardware Interrupts 5-8
5.8.2. Masking Instruction Breakpoints 5-9
5.8.3. Masking Exceptions and Interrupts When Switching Stacks. 5-10
5.9. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 5-10
5.10. INTERRUPT DESCRIPTOR TABLE (IDT). ...t o it 5-11
5.11. IDT DESCRIPTORS. . .. o e 5-13
5.12. EXCEPTION AND INTERRUPTHANDLING i 5-14
5.12.1 Exception- or Interrupt-Handler Procedures 5-15
5.12.11 Protection of Exception- and Interrupt-Handler Procedures 5-17
5.12.1.2. Flag Usage By Exception- or Interrupt-Handler Procedure. 5-18
5.12.2 Interrupt Tasks. e 5-19
513. ERROR CODE. i 5-21
5.14. EXCEPTION AND INTERRUPTREFERENCE 5-22

Interrupt 0—Divide Error Exception (#DE). 5-23

Vol.3 v

TABLE OF CONTENTS "Ttel ®

PAGE
Interrupt 1—Debug Exception (#DB).o 5-24
Interrupt 2—NMIl Interrupt e 5-25
Interrupt 3—Breakpoint Exception (#BP) 5-26
Interrupt 4—Overflow Exception (#OF) i 5-27
Interrupt 5—BOUND Range Exceeded Exception (#BR) 5-28
Interrupt 6—Invalid Opcode Exception (#UD)., 5-29
Interrupt 7—Device Not Available Exception (#NM) 5-31
Interrupt 8—Double Fault Exception (#DF)., 5-33
Interrupt 9—Coprocessor Segment Overrun. 5-35
Interrupt 10—Invalid TSS Exception (#TS)o, 5-36
Interrupt 11—Segment Not Present (#NP) 5-39
Interrupt 12—Stack Fault Exception (#SS) i 5-41
Interrupt 13—General Protection Exception (#GP) 5-43
Interrupt 14—Page-Fault Exception (#PF) L. 5-46
Interrupt 16—x87 FPU Floating-Point Error (#MF) 5-50
Interrupt 17—Alignment Check Exception (#AC) 5-52
Interrupt 18—Machine-Check Exception (#MC) 5-54
Interrupt 19—SIMD Floating-Point Exception (#XF) 5-56
Interrupts 32 to 255—User Defined Interrupts. 5-59
CHAPTER 6
TASK MANAGEMENT
6.1. TASK MANAGEMENT OVERVIEW. e 6-1
6.1.1. Task StrUCTUreo 6-1
6.1.2. Task State 6-2
6.1.3 Executinga Task. ... e 6-3
6.2. TASK MANAGEMENT DATASTRUCTURES. 6-4
6.2.1. Task-State Segment (TSS) 6-4
6.2.2. TSS DESCHIPIOr . o v vt ettt e 6-7
6.2.3. Task Register e 6-8
6.2.4. Task-Gate DescCriptor 6-9
6.3. TASK SWITCHINGo 6-12
6.4. TASKLINKING. . .. 6-16
6.4.1. Use of Busy Flag To Prevent Recursive Task Switching 6-17
6.4.2. Modifying Task Linkages. 6-18
6.5. TASK ADDRESS SPACE 6-18
6.5.1. Mapping Tasks to the Linear and Physical Address Spaces. 6-19
6.5.2. Task Logical Address Space.ot 6-20
6.6. 16-BIT TASK-STATE SEGMENT (TSS) 6-21
CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT
7.1. LOCKED ATOMIC OPERATIONS. e 7-2
711 Guaranteed Atomic Operations.ttt e 7-3
71.2 BUS LOCKING. . . .ot 7-3
7.1.21. Automatic Locking 7-4
7.1.2.2. Software Controlled Bus Lockingo 7-4
7.1.3 Handling Self- and Cross-ModifyingCode, 7-6
71.4 Effects of a LOCK Operation on Internal Processor Caches. 7-7
7.2. MEMORY ORDERING. e 7-7

vi Vol. 3

|nte|® TABLE OF CONTENTS

7.21.
7.2.2.
7.2.3.

7.2.4.
7.3.

7.4.

7 5 1.
7.5.2.

7.5.3.
7.5.4.
7.5.4.1.
7.5.4.2.
7.5.5.

7. 6 1.
7.6.1.1.
7.6.1.2.
7.6.1.3.
7.6.1.4.
7.6.1.5.
7.6.1.6.
7.6.1.7.
7.6.1.8.
7.6.1.9.
7.6.1.10.

7.6.1.11.
7.6.1.12.

7.6.2.
7.6.2.1.
7.6.2.2.
7.6.2.3.
7.6.2.4.
7.6.3.
7.6.3.1.
7.6.4.
7.6.5.

7.6.6.

7.7.
7.7.1.
7.7.2.
7.7.3.
7.7.4.
7.7.5.
7.7.6.
7.7.6.1.
7.7.6.2.

PAGE
Memory Ordering in the Pentium® and Intel486™ Processors 7-8
Memory Ordering Pentium 4, Intel® Xeon™, and P6 Family Processors 7-8
Out-of-Order Stores For String Operations in Pentium 4, Intel Xeon,
and P6 Family Processors. e 7-10
Strengthening or Weakening the Memory Ordering Model 7-11
PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY ENTRY
CHANGES TO MULTIPLE PROCESSORS. e 7-13
SERIALIZING INSTRUCTIONS e 7-14
MULTIPLE-PROCESSOR (MP) INITIALIZATION i 7-15
BSP and AP ProCessOorst e 7-16
MP Initialization Protocol Requirements and Restrictions for Intel Xeon
PrOCESSOrS. . o o e 7-16
MP Initialization Protocol Algorithm for the Intel Xeon Processors 7-17
MP Initialization Example. e 7-18
Typical BSP Initialization Sequence 7-19
Typical AP Initialization Sequence i, 7-21
Identifying the Processorsinan MP System 7-22
HYPER-THREADING TECHNOLOGY.ottt 7-23
Intel® Hyper-Threading Technology Architecture 7-24
State of the Logical Processors, 7-24
APIC Functionality 7-25
Memory Type Range Registers (MTRR). 7-26
Page Attribute Table (PAT). oo e 7-26
Machine Check Architecture. i 7-26
Debug Registers and Extensions i 7-26
Performance Monitoring Counters 7-27
IAB2_ MISC_ENABLE MSro e 7-27
Memory Ordering 7-27
Serializing Instructions 7-27
MICROCODE UPDATE RESOUICESo tit it 7-27
Self Modifying Code e 7-28
Implementation-Specific HT Technology Facilities 7-28
Processor Caches. 7-28
Processor Translation Lookaside Buffers (TLBS) 7-28
Thermal Monitor 7-29
External Signal Compatibility 7-29
Detecting Hyper-Threading Technology 7-30
Detecting Support MONITOR/MWAIT Instruction. 7-30
Initializing 1A-32 Processors Supporting Hyper-Threading Technology. 7-31
Executing Multiple Threads on an IA-32 Processor Supporting
Hyper-Threading Technology i 7-31
Handling Interrupts on an IA-32 Processor Supporting
Hyper-Threading Technologyc. .. 7-32
MANAGEMENT OF IDLE AND BLOCKED CONDITIONS. 7-33
HLT Instruction e 7-33
PAUSE Instruction. e 7-34
MONITOR/MWAIT Instructiont e 7-34
Monitor/Mwait Address Range Determination.......................... 7-36
Identifying Logical Processorsinan MP System. 7-36
Required Operating System Support. i 7-42
Use the PAUSE Instruction in Spin-Wait Loops 7-42
Halt Idle Logical Processors e 7-44

Vol. 3 vii

TABLE OF CONTENTS "Ttel ®

PAGE

7.7.6.3. Guidelines for Scheduling Threads On Multiple Logical Processors 7-45
7.7.6.4. Eliminate Execution-Based TimingLoops 7-45
7.7.6.5. Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory. 7-46
CHAPTER 8
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
8.1. LOCALAND I/OAPIC OVERVIEW e 8-1
8.2. SYSTEM BUS VS. APIC BUS e 8-5
8.3. RELATIONSHIP BETWEEN THE INTEL® 82489DX EXTERNAL APIC,

THE APIC, AND THE XAPIC 8-5
8.4. LOCAL APIC . . e 8-6
8.4.1. The Local APIC Block Diagram.ttt e 8-6
8.4.2. Presence of the Local APIC e 8-9
8.4.3. Enabling or Disabling the Local APIC 8-10
8.4.4. Local APIC Statusand Location i 8-11
8.4.5. Relocating the Local APIC Registers 8-11
8.4.6. Local APIC ID . . .o 8-11
8.4.7. Local APIC State.o 8-12
8.4.7.1. Local APIC State After Power-UporReset 8-12
8.4.7.2. Local APIC State After It Has Been Software Disabled 8-13
8.4.7.3. Local APIC State After an INIT Reset (“Wait-for-SIPI” State). 8-13
8.4.7.4. Local APIC State After It Receives an INIT-Deassert IPI................ 8-14
8.4.8. Local APIC Version Register. 8-14
8.5. HANDLING LOCAL INTERRUPTS 8-15
8.5.1. Local Vector Table. 8-15
8.5.2. Valid Interrupt Vectors. e 8-18
8.5.3. Error Handlingo e 8-18
8.5.4. APIC TimMer . . e 8-20
8.5.5. Local Interrupt Acceptance 8-21
8.6. ISSUING INTERPROCESSOR INTERRUPTS o 8-21
8.6.1. Interrupt Command Register (ICR) 8-21
8.6.2. Determining IPI Destination. 8-27
8.6.2.1. Physical DestinationMode 8-27
8.6.2.2. Logical DestinationMode 8-28
8.6.2.3. Broadcast/Self Delivery Modeot 8-29
8.6.2.4. Lowest Priority Delivery Mode 8-30
8.6.3. IPI Delivery and Acceptancet 8-31
8.7. SYSTEM AND APIC BUS ARBITRATION.o 8-31
8.8. HANDLING INTERRUPTS. e 8-32
8.8.1. Interrupt Handling with the Pentium 4 and Intel Xeon Processors 8-32
8.8.2. Interrupt Handling with the P6 Family and Pentium Processors............. 8-33
8.8.3. Interrupt, Task, and Processor Priority 8-34
8.8.3.1. Task and Processor Priorities. 8-35
8.8.4. Interrupt Acceptance for Fixed Interrupts 8-36
8.8.5. Signaling Interrupt Servicing Completion 8-38
8.9. SPURIOUS INTERRUPTo e e 8-38
8.10. APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL

(P6 FAMILY AND PENTIUM PROCESSORS ONLY) 8-39
8.10.1. Bus Message Formats. 8-40
8.11. MESSAGE SIGNALLED INTERRUPTS i 8-40
8.11.1 Message Address Register Format. 8-40
8.11.2. Message Data Register Format. 8-42

viii Vol. 3

|nte|® TABLE OF CONTENTS

PAGE

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1. INITIALIZATION OVERVIEW. e 9-1
9.1.1 Processor State After Reset 9-2
9.1.2. Processor Built-In Self-Test (BIST) e 9-2
9.1.3. Model and Stepping Information 9-5
9.14 First Instruction Executed i 9-6
9.2. X87 FPU INITIALIZATION . .. oo e e 9-6
9.2.1. Configuring the x87 FPU Environment 9-6
9.2.2. Setting the Processor for x87 FPU Software Emulation 9-7
9.3. CACHE ENABLINGo e 9-8
9.4. MODEL-SPECIFIC REGISTERS (MSRS)o 9-8
9.5. MEMORY TYPE RANGE REGISTERS (MTRRS) it 9-9
9.6. INITIALIZING SSE/SSE2/SSE3 EXTENSIONS 9-9
9.7. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION 9-10
9.7.1. Real-Address Mode IDT i 9-10
9.7.2. NMIl Interrupt Handling.o 9-10
9.8. SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION 9-11
9.8.1. Protected-Mode System Data Structures 9-12
9.8.2. Initializing Protected-Mode Exceptions and Interrupts. 9-12
9.8.3. Initializing Paging.o 9-13
9.8.4. Initializing Multitasking. 9-13
9.9. MODE SWITCHINGo e 9-14
9.9.1. Switchingto Protected Mode. 9-14
9.9.2. Switching Back to Real-Address Modeo, 9-15
9.10. INITIALIZATION AND MODE SWITCHING EXAMPLE 9-16
9.10.1. Assembler Usage 9-19
9.10.2. STARTUP.ASM LISting . . .« oo e 9-20
9.10.3. MAIN.ASM Source Code.ottt 9-28
9.10.4. Supporting Files. 9-29
9.11. MICROCODE UPDATE FACILITIESo 9-31
9.11.1. Microcode Update e 9-31
9.11.2. Optional Extended Signature Table. i, 9-35
9.11.3. Processor Identification 9-36
9.11.4. Platform Identification 9-37
9.11.5. Microcode Update Checksum i 9-38
9.11.6. Microcode Update Loader i e 9-39
9.11.6.1. Hard ResetsinUpdate Loading 9-40
9.11.6.2. Update in a Multiprocessor System 9-40
9.11.6.3. Update in a System with Intel Hyper-Threading Technology 9-41
9.11.6.4. Update Loader Enhancements. i 9-41
9.11.7. Update Signature and Verification. 9-41
9.11.7.1. Determining the Signature 9-42
9.11.7.2. Authenticatingthe Update. 9-43
9.11.8. Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update

Specifications. 9-43
9.11.8.1. Responsibilities of the BIOS 9-44
9.11.8.2. Responsibilities of the Calling Program 9-46
9.11.8.3. Microcode Update Functions 9-49
9.11.8.4. INT 15H-based Interface. i 9-50
9.11.8.5. Function OOH—Presence Test i 9-50
9.11.8.6. Function 01H—Write Microcode Update Data 9-52

Vol. 3 ix

TABLE OF CONTENTS "Ttel ®

PAGE
9.11.8.7. Function 02H—Microcode Update Control. 9-57
9.11.8.8. Function 03H—Read Microcode Update Data. 9-58
9.11.8.9. Return Codest 9-59
CHAPTER 10
MEMORY CACHE CONTROL
10.1. INTERNAL CACHES, TLBS, ANDBUFFERS. 10-1
10.2. CACHING TERMINOLOGYttt e e e 10-4
10.3. METHODS OF CACHING AVAILABLE 10-5
10.3.1. Buffering of Write Combining Memory Locations 10-7
10.3.2. Choosinga Memory TYPE vttt e 10-9
10.4. CACHE CONTROL PROTOCOL.ttt 10-9
10.5. CACHE CONTROLo e e e e 10-10
10.5.1. Cache Control Registersand Bits i, 10-11
10.5.2. Precedence of Cache Controls, 10-15
10.5.2.1. Selecting Memory Types for Pentium Pro and Pentium Il Processors. 10-16
10.5.2.2. Selecting Memory Types for Pentium 4, Intel Xeon, and
Pentium Il Processors 10-17
10.5.2.3. Writing Values Across Pages with Different Memory Types. 10-18
10.5.3. Preventing Caching. i 10-18
10.5.4. Disabling and Enablingthe L3Cache. 10-19
10.5.5. Cache Management Instructions. i 10-19
10.5.6. L1 Data Cache ContextMode.o it 10-20
10.5.6.1. Adaptive Modeo 10-20
10.5.6.2. Shared Mode 10-21
10.6. SELF-MODIFYING CODE e 10-21
10.7. IMPLICIT CACHING (PENTIUM 4, INTEL XEON, AND P6 FAMILY
PROCESSORS). . . ot 10-21
10.8. EXPLICIT CACHING e e 10-22
10.9. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) 10-22
10.10. STOREBUFFER e 10-23
10.11. MEMORY TYPE RANGE REGISTERS (MTRRS)., 10-24
10.11.1. MTRR Feature Identification i 10-26
10.11.2. Setting Memory Ranges withMTRRs, 10-27
10.11.2.1. IAB2_ MTRR_DEF_TYPEMSR e 10-27
10.11.2.2. Fixed Range MTRRS e 10-28
10.11.2.3. Variable Range MTRRS 10-28
10.11.3. Example Base and Mask Calculations 10-31
10.11.4. Range Size and Alignment Requirement 10-32
10.11.4.1. MTRR Precedencest e e 10-33
10.11.5. MTRR Initialization e 10-33
10.11.6. Remapping Memory TYPeSot e 10-34
10.11.7. MTRR Maintenance Programming Interface. 10-34
10.11.7.1. MemTypeGet() Function. 10-34
10.11.7.2. MemTypeSet() Function. 10-36
10.11.8. MTRR Considerations in MP Systemsciiiiein.... 10-37
10.11.9. Large Page Size Considerations.ttt 10-39
10.12. PAGE ATTRIBUTE TABLE (PAT)o 10-39
10.12.1. Detecting Support for the PAT Feature it 10-40
10.12.2. 1AB2_CR_PAT MSR e 10-40
10.12.3. Selecting a Memory Type fromthe PAT 10-41

x Vol.3

|nte|® TABLE OF CONTENTS

PAGE
10.12.4. Programming the PAT e 10-42
10.12.5. PAT Compatibility with Earlier IA-32 Processors. 10-43
CHAPTER 11
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
11.1. EMULATION OF THE MMX INSTRUCTION SET i, 11-1
11.2. THE MMX STATE AND MMX REGISTERALIASING 11-1
11.2.1. Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the
x87 FPU TagWord e 11-3
11.3. SAVING AND RESTORING THE MMX STATE AND REGISTERS. 11-4
11.4. SAVING MMX STATE ON TASK OR CONTEXT SWITCHES. 11-5
11.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX
INSTRUCTIONS. . .o e e 11-5
11.5.1. Effect of MMX Instructions on Pending x87 Floating-Point Exceptions. 11-6
.6. DEBUGGING MMX CODE. e 11-6
CHAPTER 12
SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING
12.1. PROVIDING OPERATING SYSTEM SUPPORT FOR SSE/SSE2/SSE3
EXTENSIONS ..o 12-1
12.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3 Extensions. ... 12-1
12.1.2. Checking for SSE/SSE2/SSE3 Extension Support 12-2
12.1.3. Checking for Support for the FXSAVE and FXRSTOR Instructions 12-2
12.1.4 Initialization of the SSE/SSE2/SSE3 Extensions. 12-2
12.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated
by the SSE/SSE2/SSES3 Instructions. 12-4
12.1.6. Providing an Handler for the SIMD Floating-Point Exception (#XF) 12-5
12.1.6.1. Numeric Errorflagand IGNNE# i, 12-6
12.2. EMULATION OF SSE/SSE2/SSE3EXTENSIONS 12-6
12.3. SAVING AND RESTORING THE SSE/SSE2/SSE3 STATE 12-6
12.4. SAVING THE SSE/SSE2/SSE3 STATE ON TASK OR CONTEXT
SWITCHES. . . . 12-7
12.5. DESIGNING OPERATING SYSTEM FACILITIES FOR AUTOMATICALLY
SAVING X87 FPU, MMX, SSE, SSE2 AND SSE3 STATE ON TASK OR
CONTEXT SWITCHESo e 12-7
12.5.1. Using the TS Flag to Control the Saving of the x87 FPU, MMX,
SSE,SSE2and SSE3 State e 12-8
CHAPTER 13
SYSTEM MANAGEMENT
13.1. SYSTEM MANAGEMENT MODE OVERVIEW 13-1
13.2. SYSTEM MANAGEMENT INTERRUPT (SMI).ot 13-2
13.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES e 13-2
13.3.1. Entering SMMo 13-3
13.3.2. Exiting From SMM 13-3
13.4. SMRAM 13-4
13.4.1. SMRAM State Save Map.o 13-5
13.4.2. SMRAM Cachingo 13-8
13.5. SMIHANDLER EXECUTION ENVIRONMENTot 13-9
13.6. EXCEPTIONS AND INTERRUPTS WITHINSMM. 13-10

Vol. 3 xi

TABLE OF CONTENTS
PAGE
13.7. MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM
MANAGEMENT INTERRUPTS e 13-12
13.7.1. I/O State Implementation. 13-12
13.8. NMIHANDLINGWHILEIN SMM. e 13-13
13.9. SAVING THE X87 FPU STATEWHILEINSMM. 13-14
13.10. SMMREVISION IDENTIFIER e 13-15
13.11. AUTO HALT RESTART .. .o e 13-15
13.11.1. Executing the HLT Instructionin SMM 13-16
13.12. SMBASE RELOCATIONo e 13-16
13.12.1. Relocating SMRAM to an Address Above 1 MByte. 13-17
13.13. I/OINSTRUCTION RESTARTot e 13-17
13.13.1. Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used13-18
13.14. SMM MULTIPLE-PROCESSOR CONSIDERATIONS. 13-19
13.15. ENHANCED INTEL SPEEDSTEP® TECHNOLOGYcvoveernn .. 13-19
13.15.1. Software Interface For Initiating Performance State Transitions. 13-20
13.16. THERMAL MONITORING AND PROTECTION. it 13-20
13.16.1. Catastrophic Shutdown Detector. 13-21
13.16.2. Thermal Monitor e 13-21
13.16.2.1. Thermal Monitor 1. 13-21
13.16.2.2. Thermal Monitor 2. 13-22
13.16.2.3. Performance State Transitions and Thermal Monitoring 13-23
13.16.2.4. Thermal Status Information 13-23
13.16.3. Software Controlled Clock Modulation 13-24
13.16.4. Detection of Thermal Monitor and Software Controlled Clock
Modulation Facilities 13-26
CHAPTER 14
MACHINE-CHECK ARCHITECTURE
14.1. MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE. 14-1
14.2. COMPATIBILITY WITH PENTIUMPROCESSOR. i 14-1
14.3. MACHINE-CHECK MSRS e 14-2
14.3.1. Machine-Check Global Control MSRs. 14-2
14.3.1.1. IA32_MCG_CAP MSR (Pentium 4 and Intel Xeon Processors). 14-3
14.3.1.2. MCG_CAP MSR (P6 Family Processors)., 14-4
14.3.1.3. IAB2_MCG_STATUS MSR. e 14-4
14.3.1.4. IAB2_ MCG_CTL MSR e 14-5
14.3.2. Error-Reporting Register Banks i 14-5
14.3.2.1. IAB2_MCi_CTLIMSRS ...t e 14-6
14.3.2.2. IAB2_MCIi_STATUS MSRS.t 14-6
14.3.2.3. IAB2_MCi_ADDR MSRS.ttt 14-8
14.3.2.4. IAB2_MCIi_MISC MSRS i e 14-9
14.3.2.5. IA32_MCG Extended Machine Check State MSRs 14-9
14.3.3. Mapping of the Pentium Processor Machine-Check Errors to the
Machine-Check Architecture 14-11
14.4. MACHINE-CHECK AVAILABILITY ... e 14-11
14.5. MACHINE-CHECK INITIALIZATIONo e 14-11
14.6. INTERPRETING THEMCAERRORCODES 14-13
14.6.1. Simple Error Codes.ot e e 14-13
14.6.2. Compound Error Codes.ot 14-14
14.6.3. Machine-Check Error Codes Interpretation. 14-17
14.7. GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE 14-17
14.7.1. Machine-Check Exception Handler. 14-17

xii Vol. 3

|nte|® TABLE OF CONTENTS

PAGE
14.7.2. Enabling BINIT# Drive and BINIT# Observation 14-18
14.7.3. Pentium Processor Machine-Check Exception Handling. 14-19
14.7.4. Logging Correctable Machine-Check Errors 14-20
CHAPTER 15
DEBUGGING AND PERFORMANCE MONITORING
15.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES. 15-1
15.2. DEBUG REGISTERS.o e e 15-2
15.2.1. Debug Address Registers (DRO-DR3). i 15-3
15.2.2. Debug Registers DR4and DR5. 15-4
15.2.3. Debug Status Register (DR6)t 15-4
15.2.4. Debug Control Register (DR7). oot 15-5
15.2.5. Breakpoint Field Recognition. i 15-6
15.3. DEBUG EXCEPTIONS. . . .o e e e 15-7
15.3.1. Debug Exception (#DB)—Interrupt Vector 1 15-7
15.3.1.1. Instruction-Breakpoint Exception Condition 15-8
15.3.1.2 Data Memory and I/O Breakpoint Exception Conditions. 15-9
15.3.1.3. General-Detect Exception Condition. 15-10
15.3.1.4 Single-Step Exception Condition 15-10
15.3.1.5 Task-Switch Exception Condition. 15-10
15.3.2. Breakpoint Exception (#BP)—Interrupt Vector 3. 15-11
15.4. LAST BRANCHRECORDING OVERVIEW. i 15-11
15.5. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM 4 AND INTEL XEON PROCESSORS). 15-11
15.5.1. MSR_DEBUGCTLA MSR (Pentium 4 and Intel Xeon Processors)......... 15-14
15.5.2. LBR Stack (Pentium 4 and Intel Xeon Processors). 15-15
15.5.3. Monitoring Branches, Exceptions, and Interrupts (Pentium 4 and
Intel Xeon ProCesSOrs)ottt e 15-17
15.5.4. Single-Stepping on Branches, Exceptions, and Interrupts 15-17
15.5.5. Branch Trace MeSssagesottt e e 15-17
15.5.6. Last Exception Records (Pentium 4 and Intel Xeon Processors) 15-18
15.5.7. Branch Trace Store (BTS)t e 15-18
15.5.7.1. Detection of the BTS Facilities 15-18
15.5.7.2. SettingUpthe DS Save Area. 15-18
15.5.7.3. SettingUpthe BTSBuffer. 15-19
15.5.7.4. Writing the DS Interrupt Service Routine 15-20
15.6. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM M PROCESSORS). . . . oottt 15-21
15.7. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(P6 FAMILY PROCESSORS)ottt e 15-23
15.7.1. DebugCtIMSR Register (P6 Family Processors). 15-23
15.7.2. Last Branch and Last Exception MSRs (P6 Family Processors). 15-24
15.7.3. Monitoring Branches, Exceptions, and Interrupts (P6 Family Processors) ... 15-25
15.8. TIME-STAMP COUNTER. e 15-26
15.9. PERFORMANCE MONITORING OVERVIEW. i 15-27
15.10. PERFORMANCE MONITORING (PENTIUM 4 AND INTEL XEON
PROCESSORS) . . .ot e 15-27
15.10.1. ESCR MSRS 15-31
15.10.2. Performance Counters. i e 15-33
15.10.3. CCCRMSRSot 15-35
15.10.4. Debug Store (DS) Mechanism. i 15-37
15.10.5. DS Save Area . ..o ittt 15-37

Vol. 3 xiii

TABLE OF CONTENTS "Ttel ®

PAGE
15.10.6. Programming the Performance Counters for Non-Retirement Events 15-40
15.10.6.1. Selecting Eventsto Count i 15-41
15.10.6.2. Filtering Events. 15-44
15.10.6.3. Starting EventCountingo 15-45
15.10.6.4. Reading a Performance Counters Count. 15-46
15.10.6.5. Halting Event Counting. o 15-46
15.10.6.6. Cascading Counters.ottt e 15-46
15.10.6.7. EXTENDED CASCADING e 15-47
15.10.6.8. EXTENDED CASCADINGot e e 15-48
15.10.6.9. Generating an Interrupton Overflow 15-49
15.10.6.10. Counter Usage Guideline 15-50
15.10.7. At-Retirement Counting. 15-50
15.10.7.1. Using At-Retirement Counting i 15-51
15.10.7.2. Tagging Mechanism for Front_end_event 15-52
15.10.7.3. Tagging Mechanism For Execution_event. 15-52
15.10.7.4. Tagging Mechanism For Replay_event 15-53
15.10.8. Precise Event-Based Sampling (PEBS) 15-53
15.10.8.1. Detection of the Availability of the PEBS Facilities. 15-54
15.10.8.2. SettingUpthe DS Save Area. 15-54
15.10.8.3. SettingUpthe PEBS Buffer i 15-54
15.10.8.4. Writing a PEBS Interrupt Service Routine 15-55
15.10.8.5. Other DS Mechanism Implications 15-55
15.10.9. Counting CIOCKSot 15-55
15.10.10. Operating System Implications 15-57
15.11. PERFORMANCE MONITORING AND HYPER-THREADING TECHNOLOGY . .15-58
15111, ESCRMSRSo 15-58
15.11.2. CCCR MSRS . .. ot e 15-60
15.11.3. 1A3B2_PEBS_ENABLE MSR 15-62
15.11.4. Performance Monitoring Events 15-63
15.12. PERFORMANCE MONITORING (P6 FAMILY PROCESSOR). 15-64
15.12.1. PerfEvtSel0 and PerfEviSel1 MSRs i 15-65
15.12.2. PerfCtrOand PerfCtr1 MSRs. 15-66
15.12.3. Starting and Stopping the Performance-Monitoring Counters. 15-67
15.12.4. Event and Time-Stamp Monitoring Software. 15-67
15.12.5. Monitoring Counter Overflow. e 15-68
15.13. PERFORMANCE MONITORING (PENTIUM PROCESSORS)............... 15-68
15.13.1. Control and Event Select Register (CESR). 15-69
15.13.2. Use of the Performance-Monitoring Pins. 15-70
15.13.3. EventsCounted. i 15-71
CHAPTER 16
8086 EMULATION
16.1. REAL-ADDRESS MODE e 16-1
16.1.1. Address Translation in Real-AddressMode 16-3
16.1.2. Registers Supported in Real-AddressMode. 16-4
16.1.3. Instructions Supported in Real-Address Mode 16-4
16.1.4. Interrupt and Exception Handling 16-6
16.2. VIRTUAL-8086 MODE e e 16-7
16.2.1. Enabling Virtual-8086 Mode 16-9
16.2.2. Structure of a Virtual-8086 Task i 16-9
16.2.3. Paging of Virtual-8086 Tasksco i 16-10
16.2.4. Protection within a Virtual-8086 Task 16-11

xiv Vol. 3

|nte|® TABLE OF CONTENTS

PAGE
16.2.5. Entering Virtual-8086 Mode 16-11
16.2.6. Leaving Virtual-8086 Mode i 16-13
16.2.7. Sensitive INStruCtions. 16-14
16.2.8. Virtual-8086 Mode I/O 16-14
16.2.8.1. I/O-Port-Mapped /O 16-14
16.2.8.2. Memory-Mapped /0. 16-15
16.2.8.3. Special /O BuUffers e 16-15
16.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE 16-15
16.3.1. Class 1—Hardware Interrupt and Exception Handling in Virtual-8086
Mode 16-17
16.3.1.1. Handling an Interrupt or Exception Through a Protected-Mode
TraporinterruptGate. 16-17
16.3.1.2. Handling an Interrupt or Exception With an 8086 Program Interrupt
orExceptionHandler e 16-19
16.3.1.3. Handling an Interrupt or Exception Through a Task Gate 16-20
16.3.2. Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode
Using the Virtual Interrupt Mechanism. 16-20
16.3.3. Class 3—Software Interrupt Handling in Virtual-8086 Mode 16-23
16.3.3.1. Method 1: Software Interrupt Handling. 16-25
16.3.3.2. Methods 2 and 3: Software Interrupt Handling 16-26
16.3.3.3. Method 4: Software Interrupt Handling 16-26
16.3.3.4. Method 5: Software Interrupt Handling. 16-26
16.3.3.5. Method 6: Software Interrupt Handling. 16-27
16.4. PROTECTED-MODE VIRTUAL INTERRUPTS 16-28
CHAPTER 17
MIXING 16-BIT AND 32-BIT CODE
17.1. DEFINING 16-BIT AND 32-BIT PROGRAMMODULES 17-2
17.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT. 17-2
17.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS 17-3
17.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 17-4
17.4.1. Code-Segment Pointer Size 17-5
17.4.2. Stack Management for Control Transfer 17-5
17.4.2.1. Controlling the Operand-Size Attribute ForaCall. 17-7
17.4.2.2. Passing Parameters WithaGate 17-7
17.4.3. Interrupt Control Transfers. i e i 17-8
17.4.4. Parameter Translation. 17-8
17.4.5. Writing Interface Procedures 17-8
CHAPTER 18
1A-32 COMPATIBILITY
18.1. IA-32 PROCESSOR FAMILIES AND CATEGORIES. 18-1
18.2. RESERVED BITS. e 18-2
18.3. ENABLING NEW FUNCTIONS AND MODES i 18-2
18.4. DETECTING THE PRESENCE OF NEW FEATURES THROUGH
SOFTWARE . . 18-2
18.5. INTELMMX TECHNOLOGY it e e 18-3
18.6. STREAMING SIMD EXTENSIONS (SSE)o 18-3
18.7. STREAMING SIMD EXTENSIONS 2 (SSE2). 18-3
18.8. STREAMING SIMD EXTENSIONS 3 (SSE3).o 18-3
18.9 HYPER-THREADING TECHNOLOGY.ottt 18-4

18.10. NEW INSTRUCTIONS IN THE PENTIUM AND LATER I1A-32 PROCESSORS .. 18-4

Vol. 3 xv

TABLE OF CONTENTS

PAGE
18.10.1. Instructions Added Prior to the Pentium Processor. 18-4
18.11. OBSOLETE INSTRUCTIONS e 18-6
18.12. UNDEFINED OPCODES e e 18-6
18.13. NEW FLAGS IN THE EFLAGS REGISTER. i 18-6
18.13.1. Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors 18-6
18.14. STACK OPERATIONS. e e e e 18-7
18.14.1. PUSH SP. .. . e 18-7
18.14.2. EFLAGS PushedontheStack i, 18-7
18.15. X7 FPU. . . o e 18-8
18.15.1. Control Register CROFlags.ot e s 18-8
18.15.2. x87 FPU Status Word e 18-9
18.15.2.1. Condition Code Flags (COthrough C3), 18-9
18.15.2.2. Stack Fault Flago 18-9
18.15.3. x87 FPU Control Word e e 18-9
18.15.4. x87 FPU TagWord e e 18-10
18.15.5. Data TYPeS . ..ot 18-10
18.15.5.1. NaNS. . 18-10
18.15.5.2. Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 18-11
18.15.6. Floating-Point Exceptions 18-11
18.15.6.1. Denormal Operand Exception (#D) 18-11
18.15.6.2. Numeric Overflow Exception (#O) 18-11
18.15.6.3. Numeric Underflow Exception (#U), 18-12
18.15.6.4. Exception Precedence i e 18-12
18.15.6.5. CSand EIP For FPU Exceptions i 18-13
18.15.6.6. FPU Error Signals.o e 18-13
18.15.6.7. Assertionofthe FERR#Pin 18-13
18.15.6.8. Invalid Operation ExceptionOnDenormals 18-13
18.15.6.9. Alignment Check Exceptions (#AC)o 18-14
18.15.6.10. Segment Not Present Exception During FLDENV 18-14
18.15.6.11. Device Not Available Exception (#NM). 18-14
18.15.6.12. Coprocessor Segment Overrun Exception. 18-14
18.15.6.13. General Protection Exception (#GP) 18-14
18.15.6.14. Floating-Point Error Exception (#MF). 18-14
18.15.7. Changes to Floating-Point Instructions 18-15
18.15.7.1. FDIV, FPREM, and FSQRT Instructions 18-15
18.15.7.2. FSCALE InStructiont e 18-15
18.15.7.3. FPREM1 Instruction 18-15
18.15.7.4. FPREM Instruction e 18-15
18.15.7.5. FUCOM, FUCOMP, and FUCOMPP Instructions. 18-15
18.15.7.6. FPTAN Instruction e 18-16
18.15.7.7. Stack Overflow 18-16
18.15.7.8. FSIN, FCOS, and FSINCOS Instructions., 18-16
18.15.7.9. FPATAN Instruction 18-16
18.15.7.10. F2XM1 INStruction. i 18-16
18.15.7.11. FLD Instruction e 18-16
18.15.7.12. FXTRACT Instruction e 18-17
18.15.7.13. Load Constant Instructions. i, 18-17
18.15.7.14. FSETPMInstruction e 18-17
18.15.7.15. FXAM Instruction 18-17
18.15.7.16. FSAVE and FSTENV Instructions 18-18
18.15.8. Transcendental Instructions 18-18
18.15.9. Obsolete Instructions. 18-18

xvi Vol. 3

|nte|® TABLE OF CONTENTS

PAGE

18.15.10. WAIT/FWAIT Prefix Differences 18-18
18.15.11. Operands Split Across Segments and/orPages 18-18
18.15.12. FPU Instruction Synchronization 18-19
18.16. SERIALIZING INSTRUCTIONS e 18-19
18.17. FPU AND MATH COPROCESSOR INITIALIZATION 18-19
18.17.1. Intel® 387 and Intel® 287 Math Coprocessor Initialization. 18-19
18.17.2. Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization 18-20
18.18. CONTROL REGISTERS e 18-21
18.19. MEMORY MANAGEMENT FACILITIES. o 18-23
18.19.1. New Memory Management Control Flags 18-23
18.19.1.1. Physical Memory Addressing Extension. 18-23
18.19.1.2. Global Pageso 18-23
18.19.1.3. Larger Page Sizeso 18-23
18.19.2. CDandNW Cache ControlFlags 18-23
18.19.3. Descriptor Typesand Contents.t 18-24
18.19.4. Changes in Segment DescriptorLoads. 18-24
18.20. DEBUG FACILITIES.o e 18-24
18.20.1. Differences in Debug Register DR6. 18-24
18.20.2. Differences in Debug Register DR7. i 18-24
18.20.3. Debug Registers DR4and DR5. 18-25
18.20.4. Recognition of Breakpoints 18-25
18.21. TEST REGISTERS. e 18-25
18.22. EXCEPTIONS AND/OR EXCEPTION CONDITIONS 18-25
18.22.1. Machine-Check Architecture i 18-27
18.22.2. Priority OF EXCeplions.o oot 18-27
18.23. INTERRUPTS. . .. e 18-27
18.23.1. Interrupt Propagation Delay. 18-27
18.23.2. NMIInterrupts e 18-28
18.23.3. IDTLImMIit ... 18-28
18.24. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC). 18-28
18.24.1. Software Visible Differences Between the Local APIC and the

8248 X . . e 18-28
18.24.2. New Features Incorporated in the Local APIC for the P6 Family

and Pentium Processors 18-29
18.24.3. New Features Incorporated in the Local APIC of the Pentium 4 and

Intel Xeon Processors e 18-29
18.25. TASKSWITCHING AND TSS 18-30
18.25.1. P6 Family and Pentium Processor TSS 18-30
18.25.2. TSS Selector Writesot 18-30
18.25.3. Order of Reads/Writestothe TSS. i 18-30
18.25.4. Using A 16-Bit TSS with 32-Bit Constructs 18-30
18.25.5. Differences in I/O Map Base Addressescoviiieianan.. 18-30
18.26. CACHE MANAGEMENT e 18-31
18.26.1. Self-Modifying Code with Cache Enabled 18-32
18.26.2. DisablingtheL3Cache i 18-33
18.27. PAGING 18-33
18.27.1. Large Pages i 18-33
18.27.2. PCDand PWT Flagso i i e e e 18-33
18.27.3. Enabling and Disabling Paging i 18-34
18.28. STACK OPERATIONS e 18-34
18.28.1. Selector Pushesand Pops i 18-34
18.28.2. ErrorCode PUsShest 18-35

Vol. 3 xvii

TABLE OF CONTENTS "Ttel ®

PAGE

18.28.3. Fault Handling Effectsonthe Stack 18-35
18.28.4. Interlevel RET/IRET From a 16-Bit InterruptorCallGate. 18-35
18.29. MIXING 16- AND 32-BIT SEGMENTSo 18-35
18.30. SEGMENT AND ADDRESS WRAPAROUND 18-36
18.30.1. Segment Wraparoundt 18-36
18.31. STORE BUFFERS AND MEMORY ORDERING oo... 18-37
18.32. BUSLOCKINGo e e 18-38
18.33. BUSHOLD 18-39
18.34. MODEL-SPECIFIC EXTENSIONS TOTHEIA-32 18-39
18.34.1. Model-Specific Registers. 18-39
18.342. RDMSRand WRMSR Instructions 18-40
18.34.3. Memory Type Range Registers. et 18-40
18.34.4. Machine-Check Exception and Architecture 18-40
18.34.5. Performance-Monitoring Counters 18-41
18.35. TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS 18-41
APPENDIX A
PERFORMANCE-MONITORING EVENTS
Al PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-

MONITORING EVENTS. . ..o e e A-1
A2. PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M

PROCESSORS . ..o A-41
AS. P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS A-44
A4, PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS A-58
APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)
B.1. MSRS IN THE PENTIUM 4 AND INTEL XEON PROCESSORS. B-1
B.2. MSRS IN THE PENTIUM M PROCESSOR. B-31
B.3. MSRS IN THE P6 FAMILY PROCESSORS B-39
B.4. MSRS IN PENTIUM PROCESSORS. e B-49
B.5. ARCHITECTURAL MSRS e e B-50
APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS
C.1. OVERVIEW OF THE MP INITIALIZATION PROCESS FOR P6 FAMILY

PROCESSORS . .. C-1
c.2. MP INITIALIZATION PROTOCOL ALGORITHM.o C-2
c.21. Error Detection and Handling During the MP Initialization Protocol C-4
APPENDIX D
PROGRAMMING THE LINTO AND LINT1 INPUTS
D.1. CONST ANT S . . e D-1
D.2. LINT[0:1] PINS PROGRAMMING PROCEDURE D-1
APPENDIX E
INTERPRETING MACHINE-CHECK ERROR CODES
E.1. INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY

06H MACHINE ERROR CODES FOR MACHINECHECK E-1
E.2. INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY

OFH MACHINE ERROR CODES FOR MACHINECHECK E-4

xviii Vol. 3

|nte|® TABLE OF CONTENTS

PAGE
APPENDIX F
APIC BUS MESSAGE FORMATS
F.1. BUS MESSAGE FORMATS.o e F-1
F.2. EOIMESSAGE. F-1
F.2.1. Short MESSage.o F-2
F.2.2. Non-focused Lowest Priority Message, F-3
F.2.3. APIC Bus Status CyClest e e F-5

Vol. 3 xix

TABLE OF CONTENTS

xx Vol. 3

intgl.

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.

Figure 3-15.
Figure 3-16.
Figure 3-17.

Figure 3-18.
Figure 3-19.

Figure 3-20.
Figure 3-21.

Figure 3-22.
Figure 3-23.

Figure 3-24.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.

FIGURES

PAGE
Bitand Byte Order 1-5
IA-32 System-Level Registers and Data Structures. 2-2
Transitions Among the Processor’s OperatingModes 2-7
System Flags in the EFLAGS Register. i ... 2-8
Memory Management Registers. i 2-10
Control Registers e 2-13
Segmentationand Paging 3-2
Flat Model. 3-4
Protected Flat Model. 3-4
Multi-Segment Model 3-5
Logical Address to Linear Address Translation 3-7
Segment Selector. 3-8
Segment Registers. 3-9
Segment Descriptor 3-10
Segment Descriptor When Segment-Present FlagIsClear. 3-12
Global and Local Descriptor Tables 3-16
Pseudo-Descriptor Format 3-17
Linear Address Translation (4-KByte Pages) oo 3-21
Linear Address Translation (4-MByte Pages). 3-22
Format of Page-Directory and Page-Table Entries for 4-KByte
Pages and 32-Bit Physical Addresses, 3-24
Format of Page-Directory Entries for 4-MByte Pages and 32-Bit
AdAreSSES. . . oot 3-25
Format of a Page-Table or Page-Directory Entry for a Not-Present
Page . . 3-28
Register CR3 Format When the Physical Address Extension is Enabled . . .3-29
Linear Address Translation With PAE Enabled (4-KByte Pages).......... 3-30
Linear Address Translation With PAE Enabled (2-MByte Pages) 3-31
Format of Page-Directory-Pointer-Table, Page-Directory, and
Page-Table Entries for 4-KByte Pages with PAE Enabled. 3-32
Format of Page-Directory-Pointer-Table and Page-Directory
Entries for 2-MByte Pages with PAE Enabled 3-33
Linear Address Translation (4-MByte Pages). 3-35
Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addressest 3-35
Memory Management Convention That Assigns a Page Table
to Each Segment 3-36
Descriptor Fields Used for Protection. 4-3
Protection RiNgs 4-7
Privilege Check for Data ACCESS v i it 4-9
Examples of Accessing Data Segments From Various Privilege Levels4-10
Privilege Check for Control Transfer Without Usinga Gate 4-12
Examples of Accessing Conforming and Nonconforming Code
Segments From Various Privilege Levels. 4-14
Call-Gate Descriptor.o 4-16
Call-Gate Mechanism. i 4-18
Privilege Check for Control Transfer with CallGate. 4-18
Example of Accessing Call Gates At Various Privilege Levels. 4-20
Stack Switching During an Interprivilege-Level Call 4-22

Vol. 3 xxi

TABLE OF FIGURES Int€|®

Figure 4-12.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 7-1.
Figure 7-2.
Figure 7-3.

Figure 7-4.

Figure 7-5.
Figure 8-1.

Figure 8-2.
Figure 8-3.

Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.
Figure 8-16.

Figure 8-17.

Figure 8-18.
Figure 8-19.
Figure 8-20.
Figure 8-21.
Figure 8-22.

xxii Vol. 3

PAGE
Use of RPL to Weaken Privilege Level of Called Procedure 4-29
Relationshipofthe IDTRand IDT. 5-12
IDT Gate Descriptorsot e 5-14
Interrupt Procedure Call e 5-15
Stack Usage on Transfers to Interrupt and Exception-Handling
ROULINES . . . oo e 5-17
Interrupt Task Switch 5-20
ErrorCode o 5-21
Page-Fault Error Codeot 5-47
Structureof aTask. 6-2
32-Bit Task-State Segment (TSS) i 6-5
TSS DESCHIPION . v o et e e e e e e 6-8
Task Register 6-10
Task-Gate Descriptor i 6-10
Task Gates Referencingthe Same Task 6-12
Nested Tasks 6-16
Overlapping Linear-to-Physical Mappings, 6-20
16-Bit TSS Format e 6-22
Example of Write Ordering in Multiple-Processor Systems 7-10
Interpretation of APICIDINMP Systemso ... 7-23
IA-32 Processor with Intel Hyper-Threading Technology using
Two Logical ProCessors e 7-24
Local APICs and I/0O APIC When IA-32 Processors Supporting
Hyper-Threading Technology Are Used in MP Systems 7-33
Interpretation of the APIC ID. i i 7-37
Relationship of Local APIC and I/O APIC In Single-Processor
Sy S M . o e 8-3
Local APICs and I/0O APIC When Intel Xeon Processors Are Used
in Multiple-Processor Systems 8-4
Local APICs and I/0O APIC When P6 Family Processors Are Used
in Multiple-Processor Systems 8-4
Local APIC Structureo 8-7
IAB2_APIC_BASE MSR 8-10
Local APIC ID Register.ot 8-12
Local APIC Version Register oot 8-14
Local Vector Table (LVT)o oot e 8-16
Error Status Register (ESR) 8-19
Divide Configuration Register. i 8-20
Initial Count and Current Count Registers 8-20
Interrupt Command Register (ICR). it 8-22
Logical Destination Register (LDR) 8-28
Destination Format Register (DFR) 8-28
Arbitration Priority Register (APR) 8-30
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and
Intel XeoN ProCesSOrs) oottt e 8-32
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family
and Pentium Processors) i e 8-33
Task Priority Register (TPR).o e 8-35
Processor Priority Register (PPR) 8-36
IRR, ISRand TMR Registers o e 8-37
EOI Register. . ..o 8-38
Spurious-Interrupt Vector Register (SVR) 8-39

intgl.

Figure 8-23.
Figure 8-24.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 9-5.

Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.

Figure 10-7.
Figure 11-1

Figure 11-2.
Figure 12-1.

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.

Figure 13-9.
Figure 13-10.
Figure 13-11.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 15-1.
Figure 15-3.

Figure 15-4.
Figure 15-5.

Figure 15-6.
Figure 15-7.

TABLE OF FIGURES

PAGE
Layout of the MSI Message Address Register 8-41
Layout of the MSI Message Data Register. 8-42
Contents of CRO Register afterReset 9-5
Version Information in the EDX Register afterReset 9-5
Processor State AfterReset 9-18
Constructing Temporary GDT and Switching to Protected Mode
(Lines 162-172 of ListFile)o i 9-26
Moving the GDT, IDT and TSS from ROM to RAM (Lines 196-261 of
List File) ..o 9-27
Task Switching (Lines 282-296 of ListFile) 9-28
Applying Microcode Updates, 9-31
Microcode Update Write Operation Flow [1]......... 9-55
Microcode Update Write Operation Flow [2]. 9-56
Cache Structure of the Pentium 4 and Intel Xeon Processors 10-1
Cache-Control Registers and Bits Available in IA-32 Processors. 10-12
Mapping Physical Memory With MTRRs. 10-25
IA32_ MTRRCAP Registert 10-26
IA32_ MTRR_DEF_TYPEMSR. 10-27
IA32_MTRR_PHYSBASEnN and IA32_MTRR_PHYSMASKn
Variable-Range Register Pair. 10-30
IAB2_CR_PAT MSR e 10-40
Mapping of MMX Registers to Floating-Point Registers. 11-2
Mapping of MMX Registers to x87 FPU Data Register Stack. 11-7
Example of Saving the x87 FPU, MMX, SSE, and SSE2 State
During an Operating-System Controlled Task Switch. 12-9
SMRAM USAQE . . . ot 13-5
SMM Revision Identifier 13-15
Auto HALT Restart Field 13-16
SMBASE Relocation Field i 13-17
I/O Instruction Restart Field 13-18
Processor Modulation Through Stop-Clock Mechanism. 13-21
MSR_THERM2_CTL Register for the Pentium M Processor. 13-22
MSR_THERM2_CTL Register for the Pentium 4 Processor
Supporting TM2 13-23
IA32_ THERM_STATUS MSR. s 13-23
IA32_THERM_INTERRUPTMSR i 13-24
IA32_CLOCK_MODULATIONMSRo 13-25
Machine-Check MSRS i 14-2
IAB2_MCG_CAP Register e 14-3
MCG_CAP Register e e e 14-4
IA32_ MCG_STATUS Register 14-4
IAB2_MCi_CTL Register. e e 14-6
IAB2_MCi_STATUS Registert 14-7
IAB2_MCi_ADDR MSR. 14-9
Debug Registers. e 15-3
MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4 and
Intel Xeon Processor Family. i 15-14
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors 15-15
LBR MSR Branch Record Layout for the Pentium 4 and
Intel Xeon Processor Family. 15-16
MSR_DEBUGCTLB MSR for Pentium M Processors. 15-22
LBR Branch Record Layout for the Pentium M Processor 15-23

Vol. 3 xxiii

TABLE OF FIGURES

Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.

Figure 15-18.
Figure 15-19.
Figure 15-20.

Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.

Figure 16-5.
Figure 17-1.
Figure 18-1.
Figure C-1.

xxiv Vol. 3

PAGE
DebugCtIMSR Register (P6 Family Processors) 15-24
Event Selection Control Register (ESCR) for Pentium 4 and Intel Xeon
Processors without HT Technology Support 15-32
Performance Counter (Pentium 4 and Intel Xeon Processors). 15-34
Counter Configuration Control Register (CCCR) 15-36
DS Save Area.ot e 15-39
Branch Trace Record Format. i, 15-40
PEBS Record Format. 15-41
EventExample e 15-42
Effectsof Edge Filteringo 15-45
Event Selection Control Register (ESCR) for the Pentium 4
Processor, Intel Xeon Processor and Intel Xeon Processor MP
Supporting Hyper-Threading Technology. 15-59
Counter Configuration Control Register (CCCR) 15-61
PerfEvtSel0 and PerfEvtSellt MSRs. 15-65
CESR MSR (Pentium ProcessorOnly)., 15-69
Real-Address Mode Address Translation. 16-4
Interrupt Vector Table in Real-AddressMode 16-7
Entering and Leaving Virtual-8086 Mode 16-12
Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086
Mode. . . e 16-18
Software Interrupt Redirection Bit Mapin TSS....................... 16-25
Stack after Far 16-and 32-BitCalls i 17-6
I/O Map Base Address Differences, 18-31
MP System With Multiple Pentium Ill Processors. C-3

intel.

Table 2-1.

Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 6-1.
Table 6-2.

Table 7-1.

Table 8-1.
Table 8-2.

Table 8-3.

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9

Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 10-1.

Table 10-2.

TABLES

PAGE
Action Taken By x87 FPU Instructions for Different Combinations
Of EM,MP and TS e 2-15
Summary of System Instructions 2-19
Code- and Data-Segment TYpesou it 3-13
System-Segment and Gate-Descriptor Typesot 3-15
Page Sizes and Physical Address Sizes i 3-20
Privilege Check RulesforCallGates, 4-19
Combined Page-Directory and Page-Table Protection. 4-33
Protected-Mode Exceptions and Interrupts 5-3
Priority Among Simultaneous Exceptions and Interrupts 5-10
Debug Exception Conditions and Corresponding Exception Classes 5-24
Interrupt and Exception Classes.t 5-33
Conditions for Generatinga Double Fault 5-34
Invalid TSS Conditions 5-36
Alignment Requirements by Data Type 5-52
SIMD Floating-Point Exceptions Priority. 5-57
Exception Conditions Checked Duringa Task Switch 6-15
Effect of a Task Switch on Busy Flag, NT Flag, Previous Task
Link Field,and TS Flag.o oo i i e 6-17
Initial APIC IDs for the Logical Processors in a System that has
Four MP-Type Intel Xeon Processors Supporting Hyper-Threading
TeChnology . . . oot 7-37
Local APIC Register Address Map.t 8-8
Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register 8-25
Valid Combinations for the P6 Family Processors Local APIC Interrupt
Command Register.o e 8-26
32-Bit I1A-32 Processor States Following Power-up, Reset, or INIT 9-3
Recommended Settings of EM and MP Flags on IA-32 Processors 9-7
Software Emulation Settings of EM, MP,and NEFlags. 9-8
Main Initialization Steps in STARTUP.ASM Source Listing 9-18
Relationship Between BLD ltem and ASM Source File 9-30
Microcode Update Field Definitions 9-32
Microcode Update Format i 9-34
Extended Processor Signature Table Header Structure. 9-35
Processor Signature Structure 9-36
Processor Flagso e 9-37
Microcode Update Signature i 9-42
Microcode Update Functions i 9-49
Parameters forthe Presence Test it 9-50
Parameters for the Write Update Data Function. 9-52
Parameters for the Control Update Sub-function...................... 9-57
Mnemonic Values. e 9-57
Parameters for the Read Microcode Update Data Function. 9-58
Return Code Definitions 9-59
Characteristics of the Caches, TLBs, Store Buffer, and Write
Combining Buffer in IA-32 processors 10-2
Memory Types and Their Properties 10-6

Vol. 3 xxv

TABLE OF TABLES Int€| ®

Table 10-3.

Table 10-4.
Table 10-5.
Table 10-6.

Table 10-7.

Table 10-8.
Table 10-9.
Table 10-10.
Table 10-11.
Table 10-12.
Table 11-1.

Table 11-2.
Table 11-3.

Table 12-1.

Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 15-1.
Table 15-2.
Table 15-2.

Table 15-1.
Table 15-2.

Table 15-3.
Table 15-4.

Table 15-5.
Table 16-1.
Table 16-2.

Table 17-1.
Table 18-1.

xxvi Vol. 3

PAGE
Methods of Caching Available in Pentium 4, Intel Xeon, P6 Family,
and Pentium Processors. 10-7
MESI Cache Line States.t e 10-10
Cache Operating Modes. e 10-13
Effective Page-Level Memory Type for Pentium Pro and
Pentium Il Processors™. e 10-16
Effective Page-Level Memory Types for Pentium Ill, Pentium 4, and
Intel Xeon Processors. e 10-17
Memory Types That Can Be Encoded in MTRRs. 10-25
Address Mapping for Fixed-Range MTRRs 10-29
Memory Types That Can Be Encoded With PAT 10-41
Selection of PAT Entries with PAT, PCD,and PWT Flags. 10-41

Memory Type Setting of PAT Entries Following a Power-up or Reset. 10-42
Action Taken By MMX Instructions for Different Combinations of EM,

MP and TS e 11-1
Effects of MMX Instructions on x87 FPU State. 11-3
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions

onthe x87 FPU TagWord e 11-4
Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE,
SSE2,SSES, EM, MP,and TST. e 12-3
SMRAM State Save Mapot 13-5
Processor Register Initializationin SMM 13-9
I/0 Instruction Information in the SMM State Save Map. 13-12
I/O Instruction Type Encodings.t 13-13
Auto HALT Restart FlagValues i 13-16
I/O Instruction Restart Field Values 13-18
On-Demand Clock Modulation Duty Cycle Field Encoding 13-25
Extended Machine Check State MSRs. 14-10
IA32_MCi_Status [15:0] Simple Error Code Encoding. 14-14
IA32_MCi_Status [15:0] Compound Error Code Encoding. 14-14
Encoding for TT (Transaction Type) Sub-Field. 14-15
Level Encoding for LL (Memory Hierarchy Level) Sub-Field 14-15
Encoding of Request (RRRR) Sub-Field 14-16
Encodings of PP, T, and Il Sub-Fields 14-16
Breakpointing Examples. 15-7
Debug Exception Conditions i 15-8
LBR MSR Stack Structure for the Pentium 4 and Intel Xeon Processor

Family . .. 15-13
MSR_DEBUGCTLA MSR Flag Encodings. 15-20

Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)15-28

CCR Names and Bit Positions 15-48
Effect of Logical Processor and CPL Qualification for Logical-
Processor-Specific (TS)Events 15-63
Effect of Logical Processor and CPL Qualification for Non-logical-
processor-specific (TI) Events 15-64
Real-Address Mode Exceptions and Interrupts 16-8
Software Interrupt Handling Methods While in Virtual-8086 Mode. 16-24
Characteristics of 16-Bit and 32-Bit Program Modules. 17-1
New Instruction in the Pentium Processor and Later IA-32

PrOCESSOrS . . o e 18-5

intel.
Table 18-2.

Table 18-3.
Table A-1.

Table A-2.
Table A-3.
Table A-4.
Table A-5.

Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.

Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table C-1.
Table E-1.

Table E-2.
Table E-3.
Table F-1.
Table F-2.

Table F-3.
Table F-4.

TABLE OF TABLES

PAGE
Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor System 18-20
EM and MP Flag Interpretation. 18-20
Pentium 4 and Intel Xeon Processor Performance Monitoring
Events for Non-Retirement Counting A-2
Pentium 4 and Intel Xeon Processor Performance Monitoring
Events For At-Retirement Counting A-27
Model-Specific Performance Monitoring Events (For Model Encoding 3
ONlY) .o A-33
List of Metrics Available for Front_end Tagging (For Front_end Event
ONlY) .o A-33
List of Metrics Available for Execution Tagging (For Execution Event
ONlY) .o A-34
List of Metrics Available for Replay Tagging (For Replay Event Only). A-35
Event Mask Qualification for Logical Processors A-36
Performance Monitoring Events on Intel® Pentium® M Processors A-41
Performance Monitoring Events Modified on Intel® Pentium® M
PrOCESSOrS . . oo e A-43
Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters A-44
Events That Can Be Counted with the Pentium Processor
Performance-Monitoring Counters i A-59
MSRs in the Pentium 4 and Intel Xeon Processors B-1
MSRs in Pentium M Processors., B-31
MSRs in the P6 Family Processors B-39
MSRs in the Pentium Processor. B-49
IA-32 Architectural MSRS e B-50
Boot Phase IPI Message Format C-2
Incremental Decoding Information: Processor Family 06H Machine
Error Codes For Machine Check E-1
Incremental Decoding Information: Processor Family OFH Machine
Error Codes For Machine Check E-4
Decoding Family 07H Machine Check Codes for Memory Hierarchy
e 0 E-5
EOIMessage (14 Cycles) oot F-1
Short Message (21 CycCles).o F-2
Non-Focused Lowest Priority Message (34 Cycles). F-3
APIC Bus Status Cycles Interpretation. F-5

Vol. 3 xxvii

1

About This Manual

CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System Programming
Guide (Order Number 253668) is part of a set that describes the architecture and programming
environment of all IA-32 Intel Architecture processors. The other volumes in this set are:

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 253665).

® The [A-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Numbers 253666 and 253667).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1 describes the basic archi-
tecture and programming environment of an IA-32 processor. The IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2 describe the instruction set of the processor and the opcode
structure. These volumes are aimed at application programmers who are writing programs to run
under existing operating systems or executives. The [A-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3 describes the operating-system support environment of an IA-32
processor, including memory management, protection, task management, interrupt and excep-
tion handling, and system management mode. It also provides IA-32 processor compatibility
information. This volume is aimed at operating-system and BIOS designers.

1.1. 1A-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes information pertaining primarily to the most recent IA-32 processors,
which include the Pentium® processors, the P6 family processors, the Pentium 4 processors, and
the Intel® Xeon™ processors. The P6 family processors are those IA-32 processors based on the
P6 family micro-architecture, which include the Pentium Pro, Pentium II, and Pentium Il
processors. The Pentium 4 and Intel Xeon processors are based on the Intel® NetBurst® micro-
architecture.

Vol.3 1-1

ABOUT THIS MANUAL IntGI®

1.2. OVERVIEW OF THE /A-32 INTEL® ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM
PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an IA-32
processor and the mechanisms provided in the IA-32 architecture to support operating systems
and executives, including the system-oriented registers and data structures and the system-
oriented instructions. The steps necessary for switching between real-address and protected
modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging. The chapter explains how they can be
used to implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the TA-32 architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the IA-32 architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each
IA-32 exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes mechanisms the IA-32 architecture provides to
support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and Hyper-Threading Tech-
nology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes the
programming interface to the local APIC and gives an overview of the interface between the
local APIC and the I/O APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an 1A-32
processor after reset initialization. This chapter also explains how to set up an IA-32 processor
for real-address mode operation and protected- mode operation, and how to switch between
modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the IA-32 architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. Information on using the new cache control and memory streaming instructions
introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors is also given.

1-2 Vol. 3

|nte|® ABOUT THIS MANUAL

Chapter 11 — Intel® MMX™ Technology System Programming. Describes those aspects of
the Intel MMX technology that must be handled and considered at the system programming
level, including: task switching, exception handling, and compatibility with existing system
environments.

Chapter 12 — SSE, SSE2 and SSE3 System Programming. Describes those aspects of
SSE/SSE2/SSE3 extensions that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments.

Chapter 13 — System Management. Describes the IA-32 architecture’s system management
mode (SMM) and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check architecture.

Chapter 15 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the IA-32 architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-
32 architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — IA-32 Architecture Compatibility. Describes architectural compatibility
among the IA-32 processors, which include the Intel 286, Intel386™, Intel486™, Pentium, P6
family, Pentium 4, and Intel Xeon processors. The differences among the 32-bit IA-32 proces-
sors are also described throughout the three volumes of the IA-32 Software Developer’s Manual,
as relevant to particular features of the architecture. This chapter provides a collection of all the
relevant compatibility information for all IA-32 processors and also describes the basic differ-
ences with respect to the 16-bit IA-32 processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium
processor and P6 family processor events are described.

Appendix B — Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
processors, the P6 family processors, and the Pentium 4 and Intel Xeon processors and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of how to use
of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of how to inter-
pret the error codes for a machine-check error that occurred on a P6 family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for messages
transmitted on the APIC bus for P6 family and Pentium processors.

Vol.3 1-3

ABOUT THIS MANUAL IntGI®

1.3. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.
® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in [A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

1-4 Vol. 3

|nte|® ABOUT THIS MANUAL

Data Structure

31 24 23 16 15 8 7 0 <=«— Bit offset
28

24

20

16

12

8

4
0 Lowest

Address
A

Byte Offset

Highest
Address

Byte 3 Byte 2 Byte 1 Byte 0

Figure 1-1. Bit and Byte Order

1.3.3. Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is

used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:
¢ Alabel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

Vol.3 1-5

ABOUT THIS MANUAL IntGI®

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF (fault code)
This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not

be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP (0)

1-6 Vol. 3

|nte|® ABOUT THIS MANUAL

1.4. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at this link:
http://developer.intel.com/design/processor/

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The
literature available is listed by Intel processor and then by the following literature types: appli-
cations notes, data sheets, manuals, papers, and specification updates.

See also:

® the data sheet for a particular Intel IA-32 processor

® the specification update for a particular Intel IA-32 processor

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618
® JA-32 Intel® Architecture Optimization Reference Manual, Order Number 248966

Vol.3 1-7

ABOUT THIS MANUAL

1-8 Vol. 3

2

System Architecture
Overview

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The IA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support is part of the
IA-32 system-level architecture and includes features to assist in the following operations:

® Memory management

® Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

® Hardware resource and power management
¢ Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system
registers that are used to set up and control the processor at the system level and gives a brief
overview of the processor’s system-level (operating system) instructions.

Many features of the IA-32 system-level architectural are used only by system programmers.
However, application programmers may need to read this chapter and the following chapters in
order to create a reliable and secure environment for application programs.

NOTE

This overview and most of the subsequent chapters of this book focus on the
native or protected-mode operation of the IA-32 architecture. As described in
Chapter 9, Processor Management and Initialization, all 1A-32 processors
enter real-address mode following a power-up or reset. Software must then
initiate a switch from real-address mode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

IA-32 system-level architecture consists of a set of registers, data structures, and instructions
designed to support basic system-level operations such as memory management, interrupt and
exception handling, task management, and control of multiple processors. Figure 2-1 provides a
generalized summary of the system registers and data structures.

Vol. 3 2-1

SYSTEM ARCHITECTURE OVERVIEW

0

*Physical Address

EFLAGS Register Physical Address > Code, Data or
_ Linear Address Stack Segment
Control Registers e Task-State
82;1 _S(:Jg_m_erjt»Selector 'Segmer]t_(T_Sé) Task
F——=- Code
cR2 "S-
SR Register o %a_‘
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel.} - »| Seg. Desc. | Irgerrupt Handler
c | Code |
urrent- — >
Interrupt TSS Seg. Sel.} - »{ TSS Desc. TSS | Stack
Vector
. - - - - > Seg. Desc.
Interrupt Descriptor | Task-State
Table (IDT) | . _ >TSS Desc. Segment (TSS) _ Task
[-T Code
Interrupt Gate| - — » | LTD Desc. |— T T Data
[- - |: »
Task Gate |- - - - - Stack
GDTR
| Trap Gate |- -~ .
! Local Descriptor Exception Handler
b Table (LDT) “TCode |
Current- — » Stack
IDTR Call-Gate Seg. Desc. TSS |
Segment Selector
| | -> CallGate | -|-- 1 Protected Procedure
LDTR Current- — ;Cogte "
TSS |_ ac
Linear Address Space Linear Address
/,—>| Dir | Table | Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
> —|—> —|—>

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

2-2 Vol. 3

Figure 2-1. 1A-32 System-Level Registers and Data Structures

Intel ® SYSTEM ARCHITECTURE OVERVIEW

2.1.1. Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global
descriptor table (GDT) or the (optional) local descriptor table (LDT) as shown in Figure 2-1.
These tables contain entries called segment descriptors. A segment descriptor provides the base
address of a segment and access rights, type, and usage information. Each segment descriptor
has a segment selector associated with it. The segment selector provides an index into the GDT
or LDT (to its associated segment descriptor), a global/local flag (that determines whether the
segment selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset are supplied. The segment
selector provides access to the segment descriptor for the segment (in the GDT or LDT). From
the segment descriptor, the processor obtains the base address of the segment in the linear
address space. The offset then provides the location of the byte relative to the base address. This
mechanism can be used to access any valid code, data, or stack segment in the GDT or LDT,
provided the segment is accessible from the current privilege level (CPL) at which the processor
is operating. The CPL is defined as the protection level of the currently executing code segment.

In Figure 2-1; solid arrows indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors
are shown as direct pointers to a segment. However, the actual path from a segment selector to
its associated segment is always through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT is contained in the LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors, and Gates

Besides the code, data, and stack segments that make up the execution environment of a program
or procedure, the system architecture also defines two system segments: the task-state segment
(TSS) and the LDT. (The GDT is not considered a segment because it is not accessed by means
of a segment selector and segment descriptor.) Each of these segment types has a segment
descriptor defined for it.

The IA-32 system architecture also defines a set of special descriptors called gates (the call gate,
interrupt gate, trap gate, and task gate). These provide protected gateways to system procedures
and handlers that operate at different privilege levels than application programs and most
procedures. For example, a CALL to a call gate can provide access to a procedure in a code
segment that is at the same or numerically lower privilege level (more privileged) than the
current code segment. To access a procedure through a call gate, the calling procedure1 must
supply the selector of the call gate. The processor than performs an access rights check on the
call gate, comparing the CPL with the privilege level of the call gate and the destination code
segment pointed to by the call gate. If access to the destination code segment is allowed, the
processor gets the segment selector for the destination code segment and an offset into that code
segment from the call gate. If the call requires a change in privilege level, the processor also

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine).

Vol.3 2-3

SYSTEM ARCHITECTURE OVERVIEW Intel®

switches to the stack for that privilege level. (The segment selector for the new stack is obtained
from the TSS for the currently running task.) Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.3. Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes
the state of the general-purpose registers, the segment registers, the EFLAGS register, the EIP
register, and segment selectors and stack pointers for three stack segments (one stack each for
privilege levels O, 1, and 2). It also includes the segment selector for the LDT associated with
the task and the page-table base address.

All program execution in protected mode happens within the context of a task, called the current
task. The segment selector for the TSS for the current task is stored in the task register. The
simplest method of switching to a task is to make a call or jump to the task. Here, the segment
selector for the TSS of the new task is given in the CALL or JMP instruction. In switching tasks,
the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4

Loads the state of the new task from the new TSS into the general-purpose registers, the
segment registers, the LDTR, control register CR3 (page-table base address), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Handling

External interrupts, software interrupts, and exceptions are handled through the interrupt
descriptor table (IDT), see Figure 2-1. The IDT contains a collection of gate descriptors, which
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a segment. The
linear address of the base of the IDT is contained in the IDT register (IDTR).

The gate descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access an
interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
number) from internal hardware, an external interrupt controller, or from software by means of
an INT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into the
IDT to a gate descriptor. If the selected gate descriptor is an interrupt gate or a trap gate, the asso-
ciated handler procedure is accessed in a manner very similar to calling a procedure through a
call gate. If the descriptor is a task gate, the handler is accessed through a task switch.

2-4 Vol.3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can be paged, with only the most recently accessed pages being held in physical memory.

The location of pages (or page frames as they are sometimes called in the IA-32 architecture) in
physical memory is contained in two types of system data structures (a page directory and a set
of page tables), both of which reside in physical memory (see Figure 2-1). An entry in a page
directory contains the physical address of the base of a page table, access rights, and memory
management information. An entry in a page table contains the physical address of a page frame,
access rights, and memory management information. The base physical address of the page
directory is contained in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
offsets into the page directory, the page table, and the page frame.

A system can have a single page directory or several. For example, each task can have its own
page directory.

2.1.6. System Registers

To assist in initializing the processor and controlling system operations, the system architecture
provides system flags in the EFLAGS register and several system registers:

® The system flags and IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. See Section 2.3., “System Flags
and Fields in the EFLAGS Register”, for a description of these flags.

® The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. Other flags in these registers are used to indicate
support for specific processor capabilities within the operating system or executive. See
Section 2.5., “Control Registers”, for a description of these flags.

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. See Chapter 15, Debugging and Performance
Monitoring, for a description of these registers.

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. See Section 2.4., “Memory-Management Registers”, for a
description of these registers.

® The task register contains the linear address and size of the TSS for the current task. See
Section 2.4., “Memory-Management Registers”, for a description of this register.

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-
system or executive procedures (that is, code running at privilege level 0). These registers
control items such as the debug extensions, the performance-monitoring counters, the machine-
check architecture, and the memory type ranges (MTRRs).

Vol.3 2-5

SYSTEM ARCHITECTURE OVERVIEW Intel®

The number and function of these registers varies among different members of the [A-32
processor families. Section 9.4., “Model-Specific Registers (MSRs)”, for more information
about the MSRs and Appendix B, Model-Specific Registers (MSRs), for a complete list of the
MSRs.

Most systems restrict access to system registers (other than the EFLAGS register) by application
programs. Systems can be designed, however, where all programs and procedures run at the
most privileged level (privilege level 0), in which case application programs are allowed to
modify the system registers.

2.1.7. Other System Resources

Besides the system registers and data structures described in the previous sections, the system
architecture provides the following additional resources:

® Operating system instructions (see Section 2.6., “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

The performance-monitoring counters are event counters that can be programmed to count
processor events such as the number of instructions decoded, the number of interrupts received,
or the number of cache loads. See Section 15.9., “Performance Monitoring Overview”, for more
information about these counters.

The processor provides several internal caches and buffers. The caches are used to store both
data and instructions. The buffers are used to store things like decoded addresses to system and
application segments and write operations waiting to be performed. See Chapter 10, Memory
Cache Control, for a detailed discussion of the processor’s caches and buffers.

2.2. MODES OF OPERATION

The TA-32 architecture supports three operating modes and one quasi-operating mode:

¢ Protected mode. This is the native operating mode of the processor. In this mode all
instructions and architectural features are available. It provides the highest performance
and capability. This is the recommended mode for all new applications and operating
systems.

® Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

2-6 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

¢ System management mode (SMM). The system management mode (SMM) is a standard
architectural feature in all IA-32 processors, beginning with the Intel386 SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is entered
through activation of an external system interrupt pin (SMI#), which generates a system
management interrupt (SMI). In SMM, the processor switches to a separate address space
while saving the context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is placed back
into its state prior to the SMIL.

® Virtual-8086 mode. In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor execute 8086 software in a
protected, multitasking environment.

Figure 2-2 shows how the processor moves among these operating modes.

Real-Address
I
Mode
A
Reset or
_ PE=1
PE=0 Y
- System
Reset Protected Mode o Management
Mode
A
VM=0 VM=1
Y
Virtual-8086
Mode
RSM

Figure 2-2. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. Thereafter, the PE
flag in control register CRO controls whether the processor is operating in real-address or
protected mode (see Section 2.5., “Control Registers”). See Section 9.9., “Mode Switching”, for
detailed information on switching between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from an interrupt or exception handler
(see Section 16.2.5., “Entering Virtual-8086 Mode”).

The processor switches to SMM whenever it receives an SMI while the processor is in real-
address, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.

Vol.3 2-7

SYSTEM ARCHITECTURE OVERVIEW Intel®

2.3.

SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware inter-
rupts, debugging, task switching, and the virtual-8086 mode (see Figure 2-3). Only privileged
code (typically operating system or executive code) should be allowed to modify these bits.

The functions of the system flags and IOPL are as follows:

TF Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mode. In single-step mode, the processor generates a debug exception after each
instruction, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPFD, or IRET instruction.

31 222120191817161514 131211109 8 7 6 5 4 3 2 1 0
|
Reserved (set to 0) 'YYAVR0¥ O 2RI EIEIEIE] o]0 F] 1|8
L
ID — Identification Flag
VIP — Virtual Interrupt Pendlng
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag
D Reserved
Figure 2-3. System Flags in the EFLAGS Register

IF Interrupt enable (bit 9). Controls the response of the processor to maskable hardware
interrupt requests (see Section 5.3.2., “Maskable Hardware Interrupts”). Set to respond
to maskable hardware interrupts; cleared to inhibit maskable hardware interrupts. The
IF flag does not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register CR4
determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD, and
IRET instructions.

IOPL 1/O privilege level field (bits 12 and 13). Indicates the 1/O privilege level (IOPL) of

the currently running program or task. The CPL of the currently running program or
task must be less than or equal to the IOPL to access the I/O address space. This field
can only be modified by the POPF and IRET instructions when operating at a CPL of
0. See Chapter 13, Input/Output, of the IA-32 Intel Architecture Software Developer’s

2-8 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

Manual, Volume 1, for more information on the relationship of the IOPL to 1/O opera-
tions.

The IOPL is also one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when the virtual mode extensions
are in effect (the VME flag in control register CR4 is set).

NT Nested task (bit 14). Controls the chaining of interrupted and called tasks. The
processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies this flag on returns from a task initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD
instructions; however, changing to the state of this flag can generate unexpected excep-
tions in application programs.

See Section 6.4., “Task Linking”, for more information on nested tasks.

RF Resume (bit 16). Controls the processor’s response to instruction-breakpoint condi-
tions. When set, this flag temporarily disables debug exceptions (#DB) from being
generated for instruction breakpoints; although other exception conditions can
cause an exception to be generated. When clear, instruction breakpoints will generate
debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following
a debug exception that was caused by an instruction breakpoint condition. Here, debug
software must set this flag in the EFLAGS image on the stack just prior to returning to
the interrupted program with the IRETD instruction, to prevent the instruction break-
point from causing another debug exception. The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling
instruction breakpoint faults again.

See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more infor-
mation on the use of this flag.

VM Virtual-8086 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
protected mode. See Section 16.2.1., “Enabling Virtual-8086 Mode”, for a detailed
description of the use of this flag to switch to virtual-8086 mode.

AC Alignment check (bit 18). Set this flag and the AM flag in control register CRO to
enable alignment checking of memory references; clear the AC flag and/or the AM flag
to disable alignment checking. An alignment-check exception is generated when refer-
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level O, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with processors which require all data to be aligned. The align-
ment-check exception can also be used by interpreters to flag some pointers as special
by misaligning the pointer. This eliminates overhead of checking each pointer and only
handles the special pointer when used.

Vol.3 2-9

SYSTEM ARCHITECTURE OVERVIEW Intel®

VIF

VIP

ID

2.4.

Virtual Interrupt (bit 19). Contains a virtual image of the IF flag. This flag is used in
conjunction with the VIP flag. The processor only recognizes the VIF flag when either
the VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 3.
(The VME flag enables the virtual-8086 mode extensions; the PVI flag enables the
protected-mode virtual interrupts.)

See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section 16.4.,
“Protected-Mode Virtual Interrupts”, for detailed information about the use of this flag.

Virtual interrupt pending (bit 20). Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunc-
tion with the VIF flag. The processor reads this flag but never modifies it. The
processor only recognizes the VIP flag when either the VME flag or the PVI flag in
control register CR4 is set and the IOPL is less than 3. (The VME flag enables the
virtual-8086 mode extensions; the PVI flag enables the protected-mode virtual inter-
rupts.)

See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section 16.4.,
“Protected-Mode Virtual Interrupts”, for detailed information about the use of this flag.

Identification (bit 21). The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(see Figure 2-4). Special instructions are provided for loading and storing these registers.

47 16 15 0
GDTR 32-bit Linear Base Address 16-Bit Table Limit
IDTR 32-bit Linear Base Address 16-Bit Table Limit

15 Registers g Attributes
RegTigfekr Seg. Sel. 32-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32-bit Linear Base Address Segment Limit

System Table Registers

System Segment Segment Descriptor Registers (Automatically Loaded)

Figure 2-4. Memory Management Registers

2-10 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

2.4.1. Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit base address and 16-bit table limit for the GDT. The base
address specifies the linear address of byte 0 of the GDT; the table limit specifies the number of
bytes in the table. The LGDT and SGDT instructions load and store the GDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. A new base address must be loaded into the GDTR as part of the
processor initialization process for protected-mode operation. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the base address and limit fields.

2.4.2. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segment limit specifies the number of bytes in the segment. See Section
3.5.1., “Segment Descriptor Tables”, for more information on the base address and limit fields.

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descriptor Table Register

The IDTR register holds the 32-bit base address and 16-bit table limit for the IDT. The base
address specifies the linear address of byte 0 of the IDT; the table limit specifies the number of
bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. The base address and limit in the register can then be changed as part
of the processor initialization process. See Section 5.10., “Interrupt Descriptor Table (IDT)”, for
more information on the base address and limit fields.

2.4.4. Task Register (TR)

The task register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the TSS of the current task. It references a TSS descriptor in the
GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit spec-
ifies the number of bytes in the TSS. (See Section 6.2.3., “Task Register”, for more information
about the task register.)

Vol. 3 2-11

SYSTEM ARCHITECTURE OVERVIEW Intel®

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task register. On power up or reset of the processor, the base address is set to the default value
of 0 and the limit is set to FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector
and descriptor for the TSS for the new task. The contents of the task register are not automati-
cally saved prior to writing the new TSS information into the register.

2.5. CONTROL REGISTERS

The control registers (CRO, CR1, CR2, CR3, and CR4, see Figure 2-5) determine operating
mode of the processor and the characteristics of the currently executing task, as described below:

® CRO—Contains system control flags that control operating mode and states of the
processor.

® CRI1—Reserved.
® CR2—Contains the page-fault linear address (the linear address that caused a page fault).

® CR3—cContains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page-directory base register (PDBR). Only
the 20 most-significant bits of the page-directory base address are specified; the lower 12
bits of the address are assumed to be 0. The page directory must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of the page directory in the
processor’s internal data caches (they do not control TLB caching of page-directory
information).

When using the physical address extension, the CR3 register contains the base address of
the page-directory-pointer table (see Section 3.8., “36-Bit Physical Addressing Using the
PAE Paging Mechanism”).

® CR4—Contains a group of flags that enable several architectural extensions, and indicate
operating system or executive support for specific processor capabilities.The control
registers can be read and loaded (or modified) using the move-to-or-from-control-registers
forms of the MOV instruction. In protected mode, the MOV instructions allow the control
registers to be read or loaded (at privilege level O only). This restriction means that
application programs or operating-system procedures (running at privilege levels 1, 2, or
3) are prevented from reading or loading the control registers.

2-12 Vol. 3

tel® SYSTEM ARCHITECTURE OVERVIEW

31 10 987 6543210
PIPIM|PIP| TPV
Reserved (set to 0) C|G|C|A|s|2|S|V|M| CR4
E|E|E|E|E|=|D|I|E
OSXMMEXCPTQ
OSFXSR
31 1211 5432 0
P|P
. CRS3
. clw
Page-Directory Base olT (PDBR)
31 0
Page-Fault Linear Address CR2
31 0
CR1
313029 28 19181716 15 6543210
P|C|N Al |w N|E|T|E|M|P
G[D|w M| [P E|T|s|m|p|E| CRO
D Reserved

Figure 2-5. Control Registers

When loading a control register, reserved bits should always be set to the values previously read.
The functions of the flags in the control registers are as follows:

PG

CD

Paging (bit 31 of CRO0). Enables paging when set; disables paging when clear. When
paging is disabled, all linear addresses are treated as physical addresses. The PG flag
has no effect if the PE flag (bit 0 of register CRO) is not also set; in fact, setting the PG
flag when the PE flag is clear causes a general-protection exception (#GP) to be gener-
ated. See Section 3.6., “Paging (Virtual Memory) Overview”, for a detailed description
of the processor’s paging mechanism.

Cache Disable (bit 30 of CR0). When the CD and NW flags are clear, caching of
memory locations for the whole of physical memory in the processor’s internal (and
external) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 10-5. To prevent the processor from accessing and updating its caches, the CD
flag must be set and the caches must be invalidated so that no cache hits can occur (see
Section 10.5.3., “Preventing Caching”). See Section 10.5., “Cache Control”, for a
detailed description of the additional restrictions that can be placed on the caching of
selected pages or regions of memory.

Vol. 3 2-13

SYSTEM ARCHITECTURE OVERVIEW Intel®

NW

AM

WP

NE

ET

TS

Not Write-through (bit 29 of CR0). When the NW and CD flags are clear, write-back
(for Pentium 4, Intel Xeon, P6 family, and Pentium processors) or write-through (for
Intel486 processors) is enabled for writes that hit the cache and invalidation cycles are
enabled. See Table 10-5 for detailed information about the affect of the NW flag on
caching for other settings of the CD and NW flags.

Alignment Mask (bit 18 of CRO0). Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAGS register is set, the CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

Write Protect (bit 16 of CRO). Inhibits supervisor-level procedures from writing into
user-level read-only pages when set; allows supervisor-level procedures to write into
user-level read-only pages when clear. This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as
UNIX*.

Numeric Error (bit 5 of CR0). Enables the native (internal) mechanism for reporting
x87 FPU errors when set; enables the PC-style x87 FPU error reporting mechanism
when clear. When the NE flag is clear and the IGNNE# input is asserted, x87 FPU
errors are ignored. When the NE flag is clear and the IGNNE# input is deasserted, an
unmasked x87 FPU error causes the processor to assert the FERR# pin to generate an
external interrupt and to stop instruction execution immediately before executing the
next waiting floating-point instruction or WAIT/FWAIT instruction. The FERR# pin is
intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag,
IGNNE# pin, and FERR# pin are used with external logic to implement PC-style error
reporting. (See “Software Exception Handling” in Chapter 8, and Appendix D in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information
about x87 FPU error reporting and for detailed information on when the FERR# pin is
asserted, which is implementation dependent.)

Extension Type (bit 4 of CR0). Reserved in the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag
is hardcoded to 1. In the Intel386 and Intel486 processors, this flag indicates support
of Intel 387 DX math coprocessor instructions when set.

Task Switched (bit 3 of CRO0). Allows the saving of the x87 FPU, MMX, SSE, SSE2,
and SSE3 context on a task switch to be delayed until an x87 FPU, MMX, SSE, SSE2
or SSE3 instruction is actually executed by the new task. The processor sets this flag
on every task switch and tests it when executing x87 FPU, MMX, SSE, SSE2, or SSE3
instructions.

* [If the TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available
exception (#NM) is raised prior to the execution of any x87 FPU, MMX, SSE,
SSE2 or SSE3 instruction; with the exception of PAUSE, PREFETCH#,
SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH. (See the paragraph
below for the special case of the WAIT/FWAIT instructions.)

2-14 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

¢ Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM
exception is not raised prior to the execution of an x87 FPU WAIT/FWAIT
instruction.

e If the EM flag is set, the setting of the TS flag has no affect on the execution of the
x87 FPU, MMX, SSE, SSE2, and SSE3 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 FPU instruc-
tion based on the settings of the TS, EM, and MP flags. Table 11-1 and 12-1 show the
actions taken when the processor encounters an MMX and or SSE/SSE2/SSE3 instruc-
tion, respectively.

The processor does not automatically save the context of the x87 FPU, XMM, and
MXCSR registers on a task switch. Instead, it sets the TS flag, which causes the
processor to raise an #NM exception whenever it encounters an x87 FPU, MMX, SSE,
SSE2 or SSE3 instruction in the instruction stream for the new task (with the exception
of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS
instruction) and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never
encounters an x87 FPU, MMX, SSE, SSE2 or SSE3 instruction; the x87 FPU, MMX, SSE,
SSE2, SSE3 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different Combinations of

EM, MP and TS
CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CRO). Indicates that the processor does not have an internal or

external x87 FPU when set; indicates an x87 FPU is present when clear. This flag also
affects the execution of MMX/SSE/SSE2/SSE3 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-
available exception (#NM). This flag must be set when the processor does not have an
internal x87 FPU or is not connected to an external math coprocessor. Setting this flag
forces all floating-point instructions to be handled by software emulation. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87

Vol. 3 2-15

SYSTEM ARCHITECTURE OVERVIEW Intel®

MP

PE

PCD

PWT

VME

FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-
opcode exception (#UD) to be generated (see Table 11-1). Thus, if an IA-32 processor
incorporates MMX technology, the EM flag must be set to 0 to enable execution of
MMX instructions.

Similarly for SSE/SSE2/SSE3 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3 instructions causes an invalid opcode exception (#UD) to be gener-
ated (see Table 12-1). Thus, if an IA-32 processor incorporates the SSE/SSE2/SSE3
extensions, the EM flag must be set to 0 to enable execution of these extensions.
SSE/SSE2/SSE3 instructions not affected by the EM flag include: PAUSE,
PREFETCH#A, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH.

Monitor Coprocessor (bit 1 of CRO0). Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
MP, EM, and TS flags.

Protection Enable (bit 0 of CRO0). Enables protected mode when set; enables real-
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PG flags must be set. See
Section 9.9., “Mode Switching”, for information using the PE flag to switch between
real and protected mode.

Page-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc-
tory. When the PCD flag is set, caching of the page-directory is prevented; when the
flag is clear, the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this flag if
paging is not used (the PG flag in register CRO is clear) or the CD (cache disable) flag
in CRO is set. See Chapter 10, Memory Cache Control, for more information about the
use of this flag. See Section 3.7.6., “Page-Directory and Page-Table Entries”, for a
description of a companion PCD flag in the page-directory and page-table entries.

Page-level Writes Transparent (bit 3 of CR3). Controls the write-through or write-
back caching policy of the current page directory. When the PWT flag is set, write-
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only the internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CRO is clear) or the CD
(cache disable) flag in CRO is set. See Section 10.5., “Cache Control”, for more infor-
mation about the use of this flag. See Section 3.7.6., “Page-Directory and Page-Table
Entries”, for a description of a companion PCD flag in the page-directory and page-
table entries.

Virtual-8086 Mode Extensions (bit 0 of CR4). Enables interrupt- and exception-
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use of the virtual mode extensions can improve the performance of virtual-8086 appli-
cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter-

2-16 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

PVI

TSD

DE

PSE

PAE

MCE

PGE

PCE

rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environments. See
Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode”, for detailed
information about the use of this feature.

Protected-Mode Virtual Interrupts (bit 1 of CR4). Enables hardware support for a
virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear. See Section 16.4., “Protected-Mode Virtual Interrupts”, for
detailed information about the use of this feature.

Time Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to procedures running at privilege level O when set; allows RDTSC instruction to be
executed at any privilege level when clear.

Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DRS for compatibility with software
written to run on earlier IA-32 processors. See Section 15.2.2., “Debug Registers DR4
and DR5”, for more information on the function of this flag.

Page Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4 KBytes when clear. See Section 3.6.1., “Paging Options”, for more information
about the use of this flag.

Physical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-bit physical addresses when set; restricts physical addresses to 32 bits when clear.
See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism”, for
more information about the physical address extension.

Machine-Check Enable (bit 6 of CR4). Enables the machine-check exception when
set; disables the machine-check exception when clear. See Chapter 14, Machine-Check
Architecture, for more information about the machine-check exception and machine-
check architecture.

Page Global Enable (bit 7 of CR4). (Introduced in the P6 family processors.) Enables
the global page feature when set; disables the global page feature when clear. The
global page feature allows frequently used or shared pages to be marked as global to
all users (done with the global flag, bit 8, in a page-directory or page-table entry).
Global pages are not flushed from the translation-lookaside buffer (TLB) on a task
switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag
in control register CRO) before the PGE flag is set. Reversing this sequence may affect
program correctness, and processor performance will be impacted. See Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for more information on the use of this bit.

Performance-Monitoring Counter Enable (bit 8 of CR4). Enables execution of the
RDPMC instruction for programs or procedures running at any protection level when
set; RDPMC instruction can be executed only at protection level 0 when clear.

Vol. 3 2-17

SYSTEM ARCHITECTURE OVERVIEW Intel®

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of
CR4). When set, this flag preforms the following functions: (1) indicates to software
that the operating system supports the use of the FXSAVE and FXRSTOR instructions,
(2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents
of the XMM and MXCSR registers along with the contents of the x87 FPU and MMX
registers, and (3) enables the processor to execute any of the SSE/SSE2/SSE3 instruc-
tions, with the exception of the PAUSE, PREFETCHA, SFENCE, LFENCE,
MFENCE, MOVNTI, and CLFLUSH.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the
contents of the x87 FPU and MMX instructions, but they may not save and restore the
contents of the XMM and MXCSR registers.

Also, if this flag is clear, the processor will generate an invalid opcode exception (#UD)
whenever it attempts to execute an SSE/SSE2/SSE3 instruction, with the exception of
the PAUSE, PREFETCH/i, SFENCE, LFENCE, MFENCE, MOVNTI, and
CLFLUSH. The operating system or executive must explicitly set this flag.

NOTE

The CPUID feature flags FXSR, SSE, SSE2, and SSE3 indicate avail-
ability of the FXSAVE/FXRESTOR instructions, SSE extensions, SSE2
extensions, and SSE3 extensions respectively, on a particular TA-32
processor. The OSFXSR bit provides operating system software with a
means of enabling these features and indicating that the operating
system supports the features.

OSXMMEXCPT

Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit
10 of CR4). Indicates that the operating system supports the handling of unmasked
SIMD floating-point exceptions through an exception handler that is invoked when a
SIMD floating-point exception (#XF) is generated. SIMD floating-point exceptions are
only generated by SSE/SSE2/SSE3 SIMD floating-point instructions. The operating
system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD
floating-point exception.

2.5.1. CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can be qual-
ified with the CPUID instruction to determine if they are implemented on the processor before
they are used.

2-18 Vol. 3

intgl.

2.6. SYSTEM INSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of these
instructions can be executed only by operating-system or executive procedures (that is, proce-
dures running at privilege level 0). Others can be executed at any privilege level and are thus
available to application programs.

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2 lists the system instructions and indicates whether they are available and useful for
application programs. These instructions are described in Chapter 3, Instruction Set Reference
A-M and Chapter 4, Instruction Set Reference N-Z of the [A-32 Intel Architecture Software

Developer’s Manual, Volumes 2A & 2B.
Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes' No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes

Vol. 3 2-19

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions (Contd.)

intgl.

Useful to Protected from
Instruction Description Application? Application?
RDMSR® Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC® Read Time-Stamp Counter Yes Yes?
NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the 1A-32 Architecture with the Pentium processor.

4. This instruction was introduced into the 1A-32 Architecture with the Pentium Pro processor and the
Pentium® processor with MMX™ technology.

2.6.1. Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
data into and storing data from the register:

LGDT (Load GDTR Register) Loads the GDT base address and limit from memory into the

SGDT (Store GDTR Register)
LIDT (Load IDTR Register)
SIDT (Load IDTR Register

LLDT (Load LDT Register)

SLDT (Store LDT Register)

LTR (Load Task Register)

STR (Store Task Register)

2-20 Vol. 3

GDTR register.

into memory.

IDTR register.

into memory.

Stores the GDT base address and limit from the GDTR register
Loads the IDT base address and limit from memory into the
Stores the IDT base address and limit from the IDTR register

Loads the LDT segment selector and segment descriptor from

memory into the LDTR. (The segment selector operand can
also be located in a general-purpose register.)

Stores the LDT segment selector from the LDTR register into
memory or a general-purpose register.

Loads segment selector and segment descriptor for a TSS from
memory into the task register. (The segment selector operand
can also be located in a general-purpose register.)

Stores the segment selector for the current task TSS from the
task register into memory or a general-purpose register.

Intel ® SYSTEM ARCHITECTURE OVERVIEW

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits 0 through 15 of control register CRO. These instructions are provided for compat-
ibility with the 16-bit Intel 286 processor. Programs written to run on 32-bit IA-32 processors
should not use these instructions. Instead, they should access the control register CRO using the
MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-avail-
able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the x87
FPU context has been saved, preventing further #NM exceptions. See Section 2.5., “Control
Registers”, for more information about the TS flag.

The control registers (CR0, CR1, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction can load a control register from a general-purpose register or store the contents
of the control register in a general-purpose register.

2.6.2. \Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment
descriptors to determine if access to their associated segments is allowed. These instructions
duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the program or procedure that supplied the segment selector. See
Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”, for a detailed expla-
nation of the function and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads access rights information from the segment’s segment descriptor into a general-purpose
register. Software can then examine the access rights to determine if the segment type is compat-
ible with its intended use. See Section 4.10.1., “Checking Access Rights (LAR Instruction)”, for
a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment’s segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. See Section 4.10.3., “Checking That the Pointer
Offset Is Within Limits (LSL Instruction)”, for a detailed explanation of the function and use of
this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at a given CPL. See Section 4.10.2., “Checking
Read/Write Rights (VERR and VERW Instructions)”, for a detailed explanation of the function
and use of this instruction.

Vol. 3 2-21

SYSTEM ARCHITECTURE OVERVIEW Intel®

2.6.3. Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DRO
through DR7). The MOV instruction allows setup data to be loaded to and stored from these
registers.

2.6.4. Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and sends a signal to the external caches indicating that
they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, WBINVD signals
external caches to write back modified data and invalidate their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified page.

2.6.5. Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI
or SMI, which are normally enabled), a debug exception, the BINIT# signal, the INIT# signal,
or the RESET# signal is received. The processor generates a special bus cycle to indicate that
the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel
may be turned on. An NMI interrupt for recording diagnostic information may be generated.
Reset initialization may be invoked (note that the BINIT# pin was introduced with the Pentium
Pro processor). If any non-wake events are pending during shutdown, they will be handled after
the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. This mechanism is used to allow reliable communications between processors
in multiprocessor systems, as described below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the
processor to assert the LOCK# signal during the instruction. This always causes an explicit
bus lock to occur.

2-22 Vol. 3

Intel ® SYSTEM ARCHITECTURE OVERVIEW

¢ In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled
with either a cache lock or bus lock. If a memory access is cacheable and affects only a
single cache line, a cache lock is invoked and the system bus and the actual memory
location in system memory are not locked during the operation. Here, other Pentium 4,
Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is
not cacheable and/or it crosses a cache line boundary, the processor’s LOCK# signal is
asserted and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Performance-Monitoring and Time-Stamp
Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instructions allow application programs to read the processor’s performance-monitoring and
time-stamp counters, respectively. Pentium 4 and Intel Xeon processors have eighteen 40-bit
performance-monitoring counters; P6 family processors have two 40-bit counters.

Use these counters to record either the occurrence or duration of events. Events that can be
monitored are model specific; they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different
events. Use the system instruction WRMSR to set up values in the one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the
PerfEvtSell MSR (for the P6 family processors). The RDPMC instruction loads the current
count from the selected counter into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter will increment ~9.5 x 10" times per year when
the processor is operating at a clock rate of 3GHz. At this clock frequency, it would take
over 190 years for the counter to wrap around. The RDTSC instruction loads the current
count of the time-stamp counter into the EDX:EAX registers.

See Section 15.9., “Performance Monitoring Overview”, and Section 15.8., “Time-Stamp
Counter”, for more information about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor.
The RDPMC instruction was introduced into the IA-32 architecture with the Pentium Pro
processor and the Pentium processor with MMX technology. Earlier Pentium processors have
two performance-monitoring counters, but they can be read only with the RDMSR instruction,
and only at privilege level 0.

Vol. 3 2-23

SYSTEM ARCHITECTURE OVERVIEW Intel®

2.6.7. Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions allow a processor’s 64-bit model-specific registers (MSRs) to be read and written,
respectively. The MSR to be read or written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes
the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR were intro-
duced into the TA-32 architecture with the Pentium processor.

See Section 9.4., “Model-Specific Registers (MSRs)”, for more information about the MSRs.

2-24 Vol. 3

Protected-Mode
Memory
Management

intgl.

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, the segmentation mechanism, and the paging
mechanism. See Chapter 4, Protection, for a description of the processor’s protection mecha-
nism. See Chapter 16, 8086 Emulation, for a description of memory addressing protection in
real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmen-
tation and paging. Segmentation provides a mechanism of isolating individual code, data, and
stack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering with one another. Paging provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be
used. There is no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-
program (or single-task) systems, multitasking systems, or multiple-processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addressable memory space (called the linear address space) into smaller protected address
spaces called segments. Segments can be used to hold the code, data, and stack for a program
or to hold system data structures (such as a TSS or LDT). If more than one program (or task) is
running on a processor, each program can be assigned its own set of segments. The processor
then enforces the boundaries between these segments and insures that one program does not
interfere with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations that may be
performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a
byte in a particular segment, a logical address (also called a far pointer) must be provided. A
logical address consists of a segment selector and an offset. The segment selector is a unique
identifier for a segment. Among other things it provides an offset into a descriptor table (such
as the global descriptor table, GDT) to a data structure called a segment descriptor. Each
segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment
in the linear address space (called the base address of the segment). The offset part of the logical
address is added to the base address for the segment to locate a byte within the segment. The
base address plus the offset thus forms a linear address in the processor’s linear address space.

Vol.3 3-1

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Logical Address
(or Far Pointer)

Segment ¢

Selector Offset Linear Address
| | | | Space
; Linear Address
Global Descriptor .
Dir | Table | Offset Physical
Table (GDT) \ \ | Physical
Space
Segment p Tabl
Segment age ‘able Page
Descripor(—4 | | (| || || """
> I Page Directory Phy. Addr.
<|_> Lin. Addr.
_______ Entry > - - — - — -
A Entry >

Segment_J g

Base Address

|~ Page

}— Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (typically 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location.

3-2 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

If the page being accessed is not currently in physical memory, the processor interrupts execu-
tion of the program (by generating a page-fault exception). The operating system or executive
then reads the page into physical memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programs written for 16-bit IA-32 processors can be paged (transparently) when
they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a
wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multi-segmented models that employ segmentation
to create a robust operating environment in which multiple programs and tasks can be executed
reliably.

The following sections give several examples of how segmentation can be employed in a system
to improve memory management performance and reliability.

3.2.1. Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
system and application programs have access to a continuous, unsegmented address space. To
the greatest extent possible, this basic flat model hides the segmentation mechanism of the archi-
tecture from both the system designer and the application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment
descriptors must be created, one for referencing a code segment and one for referencing a data
segment (see Figure 3-2). Both of these segments, however, are mapped to the entire linear
address space: that is, both segment descriptors have the same base address value of 0 and the
same segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
physical memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at FFFF_FFFOH. RAM
(DRAM) is placed at the bottom of the address space because the initial base address for the DS
data segment after reset initialization is 0.

3.2.2. Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
include only the range of addresses for which physical memory actually exists (see Figure 3-3).
A general-protection exception (#GP) is then generated on any attempt to access nonexistent
memory. This model provides a minimum level of hardware protection against some kinds of
program bugs.

Vol.3 3-3

PROTECTED-MODE MEMORY MANAGEMENT

Linear Address Space
(or Physical Memory)

FS
GS

Segment >

Registers Code FFFFFFFFH
Code- and Data-Segment

Descriptors
Not Present
I I

Access Limit o Data and
Base Address L o Stack |o

Figure 3-2. Flat Model

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imi
Registers Access Limt ——> Code FFFFFFFFH
Base Address >

Not Present

Memory 1/O

ES
SS Access Limit
DS Base Address

S

(7]

S

Data and
Stack

> 0

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level O for the supervisor. Usually these segments all
overlay each other and start at address O in the linear address space. This flat segmentation
model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica-
tions from each other. Similar designs are used by several popular multitasking operating

systems.

3-4 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

3.23. Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
cs o | Access | Limit
Base Address Stack

\i

IE Access | Limit
Base Address
IE Access | Limit
Base Address

\i

Code
[& | > Access | Limit
Base Address
Data
E « | Access | Limit
Base Address
Data
| Access | Limit -
II o Base Address -
— Data
Access | Limit
Base Address
Access | Limit
Base Address
Data

Access | Limit
Base Address

Access | Limit

Base Address T ——

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.

Vol.3 3-5

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

3.2.4. Paging and Segmentation

Paging can be used with any of the segmentation models described in Figure 3-2, 3-3, and 3-4.
The processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mapped
to pages in the physical address space. The paging mechanism offers several page-level protec-
tion facilities that can be used with or instead of the segment-protection facilities. For example,
it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes
(2*?bytes). This is the address space that the processor can address on its address bus. This
address space is flat (unsegmented), with addresses ranging continuously from O to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped I/O. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the
physical address space to 2°¢ bytes (64 GBytes); with a maximum physical address of
FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium IlI
processors).

See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section
3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for more information
about 36-bit physical addressing.

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space

paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(see Figure 3-5). The segment selector identifies the segment the byte is located in and the offset
specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor’s linear address space. Like the physical address space, the linear
address space is a flat (unsegmented), 23?-byte address space, with addresses ranging from 0 to
FFFFFFFH. The linear address space contains all the segments and system tables defined for a
system.

3-6 Vol.3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

31 0
| Offset (Effective Address) |

15 0
Seg. Selector

Logical
Address

Descriptor Table

Segment

Base Address
H T
Descriptor

31 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., “Paging (Virtual Memory) Overview”.

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2). Specifies the descriptor table to use: clearing this flag selects the GDT;
setting this flag selects the current LDT.

Vol.3 3-7

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

15 3210
Index mRPL‘

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from O to 3, with O being the most privileged level. See Section 4.5.,
“Privilege Levels”, for a description of the relationship of the RPL to the CPL
of the executing program (or task) and the descriptor privilege level (DPL) of
the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.

3-8 Vol.3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INT#n, INTO and
INT3 instructions. These instructions change the contents of the CS register (and
sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.

Vol.3 3-9

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|ofv| Limt |P| P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

3-10 Vol. 3

Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

e If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for more information
about segment types. For expand-up segments, the offset in a logical address
can range from O to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP). For expand-down segments, the
segment limit has the reverse function; the offset can range from the segment
limit to FFFFFFFFH or FFFFH, depending on the setting of the B flag. Offsets
less than the segment limit generate general-protection exceptions. Decreasing
the value in the segment limit field for an expand-down segment allocates new
memory at the bottom of the segment's address space, rather than at the top. IA-
32 architecture stacks always grow downwards, making this mechanism
convenient for expandable stacks.

intgl.

PROTECTED-MODE MEMORY MANAGEMENT

Base address fields

Type field

Defines the location of byte 0 of the segment within the 4-GByte linear address
space. The processor puts together the three base address fields to form a single
32-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programs to
maximize performance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (see Figure 4-1). See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for a description of how
this field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can range from
0 to 3, with 0 being the most privileged level. The DPL is used to control access
to the segment. See Section 4.5., “Privilege Levels”, for a description of the
relationship of the DPL to the CPL of the executing code segment and the RPL
of a segment selector.

P (segment-present) flag

Indicates whether the segment is present in memory (set) or not present (clear).
If this flag is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this flag to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this flag is clear, the operating system or executive is free
to use the locations marked “Available” to store its own data, such as informa-
tion regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag

Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a stack
segment. (This flag should always be set to 1 for 32-bit code and data segments
and to O for 16-bit code and data segments.)

* Executable code segment. The flag is called the D flag and it indicates the
default length for effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
operands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
operands are assumed.

Vol. 3 3-11

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

The instruction prefix 66H can be used to select an operand size other than
the default, and the prefix 67H can be used select an address size other than
the default.

Stack segment (data segment pointed to by the SS register). The flag is
called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KBytes).

31 161514 13 12 11 8 7 0
D
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag

Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-

larity flag is set, a limit of O results in valid offsets from O to 4095.

Available and reserved bits

Bit 20 of the second doubleword of the segment descriptor is available for use

by system software; bit 21 is reserved and should always be set to 0.

3-12 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read-
only or read/write segments, depending on the setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field
i 1 10 9 8 Descriptor
Decimal E w A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a nonwritable data segment generates a general-protection exception
(#GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment is intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register, assuming that the type of memory that contains
the segment descriptor supports processor writes. The bit remains set until explicitly cleared.
This bit can be used both for virtual memory management and for debugging.

Vol. 3 3-13

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-
privileged conforming segment allows execution to continue at the current privilege level. A
transfer into a nonconforming segment at a different privilege level results in a general-protec-
tion exception (#GP), unless a call gate or task gate is used (see Section 4.8.1., “Direct Calls or
Jumps to Code Segments”, for more information on conforming and nonconforming code
segments). System utilities that do not access protected facilities and handlers for some types of
exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Util-
ities that need to be protected from less privileged programs and procedures should be placed in
nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged
(numerically higher privilege level) code segment, regardless of whether the
target segment is a conforming or nonconforming code segment. Attempting
such an execution transfer will result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged
programs or procedures (code executing at numerically high privilege levels). Unlike code
segments, however, data segments can be accessed by more privileged programs or procedures
(code executing at numerically lower privilege levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an
indefinite loop if software or the processor attempts to update (write to) the ROM-based
segment descriptors. To prevent this problem, set the accessed bits for all segment descriptors
that are placed in a ROM. Also, remove any operating-system or executive code that attempts
to modify segment descriptors that are located in ROM.

3.5. SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.
¢ (Call-gate descriptor.

3-14 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

® Interrupt-gate descriptor.
® Trap-gate descriptor.
® Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-
tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates). Table 3-2
shows the encoding of the type field for system-segment descriptors and gate descriptors.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field
Decimal 1 10 9 8 Description

0 0 0 0 0 | Reserved

1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 |LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 | 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 | Reserved

9 1 0 0 1 32-Bit TSS (Available)
10 1 0 1 0 Reserved

1 1 0 1 1 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call Gate
13 1 1 0 1 Reserved
14 1 1 1 0 | 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

For more information on the system-segment descriptors, see Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor”; for more information on the gate
descriptors, see Section 4.8.3., “Call Gates”, Section 5.11., “IDT Descriptors”, and Section
6.2.4., “Task-Gate Descriptor”.

Vol. 3 3-15

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (2 3 8-byte descriptors. There are two
kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
H ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
base linear address and limit of the GDT must be loaded into the GDTR register (see Section
2.4., “Memory-Management Registers”). The base addresses of the GDT should be aligned on

3-16 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

an eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of O results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an
integral multiple of eight (that is, 8N — 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5., “System Descriptor Types”, information
on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4., “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is stored in memory (see Figure 3-11). To avoid alignment check faults in user mode (privilege
level 3), the pseudo-descriptor should be located at an odd word address (that is, address MOD
4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
doubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility
of generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo-descriptor should be located at a doubleword address (that is, address MOD 4 is
equal to 0).

47 16 15 0
| Base Address | Limit

Figure 3-11. Pseudo-Descriptor Format

3.6. PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, the IA-32 architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is commonly referred to as virtual memory or demand-paged virtual
memory.

Vol. 3 3-17

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

When paging is used, the processor divides the linear address space into fixed-size pages (of 4
KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into physical memory and/or disk
storage. When a program (or task) references a logical address in memory, the processor trans-
lates the address into a linear address and then uses its paging mechanism to translate the linear
address into a corresponding physical address.

If the page containing the linear address is not currently in physical memory, the processor
generates a page-fault exception (#PF). The exception handler for the page-fault exception typi-
cally directs the operating system or executive to load the page from disk storage into physical
memory (perhaps writing a different page from physical memory out to disk in the process).
When the page has been loaded in physical memory, a return from the exception handler causes
the instruction that generated the exception to be restarted. The information that the processor
uses to map linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed size.
If segmentation is the only form of address translation used, a data structure present in physical
memory will have all of its parts in memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current
page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when
the TLBs do not contain a page-table entry, which typically happens when a page has not been
accessed for a long time. See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for more
information on the TLBs.

3.6.1. Paging Options
Paging is controlled by three flags in the processor’s control registers:

* PG (paging) flag. Bit 31 of CRO (available in all IA-32 processors beginning with the
Intel386 processor).

® PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium processor).

® PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the Pentium Pro
processors).

The PG flag enables the page-translation mechanism. The operating system or executive usually
sets this flag during processor initialization. The PG flag must be set if the processor’s page-
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag is
set). When the PSE flag is clear, the more common page length of 4 KBytes is used. See Section
3.7.2., “Linear Address Translation (4-MByte Pages)”, Section 3.8.2., “Linear Address Transla-
tion With PAE Enabled (2-MByte Pages)”, and Section 3.9., “36-Bit Physical Addressing Using
the PSE-36 Paging Mechanism” for more information about the use of the PSE flag.

3-18 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

The PAE flag provides a method of extending physical addresses to 36 bits. This physical
address extension can only be used when paging is enabled. It relies on an additional page direc-
tory pointer table that is used along with page directories and page tables to reference physical
addresses above FFFFFFFFH. See Section 3.8., “36-Bit Physical Addressing Using the PAE
Paging Mechanism”, for more information about extending physical addresses using the PAE
flag.

The 36-bit page size extension (PSE-36) feature provides an alternate method of extending
physical addressing to 36 bits. This paging mechanism uses the page size extension mode
(enabled with the PSE flag) and modified page directory entries to reference physical addresses
above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the EDX register when the CPUID
instruction is executed with a source operand of 1) indicates the availability of this addressing
mechanism. See Section 3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mecha-
nism”, for more information about the PSE-36 physical address extension and page size exten-
sion mechanism.

3.6.2. Page Tables and Directories

The information that the processor uses to translate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

® Page directory—An array of 32-bit page-directory entries (PDEs) contained in a 4-KByte
page. Up to 1024 page-directory entries can be held in a page directory.

® Page table—An array of 32-bit page-table entries (PTEs) contained in a 4-KByte page. Up
to 1024 page-table entries can be held in a page table. (Page tables are not used for 2-
MByte or 4-MByte pages. These page sizes are mapped directly from one or more page-
directory entries.)

® Page—A 4-KByte, 2-MByte, or 4-MByte flat address space.

® Page-Directory-Pointer Table—An array of four 64-bit entries, each of which points to a
page directory. This data structure is only used when the physical address extension is
enabled (see Section 3.8., “36-Bit Physical Addressing Using the PAE Paging
Mechanism”).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte pages only when
extended (36-bit) physical addressing is being used. Table 3-3 shows the page size and physical
address size obtained from various settings of the paging control flags and the PSE-36 CPUID
feature flag. Each page-directory entry contains a PS (page size) flag that specifies whether the
entry points to a page table whose entries in turn point to 4-KByte pages (PS set to 0) or whether
the page-directory entry points directly to a 4-MByte (PSE and PS set to 1) or 2-MByte page
(PAE and PS set to 1).

Vol. 3 3-19

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

3.7. PAGE TRANSLATION USING 32-BIT PHYSICAL
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism when
using 32-bit physical addresses and a maximum physical address space of 4 Gbytes. Section
3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9., “36-Bit
Physical Addressing Using the PSE-36 Paging Mechanism” describe extensions to this page
translation mechanism to support 36-bit physical addresses and a maximum physical address
space of 64 Gbytes.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag, | PAE Flag, | PSE Flag, | PS Flag, | PSE-36 CPUID Physical
CRO CR4 CR4 PDE Feature Flag | Page Size | Address Size
0 X X X X — Paging Disabled
1 0 0 X X 4 KBytes 32 Bits
1 0 1 0 X 4 KBytes 32 Bits
1 0 1 1 0 4 MBytes 32 Bits
1 0 1 1 1 4 MBytes 36 Bits
1 1 X 0 X 4 KBytes 36 Bits
1 1 X 1 X 2 MBytes 36 Bits

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 2%°
pages, which spans a linear address space of 232 bytes (4 GBytes).

3-20 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

Y

Page-Table Entry

20

Directory Entry >

3
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Yy

:

1024 PDE * 1024 PTE = 2°0 Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

To select the various table entries, the linear address is divided into three sections:

® Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

® Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.7.2. Linear Address Translation (4-MByte Pages)
Figure 3-13 shows how a page directory can be used to map linear addresses to 4-MByte pages.

The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.

Vol. 3 3-21

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Linear Address
31 22 21 0

| Directory | Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry (<>

10
1024 PDE = 1024 Pages

L
>
>
>
*

CR3 (PDBR)
*32 bits aligned onto a 4-KByte boundary.

Figure 3-13. Linear Address Translation (4-MByte Pages)

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections:

® Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(For the Pentium processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. See Section 10.9., “Invalidating the Translation
Lookaside Buffers (TLBs)”, for information on how to invalidate the TLBs.

3.7.3. Mixing 4-KByte and 4-MByte Pages

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
mance.

3-22 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

The processor maintains 4-MByte page entries and 4-KByte page entries in separate TLBs. So,
placing often used code such as the kernel in a large page, frees up 4-KByte-page TLB entries
for application programs and tasks.

3.7.4. Memory Aliasing

The IA-32 architecture permits memory aliasing by allowing two page-directory entries to point
to a common page-table entry. Software that needs to implement memory aliasing in this manner
must manage the consistency of the accessed and dirty bits in the page-directory and page-table
entries. Allowing the accessed and dirty bits for the two page-directory entries to become incon-
sistent may lead to a processor deadlock.

3.7.5. Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page directory base register or PDBR). (See Figure 2-5 and Section 2.5., “Control Registers”,
for more information on the PDBR.) If paging is to be used, the PDBR must be loaded as part
of the processor initialization process (prior to enabling paging). The PDBR can then be changed
either explicitly by loading a new value in CR3 with a MOV instruction or implicitly as part of
a task switch. (See Section 6.2.1., “Task-State Segment (TSS)”, for a description of how the
contents of the CR3 register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may be not-
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.7.6. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-15 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figure 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

Vol. 3 3-23

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
P[P|U[R
Page-Table Base Address Avail |G|PlolAa|c|w|/|/|P
S D|T|s|w
Available for system programmer’s use J ‘
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P P|P|U|R
Page Base Address Avail |G|A|D|A|C|W|/|/|P

D(T|S|W

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

a
Available for system programmer’s use J ‘

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages

3-24 Vol. 3

and 32-Bit Physical Addresses

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a 4-MByte page. Only bits 22 through 31 of this field are used
(and bits 12 through 21 are reserved and must be set to 0, for IA-32 processors
through the Pentium II processor). The base address bits are interpreted as the
10 most-significant bits of the physical address, which forces 4-MByte pages
to be aligned on 4-MByte boundaries.

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Page-Directory Entry (4-MByte Page)

31 22 21 131211 9876543210
P P|P|U|R

Page Base Address Reserved A Avail. |G P D|A|C|W|/|/|P
D|T|S|W

Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page Table Attribute Index
Available for system programmer’s use

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system gener-
ally needs to carry out the following operations:

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other flags, such as the dirty and accessed flags, may also
be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program (or
task).

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.

Vol. 3 3-25

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

This flag interacts with the U/S flag and the WP flag in register CR0. See
Section 4.11., “Page-Level Protection”, and Table 4-2 for a detailed discussion
of the use of these flags.

User/supervisor (U/S) flag, bit 2

Specifies the user-supervisor privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag is
clear, the page is assigned the supervisor privilege level; when the flag is set,
the page is assigned the user privilege level. This flag interacts with the R/'W
flag and the WP flag in register CRO. See Section 4.11., “Page-Level Protec-
tion”, and Table 4-2 for a detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3

Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
the CD (cache disable) flag in CRO is set. See Section 10.5., “Cache Control”,
for more information about the use of this flag. See Section 2.5., “Control
Registers”, for a description of a companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4

Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
disabled for pages that contain memory-mapped I/O ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumes it is set) if the CD (cache disable) flag in CRO is set. See Chapter 10,
Memory Cache Control, for more information about the use of this flag. See
Section 2.5., “Control Registers”, for a description of a companion PCD flag
in control register CR3.

Accessed (A) flag, bit 5

3-26 Vol. 3

Indicates whether a page or page table has been accessed (read from or written
to) when set. Memory management software typically clears this flag when a
page or page table is initially loaded into physical memory. The processor then
sets this flag the first time a page or page table is accessed.

This flag is a “sticky” flag, meaning that once set, the processor does not
implicitly clear it. Only software can clear this flag. The accessed and dirty
flags are provided for use by memory management software to manage the
transfer of pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be
exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being used for
page table structures, the setting of the bit may or may not result in an imme-
diate change to the executing code stream.

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries that point to page tables.) Memory management soft-
ware typically clears this flag when a page is initially loaded into physical
memory. The processor then sets this flag the first time a page is accessed for
a write operation.

This flag is “sticky,” meaning that once set, the processor does not implicitly
clear it. Only software can clear this flag. The dirty and accessed flags are
provided for use by memory management software to manage the transfer of
pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be
exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being used for
page table structures, the setting of the bit may or may not result in an imme-
diate change to the executing code stream.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages
Determines the page size. When this flag is clear, the page size is 4 KBytes and
the page-directory entry points to a page table. When the flag is set, the page
size is 4 MBytes for normal 32-bit addressing (and 2 MBytes if extended phys-
ical addressing is enabled) and the page-directory entry points to a page. If the
page-directory entry points to a page table, all the pages associated with that
page table will be 4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte pages and
bit 12 in page-directory entries for 4-MByte pages
(Introduced in the Pentium Il processor.) Selects PAT entry. For processors
that support the page attribute table (PAT), this flag is used along with the
PCD and PWT flags to select an entry in the PAT, which in turn selects the
memory type for the page (see Section 10.12., “Page Attribute Table (PAT)”).
For processors that do not support the PAT, this bit is reserved and should be
set to 0.

Global (G) flag, bit 8

(Introduced in the Pentium Pro processor.) Indicates a global page when set.
When a page is marked global and the page global enable (PGE) flag in register
CRA4 is set, the page-table or page-directory entry for the page is not invalidated
in the TLB when register CR3 is loaded or a task switch occurs. This flag is
provided to prevent frequently used pages (such as pages that contain kernel or
other operating system or executive code) from being flushed from the TLB.
Only software can set or clear this flag. For page-directory entries that point to
page tables, this flag is ignored and the global characteristics of a page are set
in the page-table entries. See Section 3.11., “Translation Lookaside Buffers
(TLBs)”, for more information about the use of this flag. (This bit is reserved
in Pentium and earlier IA-32 processors.)

Vol. 3 3-27

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Reserved and available-to-software bits
For all IA-32 processors. Bits 9, 10, and 11 are available for use by software.
(When the present bit is clear, bits 1 through 31 are available to software—see
Figure 3-16.) In a page-directory entry that points to a page table, bit 6 is
reserved and should be set to 0. When the PSE and PAE flags in control register
CR4 are set, the processor generates a page fault if reserved bits are not set to 0.

For Pentium II and earlier processors. Bit 7 in a page-table entry is reserved and
should be set to 0. For a page-directory entry for a 4-MByte page, bits 12
through 21 are reserved and must be set to 0.

For Pentium Il and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.

3.7.7. Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (see Figure 3-16).

31 0

‘ Available to Operating System or Executive ‘ 0 ‘

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.8. 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING
MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were introduced into the
IA-32 architecture in the Pentium Pro processors. Implementation of this feature in an IA-32
processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register when the source
operand for the CPUID instruction is 2). The physical address extension (PAE) flag in register
CR4 enables the PAE mechanism and extends physical addresses from 32 bits to 36 bits. Here,
the processor provides 4 additional address line pins to accommodate the additional address bits.
To use this option, the following flags must be set:

® PG flag (bit 31) in control register CRO—Enables paging
® PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or

3-28 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

a page table that in turn points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

® The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

® A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

® The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
27-bit page-directory-pointer-table base address field (see Figure 3-17). (In this case,
register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
physical address of the first byte of the page-directory-pointer table, which forces the table
to be located on a 32-byte boundary.

® Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.

31 0
)) PP
Page-Directory-Pointer-Table Base Address 8 \4\/ 0|0|0

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

3.8.1. Linear Address Translation With PAE Enabled (4-KByte
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hierarchy when
mapping linear addresses to 4-KByte pages when the PAE paging mechanism enabled. This
paging method can be used to address up to 22° pages, which spans a linear address space of 232
bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

® Page offset—Bits O through 11 provide an offset to a physical address in the page.

Vol. 3 3-29

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Linear Address
31 30 29 21 20 12 11 0
Directory Pointer —>| | Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

Page-Table Entry >

Y

»| Directory Entry

Page-Directory-
Pointer Table

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

—>| Dir. Pointer Entry

*

CR3 (PDPTR)
*32 bits aligned onto a 32-byte boundary

Figure 3-18. Linear Address Translation With PAE Enabled (4-KByte Pages)

3.8.2. Linear Address Translation With PAE Enabled (2-MByte
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte pages when the PAE paging mechanism enabled. This paging
method can be used to map up to 2048 pages (4 page-directory-pointer-table entries times 512
page-directory entries) into a 4-GByte linear address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) flag in a
page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag in control register
CR4 has no affect on the page size when PAE is enabled.) With the PS flag set, the linear address
is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page.

® Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

3-30 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Linear Address
31 30 29 21 20 0
—>| ‘ Directory Offset

Directory
Pointer

21 2-MByte Page

Page Directory Physical Address

Page-Directory-
Pointer Table

2

—>»| Directory Entry 15 >
> Dir. Pointer Entry >
—>
30* 4 PDPTE = 512 PDE = 2048 Pages

CRS3 (PDPTR)
*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With PAE Enabled (2-MByte Pages)

3.8.3. Accessing the Full Extended Physical Address Space
With the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
the 64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

® Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

® Change entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.

3.8.4. Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and

page-table entries when 4-KByte pages and 36-bit extended physical addresses are being

used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory

entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func-

tions of the flags in these entries are the same as described in Section 3.7.6., “Page-Directory
and Page-Table Entries”. The major differences in these entries are as follows:

® A page-directory-pointer-table entry is added.

® The size of the entries are increased from 32 bits to 64 bits.

Vol. 3 3-31

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

® The maximum number of entries in a page directory or page table is 512.

® The base physical address field in each entry is extended to 24 bits.

NOTE

Current IA-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. Future IA-32 processors may cache
page-directory-pointer table entries.

Page-Directory-Pointer-Table Entry

63 36 35 32
Base
Reserved (set to 0) Addr.
31 1211 98 543210
) PP
Page-Directory Base Address Avail | Reserved g \4v Res.|P

Page-Directory Entry (4-KByte Page Table)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
P|P|U[R

Page-Table Base Address Avail |0|0|0[A[C|W|/|/|P
D|T|S|W

Page-Table Entry (4-KByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
P P|P|U|R

Page Base Address Avail |G|A|D|A[C|W|/|/|P
T D|T|[S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled

3-32 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Page-Directory-Pointer-Table Entry

63 36 35 32
Base
Reserved (set to 0) Addr
EL 121198 543210
. PP
Page Directory Base Address Avail. | Reserved g vTv Res.| P

Page-Directory Entry (2-MByte Page)

63 36 35 32
Base
Reserved (set to 0) Adar.
31 21 20 1312 11 9876543210
P PIP[U|R
Page Base Address | Reserved (setto 0) |A| Avail. [G|1|D|A g \4v :/5 v/v P
T

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for
2-MByte Pages with PAE Enabled

The base physical address in an entry specifies the following, depending on the type of entry:

® Page-directory-pointer-table entry—the physical address of the first byte of a
4-KByte page directory.

® Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

® Page-table entry—the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KByte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to O or 1. If the
present flag is clear, the remaining bits in the page-directory-pointer-table entry are available to
the operating system. If the present flag is set, the fields of the page-directory-pointer-table entry
are defined in Figure 3-20 for 4KB pages and Figure 3-21 for 2MB pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.

Vol. 3 3-33

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present flag is clear, bits 1 through 63 are available to software.) All bits
in Figure 3-14 that are marked reserved or 0 should be set to 0 by software and not accessed by
software. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and it generates a general-protection exception (#GP) if reserved bits in a page-directory-
pointer-table entry are not set to 0.

3.9. 36-BIT PHYSICAL ADDRESSING USING THE PSE-36
PAGING MECHANISM

The PSE-36 paging mechanism provides an alternate method (from the PAE mechanism) of
extending physical memory addressing to 36 bits. This mechanism uses the page size extension
(PSE) mode and a modified page-directory table to map 4-MByte pages into a 64-Gbyte phys-
ical address space. As with the PAE mechanism, the processor provides 4 additional address line
pins to accommodate the additional address bits.

The PSE-36 mechanism was introduced into the IA-32 architecture with the Pentium III proces-
sors. The availability of this feature is indicated with the PSE-36 feature bit (bit 17 of the EDX
register when the CPUID instruction is executed with a source operand of 1).

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-36 paging
mechanism:

¢ PSE-36 CPUID feature flag—When set, it indicates the availability of the PSE-36 paging
mechanism on the IA-32 processor on which the CPUID instruction is executed.

® PG flag (bit 31) in register CRO—Set to 1 to enable paging.
® PAE flag (bit 5) in control register CR4—Clear to O to disable the PAE paging mechanism.

¢ PSE flag (bit 4) in control register CR4 and the PS flag in PDE— Set to 1 to enable the
page size extension for 4-Mbyte pages.

® Or the PSE flag (bit 4) in control register CR4— Set to 1 and the PS flag (bit 7) in PDE—
Set to O to enable 4-KByte pages with 32-bit addressing (below 4 GBytes).

Figure 3-22 shows how the expanded page directory entry can be used to map a 32-bit linear
address to a 36-bit physical address. Here, the linear address is divided into two sections:

® Page directory entry—Bits 22 through 35 provide an offset to an entry in the page
directory. The selected entry provides the 14 most significant bits of a 36-bit address,
which locates the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical address
space.

3-34 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

Linear Address
31 22 21 0

| Directory | Offset

J 22 4-MByte Page

10 _ Page Directory

Physical Address

Directory Entry 12 >

1024 PDE = 1024 Pages

L.
>
>
>
*

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-22. Linear Address Translation (4-MByte Pages)

Figure 3-23 shows the format for the page-directory entries when 4-MByte pages and 36-bit
physical addresses are being used. Section 3.7.6., “Page-Directory and Page-Table Entries”
describes the functions of the flags and fields in bits O through 11.

Page-Directory Entry (4-MByte Page)

31 22 21 1716 131211 9876543210
Page Base Address P PIPIUIR
9 Reserved Al Avail. [a|P|p|alc|w|/]|/ |P

(Bits 22 Through 31) T S D|T|S|W

Page Base Address (Bits 32 Through 35) J
Page Attribute Table Index
Available for system programmer’s use
Global page
Page size (must be set to 1)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Figure 3-23. Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses

Vol. 3 3-35

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the TA-32 architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The IA-32 architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware is to give each segment its own page table, as shown in Figure 3-24. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.

Page Frames

LDT Page Directory Page s >
PTE —
PTE >
PTE =
Seg. Descript.—> PDE 4|—>
Seg. Descript.—> PDE >
PTE | =

PTE —‘

Figure 3-24. Memory Management Convention That Assigns a Page Table
to Each Segment

3-36 Vol. 3

Intel ® PROTECTED-MODE MEMORY MANAGEMENT

3.11. TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The P6 family and Pentium processors have
separate TLBs for the data and instruction caches. Also, the P6 family processors maintain sepa-
rate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to deter-
mine the sizes of the TLBs provided in the P6 family and Pentium processors.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the translation infor-
mation for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only, operating system or executive procedures running at priv-
ilege level of O can invalidate TLBs or selected TLB entries. Whenever a page-directory or
page-table entry is changed (including when the present flag is set to zero), the operating-system
must immediately invalidate the corresponding entry in the TLB so that it can be updated the
next time the entry is referenced.

All of the (non-global) TLBs are automatically invalidated any time the CR3 register is loaded
(unless the G flag for a page or page-table entry is set, as describe later in this section). The CR3
register can be loaded in either of two ways:

® Explicitly, using the MOV instruction, for example:
MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.

® Implicitly by executing a task switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
Normally, this instruction invalidates only an individual TLB entry; however, in some cases, it
may invalidate more than the selected entry and may even invalidate all of the TLBs. This
instruction ignores the setting of the G flag in a page-directory or page-table entry (see following
paragraph).

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in register CR4
and the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequently used pages from being automatically invalidated in the TLBs on a task switch or a
load of register CR3. (See Section 3.7.6., “Page-Directory and Page-Table Entries”, for more
information about the global flag.) When the processor loads a page-directory or page-table
entry for a global page into a TLB, the entry will remain in the TLB indefinitely. The only ways
to deterministically invalidate global page entries are as follows:

® C(lear the PGE flag and then invalidate the TLBs.

Vol. 3 3-37

PROTECTED-MODE MEMORY MANAGEMENT Intel ®

¢ Execute the INVLPG instruction to invalidate individual page-directory or page-table
entries in the TLBs.

For additional information about invalidation of the TLBs, see Section 10.9., “Invalidating the
Translation Lookaside Buffers (TLBs)”.

3-38 Vol. 3

Protection

CHAPTER 4
PROTECTION

In protected mode, the IA-32 architecture provides a protection mechanism that operates at both
the segment level and the page level. This protection mechanism provides the ability to limit
access to certain segments or pages based on privilege levels (four privilege levels for segments
and two privilege levels for pages). For example, critical operating-system code and data can be
protected by placing them in more privileged segments than those that contain applications
code. The processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local-
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it
satisfies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla-
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

® Limit checks.

® Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, Interrupt and
Exception Handling, for an explanation of the exception mechanism. This chapter describes the
protection mechanism and the violations which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See
Chapter 16, 8086 Emulation, for information on protection in real-address and virtual-8086
mode.

4.1. ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enables the segment-protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment-protection mechanism

Vol. 3 4-1

PROTECTION Intel ®

that is based on privilege levels can essentially be disabled while still in protected mode by
assigning a privilege level of O (most privileged) to all segment selectors and segment descrip-
tors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag
in register CR0O). Here again there is no mode bit for turning off page-level protection once
paging is enabled. However, page-level protection can be disabled by performing the following
operations:

® (Clear the WP flag in control register CRO.

® Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data
structures to control access to segments and pages:

® Descriptor type (S) flag—(Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for a system segment or a code or data segment.

® Type field—(Bits 8 through 11 in the second doubleword of a segment descriptor.)
Determines the type of code, data, or system segment.

® Limit field—(Bits O through 15 of the first doubleword and bits 16 through 19 of the
second doubleword of a segment descriptor.) Determines the size of the segment, along
with the G flag and E flag (for data segments).

®* G flag—(Bit 23 in the second doubleword of a segment descriptor.) Determines the size of
the segment, along with the limit field and E flag (for data segments).

® E flag—(Bit 10 in the second doubleword of a data-segment descriptor.) Determines the
size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field—(Bits 13 and 14 in the second doubleword of a
segment descriptor.) Determines the privilege level of the segment.

® Requested privilege level (RPL) field. (Bits 0 and 1 of any segment selector.) Specifies the
requested privilege level of a segment selector.

® Current privilege level (CPL) field. (Bits 0 and 1 of the CS segment register.) Indicates the
privilege level of the currently executing program or procedure. The term current privilege
level (CPL) refers to the setting of this field.

® User/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry.) Determines the
type of page: user or supervisor.

4-2 Vol.3

intgl.

PROTECTION

® Read/write (R/W) flag. (Bit 1 of a page-directory or page-table entry.) Determines the type

of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and system-
segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field in a segment
selector (or the CS register); and Figure 3-14 shows the location of the U/S and R/W flags in the

page-directory and page-table entries.

Data-Segment Descriptor
31 242322 212019 16 1514 13 12 11 8 7
Al Limi D Type
Base 31:24 G[B|0O|V 1"6"}'% P| P yp Base 23:16
: 1|0 ‘E ‘W‘ A
31 16 15
Base Address 15:00 Segment Limit 15:00
Code-Segment Descriptor
31 242322 212019 16 1514 13 12 11 8 7
A .. D Type
Base31:24 |G|p[o|v| HML |p| p P Base 23:16
L : L1t ‘c ‘ R ‘ A
31 16 15
Base Address 15:00 Segment Limit 15:00
System-Segment Descriptor
31 242322 212019 16 1514 13 12 11 8 7
Limit P
Base 31:24 G 0 . Pl P [0 Type Base 23:16
19:16 L
31 16 15
Base Address 15:00 Segment Limit 15:00
A Accessed E Expansion Direction
AVL Available to Sys. Programmer’s G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default W Writable
DPL Descriptor Privilege Level P Present
D Reserved

Figure 4-1. Descriptor Fields Used for Protection

Vol. 3 4-3

PROTECTION Intel ®

Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli-
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.

4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (see Figure 4-1). For data segments, the limit also depends on the
E (expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The
E flag is one of the bits in the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
212 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4
GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset
(address) are not checked against the limit; for example, note that if the segment limit is 0,
offsets O through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last
address that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of the segment. The processor causes a general-protection exception any time an attempt is made
to access the following addresses in a segment:

® A byte at an offset greater than the effective limit

® A word at an offset greater than the (effective-limit — 1)

® A doubleword at an offset greater than the (effective-limit — 3)
® A quadword at an offset greater than the (effective-limit — 7)

For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the effective limit specifies the last address that is not allowed to be accessed
within the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the
B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The

4-4 Vol. 3

| ntel o PROTECTION

LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the GDT and LDT limit fields; see Section 5.10.,
“Interrupt Descriptor Table (IDT)”, for more information on the IDT limit field; and see Section
6.2.3., “Task Register”, for more information on the TSS segment limit field.

4.4. TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
® The type field.

The processor uses this information to detect programming errors that result in an attempt to use
a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field
provides 4 additional bits for use in defining various types of code, data, and system descriptors.
Table 3-1 shows the encoding of the type field for code and data descriptors; Table 3-2 shows
the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed. This list is not exhaustive.

® When a segment selector is loaded into a segment register. Certain segment registers
can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
® When a segment selector is loaded into the LDTR or task register.

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

® When instructions access segments whose descriptors are already loaded into
segment registers. Certain segments can be used by instructions only in certain predefined
ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is set.

Vol. 3 4-5

PROTECTION Intel ®

® When an instruction operand contains a segment selector. Certain instructions can
access segments or gates of only a particular type, for example:

A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

The LLDT instruction must reference a segment descriptor for an LDT.
The LTR instruction must reference a segment descriptor for a TSS.

The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, task gate, code segment, or data segment.

The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

IDT entries must be interrupt, trap, or task gates.

® During certain internal operations. For example:

4.4.1.

On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or jump to
another code segment, a call or jump through a gate, or a task switch) by checking the
type field in the segment (or gate) descriptor pointed to by the segment (or gate)
selector given as an operand in the CALL or JMP instruction. If the descriptor type is
for a code segment or call gate, a call or jump to another code segment is indicated; if
the descriptor type is for a TSS or task gate, a task switch is indicated.

On a call or jump through a call gate (or on an interrupt- or exception-handler call
through a trap or interrupt gate), the processor automatically checks that the segment
descriptor being pointed to by the gate is for a code segment.

On a call or jump to a new task through a task gate (or on an interrupt- or exception-
handler call to a new task through a task gate), the processor automatically checks that
the segment descriptor being pointed to by the task gate is for a TSS.

On a call or jump to a new task by a direct reference to a TSS, the processor automati-
cally checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

On return from a nested task (initiated by an IRET instruction), the processor checks
that the previous task link field in the current TSS points to a TSS.

Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.1., “Segment Selectors”) into the CS
or SS segment register generates a general-protection exception (#GP). A null segment selector
can be loaded into the DS, ES, FS, or GS register, but any attempt to access a segment through
one of these registers when it is loaded with a null segment selector results in a #GP exception
being generated. Loading unused data-segment registers with a null segment selector is a useful
method of detecting accesses to unused segment registers and/or preventing unwanted accesses
to data segments.

4-6 Vol. 3

| ntel . PROTECTION

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpreted as rings of protection.

The center (reserved for the most privileged code, data, and stacks) is used for the segments
containing the critical software, usually the kernel of an operating system. Outer rings are used
for less critical software. (Systems that use only 2 of the 4 possible privilege levels should use
levels 0 and 3.)

Protection Rings

Operating
System >
Kernel Level O

Operating System
Services Level 1

Applications Level 3

Figure 4-2. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

¢ Current privilege level (CPL). The CPL is the privilege level of the currently executing
program or task. It is stored in bits O and 1 of the CS and SS segment registers. Normally,
the CPL is equal to the privilege level of the code segment from which instructions are
being fetched. The processor changes the CPL when program control is transferred to a
code segment with a different privilege level. The CPL is treated slightly differently when
accessing conforming code segments. Conforming code segments can be accessed from
any privilege level that is equal to or numerically greater (less privileged) than the DPL of
the conforming code segment. Also, the CPL is not changed when the processor accesses a
conforming code segment that has a different privilege level than the CPL.

Vol. 3 4-7

PROTECTION Intel ®

® Descriptor privilege level (DPL). The DPL is the privilege level of a segment or gate. It is
stored in the DPL field of the segment or gate descriptor for the segment or gate. When the
currently executing code segment attempts to access a segment or gate, the DPL of the
segment or gate is compared to the CPL and RPL of the segment or gate selector (as
described later in this section). The DPL is interpreted differently, depending on the type of
segment or gate being accessed:

— Data segment. The DPL indicates the numerically highest privilege level that a
program or task can have to be allowed to access the segment. For example, if the DPL
of a data segment is 1, only programs running at a CPL of 0 or 1 can access the
segment.

— Nonconforming code segment (without using a call gate). The DPL indicates the
privilege level that a program or task must be at to access the segment. For example, if
the DPL of a nonconforming code segment is 0, only programs running at a CPL of 0
can access the segment.

— Call gate. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the call gate. (This is the
same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment accessed through a
call gate. The DPL indicates the numerically lowest privilege level that a program or
task can have to be allowed to access the segment. For example, if the DPL of a
conforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
segment.

— TSS. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the TSS. (This is the
same access rule as for a data segment.)

¢ Requested privilege level (RPL). The RPL is an override privilege level that is assigned
to segment selectors. It is stored in bits 0 and 1 of the segment selector. The processor
checks the RPL along with the CPL to determine if access to a segment is allowed. Even if
the program or task requesting access to a segment has sufficient privilege to access the
segment, access is denied if the RPL is not of sufficient privilege level. That is, if the RPL
of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and
vice versa. The RPL can be used to insure that privileged code does not access a segment
on behalf of an application program unless the program itself has access privileges for that
segment. See Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)” for
a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.

4-8 Vol. 3

| ntel . PROTECTION

4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded
into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).
(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions.) Before the processor loads a segment selector into a segment register, it performs a priv-
ilege check (see Figure 4-3) by comparing the privilege levels of the currently running program
or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is
numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-protection
fault is generated and the segment register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Privilege
Check

Data-Segment Descriptor

Y

DPL -

Figure 4-3. Privilege Check for Data Access

Figure 4-4 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

® The procedure in code segment A is able to access data segment E using segment selector
El, because the CPL of code segment A and the RPL of segment selector El are equal to
the DPL of data segment E.

® The procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment A and the RPL of segment selector E2 are both
numerically lower than (more privileged) than the DPL of data segment E. A code segment
B procedure can also access data segment E using segment selector E1.

® The procedure in code segment C is not able to access data segment E using segment
selector E3 (dotted line), because the CPL of code segment C and the RPL of segment
selector E3 are both numerically greater than (less privileged) than the DPL of data
segment E. Even if a code segment C procedure were to use segment selector E1 or E2,
such that the RPL would be acceptable, it still could not access data segment E because its
CPL is not privileged enough.

Vol. 3 4-9

PROTECTION Intel ®

® The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
of segment selector E3 (which the code segment D procedure is using to access data
segment E) is numerically greater than the DPL of data segment E, so access is not
allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Code "
Segment C SegmentSel. E3 | _ _ _ _ |
CPL=3 RPL=3 |
Lowest Privilege \!/
Code
Segment Sel. E1 > Data
Segment A— 9 RPL=2| = |SegmentE

Y

CPL=2 —\DPL=2

Segr?]gﬁt B Segment Sel. E%

—|CPL=1 RPL=1

Code
Segment D

CPL=0

m Highest Privilege

Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
as its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for a data-
segment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will
provide protection against deliberate, direct attempts to violate privilege-level security for the
data segment. To prevent these types of privilege-level-check violations, a program or procedure
can check access privileges whenever it receives a data-segment selector from another proce-
dure (see Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”).

4-10 Vol. 3

| ntel o PROTECTION

4.6.1. Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible:

® Load a data-segment register with a segment selector for a nonconforming, readable, code
segment.

® Load a data-segment register with a segment selector for a conforming, readable, code
segment.

® Use a code-segment override prefix (CS) to read a readable, code segment whose selector
is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a stack segment. Here all privilege levels related to the stack segment must match the CPL; that
is, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and performs various limit, type, and privilege checks. If these checks are successful, the CS
register is loaded, program control is transferred to the new code segment, and program execu-
tion begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT,
INT n, and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions,
interrupts, and the IRET instruction are special cases discussed in Chapter 5, Interrupt and
Exception Handling. This chapter discusses only the JMP, CALL, RET, SYSENTER, and
SYSEXIT instructions.

Vol. 3 4-11

PROTECTION Intel ®

A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment selector for
the target code segment.

® The target operand points to a TSS, which contains the segment selector for the target code
segment.

® The target operand points to a task gate, which points to a TSS, which in turn contains the
segment selector for the target code segment.

The following sections describe first two types of references. See Section 6.3., “Task
Switching”, for information on transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and
returns from operating system or executive procedures. These instructions are discussed briefly
in Section 4.8.7., “Performing Fast Calls to System Procedures with the SYSENTER and
SYSEXIT Instructions”.

4.8.1. Direct Calls or Jumps to Code Segments

The near forms of the JIMP, CALL, and RET instructions transfer program control within the
current code segment, so privilege-level checks are not performed. The far forms of the JMP,
CALL, and RET instructions transfer control to other code segments, so the processor does
perform privilege-level checks.

When transferring program control to another code segment without going through a call gate,
the processor examines four kinds of privilege level and type information (see Figure 4-5):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code
segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL

Destination Code
Segment Descriptor

DPL| (C

Privilege
Check

YYVY

Figure 4-5. Privilege Check for Control Transfer Without Using a Gate

4-12 Vol. 3

| ntel o PROTECTION

® The DPL of the segment descriptor for the destination code segment that contains the
called procedure.

® The RPL of the segment selector of the destination code segment.

® The conforming (C) flag in the segment descriptor for the destination code segment, which
determines whether the segment is a conforming (C flag is set) or nonconforming (C flag is
clear) code segment. (See Section 3.4.3.1., “Code- and Data-Segment Descriptor Types”,
for more information about this flag.)

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C flag, as described in the following sections.

4.8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

When accessing nonconforming code segments, the CPL of the calling procedure must be equal
to the DPL of the destination code segment; otherwise, the processor generates a general-protec-
tion exception (#GP).

For example, in Figure 4-6, code segment C is a nonconforming code segment. Therefore, a
procedure in code segment A can call a procedure in code segment C (using segment selector
C1), because they are at the same privilege level (the CPL of code segment A is equal to the DPL
of code segment C). However, a procedure in code segment B cannot call a procedure in code
segment C (using segment selector C2 or C1), because the two code segments are at different
privilege levels.

Vol. 3 4-13

PROTECTION Intel ®

Segment Sel. D2
Code =
Segment B RPL=3
_ l | SegmentSel.C2 |----- 1
CPL=3 RPL=3

Lowest Privilege

Segment Sel. C1 —>{ Code
P —

Code [RPL=2| Segment C

Segment A
CPL=2 Segment Sel. D1 DPL=2
- [RPL=2 Nonconforming

Code Segment

Y

Code
Segment D

DPL=3

Conforming
Code Segment

\i

m Highest Privilege

Figure 4-6. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited
effect on the privilege check. The RPL must be numerically less than or equal to the CPL of the
calling procedure for a successful control transfer to occur. So, in the example in Figure 4-6, the
RPLs of segment selectors C1 and C2 could legally be set to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the
privilege level field is not changed; that is, it remains at the CPL (which is the privilege level of
the calling procedure). This is true, even if the RPL of the segment selector is different from the
CPL.

4.8.1.2. ACCESSING CONFORMING CODE SEGMENTS

When accessing conforming code segments, the CPL of the calling procedure may be numeri-
cally equal to or greater than (less privileged) the DPL of the destination code segment; the
processor generates a general-protection exception (#GP) only if the CPL is less than the DPL.
(The segment selector RPL for the destination code segment is not checked if the segment is a
conforming code segment.)

4-14 Vol. 3

| ntel o PROTECTION

In the example in Figure 4-6, code segment D is a conforming code segment. Therefore, calling
procedures in both code segment A and B can access code segment D (using either segment
selector D1 or D2, respectively), because they both have CPLs that are greater than or equal to
the DPL of the conforming code segment. For conforming code segments, the DPL repre-
sents the numerically lowest privilege level that a calling procedure may be at to success-
fully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But
since RPLs are not checked when accessing conforming code segments, the two segment selec-
tors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change,
even if the DPL of the destination code segment is less than the CPL. This situation is the only
one where the CPL may be different from the DPL of the current code segment. Also, since the
CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers,
which support applications but do not require access to protected system facilities. These
modules are part of the operating system or executive software, but they can be executed at
numerically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
calling code segment when switching to a conforming code segment prevents an application
program from accessing nonconforming code segments while at the privilege level (DPL) of a
conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred
only to code segments at the same level of privilege, unless the transfer is carried out through a
call gate, as described in the following sections.

4.8.2. Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor
provides special set of descriptors called gate descriptors. There are four kinds of gate
descriptors:

® (all gates
® Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 6, Task Management. Trap
and interrupt gates are special kinds of call gates used for calling exception and interrupt
handlers. The are described in Chapter 5, Interrupt and Exception Handling. This chapter is
concerned only with call gates.

Vol. 3 4-15

PROTECTION Intel ®

4.8.3. Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels.
They are typically used only in operating systems or executives that use the privilege-level
protection mechanism. Call gates are also useful for transferring program control between 16-bit
and 32-bit code segments, as described in Section 17.4., “Transferring Control Among Mixed-
Size Code Segments”.

Figure 4-7 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the
GDT or in an LDT, but not in the interrupt descriptor table (IDT). It performs six functions:

® It specifies the code segment to be accessed.
® It defines an entry point for a procedure in the specified code segment.

® It specifies the privilege level required for a caller trying to access the procedure.

31 161514 1312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P yp 000 Ié%rﬁm. 4
L o1 ‘1 |o ‘ 0
31 1615 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-7. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be copied
between stacks.

® It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit
pushes and 32-bit gates force 32-bit pushes.

® It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed. The offset
field specifies the entry point in the code segment. This entry point is generally to the first
instruction of a specific procedure. The DPL field indicates the privilege level of the call gate,
which in turn is the privilege level required to access the selected procedure through the gate.
The P flag indicates whether the call-gate descriptor is valid. (The presence of the code segment
to which the gate points is indicated by the P flag in the code segment’s descriptor.) The param-
eter count field indicates the number of parameters to copy from the calling procedures stack to
the new stack if a stack switch occurs (see Section 4.8.5., “Stack Switching”). The parameter
count specifies the number of words for 16-bit call gates and doublewords for 32-bit call gates.

4-16 Vol. 3

| ntel o PROTECTION

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present
(#NP) exception is generated when a program attempts to access the descriptor. The operating
system can use the P flag for special purposes. For example, it could be used to track the number
of times the gate is used. Here, the P flag is initially set to O causing a trap to the not-present
exception handler. The exception handler then increments a counter and sets the P flag to 1, so
that on returning from the handler, the gate descriptor will be valid.

4.8.4. Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
instruction. The segment selector from this pointer identifies the call gate (see Figure 4-8); the
offset from the pointer is required, but not used or checked by the processor. (The offset can be
set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment descriptor for the destination code segment. (This segment descriptor can be
in the GDT or the LDT.) It then combines the base address from the code-segment descriptor
with the offset from the call gate to form the linear address of the procedure entry point in the
code segment.

As shown in Figure 4-9, four different privilege levels are used to check the validity of a
program control transfer through a call gate:

® The CPL (current privilege level).

¢ The RPL (requestor's privilege level) of the call gate’s selector.

® The DPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also
checked.

Vol. 3 4-17

PROTECTION
Far Pointer to Call Gate
Segment Selector | | Offset
Required but not used by processor
Descriptor Table
> Offset Call-Gate
Segment Selector Offset Descriptor
»| Base Base | Code-Segment

+)= Base Descriptor
Procedure
Entry Point

Figure 4-8. Call-Gate Mechanism

CS Register

CPL

Call-Gate Selector

RPL

Call Gate (Descriptor)

Y

Privilege
Check

DPL

Destination Code-
Segment Descriptor

DPL

Yy

4-18 Vol. 3

Figure 4-9. Privilege Check for Control Transfer with Call Gate

| ntel . PROTECTION

The privilege checking rules are different depending on whether the control transfer was initi-
ated with a CALL or a JMP instruction, as shown in Table 4-1.

Table 4-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules

CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL
Destination nonconforming code segment DPL < CPL

JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from
which a calling procedure can access the call gate; that is, to access a call gate, the CPL of a
calling procedure must be equal to or less than the DPL of the call gate. For example, in Figure
4-12, call gate A has a DPL of 3. So calling procedures at all CPLs (0 through 3) can access this
call gate, which includes calling procedures in code segments A, B, and C. Call gate B has a
DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes
calling procedures in code segments B and C. The dotted line shows that a calling procedure in
code segment A cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling
procedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in Figure 4-12, a calling procedure in code segment C can access call gate B using gate selector
B2 or B1, but it could not use gate selector B3 to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor
then checks the DPL of the code-segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and JMP instructions. Only CALL instruc-
tions can use call gates to transfer program control to more privileged (numerically lower priv-
ilege level) nonconforming code segments; that is, to nonconforming code segments with a DPL
less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both
transfer program control to a more privileged conforming code segment; that is, to a conforming
code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) nonconforming desti-
nation code segment, the CPL is lowered to the DPL of the destination code segment and a stack
switch occurs (see Section 4.8.5., “Stack Switching”). If a call or jump is made to a more priv-
ileged conforming destination code segment, the CPL is not changed and no stack switch occurs.

Vol. 3 4-19

PROTECTION |nte| e

Code || Gate SelectorA | > Call
Segment A RPL=3 Gate A
cPL=3| || GateSelectorB3 | - — - — . DPL=3
RPL=3 |
Lowest Privilege C
Code Call

Segment B Gate Selector B1

] 5 Gate B
RPL
CPL=2

=2

Yy
o
n
-
E‘

Code
Segment C|—{ Gate Selector B2

m RPL=1

No Stack Stack Switch
Switch Occurs Occurs
Y Y
Code Code
Segment D Segment E
DPL=0 | DPL=0 |
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 4-10. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at different priv-
ilege levels. For example, an operating system located in a code segment may have some
services which are intended to be used by both the operating system and application software
(such as procedures for handling character I/0). Call gates for these procedures can be set up
that allow access at all privilege levels (0 through 3). More privileged call gates (with DPLs of
0 or 1) can then be set up for other operating system services that are intended to be used only
by the operating system (such as procedures that initialize device drivers).

4.8.5. Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming
code segment (that is, when the DPL of the nonconforming destination code segment is less than
the CPL), the processor automatically switches to the stack for the destination code segment’s
privilege level. This stack switching is carried out to prevent more privileged procedures from
crashing due to insufficient stack space. It also prevents less privileged procedures from inter-
fering (by accident or intent) with more privileged procedures through a shared stack.

4-20 Vol. 3

| ntel . PROTECTION

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and
one for each of the privilege levels 2, 1, and O that are used. (If only two privilege levels are used
[3 and 0], then only two stacks must be defined.) Each of these stacks is located in a separate
segment and is identified with a segment selector and an offset into the stack segment (a stack
pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP registers, respectively, when privilege-level-3 code is being executed and is automatically
stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
task (see Figure 6-2). Each of these pointers consists of a segment selector and a stack pointer
(loaded into the ESP register). These initial pointers are strictly read-only values. The processor
does not change them while the task is running. They are used only to create new stacks when
calls are made to more privileged levels (numerically lower privilege levels). These stacks are
disposed of when a return is made from the called procedure. The next time the procedure is
called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program control from a
procedure running at a CPL of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the
privilege levels to be used and for loading initial pointers for these stacks into the TSS. Each
stack must be read/write accessible (as specified in the type field of its segment descriptor) and
must contain enough space (as specified in the limit field) to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.

® The EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.

The stack will need to require enough space to contain many frames of these items, because
procedures often call other procedures, and an operating system may support nesting of multiple
interrupts. Each stack should be large enough to allow for the worst case nesting scenario at its
privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create
at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor
performs the following steps to switch stacks and begin execution of the called procedure at a
new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the
current TSS. Any limit violations detected while reading the stack-segment selector, stack
pointer, or stack-segment descriptor cause an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an
invalid TSS (#TS) exception if violations are detected.

Vol. 3 4-21

PROTECTION Intel ®

4. Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 4-11).

7. Copies the number of parameter specified in the parameter count field of the call gate from
the calling procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new stack.

9. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively, and begins execution of the called
procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in the IA-
32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the
privilege level checks and other protection checks that the processor performs on a far call
through a call gate.

Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter3 |[<—ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <—ESP

Figure 4-11. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the
processor should copy from the calling procedure’s stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
access parameters in the old stack space. The size of the data items passed to the called proce-
dure depends on the call gate size, as described in Section 4.8.3., “Call Gates”.

4-22 Vol. 3

| ntel . PROTECTION

4.8.6. Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level,
and a far return to a different privilege level. This instruction is intended to execute returns from
procedures that were called with a CALL instruction. It does not support returns from a JMP
instruction, because the JMP instruction does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the
processor performs only a limit check. When the processor pops the return instruction pointer
from the stack into the EIP register, it checks that the pointer does not exceed the limit of the
current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the
code segment being returned to and a return instruction pointer from the stack. Under normal
conditions, these pointers should be valid, because they were pushed on the stack by the CALL
instruction. However, the processor performs privilege checks to detect situations where the
current procedure might have altered the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less priv-
ileged level (that is, the DPL of the return code segment is numerically greater than the CPL).
The processor uses the RPL field from the CS register value saved for the calling procedure (see
Figure 4-11) to determine if a return to a numerically higher privilege level is required. If the
RPL is numerically greater (less privileged) than the CPL, a return across privilege levels
occurs.

The processor performs the following steps when performing a far return to a calling procedure
(see Figures 6-2 and 6-4 in the [A-32 Intel Architecture Software Developer’s Manual, Volume
1, for an illustration of the stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level
change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and
privilege level checks are performed on the code-segment descriptor and RPL of the code-
segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a
privilege level change.) Adds the parameter count (in bytes obtained from the RET
instruction) to the current ESP register value (after popping the CS and EIP values), to step
past the parameters on the called procedure’s stack. The resulting value in the ESP register
points to the saved SS and ESP values for the calling procedure’s stack. (Note that the byte
count in the RET instruction must be chosen to match the parameter count in the call gate
that the calling procedure referenced when it made the original call multiplied by the size
of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the
saved SS and ESP values and switches back to the calling procedure’s stack. The SS and
ESP values for the called procedure’s stack are discarded. Any limit violations detected
while loading the stack-segment selector or stack pointer cause a general-protection
exception (#GP) to be generated. The new stack-segment descriptor is also checked for
type and privilege violations.

Vol. 3 4-23

PROTECTION Intel ®

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in
bytes obtained from the RET instruction) to the current ESP register value, to step past the
parameters on the calling procedure’s stack. The resulting ESP value is not checked against
the limit of the stack segment. If the ESP value is beyond the limit, that fact is not
recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS segment registers. If any of these registers refer to segments whose DPL is less than the
new CPL (excluding conforming code segments), the segment register is loaded with a null
segment selector.

See the description of the RET instruction in Chapter 3, Instruction Set Reference, of the IA-32
Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on a far return.

4.8.7. Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processors for the purpose of providing a fast (low overhead) mechanism for calling
operating system or executive procedures. The SYSENTER instruction is intended for use by
user code running at privilege level 3 to access operating system or executive procedures
running at privilege level 0. The SYSEXIT procedure is intended for use by privilege level 0
operating system or executive procedures for fast returns to privilege level 3 user code. The
SYSENTER instruction can be executed from privilege levels 3, 2, or 1; the SYSEXIT instruc-
tion can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not consti-
tute a call/return pair because the SYSENTER instruction does not save any state information
for use by the SYSEXIT instruction on a return.

The target instruction and stack pointer for these instructions are not specified through instruc-
tion operands. Instead, they are specified through parameters entered in several MSRs and
general-purpose registers. For the SYSENTER instruction, the processor gets the privilege level
0 target instruction and stack pointer from the following sources:

® Target code segment—Reads it from the SYSENTER_CS_MSR.

® Target instruction—Reads it from the SYSENTER_EIP_MSR.

® Stack segment—Computes it adding 8 to the value in the SYSENTER_CS_MSR.
® Stack pointer—Reads it from the SYSENTER_ESP_MSR.

For the SYSEXIT instruction, the privilege level 3 target instruction and stack pointer are spec-
ified as follows:

® Target code segment—Computes it by adding 16 to the value in the
SYSENTER_CS_MSR.

® Target instruction—Reads it from the EDX register.

4-24 Vol. 3

| ntel . PROTECTION

® Stack segment—Computes it by adding 24 to the value in the SYSENTER_CS_MSR.
® Stack pointer—Reads it from the ECX register.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because they force
the processor into a predefined privilege level 0 state when a SYSENTER instruction is
executed and into a predefined privilege level 3 state when a SYSEXIT instruction is executed.
By forcing predefined and consistent processor states, the number of privilege checks ordinarily
required to perform a far call to another privilege levels are greatly reduced. Also, by prede-
fining the target context state in MSRs and general-purpose registers eliminates all memory
accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be
saved explicitly by the calling procedure or be predefined through programming conventions.

4.9. PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions” are protected from use by
application programs. The privileged instructions control system functions (such as the loading
of system registers). They can be executed only when the CPL is O (most privileged). If one of
these instructions is executed when the CPL is not 0, a general-protection exception (#GP) is
generated. The following system instructions are privileged instructions:

® LGDT—Load GDT register.

¢ LLDT—Load LDT register.

® LTR—Load task register.

¢ LIDT—Load IDT register.

® MOV (control registers)—Load and store control registers.
® LMSW—Load machine status word.

® CLTS—Clear task-switched flag in register CRO.

® MOV (debug registers)—Load and store debug registers.
® [INVD—Invalidate cache, without writeback.

® WBINVD—Invalidate cache, with writeback.

¢ INVLPG—Invalidate TLB entry.

¢ HLT—Halt processor.

® RDMSR—Read Model-Specific Registers.

® WRMSR—Write Model-Specific Registers.

® RDPMC—Read Performance-Monitoring Counter.

¢ RDTSC—Read Time-Stamp Counter.

Vol. 3 4-25

PROTECTION Intel ®

Some of the privileged instructions are available only in the more recent families of I1A-32
processors (see Section 18.10., “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and
RDTSC instructions, respectively, to be executed at any CPL.

4.10. POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection
between segments and maintain isolation between privilege levels. Pointer validation consists
of the following checks:

Checking access rights to determine if the segment type is compatible with its use.
Checking read/write rights
Checking if the pointer offset exceeds the segment limit.

Checking if the supplier of the pointer is allowed to access the segment.

A S e

Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu-
tion. Software must explicitly request the fourth check by issuing an ARPL instruction. The fifth
check (offset alignment) is performed automatically at privilege level 3 if alignment checking is
turned on. Offset alignment does not affect isolation of privilege levels.

4.10.1. Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check
on the segment descriptor pointed to by the far pointer. This check is performed to determine if
type and privilege level (DPL) of the segment descriptor are compatible with the operation to be
performed. For example, when making a far call in protected mode, the segment-descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then, if the call is to a nonconforming code segment, the DPL of the code segment must be equal
to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to
the DPL. If type or privilege level are found to be incompatible, the appropriate exception is
generated.

To prevent type incompatibility exceptions from being generated, software can check the access
rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc-
tion specifies the segment selector for the segment descriptor whose access rights are to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

4-26 Vol. 3

| ntel o PROTECTION

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS
segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. [If the privilege level and type checks pass, loads the second doubleword of the segment
descriptor into the destination register (masked by the value 00FXFFOOH, where X
indicates that the corresponding 4 bits are undefined) and sets the ZF flag in the EFLAGS
register. If the segment selector is not visible at the current privilege level or is an invalid
type for the LAR instruction, the instruction does not modify the destination register and
clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access
rights information.

4.10.2. Checking Read/Write Rights (VERR and VERW
Instructions)

When the processor accesses any code or data segment it checks the read/write privileges
assigned to the segment to verify that the intended read or write operation is allowed. Software
can check read/write rights using the VERR (verify for reading) and VERW (verify for writing)
instructions. Both these instructions specify the segment selector for the segment being checked.
The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the
VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the
CPL and readable; the VERW sets the ZF flag if the segment is visible and writable. (Code
segments are never writable.) The ZF flag is cleared if any of these checks fail.

Vol. 3 4-27

PROTECTION Intel ®

4.10.3. Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the offset is
within the limit of the segment. Software can perform this limit check using the LSL (load
segment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment
selector for the segment descriptor whose limit is to be checked and a destination register. The
instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equal to the DPL).

5. [If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled
according to the setting of the G flag in the segment descriptor) into the destination register
and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the
current privilege level or is an invalid type for the LSL instruction, the instruction does not
modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset
of a pointer.

4.10.4. Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privi-
lege level of a calling procedure (the calling procedure’s CPL) to a called procedure. The called
procedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
“weaken” the privilege level of the called procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application
programs from accessing data located in more privileged segments. When an operating-system
procedure (the called procedure) receives a segment selector from an application program (the
calling procedure), it sets the segment selector’s RPL to the privilege level of the calling proce-
dure. Then, when the operating system uses the segment selector to access its associated
segment, the processor performs privilege checks using the calling procedure’s privilege level
(stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operating-
system procedure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the segment.

Figure 4-12 shows an example of how the processor uses the RPL field. In this example, an
application program (located in code segment A) possesses a segment selector (segment selector
D1) that points to a privileged data structure (that is, a data structure located in a data segment
D at privilege level 0).

4-28 Vol. 3

| ntel o PROTECTION

The application program cannot access data segment D, because it does not have sufficient priv-
ilege, but the operating system (located in code segment C) can. So, in an attempt to access data
segment D, the application program executes a call to the operating system and passes segment
selector D1 to the operating system as a parameter on the stack. Before passing the segment
selector, the (well behaved) application program sets the RPL of the segment selector to its
current privilege level (which in this example is 3). If the operating system attempts to access
data segment D using segment selector D1, the processor compares the CPL (which is now 0
following the call), the RPL of segment selector D1, and the DPL of data segment D (which is
0). Since the RPL is greater than the DPL, access to data segment D is denied. The processor’s
protection mechanism thus protects data segment D from access by the operating system,
because application program’s privilege level (represented by the RPL of segment selector B) is
greater than the DPL of data segment D.

Passed as a
parameter on
the stack.
Application Program \
Seqrment A Gate Selector B Call S t Sel_D1
egment A| | Gate Selector > egment Sel.
CPL=3 RPL=3 Gate B " RPL=3
- DPL=3 | ‘
Lowest Privilege | |
|
|
I
| |
| |
Access |
| not |
| allowed |
| I
| N
Code | — — Data
Operating | Segment C Segment Sel. D2
> gment Sel. | »| Segment D
System RPL=0
DPL=0 —
Access DPL=0
m Highest Privilege allowed

Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of the segment selector to 3, the application program
sets the RPL to 0 (segment selector D2). The operating system can now access data segment D,
because its CPL and the RPL of segment selector D2 are both equal to the DPL of data segment D.

Vol. 3 4-29

PROTECTION Intel ®

Because the application program is able to change the RPL of a segment selector to any value,
it can potentially use a procedure operating at a numerically lower privilege level to access a
protected data structure. This ability to lower the RPL of a segment selector breaches the
processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, oper-
ating-system procedures (executing at numerically lower privilege-levels) that receive segment
selectors from numerically higher privilege-level procedures need to test the RPL of the segment
selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to match that of another segment selector.

The example in Figure 4-12 demonstrates how the ARPL instruction is intended to be used.
When the operating-system receives segment selector D2 from the application program, it uses
the ARPL instruction to compare the RPL of the segment selector with the privilege level of the
application program (represented by the code-segment selector pushed onto the stack). If the
RPL is less than application program’s privilege level, the ARPL instruction changes the RPL
of the segment selector to match the privilege level of the application program (segment
selector D1). Using this instruction thus prevents a procedure running at a numerically higher
privilege level from accessing numerically lower privilege-level (more privileged) segments by
lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program’s code segment. This segment selector
is stored on the stack as part of the call to the operating system. The operating system can copy
the segment selector from the stack into a register for use as an operand for the ARPL
instruction.

4.10.5. Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the CRO register and the AC flag in the EFLAGS register. Unaligned memory references
generate alignment exceptions (#AC). The processor does not generate alignment exceptions
when operating at privilege level 0, 1, or 2. See Table 5-7 for a description of the alignment
requirements when alignment checking is enabled.

4.11. PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used with the flat memory model, it allows supervisor code and data (the operating system or
executive) to be protected from user code and data (application programs). It also allows pages
containing code to be write protected. When the segment- and page-level protection are
combined, page-level read/write protection allows more protection granularity within segments.

4-30 Vol. 3

| ntel . PROTECTION

With page-level protection (as with segment-level protection) each memory reference is
checked to verify that protection checks are satisfied. All checks are made before the memory
cycle is started, and any violation prevents the cycle from starting and results in a page-fault
exception being generated. Because checks are performed in parallel with address translation,
there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See
Chapter 5, “Interrupt 14—Page-Fault Exception (#PF)”, for an explanation of the page-fault
exception mechanism. This chapter describes the protection violations which lead to page-fault
exceptions.

4.11.1. Page-Protection Flags

Protection information for pages is contained in two flags in a page-directory or page-table entry
(see Figure 3-14): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection
checks are applied to both first- and second-level page tables (that is, page directories and page
tables).

4.11.2. Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
levels:

® Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive,
other system software (such as device drivers), and protected system data (such as page
tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of
3, it is in user mode. When the processor is in supervisor mode, it can access all pages; when in
user mode, it can access only user-level pages. (Note that the WP flag in control register CRO
modifies the supervisor permissions, as described in Section 4.11.3., “Page Type”.)

Note that to use the page-level protection mechanism, code and data segments must be set up
for at least two segment-based privilege levels: level O for supervisor code and data segments
and level 3 for user code and data segments. (In this model, the stacks are placed in the data
segments.) To minimize the use of segments, a flat memory model can be used (see Section
3.2.1., “Basic Flat Model”).

Vol. 3 4-31

PROTECTION Intel ®

Here, the user and supervisor code and data segments all begin at address zero in the linear
address space and overlay each other. With this arrangement, operating-system code (running at
the supervisor level) and application code (running at the user level) can execute as if there are
no segments. Protection between operating-system and application code and data is provided by
the processor’s page-level protection mechanism.

4.11.3. Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).
® Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initialization), all pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
read/write accessible. User-mode pages which are read/write or read-only are readable; super-
visor-mode pages are neither readable nor writable from user mode. A page-fault exception is
generated on any attempt to violate the protection rules.

The P6 family, Pentium, and Intel486 processors allow user-mode pages to be write-protected
against supervisor-mode access. Setting the WP flag in register CRO to 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are read-only are
not writeable from any privilege level, regardless of WP setting. This supervisor write-protect
feature is useful for implementing a “copy-on-write” strategy used by some operating systems,
such as UNIX*, for task creation (also called forking or spawning). When a new task is created,
it is possible to copy the entire address space of the parent task. This gives the child task a
complete, duplicate set of the parent's segments and pages. An alternative copy-on-write
strategy saves memory space and time by mapping the child's segments and pages to the same
segments and pages used by the parent task. A private copy of a page gets created only when
one of the tasks writes to the page. By using the WP flag and marking the shared pages as read-
only, the supervisor can detect an attempt to write to a user-level page, and can copy the page at
that time.

4.11.4. Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the
protection for a page in both its page-directory and the page-table entries. Table 4-2 shows the
protection provided by the possible combinations of protection attributes when the WP flag is
clear.

4.11.5. Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

® Access to segment descriptors in the GDT, LDT, or IDT.

4-32 Vol. 3

| ntel o PROTECTION

® Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in
exception or interrupt handler, when a change of privilege level occurs.

4.12. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
generated by segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, a code
segment is by definition not writable. If a code segment is paged, setting the R/W flag for the
pages to read-write does not make the pages writable. Attempts to write into the pages will be
blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large
read-write data segment is paged, the page-protection mechanism can be used to write-protect
individual pages.

Table 4-2. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read-Only
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read-Only
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read-Only
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If the WP flag of CRO is set, the access type is determined by the R/W flags of the page-directory and
page-table entries.

Vol. 3 4-33

PROTECTION

4-34 Vol. 3

Interrupt and
Exception Handling

intgl.

CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. Most of the information provided here also applies to the interrupt and
exception mechanism used in real-address or virtual-8086 mode. See Chapter 15, Debugging
and Performance Monitoring, for a description of the differences in the interrupt and exception
mechanism for real-address and virtual-8086 mode.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the
system, the processor, or within the currently executing program or task that requires the atten-
tion of a processor. They typically result in a forced transfer of execution from the currently
running program or task to a special software routine or task called an interrupt handler or an
exception handler. The action taken by a processor in response to an interrupt or exception is
referred to as servicing or handling the interrupt or exception.

Interrupts typically occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external to the
processor, such as requests to service peripheral devices. Software can also generate interrupts
by executing the INT # instruction.

Exceptions occur when the processor detects an error condition while executing an instruction,
such as division by zero. The processor detects a variety of error conditions including protection
violations, page faults, and internal machine faults. The machine-check architecture of the
Pentium 4, Intel Xeon, P6 family, and Pentium processors also permits a machine-check excep-
tion to be generated when internal hardware errors and bus errors are detected.

The TA-32 architecture’s interrupt and exception-handling mechanism allows interrupts and
exceptions to be handled transparently to application programs and the operating system or
executive. When an interrupt is received or an exception is detected, the currently running
procedure or task is automatically suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes execution of the
interrupted procedure or task. The resumption of the interrupted procedure or task happens
without loss of program continuity, unless recovery from an exception was not possible or an
interrupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. A detailed description of the exceptions and the conditions that cause
them to be generated is given at the end of this chapter. See Chapter 16, 8086 Emulation, for a
description of the interrupt and exception mechanism for real-address and virtual-8086 mode.

Vol. 3 5-1

INTERRUPT AND EXCEPTION HANDLING Intel ®

5.2. EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each IA-32 architecture-defined exception and
each interrupt condition that requires special handling by the processor is assigned a unique
identification number, called a vector. The processor uses the vector assigned to an exception
or interrupt as an index into its interrupt descriptor table (IDT) to locate the entry point of an
exception or interrupt handler (see Section 5.10., “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. The vectors in the range O through 31 are
reserved by the IA-32 architecture for architecture-defined exceptions and interrupts. Not all of
the vectors in this range have a currently defined function. The unassigned vectors in this range
are reserved for future uses. Do not use the reserved vectors.

The vectors in the range 32 to 255 are designated as user-defined interrupts and are not reserved
by the IA-32 architecture. These interrupts are generally assigned to external I/O devices to
enable those devices to send interrupts to the processor through one of the external hardware
interrupt mechanisms described in Section 5.3., “Sources of Interrupts”.

Table 5-1 shows the assignments vectors to architecturally defined exceptions and to the NMI
interrupt. For each exception, this table gives the exception type (see Section 5.5., “Exception
Classifications”) and indicates whether an error code is saved on the stack for the exception. The
source of each predefined exception and the NMI interrupt is also given.

5.3. SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
¢ External (hardware generated) interrupts.

® Software-generated interrupts.

5.3.1. External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The
primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the
LINT[1:0] pins, which are connected to the local APIC (see Chapter 8, Advanced Program-
mable Interrupt Controller (APIC)). When the local APIC is enabled, the LINT[1:0] pins can be
programmed through the APIC’s local vector table (LVT) to be associated with any of the
processor’s exception or interrupt vectors.

When the local APIC is disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred, and the
processor reads from the system bus the interrupt vector number provided by an external inter-
rupt controller, such as an 8259A (see Section 5.2., “Exception and Interrupt Vectors”).
Asserting the NMI pin signals a non-maskable interrupt (NMI), which is assigned to interrupt
vector 2.

5-2 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Table 5-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- Error
No. monic Description Type Code Source
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB RESERVED Fault/ No For Intel use only.
Trap
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Fault No UD2 instruction or reserved
Opcode) opcode.
7 #NM Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can generate
(Zero) | an’exception, an NMI, oran INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes |Sta((j:k operations and SS register
oads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Fault No x87 FPU floating-point or
Error (Math Faul WAIT/FWAIT instruction.
17 #AC Alignment Check Fault ?(Zes) Any data reference in memory.3
ero
18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.*
19 #XF SIMD Floating-Point Fault No SSE/SSE2/SSES3 floating-point
Exception instructions
20-31 | — Intel reserved. Do not use.
32- — User Defined (Non- Interrupt External interrupt or INT n
255 reserved) Interrupts instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium Il processor.

Vol.3 5-3

INTERRUPT AND EXCEPTION HANDLING Intel ®

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external
interrupts received at the I/O APIC’s pins can be directed to the local APIC through the system
bus (Pentium 4 and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium
processors). The I/O APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also send inter-
rupts to one another by means of the system bus (Pentium 4 and Intel Xeon processors) or the
APIC serial bus (P6 family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and the earlier Pentium proces-
sors that do not contain an on-chip local APIC. Instead these processors have dedicated NMI
and INTR pins. With these processors, external interrupts are typically generated by a system-
based interrupt controller (8259A), with the interrupts being signaled through the INTR pin.

Note that several other pins on the processor cause a processor interrupt to occur; however, these
interrupts are not handled by the interrupt and exception mechanism described in this chapter.
These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Which of
these pins are included on a particular IA-32 processor is implementation dependent. The func-
tions of these pins are described in the data books for the individual processors. The SMI# pin
is also described in Chapter 13, System Management.

5.3.2. Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through
the local APIC is called a maskable hardware interrupt. The maskable hardware interrupts
that can be delivered through the INTR pin include all IA-32 architecture defined interrupt
vectors from 0 through 255; those that can be delivered through the local APIC include interrupt
vectors 16 through 255.

The IF flag in the EFLAGS register permits all the maskable hardware interrupts to be masked
as a group (see Section 5.8.1., “Masking Maskable Hardware Interrupts”). Note that when inter-
rupts O through 15 are delivered through the local APIC, the APIC indicates the receipt of an
illegal vector.

5.3.3. Software-Generated Interrupts

The INT 7 instruction permits interrupts to be generated from within software by supplying the
interrupt vector number as an operand. For example, the INT 35 instruction forces an implicit
call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the
processor’s predefined NMI vector is used, however, the response of the processor will not be
the same as it would be from an NMI interrupt generated in the normal manner. If vector number
2 (the NMI vector) is used in this instruction, the NMI interrupt handler is called, but the
processor’s NMI-handling hardware is not activated.

5-4 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

NOTE

Interrupts generated in software with the INT 7 instruction cannot be masked
by the IF flag in the EFLAGS register.

5.4. SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.
® Software-generated exceptions.

® Machine-check exceptions.

5.4.1. Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the
execution in an application program or the operating system or executive. The IA-32 architec-
ture defines a vector number for each processor-detectable exception. The exceptions are further
classified as faults, traps, and aborts (see Section 5.5., “Exception Classifications”).

5.4.2. Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software.
These instructions allow checks for specific exception conditions to be performed at specific
points in the instruction stream. For example, the INT 3 instruction causes a breakpoint excep-
tion to be generated.

The INT 7 instruction can be used to emulate a specific exception in software, with one limita-
tion. If the n operand in the INT r instruction contains a vector for one of the IA-32 architecture
exceptions, the processor will generate an interrupt to that vector, which will in turn invoke the
exception handler associated with that vector. Because this is actually an interrupt, however, the
processor does not push an error code onto the stack, even if a hardware-generated exception for
that vector normally produces one. For those exceptions that produce an error code, the excep-
tion handler will attempt to pop an error code from the stack while handling the exception. If the
INT # instruction was used to emulate the generation of an exception, the handler will pop off
and discard the EIP (in place of the missing error code), sending the return to the wrong location.

5.4.3. Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mech-
anisms for checking the operation of the internal chip hardware and bus transactions. These
mechanisms constitute extended (implementation dependent) exception mechanisms. When a
machine-check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.

Vol. 3 5-5

INTERRUPT AND EXCEPTION HANDLING Intel ®

See “Interrupt 18—Machine Check Exception (#MC)” at the end of this chapter and Chapter 14,
Machine-Check Architecture, for a detailed description of the machine-check mechanism.

5.5. EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and
whether the instruction that caused the exception can be restarted with no loss of program or task
continuity.

Faults A fault is an exception that can generally be corrected and that, once corrected,
allows the program to be restarted with no loss of continuity. When a fault is
reported, the processor restores the machine state to the state prior to the begin-
ning of execution of the faulting instruction. The return address (saved contents
of the CS and EIP registers) for the fault handler points to the faulting instruc-
tion, rather than the instruction following the faulting instruction.

Traps A trap is an exception that is reported immediately following the execution of
the trapping instruction. Traps allow execution of a program or task to be
continued without loss of program continuity. The return address for the trap
handler points to the instruction to be executed after the trapping instruction.

Aborts An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow restart of the program or
task that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal values in system tables.

NOTE

A small subset of exceptions that are normally reported as faults are not
restartable and will result in loss of some processor state. An example,
executing a POPAD instruction where the stack frame crosses over the end of
the stack segment will cause such a fault to be reported. Here, the exception
handler will see that the instruction pointer (CS:EIP) has been restored as if
the POPAD instruction had not been executed; however, the internal
processor state (particularly, the general-purpose registers) will have been
modified. These corner cases are considered programming errors, and an
application causing this class of exceptions will likely be terminated by the
operating system.

5.6. PROGRAM OR TASK RESTART

To allow restarting of program or task following the handling of an exception or an interrupt, all
exceptions except aborts are guaranteed to report the exception on a precise instruction
boundary, and all interrupts are guaranteed to be taken on an instruction boundary.

5-6 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

For fault-class exceptions, the return instruction pointer that the processor saves when it gener-
ates the exception points to the faulting instruction. So, when a program or task is restarted
following the handling of a fault, the faulting instruction is restarted (re-executed). Restarting
the faulting instruction is commonly used to handle exceptions that are generated when access
to an operand is blocked. The most common example of a fault is a page-fault exception (#PF)
that occurs when a program or task references an operand in a page that is not in memory. When
a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that this instruc-
tion restart is handled transparently to the currently executing program or task, the processor
saves the necessary registers and stack pointers to allow it to restore itself to its state prior to the
execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the
trapping instruction. If a trap is detected during an instruction which transfers execution, the
return instruction pointer reflects the transfer. For example, if a trap is detected while executing
a JMP instruction, the return instruction pointer points to the destination of the JMP instruction,
not to the next address past the JMP instruction. All trap exceptions allow program or task restart
with no loss of continuity. For example, the overflow exception is a trapping exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested
the OF (overflow) flag in the EFLAGS register. The trap handler for this exception resolves the
overflow condition. Upon return from the trap handler, program or task execution continues at
the next instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort
handlers generally are designed to collect diagnostic information about the state of the processor
when the abort exception occurred and then shut down the application and system as gracefully
as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of conti-
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executed at the instruction boundary where the processor took the interrupt. If the instruction
just executed has a repeat prefix, the interrupt is taken at the end of the current iteration with the
registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the
taking of interrupts by the processor. Interrupts are taken at instruction boundaries located
during the retirement phase of instruction execution; so they are always taken in the “in-order”
instruction stream. See Chapter 2, Introduction to the Intel Architecture, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1, for more information about the P6 family
processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of
prefetching and preliminary decoding of instructions; however, here also exceptions and inter-
rupts are not signaled until actual “in-order” execution of the instructions. For a given code
sample, the signaling of exceptions will occur uniformly when the code is executed on any
family of IA-32 processors (except where new exceptions or new opcodes have been defined).

Vol.3 5-7

INTERRUPT AND EXCEPTION HANDLING Intel ®

5.7. NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
¢ External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4 and Intel Xeon processors)
or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it imme-
diately by calling the NMI handler pointed to by interrupt vector number 2. The processor also
invokes certain hardware conditions to insure that no other interrupts, including NMI interrupts,
are received until the NMI handler has completed executing (see Section 5.7.1., “Handling
Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF
flag in the EFLAGS register.

Itis possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke
the NMI interrupt handler; however, this interrupt will not truly be an NMI interrupt. A true NMI
interrupt that activates the processor’s NMI-handling hardware can only be delivered through
one of the mechanisms listed above.

5.7.1. Handling Multiple NMis

While an NMI interrupt handler is executing, the processor disables additional calls to the NMI
handler until the next IRET instruction is executed. This blocking of subsequent NMIs prevents
stacking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessed through an interrupt gate to disable maskable hardware interrupts (see Section 5.8.1.,
“Masking Maskable Hardware Interrupts”). If the NMI handler is a virtual-8086 task with an
IOPL of less than 3, an IRET instruction issued from the handler generates a general-protection
exception (see Section 16.2.7., “Sensitive Instructions”). In this case, the NMI is unmasked
before the general-protection exception handler is invoked.

5.8. ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor
and of the IF and RF flags in the EFLAGS register, as described in the following sections.

5.8.1. Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 5.3.2., “Maskable Hardware Inter-
rupts”). When the IF flag is clear, the processor inhibits interrupts delivered to the INTR pin or
through the local APIC from generating an internal interrupt request; when the IF flag is set,
interrupts delivered to the INTR or through the local APIC pin are processed as normal external
interrupts.

5-8 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery
mode NMI messages delivered through the local APIC, nor does it affect processor generated
exceptions. As with the other flags in the EFLAGS register, the processor clears the IF flag in
response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and
exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF
flag is set, an interrupt for any of the vectors from 0 through 32 can be delivered to the processor
through the INTR pin and any of the vectors from 16 through 32 can be delivered through the
local APIC. The processor will then generate an interrupt and call the interrupt or exception
handler pointed to by the vector number. So for example, it is possible to invoke the page-fault
handler through the INTR pin (by means of vector 14); however, this is not a true page-fault
exception. It is an interrupt. As with the INT # instruction (see Section 5.4.2., “Software-Gener-
ated Exceptions”), when an interrupt is generated through the INTR pin to an exception vector,
the processor does not push an error code on the stack, so the exception handler may not operate
correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-
enable flag) instructions, respectively. These instructions may be executed only if the CPL is
equal to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executed when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions
is modified slightly when the virtual mode extension is enabled by setting the VME flag in
control register CR4: see Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode”. Behavior is also impacted by the PVI flag: see Section 16.4., “Protected-Mode Virtual
Interrupts™.)

The IF flag is also affected by the following operations:

® The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified flags back into the
EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

® When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared,
which disables maskable hardware interrupts. (If an interrupt is handled through a trap
gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHE, POPF, and IRET instructions in Chapter 3,
Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume
2, for a detailed description of the operations these instructions are allowed to perform on the IF
flag.

5.8.2. Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruc-
tion-breakpoint conditions (see the description of the RF flag in Section 2.3., “System Flags and
Fields in the EFLAGS Register”).

Vol.3 5-9

INTERRUPT AND EXCEPTION HANDLING Intel ®

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when
clear, instruction breakpoints will generate debug exceptions. The primary function of the RF
flag is to prevent the processor from going into a debug exception loop on an instruction-break-
point. See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more informa-
tion on the use of this flag.

5.8.3. Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. If the
LSS instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.9. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-2 shows the priority among classes of exception
and interrupt sources.

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5-10 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)

Priority Descriptions

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Code Breakpoint Fault

7 Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

8 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

9 (Lowest) Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

While priority among these classes listed in Table 5-2 is consistent throughout the architecture,
exceptions within each class are implementation-dependent and may vary from processor to
processor. The processor first services a pending exception or interrupt from the class which has
the highest priority, transferring execution to the first instruction of the handler. Lower priority
exceptions are discarded; lower priority interrupts are held pending. Discarded exceptions are
re-generated when the interrupt handler returns execution to the point in the program or task
where the exceptions and/or interrupts occurred.

5.10. INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
in the IDT should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cache line fills. The limit value is expressed in bytes and is added to the base address

Vol. 3 5-11

INTERRUPT AND EXCEPTION HANDLING Intel ®

to get the address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N — 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is 0. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can
be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP) is generated.

IDTR Register
47 16 15 0

IDT Base Address | DT Limit

l Interrupt

Descriptor Table (IDT)
C Gate for

Interrupt #n (n-1)=8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

> Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

5-12 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

5.11. IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

® Trap-gate descriptor

Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The
format of a task gate used in an IDT is the same as that of a task gate used in the GDT or an LDT
(see Section 6.2.4., “Task-Gate Descriptor”). The task gate contains the segment selector for a
TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 4.8.3., “Call Gates”). They
contain a far pointer (segment selector and offset) that the processor uses to transfer program
execution to a handler procedure in an exception- or interrupt-handler code segment. These
gates differ in the way the processor handles the IF flag in the EFLAGS register (see Section
5.12.1.2., “Flag Usage By Exception- or Interrupt-Handler Procedure™).

Vol. 3 5-13

INTERRUPT AND EXCEPTION HANDLING

D
D Reserved

Task Gate
31 1615 14 13 12 8 7
D
Pl P [0010 1
L
31 16 15
TSS Segment Selector
Interrupt Gate
31 161514 13 12 8 7
D
Offset 31..16 Pl P |OD110|0O0
L
31 16 15
Segment Selector Offset 15..0
Trap Gate
31 1615 14 13 12 8 7
D
Offset 31..16 Pl P|OD111[00
L
31 16 15
Segment Selector Offset 15..0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

Figure 5-2. IDT Gate Descriptors

5.12. EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate (see Section 4.8.2., “Gate Descriptors”

5-14 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

through Section 4.8.6., “Returning from a Called Procedure”). If index points to a task gate, the
processor executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 6.3., “Task Switching”).

5.12.1. Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (see Figure 5-3). The segment selector for the gate
points to a segment descriptor for an executable code segment in either the GDT or the current
LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt-
handling procedure.

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt > Interrupt or —>(-I;>—>

Vector Trap Gate

—
Segment Selector
GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 5-3. Interrupt Procedure Call

Vol.3 5-15

INTERRUPT AND EXCEPTION HANDLING Intel ®

When the processor performs a call to the exception- or interrupt-handler procedure:

® If the handler procedure is going to be executed at a numerically lower privilege level, a
stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are
obtained from the TSS for the currently executing task. On this new stack, the
processor pushes the stack segment selector and stack pointer of the interrupted
procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on
the new stack (see Figures 5-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the
EIP value.

® If the handler procedure is going to be executed at the same privilege level as the
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the
current stack (see Figures 5-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after
the EIP value.

5-16 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<—— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code [«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler's Stack
Stack

<«<——ESP Before
Transfer to Handler SS
ESP
EFLAGS
CS
EIP

ESP After—> Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
See “IRET/IRETD—Interrupt Return” in Chapter 3 of the [A-32 Intel Architecture Software
Developer’s Manual, Volume 2, for the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedure’s stack on the return.

5.12.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The privilege-level protection for exception- and interrupt-handler procedures is similar to that
used for ordinary procedure calls when called through a call gate (see Section 4.8.4., “Accessing
a Code Segment Through a Call Gate”). The processor does not permit transfer of execution to
an exception- or interrupt-handler procedure in a less privileged code segment (numerically
greater privilege level) than the CPL.

Vol.3 5-17

INTERRUPT AND EXCEPTION HANDLING Intel ®

An attempt to violate this rule results in a general-protection exception (#GP). The protection
mechanism for exception- and interrupt-handler procedures is different in the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
calls to exception and interrupt handlers.

® The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt
is generated with an INT n, INT 3, or INTO instruction. Here, the CPL must be less than or
equal to the DPL of the gate. This restriction prevents application programs or procedures
running at privilege level 3 from using a software interrupt to access critical exception
handlers, such as the page-fault handler, providing that those handlers are placed in more
privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege
rules effectively impose restrictions on the privilege levels at which exception and interrupt-
handling procedures can run. Either of the following techniques can be used to avoid privilege-
level violations.

® The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). If the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level 0. This
handler would always run, regardless of the CPL that the interrupted program or task is
running at.

5.12.1.2. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, RF, and NT flags in the EFLAGS register, after they are saved on the stack.)
Clearing the TF flag prevents instruction tracing from affecting interrupt response. A subsequent
IRET instruction restores the TF (and VM, RF, and NT) flags to the values in the saved contents
of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles
the IF flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce-
dure through an interrupt gate, the processor clears the IF flag to prevent other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF flag
to its value in the saved contents of the EFLAGS register on the stack. Accessing a handler
procedure through a trap gate does not affect the IF flag.

5-18 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

5.12.2. Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch
results. Handling an exception or interrupt with a separate task offers several advantages:

® The entire context of the interrupted program or task is saved automatically.

® A new TSS permits the handler to use a new privilege level 0 stack when handling the
exception or interrupt. If an exception or interrupt occurs when the current privilege level 0
stack is corrupted, accessing the handler through a task gate can prevent a system crash by
providing the handler with a new privilege level O stack.

® The handler can be further isolated from other tasks by giving it a separate address space.
This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine
state that must be saved on a task switch makes it slower than using an interrupt gate, resulting
in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A switch to the
handler task is handled in the same manner as an ordinary task switch (see Section 6.3., “Task
Switching”). The link back to the interrupted task is stored in the previous task link field of the
handler task’s TSS. If an exception caused an error code to be generated, this error code is copied
to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually
two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating
system) and the hardware scheduler (part of the processor's interrupt mechanism). The software
scheduler needs to accommodate interrupt tasks that may be dispatched when interrupts are
enabled.

NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task
must disable interrupts between the time it completes handling the interrupt
and the time it executes the IRET instruction. This action prevents another
interrupt from occurring while the interrupt task’s TSS is still marked busy,
which would cause a general-protection (#GP) exception.

Vol. 3 5-19

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt
Vector

TSS for Interrupt-
IDT Handling Task

Task Gate

Y

TSS
Base

TSS Selector

GDT Address

TSS Descriptor

5-20 Vol. 3

Figure 5-5. Interrupt Task Switch

Intel® INTERRUPT AND EXCEPTION HANDLING

5.13. ERROR CODE

When an exception condition is related to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of a TI flag and RPL field, the error code contains 3 flags:

EXT External event (bit 0). When set, indicates that an event external to the
program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1). When set, indicates that the index portion of the
error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refers to a descriptor in the GDT or the current LDT.

TI GDT/LDT (bit 2). Only used when the IDT flag is clear. When set, the TI flag
indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

31 3

—Ho—| =
—ixm| o

Reserved Segment Selector Index

Figure 5-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(that is, all bits in the lower word are clear). A null error code indicates that the error was not
caused by a reference to a specific segment or that a null segment descriptor was referenced in
an operation.

The format of the error code is different for page-fault exceptions (#PF), see “Interrupt
14—Page-Fault Exception (#PF)” in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler, so the handler must remove the error code before
executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR or LINT[1:0] pins) or the INT r instruction, even if an error code is normally produced
for those exceptions.

Vol. 3 5-21

INTERRUPT AND EXCEPTION HANDLING Intel ®

5.14. EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are
arranged in the order of vector numbers. The information contained in these sections are as

follows:

Exception Class

Description

Exception Error Code

Saved Instruction Pointer

Program State Change

5-22 Vol. 3

Indicates whether the exception class is a fault, trap, or abort type.
Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable
to interrupts.)

Gives a general description of the purpose of the exception or inter-
rupt type. It also describes how the processor handles the exception
or interrupt.

Indicates whether an error code is saved for the exception. If one is
saved, the contents of the error code are described. (This section is
not applicable to interrupts.)

Describes which instruction the saved (or return) instruction pointer
points to. It also indicates whether the pointer can be used to restart
a faulting instruction.

Describes the effects of the exception or interrupt on the state of the
currently running program or task and the possibilities of restarting
the program or task without loss of continuity.

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)
Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is O or that the result cannot be repre-
sented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs
before the faulting instruction is executed.

Vol. 3 5-23

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or
faults by examining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the
exception is a fault or a trap depends on the condition (see Table 5-3). See Chapter 15, Debug-
ging and Performance Monitoring, for detailed information about the debug exceptions.

Table 5-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
1/O read or write breakpoint Trap
General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition
caused the exception.

Saved Instruction Pointer

Fault—Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Trap—Saved contents of CS and EIP registers point to the instruction following the instruction
that generated the exception.

Program State Change

Fault—A program-state change does not accompany the debug exception, because the excep-
tion occurs before the faulting instruction is executed. The program can resume normal execu-
tion upon returning from the debug exception handler.

Trap—A program-state change does accompany the debug exception, because the instruction or
task switch being executed is allowed to complete before the exception is generated. However,
the new state of the program is not corrupted and execution of the program can continue reliably.

5-24 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt
Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin
or through an NMI request set by the I/O APIC to the local APIC. This interrupt causes the NMI
interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of
CS and EIP registers point to the next instruction to be executed at the point the interrupt is
taken. See Section 5.5., “Exception Classifications”, for more information about when the
processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
generated. A program or task can thus be restarted upon returning from an interrupt handler
without loss of continuity, provided the interrupt handler saves the state of the processor before
handling the interrupt and restores the processor’s state prior to a return.

Vol. 3 5-25

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 3—Breakpoint Exception (#BP)
Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be
generated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT 3 instruction. (The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode.) The operating system or a debugging tool can use a data segment mapped to the same
physical address space as the code segment to place an INT 3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set
breakpoints with the debug registers. (See Section 15.3.2., “Breakpoint Exception
(#BP)—Interrupt Vector 3”, for information about the breakpoint exception.) If more break-
points are needed beyond what the debug registers allow, the INT 3 instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT 7 instruction with
an operand of 3. The action of this instruction (INT 3) is slightly different than that of the INT
3 instruction (see “INTn/INTO/INT3—Call to Interrupt Procedure” in Chapter 3 of the IA-32
Intel Architecture Software Developer’s Manual, Volume 2).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of
the program is essentially unchanged because the INT 3 instruction does not affect any register
or memory locations. The debugger can thus resume the suspended program by replacing the
INT 3 instruction that caused the breakpoint with the original opcode and decrementing the
saved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.

5-26 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—Overflow Exception (#OF)
Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over-
flow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. These instructions set the OF and CF flags in the EFLAGS register to indicate signed
overflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag can be tested directly or the INTO instruction can be used. The benefit of using the
INTO instruction is that if the overflow exception is detected, an exception handler can be called
automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the
program is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The program can thus resume normal execution upon returning from the
overflow exception handler.

Vol. 3 5-27

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executed. The BOUND instruction checks that a signed array index is within the upper and
lower bounds of an array located in memory. If the array index is not within the bounds of the
array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for
the BOUND instruction are not modified. Returning from the BOUND-range-exceeded excep-
tion handler causes the BOUND instruction to be restarted.

5-28 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:

Attempted to execute an invalid or reserved opcode.

Attempted to execute an instruction with an operand type that is invalid for its accompa-
nying opcode; for example, the source operand for a LES instruction is not a memory
location.

Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an IA-32 processor that
does not support the MMX technology or SSE/SSE2/SSE3 extensions, respectively.
CPUID feature flags MMX (bit 23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0)
indicate support for these extensions.

Attempted to execute an MMX instruction or SSE/SSE2/SSE3 SIMD instruction (with the
exception of the MOVNTI, PAUSE, PREFETCH#A, SFENCE, LFENCE, MFENCE, and
CLFLUSH instructions) when the EM flag in control register CRO is set (1).

Attempted to execute an SSE/SE2/SSE3 instruction when the OSFXSR bit in control
register CR4 is clear (0). Note this does not include the following SSE/SSE2/SSE3 instruc-
tions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCH#A, SFENCE, LFENCE,
MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW,
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW,
PSADBW, PSHUFW, PADDQ, and PSUBQ.

Attempted to execute an SSE/SSE2/SSE3 instruction on an IA-32 processor that causes a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is
clear (0).

Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction pointer still
points at the UD2 instruction.

Detected a LOCK prefix that precedes an instruction that may not be locked or one that
may be locked but the destination operand is not a memory location.

Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

Attempted to execute the RSM instruction when not in SMM mode.

In the Pentium 4, Intel Xeon, and P6 family processors, this exception is not generated until an
attempt is made to retire the result of executing an invalid instruction; that is, decoding and spec-
ulatively attempting to execute an invalid opcode does not generate this exception. Likewise, in
the Pentium processor and earlier IA-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 5.5., “Exception
Classifications”, for general rules for taking of interrupts and exceptions.)

Vol. 3 5-29

INTERRUPT AND EXCEPTION HANDLING Intel ®

The opcodes D6 and F1 are undefined opcodes that are reserved by the IA-32 architecture.
These opcodes, even though undefined, do not generate an invalid opcode exception.

The UD?2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
instruction is not executed.

5-30 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)
Exception Class Fault.

Description
Indicates one of the following things:
The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in control
register CRO was set (1). See the paragraph below for the special case of the WAIT/FWAIT
instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register
CRO were set, regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the
exception of MOVNTI, PAUSE, PREFETCHA, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CR0O was set and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A
device-not-available exception is then generated each time an x87 FPU floating-point instruc-
tion is encountered, allowing an exception handler to call floating-point instruction emulation
routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87
floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the
x87 FPU, XMM, and MXCSR registers were not saved. When the TS flag is set and the EM flag
is clear, the processor generates a device-not-available exception each time an x87 floating-
point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception of the instruc-
tions listed above). The exception handler can then save the context of the x87 FPU, XMM, and
MXCSR registers before it executes the instruction. See Section 2.5., “Control Registers”, for
more information about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or
FWAIT instructions should generate a device-not-available exception. It extends the function of
the TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save the context of the x87 FPU before the WAIT or FWAIT instruction is executed. The MP
flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For programs
running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the
Intel 487 SX coprocessors, the MP flag should always be set; for programs running on the
Intel486 SX processor, the MP flag should be clear.

Exception Error Code

None.

Vol. 3 5-31

INTERRUPT AND EXCEPTION HANDLING Intel ®

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the
WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc-
tion that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed
to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the
context of the x87 FPU, clear the TS flag, and continue execution at the interrupted floating-
point or WAIT/FWAIT instruction.

5-32 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)
Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for
a prior exception. Normally, when the processor detects another exception while trying to call
an exception handler, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception. To determine when two faults
need to be signalled as a double fault, the processor divides the exceptions into three classes:
benign exceptions, contributory exceptions, and page faults (see Table 5-4).

Table 5-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-5 shows the various combinations of exception classes that cause a double fault to be
generated. A double-fault exception falls in the abort class of exceptions. The program or task
cannot be restarted or resumed. The double-fault handler can be used to collect diagnostic infor-
mation about the state of the machine and/or, when possible, to shut the application and/or
system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this
behavior is outside the domain of Table 5-5. Any further faults generated while the processor is
attempting to transfer control to the appropriate fault handler could still lead to a double-fault
sequence.

Vol. 3 5-33

INTERRUPT AND EXCEPTION HANDLING Intel ®

Table 5-5. Conditions for Generating a Double Fault

Second Exception

First Exception

Benign

Contributory

Page Fault

Benign

Contributory

Page Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions

Handle Exceptions
Serially

Generate a Double Fault

Generate a Double Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double

Fault

Serially

If another exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of an HLT instruc-
tion. In this mode, the processor stops executing instructions until an NMI interrupt, SMI inter-
rupt, hardware reset, or INIT# is received. The processor generates a special bus cycle to
indicate that it has entered shutdown mode. Software designers may need to be aware of the
response of hardware when it goes into shutdown mode. For example, hardware may turn on an
indicator light on the front panel, generate an NMI interrupt to record diagnostic information,
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are
pending during shutdown, they will be handled after an wake event from shutdown is processed
(for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hardware reset can restart the processor. Likewise, if the shutdown occurs while executing in
SMM, a hardware reset must be used to restart the processor

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the double-fault exception handler is to
collect all possible context information for use in diagnostics and then close the application
and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted,
the handler cannot be invoked and the processor must be reset.

5-34 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not
generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a
page or segment violation while transferring the middle portion of an Intel 387 math copro-
cessor operand. The P6 family, Pentium, and Intel486 processors do not generate this exception;
instead, this condition is detected with a general protection exception (#GP), interrupt 13.
Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program
or task cannot be resumed or restarted. The only available action of the exception handler is to
save the instruction pointer and reinitialize the x87 FPU using the FNINIT instruction.

Vol.3 5-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task
switch or during the execution of instructions that use information from a TSS. Table 5-6 shows
the conditions that cause an invalid TSS exception to be generated.

Table 5-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH
for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor indicates
an inactive task.

TSS segment selector index

During an IRET task switch, an attempt to load the backlink limit faults.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor which is
not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS descriptor is not writeable.

TSS segment selector index

Stores to the old TSS encounter a fault condition.

TSS segment selector index

The old TSS descriptor is not writeable for a jump or IRET task switch.

TSS segment selector index

The new TSS backlink is not writeable for a call or exception task switch.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the new
TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index

LDT or LDT not present.

Stack segment selector index

The stack segment selector exceeds descriptor table limit.

Stack segment selector index

The stack segment selector is NULL.

Stack segment selector index

The stack segment descriptor is a non-data segment.

Stack segment selector index

The stack segment is not writable.

Stack segment selector index

The stack segment DPL != CPL.

Stack segment selector index

The stack segment selector RPL |= CPL.

5-36 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Table 5-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition

Code segment selector index | The code segment selector exceeds descriptor table limit.

Code segment selector index | The code segment selector is NULL.

Code segment selector index | The code segment descriptor is not a code segment type.

Code segment selector index | The nonconforming code segment DPL != CPL.

Code segment selector index | The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL >
DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL >
DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the Tl bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

This exception can generated either in the context of the original task or in the context of the
new task (see Section 6.3., “Task Switching”). Until the processor has completely verified the
presence of the new TSS, the exception is generated in the context of the original task. Once the
existence of the new TSS is verified, the task switch is considered complete. Any invalid-TSS
conditions detected after this point are handled in the context of the new task. (A task switch is
considered complete when the task register is loaded with the segment selector for the new TSS
and, if the switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside
the faulting TSS context is not recommended because the processor state may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception was caused by an event external to the currently running program (for example, if
an external interrupt handler using a task gate attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved
contents of CS and EIP registers point to the instruction that invoked the task switch. If the

Vol. 3 5-37

INTERRUPT AND EXCEPTION HANDLING Intel ®

exception condition was detected after the task switch was carried out, the saved contents of CS
and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition
than causes the fault. See Section 6.3., “Task Switching”, for more information on the task
switch process and the possible recovery actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-
to-new-task point. If it occurs before the commit point, no program state change occurs. If it
occurs after the commit point (when the segment descriptor information for the new segment
selectors have been loaded in the segment registers), the processor will load all the state infor-
mation from the new TSS before it generates the exception. During a task switch, the processor
first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers
are loaded but not checked for validity and therefore may not be usable for referencing memory.
The invalid TSS handler should not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. The exception handler
should load all segment registers before trying to resume the new task; otherwise, general-
protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS excep-
tion handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them from the TSS.

5-38 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)
Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate
this exception during any of the following operations:

® While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present
segment while loading the SS register causes a stack fault exception (#SS) to be
generated.] This situation can occur while performing a task switch.

® While attempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT while loading the LDTR during a task switch operation causes an invalid-TSS
exception (#TS) to be generated.

® When executing the LTR instruction and the TSS is marked not present.

® While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is
otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. If the exception handler loads the segment and returns, the inter-
rupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (because gates do not correspond to segments). The operating system may use the
present flag for gate descriptors to trigger exceptions of special significance to the operating
system.

A contributory exception or page fault that subsequently referenced a not-present segment
would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception resulted from either:

¢ anexternal event (NMI or INTR) that caused an interrupt, which subsequently referenced a
not-present segment

® abenign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for
an interrupt being serviced references a not-present gate. Such an event could be generated by
an INT instruction or a hardware interrupt.

Vol. 3 5-39

INTERRUPT AND EXCEPTION HANDLING Intel ®

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the
exception. If the exception occurred while loading segment descriptors for the segment selectors
in anew TSS, the CS and EIP registers point to the first instruction in the new task. If the excep-
tion occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that invoked the access (for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES,
FS, GS, or LDTR), a program-state change does accompany the exception because the register
is not loaded. Recovery from this exception is possible by simply loading the missing segment
into memory and setting the present flag in the segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state
change does not accompany the exception. Recovery from this exception is possible merely by
setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3., “Task Switching”). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The segment-not-present exception handler
should not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how
to handle this situation.)

5-40 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description
Indicates that one of the following stack related conditions was detected:

¢ A limit violation is detected during an operation that refers to the SS register. Operations
that can cause a limit violation include stack-oriented instructions such as POP, PUSH,
CALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,
SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space for allocating local variables.

® A not-present stack segment is detected when attempting to load the SS register. This
violation can occur during the execution of a task switch, a CALL instruction to a different
privilege level, a return to a different privilege level, an LSS instruction, or a MOV or POP
instruction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
case of a limit violation) or loading the missing stack segment into memory (in the case of a not-
present violation.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during
an inter-privilege-level call, the error code contains a segment selector for the segment that
caused the exception. Here, the exception handler can test the present flag in the segment
descriptor pointed to by the segment selector to determine the cause of the exception. For a
normal limit violation (on a stack segment already in use) the error code is set to O.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. However, when the exception results from attempting to load a not-present stack
segment during a task switch, the CS and EIP registers point to the first instruction of the new
task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
instruction that generated the fault is not executed. Here, the instruction can be restarted after
the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see
Section 6.3., “Task Switching”). Here, the processor loads all the state information from the new
TSS (without performing any additional limit, present, or type checks) before it generates the

Vol. 3 5-41

INTERRUPT AND EXCEPTION HANDLING Intel ®

exception. The stack fault handler should thus not rely on being able to use the segment selectors
found in the CS, SS, DS, ES, FS, and GS registers without causing another exception. The
exception handler should check all segment registers before trying to resume the new task;
otherwise, general protection faults may result later under conditions that are more difficult to
diagnose. (See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)

5-42 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-
protection violations.” The conditions that cause this exception to be generated comprise all the
protection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
segment-not-present, stack-fault, or page-fault exceptions). The following conditions cause
general-protection exceptions to be generated:

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

Exceeding the segment limit when referencing a descriptor table (except during a task
switch or a stack switch).

Transferring execution to a segment that is not executable.
Writing to a code segment or a read-only data segment.
Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless the
selector comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code
segment.

Loading the SS register with the segment selector of an executable segment or a null
segment selector.

Loading the CS register with a segment selector for a data segment or a null segment
selector.

Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

Switching to a busy task during a call or jump to a TSS.

Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the
current LDT. TSS descriptors can only reside in the GDT. This condition causes a #TS
exception during an IRET task switch.

Violating any of the privilege rules described in Chapter 4, Protection.

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

Vol. 3 5-43

INTERRUPT AND EXCEPTION HANDLING Intel ®

® Loading the CRO register with a set NW flag and a clear CD flag.

® Referencing an entry in the IDT (following an interrupt or exception) that is not an
interrupt, trap, or task gate.

® Attempting to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler’s code segment DPL is greater than 0.

® Attempting to write a 1 into a reserved bit of CR4.

¢ Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section
4.9., “Privileged Instructions”, for a list of privileged instructions).

® Writing to a reserved bit in an MSR.
® Accessing a gate that contains a null segment selector.

® Executing the INT 7 instruction when the CPL is greater than the DPL of the referenced
interrupt, trap, or task gate.

® The segment selector in a call, interrupt, or trap gate does not point to a code segment.

® The segment selector operand in the LLDT instruction is a local type (TI flag is set) or
does not point to a segment descriptor of the LDT type.

® The segment selector operand in the LTR instruction is local or points to a TSS that is not
available.

® The target code-segment selector for a call, jump, or return is null.

® If the PAE and/or PSE flag in control register CR4 is set and the processor detects any
reserved bits in a page-directory-pointer-table entry set to 1. These bits are checked during
a write to control registers CRO, CR3, or CR4 that causes a reloading of the page-
directory-pointer-table entry.

® Attempting to write a non-zero value into the reserved bits of the MXCSR register.

® Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory
location that is not aligned on a 16-byte boundary when the instruction requires 16-byte
alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the exception
occurs while attempting to call an interrupt handler, the interrupted program can be restartable,
but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was
detected while loading a segment descriptor, the error code contains a segment selector to or IDT
vector number for the descriptor; otherwise, the error code is 0. The source of the selector in an
error code may be any of the following:

® An operand of the instruction.

® A selector from a gate which is the operand of the instruction.

5-44 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

® A selector from a TSS involved in a task switch.

® DT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because
the invalid instruction or operation is not executed. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and restart the program or
task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3., “Task Switching”). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The general-protection exception handler should
thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how
to handle this situation.)

Vol. 3 5-45

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected
one of the following conditions while using the page-translation mechanism to translate a linear
address to a physical address:

The P (present) flag in a page-directory or page-table entry needed for the address
translation is clear, indicating that a page table or the page containing the operand is not
present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (that is, a
procedure running in user mode attempts to access a supervisor-mode page).

Code running in user mode attempts to write to a read-only page. In the Intel486 and later
processors, if the WP flag is set in CRO, the page fault will also be triggered by code
running in supervisor mode that tries to write to a read-only user-mode page.

One or more reserved bits in page directory entry are set to 1. See description below of
RSVD error code flag

The exception handler can recover from page-not-present conditions and restart the program or
task without any loss of program continuity. It can also restart the program or task after a privi-
lege violation, but the problem that caused the privilege violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of informa-
tion to aid in diagnosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different from that
for other exceptions (see Figure 5-7). The error code tells the exception handler four
things:

— The P flag indicates whether the exception was due to a not-present page (0) or to
either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception was a
read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected Is in reserved bits of the page
directory, when the PSE or PAE flags in control register CR4 are set to 1. (The PSE
flag is only available in the Pentium 4, Intel Xeon, P6 family, and Pentium processors,
and the PAE flag is only available on the Pentium 4, Intel Xeon, and P6 family
processors. In earlier IA-32 processor, the bit position of the RSVD flag is reserved.)

5-46 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

31 43210
L
Reserved vI/|/|P
D |S|W
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.
W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.
u/s 0 The access causing the fault originated when the processor

was executing in supervisor mode.
1 The access causing the fault originated when the processor
was executing in user mode.

RSVD O The fault was not caused by reserved bit violation.
1 The fault was caused by reserved bits set to 1 in a page directory.

Figure 5-7. Page-Fault Error Code

® The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address that generated the exception. The page-fault handler can use this address to
locate the corresponding page directory and page-table entries. Another page fault can
potentially occur during execution of the page-fault handler; the handler should save the
contents of the CR2 register before a second page fault can occur.! If a page fault is caused
by a page-level protection violation, the access flag in the page-directory entry is set when
the fault occurs. The behavior of IA-32 processors regarding the access flag in the corre-
sponding page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. If the page-fault exception occurred during a task switch, the CS and EIP registers
may point to the first instruction of the new task (as described in the following ‘“Program State
Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep-
tion handler has corrected the violation (for example, loaded the missing page into memory),
execution of the program or task can be resumed.

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier
page fault is being delivered, the faulting linear address of the second fault will overwrite the contents of
CR2 (replacing the previous address). These updates to CR2 occur even if the page fault results in a
double fault or occurs during the delivery of a double fault.

Vol. 3 5-47

INTERRUPT AND EXCEPTION HANDLING Intel ®

When a page-fault exception is generated during a task switch, the program-state may change,
as follows. During a task switch, a page-fault exception can occur during any of following oper-
ations:

® While writing the state of the original task into the TSS of that task.

® While reading the GDT to locate the TSS descriptor of the new task.

® While reading the TSS of the new task.

® While reading segment descriptors associated with segment selectors from the new task.

® While reading the LDT of the new task to verify the segment registers stored in the new
TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer
refers to the first instruction of the new task, not to the instruction which caused the task switch
(or the last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from
the new TSS (without performing any additional limit, present, or type checks) before it gener-
ates the exception. The page-fault handler should thus not rely on being able to use the segment
selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in
this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack
switch does not cause the processor to use an invalid stack pointer (SS:ESP). Software written
for 16-bit IA-32 processors often use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault,
general-protection fault (#GP), or alignment check fault (#AC) after the segment selector has
been loaded into the SS register but before the ESP register has been loaded. At this point, the
two parts of the stack pointer (SS and ESP) are inconsistent. The new stack segment is being
used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a
well defined stack (that is, the handler is a task or a more privileged procedure). However, if the
exception handler is called at the same privilege level and from the same task, the processor will
attempt to use the inconsistent stack pointer.

5-48 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

In systems that handle page-fault, general-protection, or alignment check exceptions within the
faulting task (with trap or interrupt gates), software executing at the same privilege level as the
exception handler should initialize a new stack by using the LSS instruction rather than a pair
of MOV instructions, as described earlier in this note. When the exception handler is running at
privilege level O (the normal case), the problem is limited to procedures or tasks that run at priv-
ilege level O, typically the kernel of the operating system.

Vol. 3 5-49

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CRO
must be set for an interrupt 16 (floating-point error exception) to be generated. (See Section 2.5.,
“Control Registers”, for a detailed description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XF) are signaled through interrupt 19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-
point error conditions:

® Invalid operation (#I)
— Stack overflow or underflow (#IS)
— Invalid arithmetic operation (#IA)

¢ Divide-by-zero (#Z)

® Denormalized operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception
type, the x87 FPU provides a flag in the x87 FPU status register and a mask bit in the x87 FPU
control register. If the x87 FPU detects a floating-point error and the mask bit for the exception
type is set, the x87 FPU handles the exception automatically by generating a predefined (default)
response and continuing program execution. The default responses have been designed to
provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87 FPU does
the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point
exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU
checks for pending x87 FPU floating-point exceptions (as described in step 2 above). Pending

5-50 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

x87 FPU floating-point exceptions are ignored for “non-waiting” x87 FPU instructions, which
include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, FNSTENYV, and FNSAVE
instructions. Pending x87 FPU exceptions are also ignored when executing the state manage-
ment instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-
point-error exception handler can determine the error condition that caused the exception from
the settings of the flags in the x87 FPU status word. See “Software Exception Handling” in
Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more
information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruc-
tion that was about to be executed when the floating-point-error exception was generated. This
is not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the x87 FPU instruction pointer register. See “x87 FPU
Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for more information about information the FPU saves for use
in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because
the handling of the exception is delayed until the next waiting x87 FPU floating-point or
WAIT/FWAIT instruction following the faulting instruction. The x87 FPU, however, saves
sufficient information about the error condition to allow recovery from the error and re-execu-
tion of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87
FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in front of a
dependent instruction to force a pending x87 FPU floating-point exception to be handled before
the dependent instruction is executed. See “x87 FPU Exception Synchronization” in Chapter 8
of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information
about synchronization of x87 floating-point-error exceptions.

Vol. 3 5-51

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 17—Alignment Check Exception (#AC)
Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking
was enabled. Alignment checks are only carried out in data (or stack) segments (not in code or
system segments). An example of an alignment-check violation is a word stored at an odd byte
address, or a doubleword stored at an address that is not an integer multiple of 4. Table 5-7 lists
the alignment requirements various data types recognized by the processor.

Table 5-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By
Word 2
Doubleword 4
Single-precision floating-point (32-bits) 4
Double-precision floating-point (64-bits) 8
Double extended-precision floating-point (80-bits) 8
Quadword 8
Double quadword 16
Segment Selector 2
32-bit Far Pointer 2
48-bit Far Pointer 4
32-bit Pointer 4
GDTR, IDTR, LDTR, or Task Register Contents 4
FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size
Bit String 2 or 4 depending on the operand-size attribute.

Note that the alignment check exception (#AC) is generated only for data types that must be
aligned on word, doubleword, and quadword boundaries. A general-protection exception (#GP)
is generated 128-bit data types that are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
® AM flag in CRO register is set.

® AC flag in the EFLAGS register is set.

® The CPL is 3 (protected mode or virtual-8086 mode).

5-52 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user
mode). Memory references that default to privilege level 0, such as segment descriptor loads, do
not generate alignment-check exceptions, even when caused by a memory reference made from
privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
level 3 can generate an alignment-check exception. Although application programs do not
normally store these registers, the fault can be avoided by aligning the information stored on an
even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure, the first
byte of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC)
is enabled when executing these instructions (and CPL is 3), a misaligned memory operand can
cause either an alignment-check exception or a general-protection exception (#GP) depending
on the IA-32 processor implementation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2
State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the /A-
32 Intel Architecture Software Developer’s Manual, Volume 2.

The MOVUPS and MOVUPD instructions, which perform a 128-bit unaligned load or store do
not generate general-protection exceptions (#GP) when an operand is not aligned on a 16-byte
boundary. However, if alignment checking is enabled (as described above), 2-, 4-, and 8-byte
misalignments will be detected and cause an alignment-check exception to be generated.

FSAVE and FRSTOR instructions generate unaligned references, which can cause alignment-
check faults. These instructions are rarely needed by application programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is not executed.

Vol. 3 5-53

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 18—Machine-Check Exception (#MC)
Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external
agent detected a bus error. The machine-check exception is model-specific, available only on
the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The implementation of the
machine-check exception is different between the Pentium 4, Intel Xeon, P6 family, and
Pentium processors, and these implementations may not be compatible with future IA-32
processors. (Use the CPUID instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the
BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family processors and the
BUSCHK# pin on the Pentium processor. When one of these pins is enabled, asserting the pin
causes error information to be loaded into machine-check registers and a machine-check excep-
tion is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter
14, Machine-Check Architecture. Also, see the data books for the individual processors for
processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check
state registers are directly associated with the error that caused the machine-check exception to
be generated (see Section 14.3.1.3., “TIA32_MCG_STATUS MSR” and Section 14.3.2.5.,
“IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved
contents of CS and EIP registers are directly associated with the error that caused the machine-
check exception to be generated; if the flag is clear, the saved instruction pointer may not be
associated with the error (see Section 14.3.1.3., “IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the
error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4.

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change
always accompanies a machine-check exception, and an abort class exception is generated. For

5-54 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

abort exceptions, information about the exception can be collected from the machine-check
MSRs, but the program cannot generally be restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear),
a machine-check exception causes the processor to enter the shutdown state.

Vol. 3 5-55

INTERRUPT AND EXCEPTION HANDLING Intel ®

Interrupt 19—SIMD Floating-Point Exception (#XF)
Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The
appropriate status flag in the MXCSR register must be set and the particular exception
unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/
SSE2/SSE3 SIMD floating-point instruction:

® Invalid operation (#I)

® Divide-by-zero (#7Z)

¢ Denormal operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation
exceptions; that is, they are detected before any arithmetic operation occurs. The numeric under-
flow, numeric overflow, and inexact result exceptions are post-computational exceptions.

See "SIMD Floating-Point Exceptions", in Chapter 11 of the [A-32 Intel Architecture Software
Developer’s Manual, Volume 1, for additional information about the SIMD floating-point excep-
tion classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:

® It handles the exception automatically by producing the most reasonable result and
allowing program execution to continue undisturbed. This is the response to masked
exceptions.

® It generates a SIMD floating-point exception, which in turn invokes a software exception
handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask
bit in the MXCSR register. If an exception is masked (the corresponding mask bit in the MXCSR
register is set), the processor takes an appropriate automatic default action and continues with
the computation. If the exception is unmasked (the corresponding mask bit is clear) and the
operating system supports SIMD floating-point exceptions (the OSXMMEXCPT flag in control
register CR4 is set), a software exception handler is invoked through a SIMD floating-point
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the
operating system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.

5-56 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Note that because SIMD floating-point exceptions are precise and occur immediately, the situ-
ation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, or another
SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point
exceptions were masked (causing the corresponding exception flag to be set) and the SIMD
floating-point exception was subsequently unmasked, then no exception is generated when the
exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up
of two or four sub-operands), multiple SIMD floating-point exception conditions may be
detected. If no more than one exception condition is detected for one or more sets of sub-oper-
ands, the exception flags are set for each exception condition detected. For example, an invalid
exception detected for one sub-operand will not prevent the reporting of a divide-by-zero excep-
tion for another sub-operand. However, when two or more exceptions conditions are generated
for one sub-operand, only one exception condition is reported, according to the precedences
shown in Table 5-8. This exception precedence sometimes results in the higher priority excep-
tion condition being reported and the lower priority exception conditions being ignored.

Table 5-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum,
minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exceptionz.

4 Denormal operand exceptionz.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact

result exception?.

6 (Lowest) Inexact result exception.

Notes:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower pri-
ority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-by-zero- excep-
tion.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

Exception Error Code

None.

Vol. 3 5-57

INTERRUPT AND EXCEPTION HANDLING Intel ®

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was
executed when the SIMD floating-point exception was generated. This is the faulting instruction
in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the
handling of the exception is immediate unless the particular exception is masked. The available
state information is often sufficient to allow recovery from the error and re-execution of the
faulting instruction if needed.

5-58 Vol. 3

Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined Interrupts
Exception Class Not applicable.

Description
Indicates that the processor did one of the following things:

¢ Executed an INT # instruction where the instruction operand is one of the vector numbers
from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the local APIC when the
interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n
instruction or instruction following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT # instruction or
the INTR signal. The INT » instruction generates the interrupt within the instruction stream.
When the processor receives an INTR signal, it commits all state changes for all previous
instructions before it responds to the interrupt; so, program execution can resume upon returning
from the interrupt handler.

Vol. 3 5-59

INTERRUPT AND EXCEPTION HANDLING

5-60 Vol. 3

6

Task Management

CHAPTER 6
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are
only available when the processor is running in protected mode.

6.1. TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep-
tion handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
all processor execution takes place from within a task. Even simple systems must define at least
one task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1. Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(see Figure 6-1). If an operating system or executive uses the processor’s privilege-level protec-
tion mechanism, the task execution space also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

NOTE

This chapter describes primarily 32-bit tasks and the 32-bit TSS structure.
For information on 16-bit tasks and the 16-bit TSS structure, see Section 6.6.,
“16-Bit Task-State Segment (TSS)”.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS are loaded into the task register (see Section 2.4.4., “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.

Vol. 3 6-1

TASK MANAGEMENT
Code
’_> Segment
Task-State Data
Segment —\—> Segment
(TSS) Stack
«»| Segment
| (Current Priv.
Level)
Stack Seg.
»| Priv. Level 0
Stack Seg.
_:l > Priv. Level 1
Task Register Stack
E— > _Segment
CR3 (Priv. Level 2)

Figure 6-1. Structure of a Task

6.1.2. Task State

The following items define the state of the currently executing task:

® The task’s current execution space, defined by the segment selectors in the segment

registers (CS, DS, SS, ES, FS, and GS).
® The state of the general-purpose registers.
® The state of the EFLAGS register.
® The state of the EIP register.
® The state of control register CR3.
® The state of the task register.
® The state of the LDTR register.

® The I/O map base address and I/O map (contained in the TSS).

® Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

® Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,

only the segment selector for the LDT.

6-2 Vol. 3

Intel® TASK MANAGEMENT

6.1.3. Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:
® A explicit call to a task with the CALL instruction.

® A explicit jump to a task with the JMP instruction.

® An implicit call (by the processor) to an interrupt-handler task.

® An implicit call to an exception-handler task.

® A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
set.

All of these methods of dispatching a task identify the task to be dispatched with a segment
selector that points either to a task gate or the TSS for the task. When dispatching a task with a
CALL or JMP instruction, the selector in the instruction may select either the TSS directly or a
task gate that holds the selector for the TSS. When dispatching a task to handle an interrupt or
exception, the IDT entry for the interrupt or exception must contain a task gate that holds the
selector for the interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch automatically occurs between the
currently running task and the dispatched task. During a task switch, the execution environment
of the currently executing task (called the task’s state or context) is saved in its TSS and execu-
tion of the task is suspended. The context for the dispatched task is then loaded into the processor
and execution of that task begins with the instruction pointed to by the newly loaded EIP
register. If the task has not been run since the system was last initialized, the EIP will point to
the first instruction of the task’s code; otherwise, it will point to the next instruction after the last
instruction that the task executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task),
the TSS segment selector for the calling task is stored in the TSS of the called task to provide a
link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
switch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechanism can handle interrupts that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CR3) also is reloaded on a task switch, allowing each task to have its own set of page
tables. These protection facilities help isolate tasks and prevent them from interfering with one
another. If one or both of these protection mechanisms are not used, the processor provides no
protection between tasks. This is true even with operating systems that use multiple privilege
levels for protection. Here, a task running at privilege level 3 that uses the same LDT and page
tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.

Vol.3 6-3

TASK MANAGEMENT Intel®

Use of task management facilities for handling multitasking applications is optional. Multi-
tasking can be handled in software, with each software defined task executed in the context of
a single IA-32 architecture task.

6.2. TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
® Task-state segment (TSS).

® Task-gate descriptor.

® TSS descriptor.

® Task register.

® NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the
task-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. (Compatibility with 16-bit Intel 286 processor tasks is provided by a different kind of
TSS, see Figure 6-9.) The fields of a TSS are divided into two main categories: dynamic fields
and static fields.

6-4 Vol. 3

I ntel ® TASK MANAGEMENT

31 15 0
I/O Map Base Address T1100
LDT Segment Selector 96
GS 92
FS 88
DS 84
SS 80
CS 76
ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CRS3 (PDBR) 28
\ ss2 24
ESP2 20
\ sSt 16
ESP1 12
\ SS0
ESPO
‘ Previous Task Link

:l Reserved bits. Set to 0.

Figure 6-2. 32-Bit Task-State Segment (TSS)

The processor updates the dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:

General-purpose register fields
State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to
the task switch.

Vol.3 6-5

TASK MANAGEMENT Intel®

Segment selector fields
Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to
the task switch.

EFLAGS register field
State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field
State of the EIP register prior to the task switch.

Previous task link field
Contains the segment selector for the TSS of the previous task (updated on a
task switch that was initiated by a call, interrupt, or exception). This field
(which is sometimes called the back link field) permits a task switch back to
the previous task to be initiated with an IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up
when a task is created. The following are static fields:

LDT segment selector field
Contains the segment selector for the task's LDT.

CR3 control register field
Contains the base physical address of the page directory to be used by the task.
Control register CR3 is also known as the page-directory base register (PDBR).

Privilege level-0, -1, and -2 stack pointer fields
These stack pointers consist of a logical address made up of the segment
selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack
(ESPO, ESP1, and ESP2). Note that the values in these fields are static for a
particular task; whereas, the SS and ESP values will change if stack switching
occurs within the task.

T (debug trap) flag (byte 100, bit 0)
When set, the T flag causes the processor to raise a debug exception when a
task switch to this task occurs (see Section 15.3.1.5., “Task-Switch Exception
Condition”).

I/0 map base address field

Contains a 16-bit offset from the base of the TSS to the I/O permission bit map
and interrupt redirection bitmap. When present, these maps are stored in the
TSS at higher addresses. The I/O map base address points to the beginning of
the I/O permission bit map and the end of the interrupt redirection bit map.
See Chapter 12, Input/Output, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for more information about the I/O permission bit
map. See Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode”, for a detailed description of the interrupt redirection bit map.

If paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time and contiguous in physical memory.

6-6 Vol. 3

Intel® TASK MANAGEMENT

The reason for this restriction is that when accessing a TSS during a task switch, the processor
reads and writes into the first 104 bytes of each TSS from contiguous physical addresses begin-
ning with the physical address of the first byte of the TSS. It may not perform address transla-
tions at a page boundary if one occurs within this area. So, after the TSS access begins, if a part
of the 104 bytes is not both present and physically contiguous, the processor will access incor-
rect TSS information, without generating a page-fault exception. The reading of this incorrect
information will generally lead to an unrecoverable exception later in the task switch process.

Also, if paging is used, the pages corresponding to the previous task’s TSS, the current task’s
TSS, and the descriptor table entries for each should be marked as read/write. The task switch
will be carried out faster if the pages containing these structures are also present in memory
before the task switch is initiated.

6.2.2. TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the
current LDT) causes a general-protection exception (#GP) to be generated during CALLs and
JMPs; it causes an invalid TSS exception (#TS) during IRETs. A general-protection exception
is also generated if an attempt is made to load a segment selector for a TSS into a segment
register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or is suspended. A type field with a value of 1001B indicates an inactive task; a value
of 1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
detect an attempt to call a task whose execution has been interrupted. To insure that there is only
one busy flag is associated with a task, each TSS should have only one TSS descriptor that points
to it.

Vol.3 6-7

TASK MANAGEMENT Intel®

TSS Descriptor

31 242322 212019 16151413 12 11 8 7 0
A L D Type
Base31:24 |G|oo|v| HML |p| p e Base23:16 |4
: L |o|1 | 0 ‘ B‘ 1
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 6-3. TSS Descriptor

The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.3., “Segment Descriptors”). When the G
flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field must have a value equal to or greater
than 67H, one byte less than the minimum size of a TSS. Attempting to switch to a task whose
TSS descriptor has a limit less than 67H generates an invalid-TSS exception (#TS). A larger
limit is required if an I/O permission bit map is included in the TSS. An even larger limit would
be required if the operating system stores additional data in the TSS. The processor does not
check for a limit greater than 67H on a task switch; however, it does when accessing the I/O
permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.

In most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only
privileged software can perform task switching. However, in multitasking applications, DPLs
for some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-
ilege level.

6.2.3. Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see
Figure 2-4). This information is copied from the TSS descriptor in the GDT for the current task.
Figure 6-4 shows the path the processor uses to accesses the TSS, using the information in the
task register.

6-8 Vol. 3

Intel® TASK MANAGEMENT

The task register has both a visible part (that can be read and changed by software) and an invis-
ible part (that is maintained by the processor and is inaccessible by software). The segment
selector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the task register to cache the segment descriptor for the TSS. Caching these
values in a register makes execution of the task more efficient, because the processor does not
need to fetch these values from memory to reference the TSS of the current task.

The LTR (load task register) and STR (store task register) instructions load and read the visible
portion of the task register. The LTR instruction loads a segment selector (source operand) into
the task register that points to a TSS descriptor in the GDT, and then loads the invisible portion
of the task register with information from the TSS descriptor. This instruction is a privileged
instruction that may be executed only when the CPL is 0. The LTR instruction generally is used
during system initialization to put an initial value in the task register. Afterwards, the contents
of the task register are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory. This instruction can be executed by code running at any
privilege level, to identify the currently running task; however, it is normally used only by oper-
ating system software.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

6.2.4. Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task. Figure 6-5 shows the
format of a task-gate descriptor. A task-gate descriptor can be placed in the GDT, an LDT, or the
IDT.

The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the GDT.
The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch.
When a program or procedure makes a call or jump to a task through a task gate, the CPL and
the RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
of the task-gate descriptor. (Note that when a task gate is used, the DPL of the destination TSS
descriptor is not used.)

Vol.3 6-9

TASK MANAGEMENT
TSS
<~
~
A
Visible Part Invisible Part
Task T
Register Selector Base Address ‘ Segment Limit
A
GDT
» TSS Descriptor
0
Figure 6-4. Task Register
31 1615141312 11 8 7
b E Type
olo |1 ‘o| 1
31 1615

TSS Segment Selector

DPL Descriptor Privilege Level
P Segment Present
TYPE Segment Type

\:’ Reserved

Figure 6-5. Task-Gate Descriptor

6-10 Vol. 3

Intel® TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
structures are provided to satisfy the following needs:

The need for a task to have only one busy flag. Because the busy flag for a task is stored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however,
be several task gates that reference the same TSS descriptor.

The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor's DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for a task in the GDT (which usually has a DPL of 0) may be allowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

The need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which allows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.

Figure 6-6 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the
IDT can all point to the same task.

Vol. 3 6-11

TASK MANAGEMENT
LDT GDT TSS
Task Gate
Task Gate é TSS Descriptor
IDT
Task Gate

Figure 6-6. Task Gates Referencing the Same Task

6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

® The current program, task, or procedure executes a JMP or CALL instruction to a TSS

descriptor in the GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
descriptor in the GDT or the current LDT.

® Aninterrupt or exception vector points to a task-gate descriptor in the IDT.

® The current task executes an IRET when the NT flag in the EFLAGS register is set.

6-12 Vol. 3

Intel® TASK MANAGEMENT

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized
mechanisms for redirecting a program. The referencing of a TSS descriptor or a task gate (when
calling or jumping to a task) or the state of the NT flag (when executing an IRET instruction)
determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1.

Obtains the TSS segment selector for the new task as the operand of the JMP or CALL
instruction, from a task gate, or from the previous task link field (for a task switch initiated
with an IRET instruction).

Checks that the current (old) task is allowed to switch to the new task. Data-access
privilege rules apply to JMP and CALL instructions. The CPL of the current (old) task and
the RPL of the segment selector for the new task must be less than or equal to the DPL of
the TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
interrupts generated by the INT n instruction), and the IRET instruction are permitted to
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT # instruction, the DPL is checked.

Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H).

Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
return).

Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
switch are paged into system memory.

If the task switch was initiated with a JMP or IRET instruction, the processor clears the
busy (B) flag in the current (old) task’s TSS descriptor; if initiated with a CALL
instruction, an exception, or an interrupt, the busy (B) flag is left set. (See Table 6-2.)

If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instruction, an exception, or an interrupt, the NT flag is left unchanged in the saved
EFLAGS image.

Saves the state of the current (old) task in the current task’s TSS. The processor finds the
base address of the current TSS in the task register and then copies the states of the
following registers into the current TSS: all the general-purpose registers, segment
selectors from the segment registers, the temporarily saved image of the EFLAGS register,
and the instruction pointer register (EIP).

If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the
processor will set the NT flag in the EFLAGS loaded from the new task. If initiated with an
IRET instruction or JMP instruction, the NT flag will reflect the state of NT in the
EFLAGS loaded from the new task (see Table 6-2).

Vol. 3 6-13

TASK MANAGEMENT Intel®

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an interrupt, the processor sets the busy (B) flag in the new task’s TSS descriptor; if
initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR
(control register CR3), the EFLAGS registers, the EIP register, the general-purpose
registers, and the segment selectors. Note that a fault during the load of this state may
corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. Any errors
associated with this loading and qualification occur in the context of the new task.

NOTE

At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 11, the processor does not complete the task switch and
insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch. If an unrecoverable error occurs in
step 12, architectural state may be corrupted, but an attempt will be made to
handle the error in the prior execution environment. If an unrecoverable error
occurs after the commit point (in step 13), the processor completes the task
switch (without performing additional access and segment availability
checks) and generates the appropriate exception prior to beginning execution
of the new task. If exceptions occur after the commit point, the exception
handler must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 5, “Interrupt 10—Invalid TSS
Exception (#TS)”, for more information about the affect of exceptions on a
task when they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CS register, which is loaded from the TSS. Because tasks are isolated by their sepa-
rate address spaces and TSSs and because privilege rules control access to a TSS, software does
not need to perform explicit privilege checks on a task switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the checks in the table is the order used in the P6
family processors. The exact order is model specific and may be different for other IA-32
processors.) Exception handlers designed to handle these exceptions may be subject to recursive

6-14 Vol. 3

Intel® TASK MANAGEMENT

calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 6-1. Exception Conditions Checked During a Task Switch

Error Code

Condition Checked Exception’ Reference?
Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table. #TS (for IRET)
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a | #GP (for JMP, CALL, | Task’s back-link TSS
call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated by #TS (for IRET) New Task’s TSS
an IRET instruction).
TSS segment limit greater than or equal to 108 (for 32- #TS New Task’s TSS
bit TSS) or 44 (for 16-bit TSS).
Registers are loaded from the values in the TSS.
LDT segment selector of new task is valid 3. #TS New Task’s LDT
Code segment DPL matches segment selector RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SF New Stack Segment
Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task’s LDT
CS segment selector is valid 2. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment
DS, ES, FS, and GS segments are readable. #TS New Data Segment
DS, ES, FS, and GS segments are present in memory. #NP New Data Segment
DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments).

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table's segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time a task switch occurs.
System software uses the TS flag to coordinate the actions of floating-point unit when gener-

Vol. 3 6-15

TASK MANAGEMENT Intel®

ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. See Section 2.5.,
“Control Registers”, for a detailed description of the function and use of the TS flag.

6.4. TASKLINKING

The previous task link field of the TSS (sometimes called the “backlink™) and the NT flag in the
EFLAGS register are used to return execution to the previous task. The NT flag indicates
whether the currently executing task is nested within the execution of another task, and the
previous task link field of the current task's TSS holds the TSS selector for the higher-level task
in the nesting hierarchy, if there is one (see Figure 6-7).

When a CALL instruction, an interrupt, or an exception causes a task switch, the processor
copies the segment selector for the current TSS into the previous task link field of the TSS for
the new task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
previous task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware uses an IRET instruction to suspend the new task, the processor uses the value in the
previous task link field and the NT flag to return to the previous task; that is, if the NT flag is
set, the processor performs a task switch to the task specified in the previous task link field.

NOTE

When a JMP instruction causes a task switch, the new task is not nested; that
is, the NT flag is set to 0 and the previous task link field is not used. A JMP
instruction is used to dispatch a new task when nesting is not desired.

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS

NT=1

NT=0 NT=1 NT=1

Previous Previous Previous

Task Link Task Link Task Link Task Register

NI

Figure 6-7. Nested Tasks

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CRO) during a task switch. Note that the
NT flag may be modified by software executing at any privilege level. It is possible for a
program to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task's TSS. To keep spurious

6-16 Vol. 3

intgl.

TASK MANAGEMENT

task switches from succeeding, the operating system should initialize the previous task link field
for every TSS it creates to 0.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,

and TS Flag
Effect of CALL
Effect of JMP Instruction or Effect of IRET
Flag or Field instruction Interrupt Instruction

Busy (B) flag of new
task.

Busy flag of old task.

Flag is set. Must have
been clear before.

Flag is cleared.

Flag is set. Must have
been clear before.

No change. Flag is
currently set.

No change. Must have
been set.

Flag is cleared.

NT flag of new task. Set to value from TSS of | Flag is set. Set to value from TSS of
new task. new task.
NT flag of old task. No change. No change. Flag is cleared.
Previous task link field of | No change. Loaded with selector No change.
new task. for old task’s TSS.
Previous task link field of | No change. No change. No change.
old task.
TS flag in control Flag is set. Flag is set. Flag is set.
register CRO.
6.4.1. Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current state of the task
to be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
switching and subsequent loss of task state information. The processor manages the busy flag as

follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. [If during a task switch, the current task is placed in a nested chain (the task switch is being

generated by a CALL instruction, an interrupt, or an exception), the busy flag for the
current task remains set.

When switching to the new task (initiated by a CALL instruction, interrupt, or exception),
the processor generates a general-protection exception (#GP) if the busy flag of the new
task is already set. (If the task switch is initiated with an IRET instruction, the exception is
not raised because the processor expects the busy flag to be set.)

When a task is terminated by a jump to a new task (initiated with a JMP instruction in the
task code) or by an IRET instruction in the task code, the processor clears the busy flag,
returning the task to the “not busy” state.

In this manner the processor prevents recursive task switching by preventing a task from
switching to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks

Vol. 3 6-17

TASK MANAGEMENT Intel®

may grow to any length, due to multiple calls, interrupts, or exceptions. The busy flag prevents
a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a
LOCK protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two processors from invoking the same task at the same time. (See Section 7.1.2.1., “Automatic
Locking”, for more information about setting the busy flag in a multiprocessor applications.)

6.4.2. Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that
suspended the task to be removed). It is assumed that the pre-empting task is the next task
(newer task) in the chain from the task to be removed. Change the previous task link field
to point to the TSS of the next oldest task in the chain or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
chain. If more than one task is being removed from the chain, the busy flag for each task
being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be
added to this procedure to insure that the TSS and its segment descriptor are both locked when
the previous task link field is changed and the busy flag is cleared.

6.5. TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments
include the code, data, stack, and system segments referenced in the TSS and any other segments
accessed by the task code. These segments are mapped into the processor’s linear address space,
which is in turn mapped into the processor’s physical address space (either directly or through
paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.

6-18 Vol. 3

|nte|® TASK MANAGEMENT

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can share the same set of page tables.

6.5.1. Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:

® One linear-to-physical address space mapping is shared among all tasks. When paging is
not enabled, this is the only choice. Without paging, all linear addresses map to the same
physical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
may exceed the available physical space if demand-paged virtual memory is supported.

® Each task has its own linear address space that is mapped to the physical address space.
This form of mapping is accomplished by using a different page directory for each task.
Because the PDBR (control register CR3) is loaded on each task switch, each task may
have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share any physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.

Vol. 3 6-19

TASK MANAGEMENT Intel®

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS , Page
Task A
PTE — Page
PTE >
PDBR > PDE > PTE T Task A
PDE Page
Shared PT >
Shared
_ Page
PTE =
> PTE Shared
Task B TSS _‘ Page
Task B
= Page
PDBR > PDE — PTE =
PDE > PTE Task B
_‘ Page

Figure 6-8. Overlapping Linear-to-Physical Mappings

6.5.2. Task Logical Address Space

To allow the sharing of data among tasks, use any of the following techniques to create shared
logical-to-physical address-space mappings for data segments:

Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.

Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.

Through segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

6-20 Vol. 3

|nte|® TASK MANAGEMENT

6.6. 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286
processors (see Figure 6-9). It is supported for compatibility with software written to run on
these earlier IA-32 processors.

The following additional information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.

The 16-bit TSS does not contain a field for the base address of the page directory, which is
loaded into control register CR3. Therefore, a separate set of page tables for each task is
not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
previous task is used.

The I/O base address is not included in the 16-bit T'SS, so none of the functions of the I/O
map are supported.

When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP register are lost.

When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of the registers are modified and not maintained.

Vol. 3 6-21

TASK MANAGEMENT

15

Task LDT Selector

DS Selector

SS Selector

CS Selector

ES Selector

DI

SI

BP

SP

BX

DX

CX

AX

FLAG Word

IP (Entry Point)

8§82

SP2

SS1

SP1

SS0

SPO

Previous Task Link

42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

o N MO

6-22 Vol. 3

Figure 6-9. 16-Bit TSS Format

7

Multiple-Processor
Management

CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The IA-32 architecture provides several mechanisms for managing and improving the perfor-
mance of multiple processors connected to the same system bus. These mechanisms include:

Bus locking and/or cache coherency management for performing atomic operations on
system memory.

Serializing instructions. (These instructions apply only to the Pentium 4, Intel Xeon, P6
family, and Pentium processors.)

An advance programmable interrupt controller (APIC) located on the processor chip (see
Chapter 8, Advanced Programmable Interrupt Controller (APIC)). The APIC architecture
was introduced into the IA-32 processors with the Pentium processor.

A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly coupled to the
processor. For the Pentium and Intel486 processors, pins are provided to support an
external L2 cache.

A third-level cache (level 3, L3). For the Intel Xeon processors, the L3 cache is included in
the processor package and is tightly coupled to the processor.

Hyper-Threading Technology, an extension to the IA-32 architecture that enables a single
processor core to execute two or more threads of execution concurrently (see Section 7.6.,
“Hyper-Threading Technology™).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems;
however, they can also be used in applications where a IA-32 processor and a special-purpose
processor (such as a communications, graphics, or video processor) share the system bus.

The main goals of these multiprocessing mechanisms are as follows:

To maintain system memory coherency—When two or more processors are attempting
simultaneously to access the same address in system memory, some communication
mechanism or memory access protocol must be available to promote data coherency and,
in some instances, to allow one processor to temporarily lock a memory location.

To maintain cache consistency—When one processor accesses data cached on another
processor, it must not receive incorrect data. If it modifies data, all other processors that
access that data must receive the modified data.

To allow predictable ordering of writes to memory—In some circumstances, it is important
that memory writes be observed externally in precisely the same order as programmed.

To distribute interrupt handling among a group of processors—When several processors
are operating in a system in parallel, it is useful to have a centralized mechanism for
receiving interrupts and distributing them to available processors for servicing.

Vol.3 7-1

MULTIPLE-PROCESSOR MANAGEMENT Intel®

¢ To increase system performance by exploiting the multi-threaded and multi-process nature
of contemporary operating systems and applications.

The IA-32 architecture’s caching mechanism and cache consistency are discussed in Chapter 10,
Memory Cache Control. The APIC architecture is described in Chapter 8, Advanced Program-
mable Interrupt Controller (APIC). Bus and memory locking, serializing instructions, memory
ordering, and Hyper-Threading Technology are discussed in the following sections.

7.1. LOCKED ATOMIC OPERATIONS

The 32-bit IA-32 processors support locked atomic operations on locations in system memory.
These operations are typically used to manage shared data structures (such as semaphores,
segment descriptors, system segments, or page tables) in which two or more processors may try
simultaneously to modify the same field or flag. The processor uses three interdependent mech-
anisms for carrying out locked atomic operations:

® guaranteed atomic operations
® bus locking, using the LOCK# signal and the LOCK instruction prefix

® cache coherency protocols that insure that atomic operations can be carried out on cached
data structures (cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and
P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory transactions
(such as reading or writing a byte in system memory) are always guaranteed to be handled atom-
ically. That is, once started, the processor guarantees that the operation will be completed before
another processor or bus agent is allowed access to the memory location. The processor also
supports bus locking for performing selected memory operations (such as a read-modify-write
operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in
a processor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s
caches without asserting the bus lock. Here the processor’s cache coherency protocols insure
that other processors that are caching the same memory locations are managed properly while
atomic operations are performed on cached memory locations.

Note that the mechanisms for handling locked atomic operations have evolved as the complexity
of TA-32 processors has evolved. As such, more recent IA-32 processors (such as the Pentium 4,
Intel Xeon, and P6 family processors) provide a more refined locking mechanism than earlier
IA-32 processors. These are described in the following sections.

7-2 Vol.3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

7.1.1. Guaranteed Atomic Operations

The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors guarantee that the
following basic memory operations will always be carried out atomically:

® reading or writing a byte
® reading or writing a word aligned on a 16-bit boundary
® reading or writing a doubleword aligned on a 32-bit boundary

The Pentium 4, Intel Xeon, and P6 family, and Pentium processors guarantee that the following
additional memory operations will always be carried out atomically:

® reading or writing a quadword aligned on a 64-bit boundary
® 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors guarantee that the following additional memory operation will always
be carried out atomically:

® unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a 32-byte cache
line

Accesses to cacheable memory that are split across bus widths, cache lines, and page boundaries
are not guaranteed to be atomic by the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486
processors. The Pentium 4, Intel Xeon, and P6 family processors provide bus control signals that
permit external memory subsystems to make split accesses atomic; however, nonaligned data
accesses will seriously impact the performance of the processor and should be avoided.

7.1.2. Bus Locking

IA-32 processors provide a LOCK# signal that is asserted automatically during certain critical
memory operations to lock the system bus. While this output signal is asserted, requests from
other processors or bus agents for control of the bus are blocked. Software can specify other
occasions when the LOCK semantics are to be followed by prepending the LOCK prefix to an
instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will
result in the assertion of the LOCK# signal. It is the responsibility of the hardware designer to
make the LOCK# signal available in system hardware to control memory accesses among
processors.

For the Pentium 4, Intel Xeon, and P6 family processors, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted; instead, locking
is only applied to the processor’s caches (see Section 7.1.4., “Effects of a LOCK Operation on
Internal Processor Caches”).

Vol.3 7-3

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.1.21. AUTOMATIC LOCKING

The operations on which the processor automatically follows the LOCK semantics are as
follows:

® When executing an XCHG instruction that references memory.

® When setting the B (busy) flag of a TSS descriptor. The processor tests and sets the busy
flag in the type field of the TSS descriptor when switching to a task. To insure that two
processors do not switch to the same task simultaneously, the processor follows the LOCK
semantics while testing and setting this flag.

® When updating segment descriptors. When loading a segment descriptor, the processor
will set the accessed flag in the segment descriptor if the flag is clear. During this
operation, the processor follows the LOCK semantics so that the descriptor will not be
modified by another processor while it is being updated. For this action to be effective,
operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is not-present, and specify a value for the type field that indicates that the
descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several
memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is valid and present.

Note that the Intel386 processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, Pentium, and
Intel486 processors only update this flag if it is not already set.

® When updating page-directory and page-table entries. When updating page-directory
and page-table entries, the processor uses locked cycles to set the accessed and dirty flag in
the page-directory and page-table entries.

¢ Acknowledging interrupts. After an interrupt request, an interrupt controller may use the
data bus to send the interrupt vector for the interrupt to the processor. The processor
follows the LOCK semantics during this time to ensure that no other data appears on the
data bus when the interrupt vector is being transmitted.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instructions when they are used to modify a memory location. An invalid-opcode exception
(#UD) is generated when the LOCK prefix is used with any other instruction or when no write
operation is made to memory (that is, when the destination operand is in a register).

® The bit test and modify instructions (BTS, BTR, and BTC).
® The exchange instructions (XADD, CMPXCHG, and CMPXCHGSB).
® The LOCK prefix is automatically assumed for XCHG instruction.

7-4 Vol.3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

® The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

® The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple
processors) using identical addresses and operand lengths. For example, if one processor
accesses a semaphore using a word access, other processors should not access the semaphore
using a byte access.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics are followed for as many bus cycles as necessary to update the entire operand.
However, it is recommend that locked accesses be aligned on their natural boundaries for better
system performance:

® Any boundary for an 8-bit access (locked or otherwise).
® 16-bit boundary for locked word accesses.

® 32-bit boundary for locked doubleword access.

® 64-bit boundary for locked quadword access.

Locked operations are atomic with respect to all other memory operations and all externally
visible events. Only instruction fetch and page table accesses can pass locked instructions.
Locked instructions can be used to synchronize data written by one processor and read by
another processor.

For the P6 family processors, locked operations serialize all outstanding load and store opera-
tions (that is, wait for them to complete). This rule is also true for the Pentium 4 and Intel Xeon
processors, with one exception: load operations that reference weakly ordered memory types
(such as the WC memory type) may not be serialized.

Locked instructions should not be used to insure that data written can be fetched as instructions.

NOTE

The locked instructions for the current versions of the Pentium 4, Intel Xeon,
P6 family, Pentium, and Intel486 processors allow data written to be fetched
as instructions. However, Intel recommends that developers who require the
use of self-modifying code use a different synchronizing mechanism,
described in the following sections.

Vol.3 7-5

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.1.3. Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with the intent of
executing that data as code is called self-modifying code. IA-32 processors exhibit model-
specific behavior when executing self-modified code, depending upon how far ahead of the
current execution pointer the code has been modified. As processor architectures become
more complex and start to speculatively execute code ahead of the retirement point (as in the
Pentium 4, Intel Xeon, and P6 family processors), the rules regarding which code should
execute, pre- or post-modification, become blurred. To write self-modifying code and ensure
that it is compliant with current and future versions of the IA-32 architecture, one of the
following two coding options must be chosen.

(* OPTION 1 %)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 %)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The use of one of these options is not required for programs intended to run on the Pentium or
Intel486 processors, but are recommended to insure compatibility with the Pentium 4, Intel
Xeon, and P6 family processors.)

It should be noted that self-modifying code will execute at a lower level of performance than
non-self-modifying or normal code. The degree of the performance deterioration will depend
upon the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a second
processor with the intent of having the second processor execute that data as code is called
cross-modifying code. As with self-modifying code, IA-32 processors exhibit model-specific
behavior when executing cross-modifying code, depending upon how far ahead of the executing
processors current execution pointer the code has been modified. To write cross-modifying code
and insure that it is compliant with current and future versions of the IA-32 architecture, the
following processor synchronization algorithm must be implemented.

; Action of Modifying Processor

Memory_Flag < 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag « 1;

; Action of Executing Processor
WHILE (Memory_Flag # 1)
Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

7-6 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

(The use of this option is not required for programs intended to run on the Intel486 processor,
but is recommended to insure compatibility with the Pentium 4, Intel Xeon, P6 family, and
Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance
than non-cross-modifying (normal) code, depending upon the frequency of modification and
specific characteristics of the code.

7.1.4. Effects of a LOCK Operation on Internal Processor
Caches

For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during
a LOCK operation, even if the area of memory being locked is cached in the processor.

For the Pentium 4, Intel Xeon, and P6 family processors, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK operation as
write-back memory and is completely contained in a cache line, the processor may not assert the
LOCK# signal on the bus. Instead, it will modify the memory location internally and allow it’s
cache coherency mechanism to insure that the operation is carried out atomically. This operation
is called “cache locking.” The cache coherency mechanism automatically prevents two or more
processors that have cached the same area of memory from simultaneously modifying data in
that area.

7.2. MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and
writes (stores) through the system bus to system memory. The [A-32 architecture supports
several memory ordering models depending on the implementation of the architecture. For
example, the Intel386 processor enforces program ordering (generally referred to as strong
ordering), where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.

To allow optimizing of instruction execution, the IA-32 architecture allows departures from
strong-ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family
processors. These processor-ordering variations allow performance enhancing operations such
as allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase
instruction execution speeds, while maintaining memory coherency, even in multiple-processor
systems.

The following sections describe the memory ordering models used by the Intel486 and Pentium
processors, and by the Pentium 4, Intel Xeon, and P6 family processors.

Vol.3 7-7

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.2.1. Memory Ordering in the Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; however,
they operate as strongly-ordered processors under most circumstances. Reads and writes always
appear in programmed order at the system bus—except for the following situation where
processor ordering is exhibited. Read misses are permitted to go ahead of buffered writes on the
system bus when all the buffered writes are cache hits and, therefore, are not directed to the same
address being accessed by the read miss.

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4,
Intel Xeon, and P6 family processors) should not depend on the relatively strong ordering of the
Pentium or Intel486 processors. Instead, it should insure that accesses to shared variables that
are intended to control concurrent execution among processors are explicitly required to obey
program ordering through the use of appropriate locking or serializing operations (see Section
7.2.4., “Strengthening or Weakening the Memory Ordering Model”).

7.2.2. Memory Ordering Pentium 4, Intel® Xeon™, and P6 Family
Processors

The Pentium 4, Intel Xeon, and P6 family processors also use a processor-ordered memory
ordering model that can be further defined as “write ordered with store-buffer forwarding.” This
model can be characterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the following
ordering rules apply:

1. Reads can be carried out speculatively and in any order.
2. Reads can pass buffered writes, but the processor is self-consistent.

3. Writes to memory are always carried out in program order, with the exception of writes
executed with the CLFLUSH instruction and streaming stores (writes) executed with the
non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD).

4. Writes can be buffered.

Writes are not performed speculatively; they are only performed for instructions that have
actually been retired.

6. Data from buffered writes can be forwarded to waiting reads within the processor.

7. Reads or writes cannot pass (be carried out ahead of) I/O instructions, locked instructions,
or serializing instructions.

8. Reads cannot pass LFENCE and MFENCE instructions.
9. Writes cannot pass SFENCE and MFENCE instructions.

7-8 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

The second rule allows a read to pass a write. However, if the write is to the same memory loca-
tion as the read, the processor’s internal “snooping” mechanism will detect the conflict and
update the already cached read before the processor executes the instruction that uses the value.

The sixth rule constitutes an exception to an otherwise write ordered model.

Note that the term “write ordered with store-buffer forwarding” (introduced at the beginning of
this section) refers to the combined effects of rules 2 and 6.

In a multiple-processor system, the following ordering rules apply:
® Individual processors use the same ordering rules as in a single-processor system.
® Writes by a single processor are observed in the same order by all processors.

® Writes from the individual processors on the system bus are NOT ordered with respect to
each other.

The latter rule can be clarified by the example in Figure 7-1. Consider three processors in a
system and each processor performs three writes, one to each of three defined locations (A, B,
and C). Individually, the processors perform the writes in the same program order, but because
of bus arbitration and other memory access mechanisms, the order that the three processors write
the individual memory locations can differ each time the respective code sequences are executed
on the processors. The final values in location A, B, and C would possibly vary on each execu-
tion of the write sequence.

The processor-ordering model described in this section is virtually identical to that used by the
Pentium and Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6
family processors are:

® Added support for speculative reads.
® Store-buffer forwarding, when a read passes a write to the same memory location.

® Out of order store from long string store and string move operations (see Section 7.2.3.,
“Out-of-Order Stores For String Operations in Pentium 4, Intel Xeon, and P6 Family
Processors”, below).

Vol.3 7-9

MULTIPLE-PROCESSOR MANAGEMENT Intel®

Order of Writes From Individual Processors

Each Processor #1 Processor #2 Processor #3
is Ziagr?ﬁeeesds ?(; Write A.1 Write A.2 Write A.3
perform writes Write B.1 Write B.2 Write B.3
in program order. Write C.1 Write C.2 Write C.3

Example of Order of Actual Writes
From All Processors to Memory

Writes are in order Write A.1 —

o with respect to Write B.1

individual processors. Write A2 Writes from all
Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occur in a
Write C.2 particular order.
Write B.3
Write C.3—

Figure 7-1. Example of Write Ordering in Multiple-Processor Systems

7.2.3. Out-of-Order Stores For String Operations in Pentium 4,
Intel Xeon, and P6 Family Processors

The Pentium 4, Intel Xeon, and P6 family processors modify the processors operation during the
string store operations (initiated with the MOVS and STOS instructions) to maximize perfor-
mance. Once the “fast string” operations initial conditions are met (as described below), the
processor will essentially operate on, from an external perspective, the string in a cache line by
cache line mode. This results in the processor looping on issuing a cache-line read for the source
address and an invalidation on the external bus for the destination address, knowing that all
bytes in the destination cache line will be modified, for the length of the string. In this mode
interrupts will only be accepted by the processor on cache line boundaries. It is possible in this
mode that the destination line invalidations, and therefore stores, will be issued on the external
bus out of order.

Code dependent upon sequential store ordering should not use the string operations for the entire
data structure to be stored. Data and semaphores should be separated. Order dependent code
should use a discrete semaphore uniquely stored to after any string operations to allow correctly
ordered data to be seen by all processors.

Initial conditions for “fast string” operations:

® EDI and ESI must be 8-byte aligned for the Pentium Il processor. EDI must be 8-byte
aligned for the Pentium 4 processor.

® String operation must be performed in ascending address order.

7-10 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

® The initial operation counter (ECX) must be equal to or greater than 64.

® Source and destination must not overlap by less than a cache line (64 bytes, Pentium 4 and
Intel Xeon processors; 32 bytes P6 family and Pentium processors).

® The memory type for both source and destination addresses must be either WB or WC.

7.2.4. Strengthening or Weakening the Memory Ordering Model

The TA-32 architecture provides several mechanisms for strengthening or weakening the
memory ordering model to handle special programming situations. These mechanisms include:

® The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions
force stronger ordering on the processor.

® The SFENCE instruction (introduced to the IA-32 architecture in the Pentium Il
processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 4 and
Intel Xeon processors) provide memory ordering and serialization capability for specific
types of memory operations.

® The memory type range registers (MTRRs) can be used to strengthen or weaken memory
ordering for specific area of physical memory (see Section 10.11., “Memory Type Range
Registers (MTRRs)”). MTRRs are available only in the Pentium 4, Intel Xeon, and P6
family processors.

® The page attribute table (PAT) can be used to strengthen memory ordering for a specific
page or group of pages (see Section 10.12., “Page Attribute Table (PAT)”). The PAT is
available only in the Pentium 4, Intel Xeon, and Pentium Il processors.

These mechanisms can be used as follows.

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of
writes to their I/O buffers. I/O instructions can be used to (the IN and OUT instructions) impose
strong write ordering on such accesses as follows. Prior to executing an I/O instruction, the
processor waits for all previous instructions in the program to complete and for all buffered
writes to drain to memory. Only instruction fetch and page tables walks can pass I/O instruc-
tions. Execution of subsequent instructions do not begin until the processor determines that the
I/O instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong
memory-ordering model. Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carried out atomically. Locking operations typically operate like I/O operations in that they wait
for all previous instructions to complete and for all buffered writes to drain to memory (see
Section 7.1.2., “Bus Locking”).

Vol. 3 7-11

MULTIPLE-PROCESSOR MANAGEMENT Intel®

Program synchronization can also be carried out with serializing instructions (see Section 7.4.,
“Serializing Instructions”). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new section of
code or a context switch occurs. Like the I/O and locking instructions, the processor waits until
all previous instructions have been completed and all buffered writes have been drained to
memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of
insuring load and store memory ordering between routines that produce weakly-ordered results
and routines that consume that data. The functions of these instructions are as follows:

® SFENCE—Serializes all store (write) operations that occurred prior to the SFENCE
instruction in the program instruction stream, but does not affect load operations.

® LFENCE—Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store operations.

¢ MFENCE—Serializes all store and load operations that occurred prior to the MFENCE
instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method
of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for
specified areas of physical memory. The following are two examples of how memory types set
up with MTRRSs can be used strengthen or weaken memory ordering for the Pentium 4, Intel
Xeon, and P6 family processors:

® The strong uncached (UC) memory type forces a strong-ordering model on memory
accesses. Here, all reads and writes to the UC memory region appear on the bus and out-of-
order or speculative accesses are not performed. This memory type can be applied to an
address range dedicated to memory mapped I/O devices to force strong memory ordering.

® For areas of memory where weak ordering is acceptable, the write back (WB) memory
type can be chosen. Here, reads can be performed speculatively and writes can be buffered
and combined. For this type of memory, cache locking is performed on atomic (locked)
operations that do not split across cache lines, which helps to reduce the performance
penalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock the bus during the entire read-modify-write operation. With the WB memory
type, the XCHG instruction locks the cache instead of the bus if the memory access is
contained within a cache line.

The PAT was introduced in the Pentium Il processor to enhance the caching characteristics that
can be assigned to pages or groups of pages. The PAT mechanism typically used to strengthen
caching characteristics at the page level with respect to the caching characteristics established
by the MTRRs. Table 10-7 shows the interaction of the PAT with the MTRRs.

7-12 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

It is recommended that software written to run on Pentium 4, Intel Xeon, and P6 family proces-
sors assume the processor-ordering model or a weaker memory-ordering model. The Pentium 4,
Intel Xeon, and P6 family processors do not implement a strong memory-ordering model, except
when using the UC memory type. Despite the fact that Pentium 4, Intel Xeon, and P6 family
processors support processor ordering, Intel does not guarantee that future processors will
support this model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (application
program interfaces) based on I/O, locking, and/or serializing instructions be used to synchronize
access to shared areas of memory in multiple-processor systems. Also, software should not
depend on processor ordering in situations where the system hardware does not support this
memory-ordering model.

7.3. PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY
ENTRY CHANGES TO MULTIPLE PROCESSORS

In a multiprocessor system, when one processor changes a page table or page directory entry,
the changes must also be propagated to all the other processors. This process is commonly
referred to as “TLB shootdown.” The propagation of changes to page table or page directory
entries can be done using memory-based semaphores and/or interprocessor interrupts (IPI)
between processors. For example, a simple but algorithmic correct TLB shootdown sequence
for a IA-32 processor is as follows:

1. Begin barrier—Stop all but one processor; that is, cause all but one to HALT or stop in a
spin loop.

2. Let the active processor change the necessary PTEs and/or PDEs.
3. Let all processors invalidate the PTEs and PDEs modified in their TLBs.
4. End barrier—Resume all processors; resume general processing.

Alternate, performance-optimized, TLB shootdown algorithms may be developed; however,
care must be taken by the developers to ensure that either of the following conditions are met:

¢ Different TLB mappings are not used on different processors during the update process.

® The operating system is prepared to deal with the case where processors are using the stale
mapping during the update process.

Vol. 3 7-13

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.4. SERIALIZING INSTRUCTIONS

The TA-32 architecture defines several serializing instructions. These instructions force the
processor to complete all modifications to flags, registers, and memory by previous instructions
and to drain all buffered writes to memory before the next instruction is fetched and executed.
For example, when a MOV to control register instruction is used to load a new value into control
register CRO to enable protected mode, the processor must perform a serializing operation
before it enters protected mode. This serializing operation insures that all operations that were
started while the processor was in real-address mode are completed before the switch to
protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the
Pentium processor to support parallel instruction execution. Serializing instructions have no
meaning for the Intel486 and earlier processors that do not implement parallel instruction execu-
tion.

It is important to note that executing of serializing instructions on Pentium 4, Intel Xeon, and P6
family processors constrain speculative execution, because the results of speculatively executed
instructions are discarded.

The following instructions are serializing instructions:

® Privileged serializing instructions—MOYV (to control register), MOV (to debug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

® Non-privileged serializing instructions—CPUID, IRET, and RSM.
® Non-privileged memory ordering instructions—SFENCE, LFENCE, and MFENCE.

When the processor serializes instruction execution, it ensures that all pending memory transac-
tions are completed, including writes stored in its store buffer, before it executes the next
instruction. Nothing can pass a serializing instruction, and serializing instructions cannot pass
any other instruction (read, write, instruction fetch, or I/O).

The CPUID instruction can be executed at any privilege level to serialize instruction execution
with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers are modified.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the
serialization of memory loads and stores (see Section 7.2.4., “Strengthening or Weakening the
Memory Ordering Model”).

The following additional information is worth noting regarding serializing instructions:

® The processor does not writeback the contents of modified data in its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINVD instruction will seriously reduce system
performance.

7-14 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

® When an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CRO), the instruction should be followed by a jump instruction. The
target instruction of the jump instruction is fetched with the new setting of the PG flag (that
is, paging is enabled or disabled), but the jump instruction itself is fetched with the
previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require the
jump operation following the move to register CRO (because any use of the MOV
instruction in a Pentium 4, Intel Xeon, or P6 family processor to write to CRO is
completely serializing). However, to maintain backwards and forward compatibility with
code written to run on other IA-32 processors, it is recommended that the jump operation
be performed.

® Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the translation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following instruc-
tions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, see Section 10.9., “Invalidating the Translation Lookaside
Buffers (TLBs)”.)

® The Pentium 4, Intel Xeon, P6 family, and Pentium processors use branch-prediction
techniques to improve performance by prefetching the destination of a branch instruction
before the branch instruction is executed. Consequently, instruction execution is not deter-
ministically serialized when a branch instruction is executed.

7.5. MULTIPLE-PROCESSOR (MP) INITIALIZATION

The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor
(MP) initialization protocol called the Multiprocessor Specification Version 1.4. This specifica-
tion defines the boot protocol to be used by IA-32 processors in multiple-processor systems.
(Here, multiple processors is defined as two or more processors.) The MP initialization
protocol has the following important features:

® It supports controlled booting of multiple processors without requiring dedicated system
hardware.

® It allows hardware to initiate the booting of a system without the need for a dedicated
signal or a predefined boot processor.

® It allows all IA-32 processors to be booted in the same manner, including those supporting
Hyper-Threading Technology.

The mechanism for carrying out the MP initialization protocol differs depending on the IA-32
processor family, as follows:

® For P6 family processors—The selection of the BSP and APs (see Section 7.5.1., “BSP
and AP Processors”) is handled through arbitration on the APIC bus, using BIPI and FIPI
messages. See Appendix C for a complete discussion of MP initialization for P6 family
processors.

Vol.3 7-15

MULTIPLE-PROCESSOR MANAGEMENT Intel®

¢ Intel Xeon processors with family, model, and stepping IDs up to FOOH—The selection of
the BSP and APs (see Section 7.5.1., “BSP and AP Processors”) is handled through
arbitration on the system bus, using BIPI and FIPI messages. See Section 7.5.3., “MP
Initialization Protocol Algorithm for the Intel Xeon Processors” for a complete discussion
of MP initialization for Intel Xeon processors.

¢ Intel Xeon processors with family, model, and stepping IDs of FOAH and beyond—The
selection of the BSP and APs is handled through a special system bus cycle, without using
BIPI and FIPI message arbitration. This method of selection is also described in Section
7.5.3., “MP Initialization Protocol Algorithm for the Intel Xeon Processors”.

The family, model, and stepping ID for a processor is given in the EAX register when the
CPUID instruction is executed with a value of 1 in the EAX register.

7.5.1. BSP and AP Processors

The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP)
and the application processors (APs). Following a power-up or RESET of an MP system, system
hardware dynamically selects one of the processors on the system bus as the BSP. The remaining
processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE MSR (see
Figure 8-5) of the BSP, indicating that it is the BSP. This flag is cleared for all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up
system-wide data structures, and starts and initializes the APs. When the BSP and APs are
initialized, the BSP then begins executing the operating-system initialization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a
startup signal (a SIPI message) from the BSP processor. Upon receiving a SIPI message, an AP
executes the BIOS AP configuration code, which ends with the AP being placed in halt state.

In TA-32 processors supporting Hyper-Threading Technology, the MP initialization protocol
treats each of the logical processors on the system bus as a separate processor (with a unique
APIC ID). During boot-up, one of the logical processors is selected as the BSP and the
remainder of the logical processors are designated as APs.

7.5.2. MP Initialization Protocol Requirements and Restrictions
for Intel Xeon Processors

The MP initialization protocol imposes the following requirements and restrictions on the
system:

® The MP protocol is executed only after a power-up or RESET. If the MP protocol has
completed and a BSP is chosen, subsequent INITs (either to a specific processor or system
wide) do not cause the MP protocol to be repeated. Instead, each processor examines its
BSP flag (in the IA32_APIC_BASE MSR) to determine whether it should execute the
BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an AP).

7-16 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

All devices in the system that are capable of delivering interrupts to the processors must be
inhibited from doing so for the duration of the MP initialization protocol. The time during
which interrupts must be inhibited includes the window between when the BSP issues an
INIT-SIPI-SIPI sequence to an AP and when the AP responds to the last SIPI in the
sequence.

7.5.3. MP Initialization Protocol Algorithm for the Intel Xeon

Processors

Following a power-up or RESET of an MP system, the Intel Xeon processors in the system
execute the MP initialization protocol algorithm to initialize each of the processors on the
system bus. In the course of executing this algorithm, the following boot-up and initialization
operations are carried out:

1.

Each processor on the system bus is assigned a unique 8-bit APIC ID, based on system
topology (see Section 7.5.5., “Identifying the Processors in an MP System”). This ID is
written into the local APIC ID register for each processor.

Each processor is assigned a unique arbitration priority based on it APIC ID.

Each processor executes its internal BIST simultaneously with the other processors on the
system bus.

Upon completion of the BIST, the processors use a hardware-defined selection mechanism
to select the BSP and the APs from the available processors on the system bus. The BSP
selection mechanism differs depending on the family, model, and stepping IDs of the
processors, as follows:

— Family, model, and stepping IDs of FOAH and onwards:

® The processors begin monitoring the BNR# signal, which is toggling. When the
BNR# pin stops toggling, each processor attempts to issue a NOP special cycle on
the system bus.

¢ The processor with the highest arbitration priority succeeds in issuing a NOP
special cycle and is nominated the BSP. This processor sets the BSP flag in its
IA32_APIC_BASE MSR, then fetches and begins executing BIOS boot-strap
code, beginning at the reset vector (physical address FFFF FFFOH).

¢ The remaining processors (that failed in issuing a NOP special cycle) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

— Family, model, and stepping IDs up to FO9H:

® Each processor broadcasts a BIPI to “all including self.” The first processor that
broadcasts a BIPI (and thus receives its own BIPI vector), selects itself as the BSP
and sets the BSP flag in its IA32_APIC_BASE MSR. (See Section C.I.,
“Overview of the MP Initialization Process For P6 Family Processors”, for a
description of the BIPI, FIPI, and SIPI messages.)

Vol.3 7-17

MULTIPLE-PROCESSOR MANAGEMENT Intel®

®* The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

® The newly established BSP broadcasts an FIPI message to “all including self,”
which the BSP and APs treat as an end of MP initialization signal. Only the
processor with its BSP flag set responds to the FIPI message. It responds by
fetching and executing the BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFFOH).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its
initial APIC ID to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then
broadcasts a SIPI message to all the APs in the system. Here, the SIPI message contains a
vector to the BIOS AP initialization code (at 000VVOOOH, where VV is the vector
contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS
initialization semaphore. The first AP to the semaphore begins executing the initialization
code. (See Section 7.5.4., “MP Initialization Example”, for semaphore implementation
details.) As part of the AP initialization procedure, the AP adds its APIC ID number to the
ACPI and MP tables as appropriate and increments the processor counter by 1. At the
completion of the initialization procedure, the AP executes a CLI instruction and halts
itself.

8. When each of the APs has gained access to the semaphore and executed the AP initial-
ization code, the BSP establishes a count for the number of processors connected to the
system bus, completes executing the BIOS boot-strap code, and then begins executing
operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain
in the halted state. In this state they will respond only to INITs, NMlIs, and SMIs. They will
also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for
multiple Intel Xeon processors operating in an MP configuration.

Appendix B, Model-Specific Registers (MSRs), describes how to program the LINT[0:1] pins of
the processor’s local APICs after an MP configuration has been completed.

7.5.4. MP Initialization Example

The following example illustrates the use of the MP initialization protocol to initialize IA-32
processors in an MP system after the BSP and APs have been established. This code runs on
IA-32 processors that use MP initialization protocol. This includes P6 Family processors,
Pentium 4 processors and Intel Xeon processors (with or without Intel® Hyper-Threading Tech-
nology support).

7-18 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

The following constants and data definitions are used in the accompanying code examples. They
are based on the addresses of the APIC registers as defined in Table 8-1.

ICR_LOW EQU OFEE00300H
SVR EQU OFEEOOOFOH
APIC_ID EQU OFEE00020H
LVT3 EQU OFEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?

COUNT EQU 00H
VACANT EQU 00H

7.5.4.1. TYPICAL BSP INITIALIZATION SEQUENCE

After the BSP and APs have been selected (by means of a hardware protocol, see Section 7.5.3.,
“MP Initialization Protocol Algorithm for the Intel Xeon Processors”), the BSP begins
executing BIOS boot-strap code (POST) at the normal IA-32 architecture starting address (FFFF
FFFOH). The boot-strap code typically performs the following operations:

1. Initializes memory.

2. Loads the microcode update into the processor.
3. Initializes the MTRRs.

4. Enables the caches.
5

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the BSP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of
memory.

8. Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0):

MOV ESI, APIC_ID ; address of local APIC ID register

MOV EAX, [ESI]

AND EAX, OFFO00000H ; zero out all other bits except APIC ID
MOV BOOT_ID, EAX ; save in memory

Vol. 3 7-19

MULTIPLE-PROCESSOR MANAGEMENT Intel®

10.

11.

12.

13.

14.

Saves the APIC ID in the ACPI and MP tables and optionally in the system configuration
space in RAM.

Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-KByte page in the real-address mode address
space (1-MByte space). For example, a vector of OBDH specifies a start-up memory
address of 000BDOOOH.

Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR ; address of SVR

MOV EAX, [ESI]

OR EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error
handler.

MOV ESI, LVT3

MOV EAX, [EST]

AND EAX, FFFFFFO00H; clear out previous vector

OR EAX, 000000xxH; xx 1s the 8-bit vector the APIC error
; handler.

MOV [ESI], EAX

Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to
determine the order in which they execute BIOS AP initialization code.

Performs the following operation to set up the BSP to detect the presence of APs in the
system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP BIOS
initialization code, the AP will increment the COUNT variable to indicate its presence.
When the timer expires, the BSP checks the value of the COUNT variable. If the timer
expires and the COUNT variable has not been incremented, no APs are present or
some error has occurred.

7-20 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize

them:

MOV ESI, ICR_LOW; load address of ICR low dword into ESI

MOV EAX, 000C4500H; load ICR encoding for broadcast INIT IPI
; to all APs into EAX

MOV [ESI], EAX ; broadcast INIT IPI to all APs

; 10-millisecond delay loop

MOV EAX, 000C46XXH; load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the
; vector computed in step 10.

MOV [ESI], EAX ; broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX ; broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8

16. Waits for the timer interrupt.
17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system diagnostics
as appropriate.

7.5.4.2. TYPICAL AP INITIALIZATION SEQUENCE

When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector
encoded in the SIPI. The AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is
attained, initialization continues.

Loads the microcode update into the processor.
Initializes the MTRRs (using the same mapping that was used for the BSP).
Enables the cache.

wok »N

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the AP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

7. Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

Vol. 3 7-21

MULTIPLE-PROCESSOR MANAGEMENT Intel®

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and
ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit § in the SVR register and setting up
the LVT3 (error LVT) for error handling (as described in steps 9 and 10 in Section 7.5.4.1.,
“Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a
different SMBASE address.)

11. Increments the COUNT variable by 1.
12. Releases the semaphore.

13. Executes the CLI and HLT instructions.
14. Waits for an INIT IPL.

7.5.5. Identifying the Processors in an MP System

After the BIOS has completed the MP initialization protocol, each processor can be uniquely
identified by its local APIC ID. Software can access these APIC IDs in either of the following
ways:

¢ Read the APIC ID for a local APIC. Code running on a processor can execute a MOV
instruction to read the contents of the processor’s local APIC ID register (see Section
8.4.6., “Local APIC ID”).

® Read the ACPI or MP table. As part of the MP initialization protocol, the BIOS creates
an ACPI table and an MP table. These tables are defined in the Multiprocessor Specifi-
cation Version 1.4 and provide software with a list of the processors in the system and their
local APIC IDs. The format of the ACPI table is derived from the ACPI specification,
which is an industry standard power management and platform configuration specification
for MP systems.

For Intel Xeon processors, the APIC ID assigned to a processor during power-up and initializa-
tion is 8 bits (see Figure 7-2). Here, bits 1 and 2 form a 2-bit processor identifier (which can also
be thought of as a socket identifier). In systems that configure processors in clusters, bits 3 and
4 form a 2-bit cluster ID. Bit 0 is used in the Intel Xeon processor MP to identify the two logical
processors within the package (see Section 7.7.5., “Identifying Logical Processors in an MP
System”). For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit
0 is always set to 0; for an Intel Xeon processor supporting Hyper-Threading Technology, bit O
performs the same function as it does in the Intel Xeon processor MP.

7-22 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

APIC ID Format for Intel Xeon Processors that
do not Support Intel Hyper-Threading Technology

7 5 4 3 2 1 0

Reserved 0
Cluster 4|
Processor ID

APIC ID Format for P6 Family Processors
7 5 4 3 2 1 0

Reserved

Clusteré ‘

Processor ID

Figure 7-2. Interpretation of APIC ID in MP Systems

For P6 family processors, the APIC ID that is assigned to a processor during power-up and
initialization is 4 bits (see Figure 7-2). Here, bits 0 and 1 form a 2-bit processor (or socket) iden-
tifier and bits 2 and 3 form a 2-bit cluster ID.

7.6. HYPER-THREADING TECHNOLOGY

Hyper-Threading (HT) Technology was introduced into the IA-32 architecture in the Intel
Xeon processor MP and in later steppings of the Intel Xeon processor. It is also supported by
all Intel Pentium 4 processors supporting Hyper-Threading Technology. All Hyper-Threading
Technology configurations require a chipset and BIOS that utilize the technology, and an
operating system that includes optimizations for Hyper-Threading Technology. See
www.intel.com/info/hyperthreading for more information. See also: Volume 1, Chapter 2.2.4.,
Hyper-Threading Technology.

Intel recommends that software not rely on IA-32 processor names to determine whether a
processor supports Hyper-Threading Technology. Software should use the CPUID instruction as
described in Section 7.6.3., “Detecting Hyper-Threading Technology”.

Hyper-Threading Technology is an extension to the IA-32 architecture that enables a single
physical processor to execute two or more separate code streams (called threads) concurrently.
The following sections describe how the feature is implemented in IA-32 processors.

Vol. 3 7-23

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.6.1. Intel® Hyper-Threading Technology Architecture

Figure 7-3 shows a generalized view of an IA-32 processor supporting Hyper-Threading Tech-
nology, using the Intel Xeon processor MP as an example. This implementation of the Hyper-
Threading Technology consists of two logical processors (each represented by a separate [A-32
architectural state) which share the processor’s execution engine and the bus interface. Each
logical processor also has its own advanced programmable interrupt controller (APIC).

Logical Logical
Processor 0 | Processor 1
Architectural | Architectural

State State

Execution Engine

Local APIC | Local APIC

Bus Interface

A
\
System Bus

Figure 7-3. 1A-32 Processor with Intel Hyper-Threading Technology using
Two Logical Processors

7.6.1.1. STATE OF THE LOGICAL PROCESSORS

The following features are part of the architectural state of logical processors within IA-32
processors supporting Hyper-Threading Technology. The features can be subdivided into three
groups:

® Duplicated for each logical processor

® Shared by logical processors in a physical processor

® Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

® General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
¢ Segment registers (CS, DS, SS, ES, FS, and GS)

¢ EFLAGS and EIP registers. Note that the CS and EIP registers for each logical processor
point to the instruction stream for the thread being executed by the logical processor.

7-24 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

¢ x87 FPU registers (STO through ST7, status word, control word, tag word, data operand
pointer, and instruction pointer)

® MMX registers (MMO through MM7)
® XMM registers (XMMO through XMM?7) and the MXCSR register

® Control registers (CR0O, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register)

® Debug registers (DR0O, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs

® Machine check global status (IA32_MCG_STATUS) and machine check capability
(IA32_MCG_CAP) MSRs

® Thermal clock modulation and ACPI Power management control MSRs
® Time stamp counter MSRs

® DMost of the other MSR registers, including the page attribute table (PAT). See the
exceptions below.

® Local APIC registers.

The following features are shared by logical processors:

® JA32_MISC_ENABLE MSR (MSR address 1AOH)

® Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:

® Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and
1A32_MCG_CAP MSRs)

® Performance monitoring control and counter MSRs

7.6.1.2. APIC FUNCTIONALITY

When a processor supporting Hyper-Threading Technology support is initialized, each logical
processor is assigned a local APIC ID (see Table 8-1). The local APIC ID serves as an ID for
the logical processor and is stored in the logical processor’s APIC ID register. If two or more
IA-32 processors supporting Hyper-Threading Technology are present in a dual processor (DP)
or MP system, each logical processor on the system bus is assigned a unique local APIC ID (see
Section 7.7.5., “Identifying Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPT)
messaging facility. Setup and programming for APICs is identical in processors that support and
do not support Intel Hyper-Threading Technology. See Chapter 8, Advanced Programmable
Interrupt Controller (APIC) for a detailed discussion.

Vol.3 7-25

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.6.1.3. MEMORY TYPE RANGE REGISTERS (MTRR)

MTRRs in a processor supporting Hyper-Threading Technology are shared by logical proces-
sors. When one logical processor updates the setting of the MTRRs, settings are automatically
shared with the other logical processors in the same physical package.

IA-32 architecture requires that all MP systems based on IA-32 processors (this includes logical
processors) MUST use an identical MTRR memory map. This gives software a consistent view
of memory, independent of the processor on which it is running. See Section 10.11., “Memory
Type Range Registers (MTRRs)” for information on setting up MTRRs.

7.6.1.4. PAGE ATTRIBUTE TABLE (PAT)

Each logical processor has its own PAT MSR (IA32_CR_PAT). However, as described in
Section 10.12., “Page Attribute Table (PAT)”, the PAT MSR settings must be the same for all
processors in a system, including the logical processors.

7.6.1.5. MACHINE CHECK ARCHITECTURE

In the HT Technology context, all of the machine check architecture (MCA) MSRs (except for
the TA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for each logical
processor. This permits logical processors to initialize, configure, query, and handle machine-
check exceptions simultaneously within the same physical processor. The design is compatible
with machine check exception handlers that follow the guidelines given in Chapter 14, Machine-
Check Architecture.

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its machine
check in progress bit field (MCIP) can be used to detect recursion on the part of MCA handlers.
In addition, the MSR allows each logical processor to determine that a machine-check exception
is in progress independent of the actions of another logical processor in the same physical
package.

Because the logical processors within a physical package are tightly coupled with respect to
shared hardware resources, both logical processors are notified of machine check errors that
occur within a given physical processor. If machine-check exceptions are enabled when a fatal
error is reported, all the logical processors within a physical package are dispatched to the
machine-check exception handler. If machine-check exceptions are disabled, the logical proces-
sors enter the shutdown state and assert the [IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set
for each logical processor.

7.6.1.6. DEBUG REGISTERS AND EXTENSIONS

Each logical processor has its own set of debug registers (DRO, DR1, DR2, DR3, DR6, DR7)
and its own debug control MSR. These can be set to control and record debug information for
each logical processor independently. Each logical processor also has its own last branch records
(LBR) stack.

7-26 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

7.6.1.7. PERFORMANCE MONITORING COUNTERS

Performance counters their companion control MSRs are shared between the logical processors
within the physical processor. As a result, software must manage the use of these resources. The
performance counter interrupts, events, and precise event monitoring support can be set up and
allocated on a per thread (per logical processor) basis.

See Section 15.11., “Performance Monitoring and Hyper-Threading Technology”, for a discus-
sion of performance monitoring in the Intel Xeon processor MP.

7.6.1.8. IA32_MISC_ENABLE MSR

The IA32_MISC_ENABLE MSR (MSR address 1AOH) is shared between the logical proces-
sors in an IA-32 processor supporting Hyper-Threading Technology. Thus the architectural
features that this register controls are set the same for all the logical processors in the same phys-
ical package.

7.6.1.9. MEMORY ORDERING

The logical processors in an IA-32 processor supporting Hyper-Threading Technology obey the
same rules for memory ordering as IA-32 processors without HT Technology (see Section 7.2.,
“Memory Ordering”). Each logical processor uses a processor-ordered memory model that can
be further defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory ordering model to handle special programming situations apply
to each logical processor.

7.6.1.10. SERIALIZING INSTRUCTIONS

As a general rule, when a logical processor in an IA-32 processor supporting Hyper-Threading
Technology executes a serializing instruction, only that logical processor is affected by the oper-
ation. An exception to this rule is the execution of the WBINVD, INVD, and WRMSR instruc-
tions; and the MOV CR instruction when the state of the CD flag in control register CRO is
modified. Here, both logical processors are serialized.

7.6.1.11. MICROCODE UPDATE RESOURCES

In an TA-32 processor supporting Hyper-Threading Technology, the microcode update facilities
are shared between the logical processors; either logical processor can initiate an update. Each
logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address
8BH). When a logical processor performs an update for the physical processor, the
IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical infor-
mation. If logical processors initiate an update simultaneously, the processor core provides the
necessary synchronization needed to insure that only one update is performed at a time.

Operating system microcode update drivers that adhere to Intel’s guidelines do not need to be
modified to run on an IA-32 processor supporting Hyper-Threading Technology.

Vol.3 7-27

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.6.1.12. SELF MODIFYING CODE

IA-32 processors supporting Hyper-Threading Technology support self-modifying code, where
data writes modify instructions cached or currently in flight. They also support cross-modifying
code, where on an MP system writes generated by one processor modify instructions cached or
currently in flight on another. See Section 7.1.3., “Handling Self- and Cross-Modifying Code”
for a description of the requirements for self- and cross-modifying code in an IA-32 processor.

7.6.2. Implementation-Specific HT Technology Facilities

The following non-architectural facilities are implementation-specific in IA-32 processors
supporting Hyper-Threading Technology:

® (Caches
® Translation lookaside buffers (TLBs)
® Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

7.6.2.1. PROCESSOR CACHES

For the Intel Xeon processor MP, the caches are shared. Any cache manipulation instruction that
is executed on one logical processor has a global effect on the cache hierarchy of the physical
processor. Note the following:

¢® WBINVD instruction. The entire cache hierarchy is invalidated after modified data is
written back to memory. All logical processors are stopped from executing until after the
write-back and invalidate operation is completed. A special bus cycle is sent to all caching
agents.

¢ INVD instruction. The entire cache hierarchy is invalidated without writing back
modified data to memory. All logical processors are stopped from executing until after the
invalidate operation is completed. A special bus cycle is sent to all caching agents.

¢ CLFLUSH instruction. The specified cache line is invalidated from the cache hierarchy
after any modified data is written back to memory and a bus cycle is sent to all caching
agents, regardless of which logical processor caused the cache line to be filled.

¢ (D flag in control register CR0. Each logical processor has its own CRO control register,
and thus its own CD flag in CRO. The CD flags for the two logical processors are ORed
together, such that when any logical processor sets its CD flag, the entire cache is
nominally disabled.

7.6.2.2. PROCESSOR TRANSLATION LOOKASIDE BUFFERS (TLBS)

In an Intel Xeon processor MP, data cache TLBs are shared. The instruction cache TLB is dupli-
cated in each logical processor.

7-28 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the
translation. This tag applies even for translations that are marked global using the page global
feature for memory paging.

When a logical processor performs a TLB invalidation operation, only the TLB entries that are
tagged for that logical processor are flushed. This protocol applies to all TLB invalidation oper-
ations, including writes to control registers CR3 and CR4 and uses of the INVLPG instruction.

7.6.2.3. THERMAL MONITOR

In an Intel Xeon processor MP, logical processors share the catastrophic shutdown detector and
the automatic thermal monitoring mechanism (see Section 13.16., “Thermal Monitoring and
Protection”). Sharing results in the following behavior:

® If the processor’s core temperature rises above the preset catastrophic shutdown temper-
ature, the processor core halts execution, which causes both logical processors to stop
execution.

® When the processor’s core temperature rises above the preset automatic thermal monitor
trip temperature, the clock speed of the processor core is automatically modulated, which
effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
1A32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or disabled on
a logical processor basis. Typically, if software controlled clock modulation is going to be used,
the feature must be enabled for all the logical processors within a physical processor and the
modulation duty cycle must be set to the same value for each logical processor. If the duty cycle
values differ between the logical processors, the processor clock will be modulated at the highest
duty cycle selected.

7.6.2.4. EXTERNAL SIGNAL COMPATIBILITY

This section describes the constraints on external signals received through the pins of an Intel
Xeon processor MP and how these signals are shared between its logical processors.

® STPCLK#. A single STPCLK# pin is provided on the physical package of the Intel Xeon
processor MP. External control logic uses this pin for power management within the
system. When the STPCLK# signal is asserted, the processor core transitions to the stop-
grant state, where instruction execution is halted but the processor core continues to
respond to snoop transactions. Regardless of whether the logical processors are active or
halted when the STPCLK# signal is asserted, execution is stopped on both logical
processors and neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together.
As a result this signal affects all the logical processors within the system simultaneously.

Vol. 3 7-29

MULTIPLE-PROCESSOR MANAGEMENT Intel®

¢ LINTO and LINT1 Pins. An Intel Xeon processor MP has only one set of LINTO and
LINT1 pins, which are shared between the logical processors. When one of these pins is
asserted, both logical processors respond unless the pin has been masked in the APIC local
vector tables for one or both of the logical processors.

Typically in MP systems, the LINTO and LINT1 pins are not used to deliver interrupts to
the logical processors. Instead all interrupts are delivered to the local processors through
the I/O APIC.

¢ A20M# Pin. On an IA-32 processor, the A20M# pin is typically provided for compatibility
with the Intel 286 processor. Asserting this pin causes bit 20 of the physical address to be
masked (forced to zero) for all external bus memory accesses. The Intel Xeon processor
MP provides one A20M# pin, which affects the operation of both logical processors within
the physical processor. This configuration is compatible with the IA-32 architecture.

7.6.3. Detecting Hyper-Threading Technology

Software can use the CPUID instruction to detect the presence of Hyper-Threading Technology
and its configuration in an IA-32 processor. When the CPUID instruction is executed with an
input value of 1 in the EAX register, the following two items report Hyper-Threading Tech-
nology availability:

® The Hyper-Threading Technology feature flag (bit 28 in the EDX register) indicates (when
set) that the processor supports Hyper-Threading Technology.

® Bits 16 through 23 in the EBX register indicate the number of logical processors supported
within the physical package.

It is possible to have the CPUID feature flag set indicating support for Hyper-Threading Tech-
nology when only one logical processor available in the package. In this case, bits 16 through
23 in the EBX register will have a value of 1.

7.6.3.1. DETECTING SUPPORT MONITOR/MWAIT INSTRUCTION

Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to help
multithreaded software improve thread synchronization. In the initial implementation,
MONITOR and MWAIT are available to software at ring 0. The instructions are conditionally
available at levels greater than 0. Use the following steps to detect the availability of MONITOR
and MWAIT:

¢ Use CPUID function 1H to query the MONITOR bit (ECX[3]). MONITOR and MWAIT
are supported at ring 0 if bit the bit is 1.

¢ If CPUID function 1H reports ECX[3] = 1, execute MONITOR inside a TRY/EXCEPT
exception handler and trap for an exception. If an exception occurs, MONITOR and
MWAIT are not supported at a privilege level greater than 0. See Example 7-1.

7-30 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

Example 7-1. Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT works = TRUE;
try {
_asm {
XOr ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}
// Use monitor
} except (UNWIND) {
// if we get here, MONITOR/MWAIT is not supported
MONITOR_MWAIT works = FALSE;

7.6.4. |Initializing IA-32 Processors Supporting Hyper-Threading
Technology

The initialization process for an MP system that contains IA-32 processors that support Hyper-
Threading Technology is the same as that described for conventional MP systems (see Section
7.5., “Multiple-Processor (MP) Initialization”). One of the logical processors in the system is
selected as the BSP and the other processors (or logical processors) are designated as APs. The
initialization process is identical to that described in Section 7.5.3., “MP Initialization Protocol
Algorithm for the Intel Xeon Processors” and Section 7.5.4., “MP Initialization Example”.

As part of the initialization procedure, each logical processor is automatically assigned an APIC
ID, which is stored in the local APIC ID register for each logical processor. If two or more
processors supporting Hyper-Threading Technology are present in a system, each logical
processor on the system bus is assigned a unique ID (see Section 7.7.5., “Identifying Logical
Processors in an MP System”).

Once logical processors have APIC IDs, software can communicate with them by sending APIC
IPI messages.

7.6.5. Executing Multiple Threads on an I1A-32 Processor
Supporting Hyper-Threading Technology

Upon completion of the operating system boot-up procedure, the bootstrap processor (BSP)
continues to execute operating system code, while the other logical processors in the system are
placed in the halt state. To execute a code stream (thread) on one of the halted logical processors,
the operating system must issue an interprocessor interrupt (IPI) addressed to the logical
processor. In response to the IPI, the halted logical processor wakes up and begins executing the

Vol. 3 7-31

MULTIPLE-PROCESSOR MANAGEMENT Intel®

thread identified by the interrupt vector it received as part of the IPI. When all logical processors
in an IA-32 processor supporting Hyper-Threading Technology are executing threads, the core
execution engine executes instruction streams for active threads concurrently. Shared execution
resources are allocated to the active logical processors on an “as needed basis.”

To manage the execution of multiple threads on the logical processors, an operating system can
use conventional symmetric multiprocessing (SMP) techniques. For example, the operating-
system can use a time-slice or other load balancing mechanism to periodically interrupt each of
the active logical processors. Upon interrupting a logical processor, the operating system then
checks its run queue for a thread waiting to be executed and dispatches the thread to the inter-
rupted logical processor. In this way, an MP-capable operating system can schedule threads for
execution on logical processors in the same way that it does on the processors in a conventional
MP system.

7.6.6. Handling Interrupts on an I1A-32 Processor Supporting
Hyper-Threading Technology

Interrupts are handled in the same way in an IA-32 processors supporting Hyper-Threading
Technology as they are in a conventional MP system. External interrupts are received by the I/O
APIC, which distributes them as interrupt messages to specific logical processors (see Figure
7-4). Each logical processor can also send IPIs to other logical processors by writing to the ICR
register of its local APIC (see Section 8.6., “Issuing Interprocessor Interrupts”).

7-32 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

IA-32 Processor With 1A-32 Processor With
Hyper-Threading Technology Hyper-Threading Technology
Logical Logical Logical Logical
Processor 0 | Processor 1 Processor 0| Processor 1
Processor Core Processor Core

Local APIC | Local APIC Local APIC | Local APIC

Bus Interface Bus Interface
A A A A
IPls :\;:terrupt IPls Interrupt
essages Messages
- '
A Interrupt Messages
Bridge
A
{ PCI
-)] g

A
/

y

<—— External
VO APIC <«—— Interrupts

System Chip Set

Figure 7-4. Local APICs and I/O APIC When IA-32 Processors Supporting Hyper-
Threading Technology Are Used in MP Systems

7.7. MANAGEMENT OF IDLE AND BLOCKED CONDITIONS

During execution of an IA-32 processor supporting Hyper-Threading Technology with each
logical processor actively executing a thread, logical processors use shared processor resources
(cache lines, TLB entries, and bus accesses) on an as-needed basis. When one logical processor
is idle (no work to do) or blocked (on a lock or semaphore), additional management of the core
execution engine resource can be accomplished by using the HLT (halt), PAUSE, or the
MONITOR/MWAIT instructions.

7.7.1. HLT Instruction

The HLT instruction stops the execution of the logical processor on which it is executed and
places it in a halted state until further notice (see the description of the HLT instruction in
Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer'’s
Manual, Volume 2). When a logical processor is halted, active logical processors continue to

Vol. 3 7-33

MULTIPLE-PROCESSOR MANAGEMENT Intel®

have full access to the shared resources within the physical package. Here shared resources that
were being used by the halted logical processor become available to active logical processors,
allowing them to execute at greater efficiency. When the halted logical processor resumes
execution, shared resources are again shared among all active logical processors. (See Section
7.7.6.2., “Halt Idle Logical Processors”, for more information about using the HLT instruction
with IA-32 processors supporting Hyper-Threading Technology.)

7.7.2. PAUSE Instruction

The PAUSE instruction improves the performance of IA-32 processors supporting Hyper-
Threading Technology when executing “spin-wait loops™ and other routines where one thread
is accessing a shared lock or semaphore in a tight polling loop. When executing a spin-wait loop,
the processor can suffer a severe performance penalty when exiting the loop because it detects
a possible memory order violation and flushes the core processor’s pipeline. The PAUSE
instruction provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation and prevent the pipeline flush. In
addition, the PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming
execution resources excessively. (See Section 7.7.6.1., “Use the PAUSE Instruction in Spin-
Wait Loops”, for more information about using the PAUSE instruction with IA-32 processors
supporting Hyper-Threading Technology.)

7.7.3. MONITOR/MWAIT Instruction

Operating systems usually implement idle loops to handle thread synchronization. In a typical
idle-loop scenario, there could be several “busy loops” and they would use a set of memory loca-
tions. An impacted processor waits in a loop and poll a memory location to determine if there is
available work to execute. The posting of work is typically a write to memory (the work-queue
of the waiting processor). The time for initiating a work request and getting it scheduled is on
the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution resources), use of the
HLT instruction in an OS idle loop is desirable but has implications. Executing the HLT instruc-
tion on a idle logical processor puts the targeted processor in a non-execution state. This requires
another processor (when posting work for the halted logical processor) to wake up the halted
processor using an inter-processor interrupt. The posting and servicing of such an interrupt
introduces a delay in the servicing of new work requests.

In a shared memory configuration, exits from busy loops usually occur because of a state change
applicable to a specific memory location; such a change tends to be triggered by writes to the
memory location by another agent (typically a processor).

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient partitioning
and un-partitioning of shared resources among logical processors sharing physical resources.
MONITOR sets up an effective address range that is monitored for write-to-memory activities;
MWAIT places the processor in an optimized state (this may vary between different implemen-
tations) until a write to the monitored address range occurs.

7-34 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

In the initial implementation of MONITOR and MWALIT, they are available at CPL = 0 only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor hardware
can be either armed (by executing the MONITOR instruction) or triggered (due to a variety of
events, including a store to the monitored memory region). If upon execution of MWAIT,
monitor hardware is in a triggered state: MWAIT behaves as a NOP and execution continues at
the next instruction in the execution stream. The state of monitor hardware is not architecturally
visible except through the behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a processor that
executed MWAIT to wake up. These include events that would lead to voluntary or involuntary
context switches, such as:

¢ External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
® Faults, Aborts (including Machine Check)

® Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR
writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the
monitor)

® Voluntary transitions due to fast system call and far calls (occurring prior to issuing
MWAIT but after setting the monitor)

Power management related events (such as Thermal Monitor 2 or chipset driven STPCLK#
assertion) will not cause the monitor event pending flag to be cleared. Faults will not cause the
monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between MONITOR/MWAIT in the
instruction flow. Note that execution of MWAIT does not re-arm the monitor hardware. This
means that MONITOR/MWAIT need to be executed in a loop. Also note that exits from the
MWALIT state could be due to a condition other than a write to the triggering address; software
should explicitly check the triggering data location to determine if the write occurred. Software
should also check the value of the triggering address following the execution of the monitor
instruction (and prior to the execution of the MWAIT instruction). This check is to identify any
writes to the triggering address that occurred during the course of MONITOR execution.

The address range provided to the MONITOR instruction must be of write-back caching type.
Only write-back memory type stores to the monitored address range will trigger the monitor
hardware. If the address range is not in memory of write-back type, the address monitor hard-
ware may not be set up properly or the monitor hardware may not be armed. Software is also
responsible for ensuring that

® Writes that are not intended to cause the exit of a busy loop do not write to a location
within the address region being monitored by the monitor hardware,

® Writes intended to cause the exit of a busy loop are written to locations within the
monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due to a write
to the intended data location). These have negative performance implications. It might be neces-
sary for software to use padding to prevent false wakeups. CPUID provides a mechanism for

Vol.3 7-35

MULTIPLE-PROCESSOR MANAGEMENT Intel®

determining the size data locations for monitoring as well as a mechanism for determining the
size of a the pad.

7.7.4. Monitor/Mwait Address Range Determination

To use the MONITOR/MWAIT instructions, software should know the length of the region
monitored by the MONITOR/MWAIT instructions and the size of the coherence line size for
cache-snoop traffic in a multiprocessor system. This information can be queried using the
CPUID monitor leaf function (EAX = 05H). You will need the smallest and largest monitor line
size:

® To avoid missed wake-ups: make sure that the data structure used to monitor writes fits
within the smallest monitor line-size. Otherwise, the processor may not wake up after a
write intended to trigger an exit from MWAIT.

® To avoid false wake-ups; use the largest monitor line size to pad the data structure used to
monitor writes. Software must make sure that beyond the data structure, no unrelated data
variable exists in the triggering area for MWAIT. A pad may be needed to avoid this
situation.

These above two values bear no relationship to cache line size in the system and software should
not make any assumptions to that effect. Within a single-cluster system, the two parameters
should default to be the same (the size of the monitor triggering area is the same as the system
coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically allocate
structures with appropriate padding. If static data structures must be used by an OS, attempt to
adapt the data structure and use a dynamically allocated data buffer for thread synchronization.
When the latter technique is not possible, consider not using MONITOR/MWAIT when using
static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered systems: inter-
action between processors, chipsets, and the BIOS is required (system coherence line size may
depend on the chipset used in the system; the size could be different from the processor’s
monitor triggering area). The BIOS is responsible to set the correct value for system coherence
line size using the IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative
magnitude of the size of the monitor triggering area versus the value written into the
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be reported
as the Smallest Monitor Line Size. The larger of the parameters will be reported as the Largest
Monitor Line Size.

7.7.5. Identifying Logical Processors in an MP System

For any IA-32 processor, the system hardware establishes an initial APIC ID for the processor
during power-up or RESET (see Section 7.6.4., “Initializing IA-32 Processors Supporting
Hyper-Threading Technology”). For an IA-32 processor supporting Hyper-Threading Tech-
nology, system hardware assigns a unique APIC ID to each logical processors on the system bus.

7-36 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

The APIC ID for a logical processor is made up of three fields: logical processor ID, physical
package ID, and cluster ID. Figure 7-5 shows the layout of these fields. Here, bit O forms a 1-bit
logical processor ID, bits 1 and 2 form a 2-bit package ID, and bits 3 and 4 form a 2-bit cluster
ID. Bit 0 is used to identify the two logical processor within the package.

7 5 4 3 2 1 0

Reserved

Cluster ID4| ’

Package ID
Logical Processor ID

Figure 7-5. Interpretation of the APIC ID

Table 7-1 shows the APIC IDs that are generated for the logical processors in a system with four
MP-type Intel Xeon processors (a total of 8 logical processors). Of the two logical processors
within a Intel Xeon processor MP, logical processor 0 is also referred to as the “primary logical
processor” and logical processor 1 is referred to as the “secondary logical processor.”

Table 7-1. Initial APIC IDs for the Logical Processors in a System that has Four MP-Type
Intel Xeon Processors Supporting Hyper-Threading Technology

Logical Processor Initial APIC ID Physical Processor ID Logical Processor ID
OH OH OH
1H OH 1H
2H 1H OH
3H 1H 1H
4H 2H OH
5H 2H 1H
6H 3H OH
7H 3H 1H

Software can determine the APIC IDs of the logical processor in the system in either of the two
ways described in Section 7.5.5., “Identifying the Processors in an MP System”. Note that only
the APIC IDs of the primary logical processors in each physical package are included in the MP
table. All the logical processors in the system are included in the ACPI table, with the primary
logical processors at the top of the table followed by the secondary logical processors.

Vol.3 7-37

MULTIPLE-PROCESSOR MANAGEMENT Intel®

In future IA-32 processors supporting Hyper-Threading Technology that implement more than
two logical processors per physical processor, the logical processor bit shown in Figure 7-5 will
be expanded to a 2- or 3-bit field to allow each of the logical processors to be identified. The
package ID and cluster ID fields will be shifted to the left accordingly. Also, the package ID may
be expanded to more than 2 bits, requiring the cluster ID field to be shifted to the left.

Operating system and application software can determine the layout of an APIC ID for a partic-
ular processor by interpreting the number of logical processors field and the local APIC physical
ID field that are returned to the EBX register when the CPUID instruction is executed with a
parameter of 1 in the EAX registers.

As with TA-32 processors without HT Technology, software can assign a different APIC ID to a
logical processor by writing the value into the local APIC ID register; however, the CPUID
instruction will still report the processor’s initial APIC ID (the value assigned during power-up
or RESET).

Figure 7-5 depicts the layout of cluster ID, package ID and logical processor ID bit fields of an
APIC ID for current implementations of HT Technology (two logical processors per package).
In general, the content of an APIC ID (excluding cluster ID) for a logical processor in a package
with a finite number of logical processors per package is given by:

((Package ID << (1+((int)(log(2)(max(Logical_Per_Package-1,1)))) Il Logical Processor ID)

Use this formula to determine the association between logical processors and their physical
packages for future implementations of HT Technology. The pseudo-code below (Examples 7-
1 and 7-2) shows an algorithm to determine the relationship between logical and physical
processors. This algorithm supports any number of logical processors per package. The algo-
rithm is run on each logical processor in the system using an operating system specific affinity
to accomplish binding. After running the algorithm, logical processors that have the same
Processor ID exist within the same physical package. All processors present in the system must
support the same number of logical processors per physical processor.

The algorithm for detecting support for HT Technology and identifying the relationships
between a logical processor to the corresponding physical processor ID consists of five steps:

1. Detect support for HT Technology in the processor.
Identify the number of logical processors available in a physical processor package.
Extract the initial APIC ID for this processor.

Compute a mask value and bit-shift value.

DA

Compute a logical processor ID and physical processor package ID.

7-38 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

Example 7-2. Generalized Algorithm to Extract Physical Processor IDs for Hyper-
Threading Technology

1. Pseudo-code to detect support for Hyper-Threading Technology
in a processor.

// Returns non-zero if Hyper-Threading Technology is supported on
// the processors and zero if not. This does not mean that
// Hyper-Threading Technology is necessarily enabled.

unsigned int HTSupported(void)
{
try { // verify cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature
}
except (EXCEPTION_EXECUTE_HANDLER) {

returen 0 ; // CPUID is not supported and so Hyper-Threading
// Technology is not supported

// Check to see if this a a Genuine Intel Processor
// a member of the Pentium 4 processor family
// supporting Hyper-Threading Technology

if (vendor string NEQ GenuinelIntel)
if (family signature NEQ Pentium4Family)
return (feature_flag edx & HTT_BIT);
return O;

2. Pseudo-code to identify the number of logical processors per
physical processor package.

#define NUM_LOGICAL_BITS 0x00FF0000 // EBX[23:16] indicate number of
// logical processor per package

// Returns the number of logical processors per physical processor.

unsigned char LogicalProcessorsPerPackage (void)
{
if (!HTSupported()) return (unsigned char) 1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

Vol. 3 7-39

MULTIPLE-PROCESSOR MANAGEMENT Intel®

Example 7-3. Streamlined Determination of Mask to get the Logical Processor Number

3. Pseudo-code to extract the initial APIC ID of a processor
#define INITIAL_APIC_ID_BITS OxFF000000 // EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor this
// code 1is actually running on. The default value returned is OxFF if
// Hyper-Threading Technology is not supported.

unsigned char GetAPIC_ID (void)
{
unsigned int reg_ebx = 0;
if (!HTSupported()) return (unsigned char) -1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & INITIAL_APEIC_ID_BITS) >> 24;

4. Sample code to compute a mask value and a bit-shift wvalue,
the logical processor ID and physical processor package ID.

unsigned char i = 1;

unsigned char PHY_ID_MASK = O0xXFF;
unsigned char PHY_ID_SHIFT = 0;
unsigned char APIC_ID;

unsigned char LOG_ID, PHY_ ID;

Logical_Per_Package = LogicalProcessorsPerPackage() ;
While (i < Logical_Per_Package) {

i *= 2;

PHY_ID_MASK <<= 1;

PHY ID_SHIFT++;
}
// Assume this thread is running on the logical processor from
// which we extract the logical processor ID and its physical
// processor package ID. If not, use the 0OS-specific affinity
// service (See example 7-3) to bind this thread to the target
// logical processor
APIC_ID = GetAPIC_ID();
LOT_ID = APIC_ID & ~PHY ID_MASK;
PHY ID = APIC_ID >> PHY ID SHIFT;

7-40 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

Example 7-4. Using an OS-specific Affinity Service to Identify the Logical Processor IDs
in an MP System

5. Compute the logical processor ID and physical processor
package ID.

// The OS may limit the processor that this process may run on.

hCurrentProcessHandle = GetCurrentProcess() ;
GetProcessAffinityMask (hCureentPorcessHandle,
&dwProcessAffinity, &dwSystemAffinity);

// If the available process affinity mask does not equal the
// available system affinity mask, then determining if
// Hyper-Threading Technology is enabled may not be possible.

if (dwProcessAffinity != dwSystemAffinity)
printf (“This process can not utilize all processors. \n”),

dwAffinityMask = 1;
while (dwAffinityMask != 0 &&
dwAffinityMask <= dwProcessAffinity) {
// Check to make sure we can utilize this processor first.
if (dwAffinityMask & dwProcessAffinity) {
if (SetProcessAffinityMask (hCurrentProcessHandle,
dwAffinityMask)) {

Sleep(0) ; // May not be running on the logical processor
// on the affinity just set. Sleep gives the
// 0OS a chance to switch to the desired
// logical processor.

// Retrieve APIC_ID for this logical processor

// Extract logical processor ID and physical processor
// package ID

Vol. 3 7-41

MULTIPLE-PROCESSOR MANAGEMENT Intel®

7.7.6. Required Operating System Support

This section describes changes that must be made to an operating system to run on IA-32 proces-
sors supporting Hyper-Threading Technology. It also describes optimizations that can help an
operating system make more efficient use of the logical processors within a physical package.
The required changes and suggested optimizations are representative of the types of modifica-
tions that appear in Windows XP and Linux kernel 2.4.0 operating systems for IA-32 processors
supporting Hyper-Threading Technology. Additional optimizations for IA-32 processors
supporting Hyper-Threading Technology are described in the Pentium 4 and Intel Xeon
Processor Optimization Reference Manual (see Section 1.4., “Related Literature” for an order
number).

7.7.6.1. USE THE PAUSE INSTRUCTION IN SPIN-WAIT LOOPS

Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel
Xeon and/or Pentium 4 processors.

Software routines that use spin-wait loops include multiprocessor synchronization primitives
(spin-locks, semaphores, and mutex variables) and idle loops. Such routines keep the processor
core busy executing a load-compare-branch loop while a thread waits for a resource to become
available. Including a PAUSE instruction in such a loop greatly improves efficiency (see Section
7.7.2., “PAUSE Instruction”). The following routine gives an example of a spin-wait loop that
uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0;Check if lock is free
JE Get_Lock

PAUSE ; Short delay

JMP Spin_Lock
Get_Lock:

MOV EAX, 1

XCHG EAX, lockvar ; Try to get lock
CMP EAX, 0 ; Test if successful
JNE Spin_Lock
Critical_Section:
<critical section code>
MOV lockvar, 0

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of
the synchronization variable. This technique is recommended when writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is
treated as a NOP instruction.

7-42 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

Potential Usage of MONITOR/MWAIT in C0 Idle Loops

An operating system may implement different handlers for different idle states. A typical OS
idle loop on an ACPI-compatible OS is shown in Example 7-5:

Example 7-5. A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.
WHILE (1) {

IF (WorkQueue) THEN ({

// Schedule work at WorkQueue
} ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate Cl, C2, C3 state handler, Cl handler

// shown below

}

}
// Cl handler uses a Halt instruction
VOID ClHandler ()
{ STI
HLT

The MONITOR and MWAIT instructions may be considered for use in the CO idle state loops,
if MONITOR and MWAIT are supported.

Example 7-6. An OS Idle Loop with MONITOR/MWAIT in the CO Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.
WHILE (1) {
IF (WorkQueue) THEN ({
// Schedule work at WorkQueue
} ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {

Vol. 3 7-43

MULTIPLE-PROCESSOR MANAGEMENT Intel®

// Call appropriate Cl, C2, C3 state handler, C1
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,
// ECX, EDX = 0
IF (WorkQueue != 0) THEN {
MWATIT

}
// Cl handler uses a Halt instruction
VOID ClHandler ()
{ STI
HLT

7.7.6.2. HALT IDLE LOGICAL PROCESSORS

If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that
processor by means of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that continuously
checks the run queue for runnable software tasks. Logical processors that execute idle loops
consume a significant amount of core’s execution resources that might otherwise be used by the
other logical processors in the physical package. For this reason, halting idle logical processors
optimizes the performance.1 If all logical processors within a physical package are halted, the
processor will enter a power-saving state.

Potential Usage of MONITOR/MWALIT in C1 Idle Loops

An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 idle
loop. An example is shown in Example 7-7:

Example 7-7. An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.
WHILE (1) {
IF (WorkQueue) THEN {
// Schedule work at WorkQueue
} ELSE {

1. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating
systems should evaluate the performance trade-offs for their operating system.

7-44 Vol. 3

Intel® MULTIPLE-PROCESSOR MANAGEMENT

// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate Cl, C2, C3 state handler, C1
// handler shown below
}
}
}
// Cl handler uses a Halt instruction
VOID ClHandler ()
{
MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
STI
MWAIT // EAX, ECX = 0

7.7.6.3. GUIDELINES FOR SCHEDULING THREADS ON MULTIPLE LOGICAL
PROCESSORS

Because the logical processors, the order in which threads are dispatched to logical processors
for execution can affect the overall efficiency of a system. The following guidelines are recom-
mended for scheduling threads for execution.

¢ Dispatch threads to one logical processor per physical package before dispatching threads
to the remaining logical processors in available physical packages. In an MP system with
two or more IA-32 processors supporting Hyper-Threading Technology, distribute threads
out over all the physical packages rather than concentrate them in one or two physical
processors.

® Use processor affinity to assign a thread to a specific physical processor. The practice
increases the chance that the processor’s caches will contain some of the thread’s code and
data when it is dispatched for execution after being suspended. The thread can be
dispatched to any logical processor within a physical package because logical processors
share the physical processor’s caches.

7.7.6.4. ELIMINATE EXECUTION-BASED TIMING LOOPS

Intel discourages the use of timing loops that depend on a processor’s execution speed to
measure time. There are several reasons:

® Timing loops cause problems when they are calibrated on a IA-32 processor running at one
clock speed and then executed on a processor running at another clock speed.

Vol.3 7-45

MULTIPLE-PROCESSOR MANAGEMENT Intel®

® Routines for calibrating execution-based timing loops produce unpredictable results when
run on an IA-32 processor supporting Hyper-Threading Technology. This is due to the
sharing of execution resources between the logical processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism for the loop
that does not depend on the execution speed of the logical processors in the system. The
following sources are generally available:

® A high resolution system timer (for example, an Intel 8254).

® A high resolution timer within the processor (such as, the local APIC timer or the time-
stamp counter).

For additional information, see the Pentium 4 and Intel Xeon Processor Optimization Reference
Manual (see Section 1.4., “Related Literature” for an order number).

7.7.6.5. PLACE LOCKS AND SEMAPHORES IN ALIGNED, 128-BYTE
BLOCKS OF MEMORY

When software uses locks or semaphores to synchronize processes, threads, or other code
sections; Intel recommends that only one lock or semaphore be present within a cache line. In
an Intel Xeon processor MP (which have 128-byte wide cache lines), following this recommen-
dation means that each lock or semaphore should be contained in a 128-byte block of memory
that begins on a 128-byte boundary. The practice minimizes the bus traffic required to service
locks.

7-46 Vol. 3

Advanced
Programmable

Interrupt Controller
(APIC)

CHAPTER 8
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections
as the local APIC, was introduced into the IA-32 processors with the Pentium processor (see
Section 18.24., “Advanced Programmable Interrupt Controller (APIC)”) and is included in the
Pentium 4, Intel Xeon, and P6 family processors (see Section 8.4.2., “Presence of the Local
APIC”). The local APIC performs two primary functions for the processor:

® Itreceives interrupts from the processor’s interrupt pins, from internal sources, and/or from
an external I/O APIC (or other external interrupt controller) and sends them to the
processor core for handling.

® In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI)
messages to and from other IA-32 processors on the system bus. These IPI messages can
be used to distribute interrupts among the processors in the system or to execute system
wide functions (such as, booting up processors or distributing work among a group of
processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive
external interrupt events from the system and its associated I/O devices and relay them to the
local APIC as interrupt messages. In MP systems, the I/O APIC also provides a mechanism for
distributing external interrupts to the local APICs of selected processors or groups of processors
on the system bus.

This chapter provides a detailed description of the local APIC and its programming interface. It
also provides an overview of the interface between the local APIC and the I/O APIC. Contact
Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its associated processor core for handling, the
processor uses the interrupt and exception handling mechanism described in Chapter 5, Inter-
rupt and Exception Handling, to service the interrupt. Section 5.1., “Interrupt and Exception
Overview”, gives an introduction to interrupt and exception handling in the IA-32 architecture.
It is recommended that this section be read in addition to the following sections to aid in under-
standing the IA-32 APIC architecture and its functions.

8.1. LOCAL AND I/O APIC OVERVIEW

Each local APIC consists of a set of APIC registers (see Table 8-1) and associated hardware that
control the delivery of interrupts to the processor core and the generation of IPI messages. The
APIC registers are memory mapped and can be read and written to using the MOV instruction.

Vol. 3 8-1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

The local APIC can receive interrupts from the following sources:

¢ Locally connected I/O devices. These interrupts originate as an edge or level asserted by
an I/0 device that is connected directly to the processor’s local interrupt pins (LINTO and
LINT1). The I/O devices may also be connected to an 8259-type interrupt controller that is
in turn connected to the processor through one of the local interrupt pins.

¢ Externally connected I/0 devices. These interrupts originate as an edge or level asserted
by an I/O device that is connected to the interrupt input pins of an I/O APIC. These
interrupts are sent as I/O interrupt messages from the I/O APIC to one or more the IA-32
processors in the system.

¢ Inter-processor interrupts (IPIs). An IA-32 processor can use the IPI mechanism to
interrupt another processor or group of processors on the system bus. IPIs are used for such
things as software self-interrupts, interrupt forwarding, or preemptive scheduling.

¢ APIC timer generated interrupts. The local APIC timer can be programmed to send a
local interrupt to its associated processor when a programmed count is reached (see
Section 8.5.4., “APIC Timer”).

¢ Performance monitoring counter interrupts. The Pentium 4, Intel Xeon, and P6 family
processors provide the ability to send a interrupt to its associated processor when a
performance-monitoring counter overflows (see Section 15.10.6.9., “Generating an
Interrupt on Overflow™).

¢ Thermal Sensor interrupts. The Pentium 4 and Intel Xeon processors provide the ability
to send an interrupt to themselves when the internal thermal sensor has been tripped (see
Section 13.16.2., “Thermal Monitor™).

¢ APIC internal error interrupts. When an error condition is recognized within the local
APIC (such as an attempt to access an unimplemented register), the APIC can be
programmed to send an interrupt to its associated processor (see Section 8.5.3., “Error
Handling”).

Of these interrupt sources, the processor’s LINTO and LINT1 pins, the APIC timer, the perfor-
mance-monitoring counters, the thermal sensor, and the internal APIC error detector are referred
to as local interrupt sources. Upon receiving a signal from a local interrupt source, the local
APIC delivers the interrupt to the processor core using an interrupt delivery protocol that has
been set up through a group of APIC registers called the local vector table or LVT (see Section
8.5.1., “Local Vector Table”). A separate entry is provided in the local vector table for each local
interrupt source, which allows a specific interrupt delivery protocol to be set up for each source.
For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local
vector table can be set up to deliver an interrupt with vector number 2 (NMI interrupt) to the
processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected
I/O devices and IPIs) through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR) in its local
APIC (see Section 8.6.1., “Interrupt Command Register (ICR)”). The act of writing to the ICR
causes an IPI message to be generated and issued on the system bus (for Pentium 4 and Intel
Xeon processors) or on the APIC bus (for Pentium and P6 family processors).

8-2 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

(See Section 8.2., “System Bus Vs. APIC Bus”.) IPIs can be sent to other IA-32 processors in
the system or to the originating processor (self-interrupts). When the target processor receives
an IPI message, its local APIC handles the message automatically (using information include in
the message such as vector number and trigger mode) and delivers it to the processor core for
servicing. See Section 8.6., “Issuing Interprocessor Interrupts” for a detailed explanation of the
local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O
APIC (see Figure 8-1). The I/O APIC is responsible for receiving interrupts generated by system
hardware and I/O devices and forwarding them to the local APIC as interrupt messages.

Pentium 4 and Pentium and P6
Intel Xeon Processors Family Processors
Processor Core Processor Core
Local APIC Local APIC
A Interrupt Local A Interrupt Local
Messages Interrupts Messages Interrupts
R e B w
Interrupt | System Bus 3-Wire APIC Bus
Messages
(
Bridge /O APIC [External
- Interrupts
A
SR | ‘F:C' > System Chip Set
Y
/O APIC [External
- Interrupts
System Chip Set

Figure 8-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when
asserted. The I/O APIC also has a “virtual wire mode” that allows it to communicate with a stan-
dard 8259A-style external interrupt controller.

Note that the local APIC can be disabled (see Section 8.4.3., “Enabling or Disabling the Local
APIC”), allowing its associated processor core to receive interrupts directly from an 8259A
interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 8-2
and 8-3). Here each local APIC handles both externally generated interrupts that it receives as
interrupt messages from the I/O APIC and IPIs from other processors on the system bus, and

Vol.3 8-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

from itself. (Interrupts can also be delivered to the individual processors through the local inter-
rupt pins; however, this mechanism is commonly not used in MP systems.)

Processor #1 Processor #2 Processor #3 Processor #3
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
A A
Interrupt AIPI Interrupt AIPl Interrupt L 4 Pl Interrupt“ AIPI
Messages S Messages S Messages S Messages s
| YY Al v
- '
Interrupt A Processor System Bus
Messages
Y
Bridge
A
PCI
- Y L .
Y
I/O APIC [External
- Interrupts
System Chip Set

Figure 8-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-
Processor Systems

Processor #1 Processor #2 Processor #3 Processor #4
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Mlnterrupt \ AIPIs Mlnterrupt A IPls Mlnterrupt“ A IPls Interrupt 44 IPls
essages essages essages Messaages
%%y vy Y v Y ¥ vy v
Interrupt A 3-wire APIC Bus
Messages
Y
External >
Interrupts > /0 APIC

System Chip Set

Figure 8-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-
Processor Systems

8-4 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a
specific vector number) and special-purpose interrupts to other processors on the system bus or
to itself. For example, one local APIC can use an IPI to forward a fixed interrupt to another
processor for servicing. Special-purpose IPIs, including NMI, INIT, SMI and SIPI IPIs, allow
one or more processors in the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC, and its implementation in the Pentium 4, Intel
Xeon, and P6 family processors. In the descriptions in these sections, the generic terms “local
APIC” and “I/O APIC” refer to the local and I/O APICs used with the P6 family processors and
to the local and I/0 X APICs used with the Pentium 4 and Intel Xeon processors (see Section 8.3.,
“Relationship Between the Intel® 82489DX External APIC, the APIC, and the XAPIC”).

8.2. SYSTEM BUS VS. APIC BUS

For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through
the 3-wire inter-APIC bus (see Figure 8-3). The local APICs also use the APIC bus to send and
receive IPIs. The APIC bus and its messages are invisible to software and are not classed as
architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the /O APIC and local APICs (using
the xAPIC architecture) communicate through the system bus (see Figure 8-2). Here the I/O
APIC sends interrupt requests to the processors on the system bus through bridge hardware that
is part of the Intel chip set. This bridge hardware generates the actual interrupt messages that go
to the local APICs. IPIs between local APICs are transmitted directly on the system bus.

8.3. RELATIONSHIP BETWEEN THE INTEL® 82489DX
EXTERNAL APIC, THE APIC, AND THE XAPIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel
82489DX external APIC. The differences are described in Section 18.24.1., “Software Visible
Differences Between the Local APIC and the 82489DX”.

The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the x APIC archi-
tecture) is an extension of the APIC architecture found in the P6 family processors. The primary
difference between the APIC and xAPIC architectures is that with the XxAPIC architecture, the
local APICs and the I/O APIC communicate with one another through the system bus; whereas,
with the APIC architecture, they communication through the APIC bus (see Section 8.2,
“System Bus Vs. APIC Bus”). Also, some of the APIC architectural features have been extended
and/or modified in the xAPIC architecture. These extensions and modifications are noted in the
following sections.

Vol.3 8-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

8.4. LOCAL APIC

The following sections describe the architecture of the local APIC and how to detect it, identify
it, and determine its status. Descriptions of how to program the local APIC are given in Section
8.5.1., “Local Vector Table” and Section 8.6.1., “Interrupt Command Register (ICR)”.

8.4.1. The Local APIC Block Diagram

Figure 8-4 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. The APIC registers are memory-mapped to a 4-KByte
region of the processor’s physical address space with an initial starting address of FEEOOOOOH.
For correct APIC operation, this address space must be mapped to an area of memory that has
been designated as strong uncacheable (UC). See Section 10.3., “Methods of Caching Avail-
able”.

In MP system configurations, the APIC registers for all the IA-32 processors on the system bus
are initially mapped to the same 4-KByte region of the physical address space. Software has the
option of changing this initial mapping to a different 4-KByte region for all the local APICs or
of mapping the APIC registers for each local APIC to its own 4-KByte region. Section 8.4.5.,
“Relocating the Local APIC Registers” describes how to relocate the base address for the APIC
registers for a specific processor.

NOTE

For Pentium 4, Intel Xeon, and P6 family processors, the APIC handles all
memory accesses to addresses within the 4-KByte APIC register space
internally and no external bus cycles are produced. For the Pentium
processors with an on-chip APIC, bus cycles are produced for accesses to the
APIC register space. Thus, for software intended to run on Pentium
processors, system software should explicitly not map the APIC register
space to regular system memory. Doing so can result in an invalid opcode
exception (#UD) being generated or unpredictable execution.

8-6 Vol.3

intgl.

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

DATA/ADDR
A
Version Register —|" >| EOIRegister
Timer < »| Task Priority Register
Current Count
Register +
. L | Processor Priority
Initial Qount U Register INTA From
Register A CP
Divide Configuration Y y INTR Core
Register oL ——->» To
Prioritizer EXT|N1 CPU
Local Vector Table » Core
o Timer R T _________ 1
I In-Service Register (ISR) !
LINTO/ —> Local ! !
Interrupts 0,1 le—>! Interrupt Request Register (IRR) '
Perf. Mon. Performance : :
Internal —>» i i
I(nterrupt) Monitoring Counters’ | Trigger Mode Register (TMR) |
I I
A A
Thermal > e M J
Sensor Thermal Sensor Vec[3:0] Register
(Internal & TMR Bit Select
Interrupt)
= Error Arb. ID Vector
o Register’ Decode
Error Status - Local Acceptance
Reglster |nterrupts Logic
Dest. Mode
& Vector
To
APIC ID Protocol [3 CPU
Register Translation Logic :\rlle\|/|‘|l' Core
Logical Destination Y SMmi
i <>
Register Interrupt Command
Destination Format - | Register (ICR)
Register Y

Spurious Vector
Register

1. Introduced in P6 family processors.

2. Introduced in the Pentium 4 and Intel Xeon processors.
3. Three-wire APIC bus in P6 family and Pentium processors.
4. Not implemented in Pentium 4 and Intel Xeon processors.

Processor System Bus®

Figure 8-4. Local APIC Structure

Vol.3 8-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

Table 8-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. All
registers are 32 bits, 64 bits, or 256 bits in width, and all are aligned on 128-bit boundaries. All
32-bit registers must be accessed using 128-bit aligned 32-bit loads or stores. The wider registers
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with the first access
being 128-bit aligned. If a LOCK prefix is used with a MOV instruction that accesses the APIC
address space, the prefix is ignored; that is, a locking operation does not take place. All the regis-

ters listed in Table 8-1 are described in the following sections of this chapter.

Table 8-1. Local APIC Register Address Map

Address Register Name Software Read/Write

FEEO 0000H Reserved

FEEO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/Write.

FEEO 0030H Local APIC Version Register Read Only.

FEEO 0040H Reserved

FEEO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FEEO 0080H Task Priority Register (TPR) Read/Write.

FEEO 0090H Arbitration Priority F%egister1 (APR) Read Only.

FEEO 00AOH Processor Priority Register (PPR) Read Only.

FEEO 00BOH EOI Register Write Only.

FEEO 00COH Reserved

FEEO 00DOH Logical Destination Register Read/Write.

FEEO O0EOH Destination Format Register Bits 0-27 Read only; bits 28-31
Read/Write.

FEEO O0FOH Spurious Interrupt Vector Register Bits 0-8 Read/Write; bits 9-31
Read Only.

FEEO 0100H through In-Service Register (ISR) Read Only.

FEEO 0170H

FEEO 0180H through Trigger Mode Register (TMR) Read Only.

FEEO O1FOH

FEEO 0200H through Interrupt Request Register (IRR) Read Only.

FEEO 0270H

FEEO 0280H Error Status Register Read Only.

FEEO 0290H through Reserved

FEEO 02FOH

FEEO 0300H Interrupt Command Register (ICR) [0-31] Read/Write.

FEEO 0310H Interrupt Command Register (ICR) [32-63] | Read/Write.

8-8 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 8-1. Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write
FEEO 0320H LVT Timer Register Read/Write.
FEEO 0330H LVT Thermal Sensor Register? Read/Write.
FEEO 0340H LVT Performance Monitoring Counters Read/Write.
Register

FEEO 0350H LVT LINTO Register Read/Write.
FEEO 0360H LVT LINT1 Register Read/Write.
FEEO 0370H LVT Error Register Read/Write.
FEEO 0380H Initial Count Register (for Timer) Read/Write.
FEEO 0390H Current Count Register (for Timer) Read Only.
FEEO 03A0H through Reserved

FEEO 03DOH

FEEO O3EOH Divide Configuration Register (for Timer) Read/Write.
FEEO 03FOH Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors.

2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are
implementation dependent and may not be present in future 1A-32 processors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementa-
tion dependent and may not be present in future |1A-32 processors.

NOTE

The local APIC registers listed in Table 8-1 are not MSRs. The only MSR
associated with the programming of the local APIC is the IA32_APIC_BASE
MSR (see Section 8.4.3., “Enabling or Disabling the Local APIC”).

8.4.2. Presence of the Local APIC

Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can
be detected using the CPUID instruction. When the CPUID instruction is executed with a source
operand of 1 in the EAX register, bit 9 of the CPUID feature flags returned in the EDX register
indicates the presence (set) or absence (clear) of a local APIC.

Vol.3 8-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

8.4.3. Enabling or Disabling the Local APIC

The local APIC can be enabled or disabled in either of two ways:

® Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (see Figure
8-5).

® Using the APIC software enable/disable flag in the spurious-interrupt vector register (see
Figure 8-22)

The APIC global enable/disable flag in the IA32_APIC_BASE MSR permits the local APIC to
be permanently disabled. Following a power-up or reset, this flag is set, enabling the local APIC.
To permanently disable the local APIC until the next power-up or reset, software can clear this
flag.

When this flag is clear, the processor is functionally equivalent to an IA-32 processor without
an on-chip APIC (for example, an Intel486 processor). In this state, CPUID feature flag for the
APIC (bit 9 for the EDX register [see Section 8.4.2., “Presence of the Local APIC”]) is set to O.
Also, when the APIC global enable/disable flag in the IA32_APIC_BASE MSR flag has been
cleared, it can only be reset by a power-up or RESET action.

63 36 35 12111098 7 0

Reserved APIC Base

APIC Base—Base physical address 4

APIC global enable/disable
BSP—Processor is BSP

D Reserved

Figure 8-5. 1A32_APIC_BASE MSR

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during
power-up or RESET to disable the local APIC.

If the APIC global enable/disable flag in the IA32_APIC_BASE MSR has not been cleared,
software can temporarily disable a local APIC at any time by clearing the APIC software
enable/disable flag in the spurious-interrupt vector register (see Figure 8-22). The state of the
local APIC when in this software-disabled state is described in Section 8.4.7.2., “Local APIC
State After It Has Been Software Disabled”. When the local APIC is in the software-disabled
state, it can be re-enabled at any time by setting the APIC software enable/disable flag to 1.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being
delivered to the processor from selected local interrupt sources (the LINTO and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and/or the internal APIC
error detector).

8-10 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.4.4. Local APIC Status and Location

The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (called
APIC_BASE_MSR in the P6 family processors). This MSR is located at MSR address 27
(1BH). Figure 8-5 shows the encoding of the bits in this MSR. The functions of these bits are as
follows:

BSP flag, bit 8 Indicates if the processor is the bootstrap processor (BSP) (see Section 7.5.,
“Multiple-Processor (MP) Initialization”). Following a power-up or RESET,
this flag is set to 1 for the processor that was selected as the BSP and set to 0
for each of the remaining application processors (APs).

APIC Global Enable flag, bit 11
Enables (1) or disables (0) the local APIC (see Section 8.4.3., “Enabling or
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon,
and P6 family processors. It is not guaranteed to be available or available at the
same location in future IA-32 processors.

APIC Base field, bits 12 through 35
Specifies the base address of the APIC registers. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns
the address on a 4-KByte boundary. Following a power-up or RESET, this field
is set to FEEOOOOOH.

Bits O through 7, bits 9 and 10, and bits 36 through 63 in the IA32_APIC_BASE MSR are
reserved.

8.4.5. Relocating the Local APIC Registers

The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC
registers to be relocated from FEEOOOOOH to another physical address by modifying the value
in the 24-bit base address field of the IA32_APIC_BASE MSR. This extension of the APIC
architecture is provided to help resolve conflicts with memory maps of existing systems and to
allow individual processors in an MP system to map their APIC registers to different locations
in physical memory.

8.4.6. Local APICID

At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus
(for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 family and Pentium
processors). The hardware assigned APIC ID is based on system topology and includes
encoding for socket position and cluster information (see Figure 7-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating
system. However, the ability of software to modify the APIC ID is processor model specific.
Because of this, operating system software should avoid writing to the local APIC ID register.

Vol. 3 8-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

The processor receives the hardware assigned APIC ID by sampling pins A11# and A12# and
pins BRO# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins
BEO# through BE3# (for the Pentium processor). The APIC ID latched from these pins is stored
in the APIC ID field of the local APIC ID register (see Figure 8-6), and is used as the initial
APIC ID for the processor. It is also the value returned to the EBX register, when the CPUID
instruction is executed with a source operand value of 1 in the EAX register.

31 24 23 0

APIC ID* Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

* For the P6 family and Pentium processors,
bits 28-31 are reserved. For Pentium 4
and Xeon processors, 21-31 are reserved.

Figure 8-6. Local APIC ID Register

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register
is 4 bits, and encodings OH through EH can be used to uniquely identify 15 different processors
connected to the APIC bus. For the Pentium 4 and Intel Xeon processors, the xAPIC specifica-
tion extends the local APIC ID field to 8 bits which can be used to identify up to 255 processors
in the system.

Following power up or a hardware reset, software (typically the BIOS software) can modify the
APIC ID field in the local APIC ID register for each processor in the system. When changing
APIC IDs, software must insure that each APIC ID for each local APIC is unique throughout
the system.

8.4.7. Local APIC State

The following sections describe the state of the local APIC and its registers following a power-
up or RESET, after is has been software disabled, following an INIT reset, and following an
INIT-deassert message.

8.4.7.1. LOCAL APIC STATE AFTER POWER-UP OR RESET

Following a power-up or RESET of the processor, the state of local APIC and its registers are
as follows:

® The following registers are reset to all Os: the IRR, ISR, TMR, ICR, LDR, and TPR
registers; the timer initial count and timer current count registers; and the divide configu-
ration register.

® The DFR register is reset to all 1s.

8-12 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

® The LVT register entries are reset to all Os except for the mask bits, which are set to 1s.
® The local APIC version register is not affected.

® The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors
only) The Arb ID register is set to the value in the APIC ID register.

® The spurious-interrupt vector register is initialized to 0000 OOFFH. The setting of bit 8 to 0
software disables the local APIC.

® If the processor is the only processor in the system or it is in an MP system and has been
designated the BSP (see Section 7.5.1., “BSP and AP Processors”), the local APIC will
respond normally to INIT and NMI messages, and to INIT# and STPCLK# signals; if it is
in an MP system and has been designated as an AP, the local APIC will respond the same
as for the BSP and in addition it will respond to a SIPI message. For P6 family processors
only, an AP will not respond to a STPCLK# signal.

8.4.7.2. LOCAL APIC STATE AFTER IT HAS BEEN SOFTWARE DISABLED

When the APIC software enable/disable flag in the spurious interrupt vector register has been
explicitly cleared (as opposed to being cleared during a power up or RESET), the local APIC is
temporarily disabled (see Section 8.4.3., “Enabling or Disabling the Local APIC”). The opera-
tion and response of a local APIC while in this software-disabled state is as follows:

® The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.

® Pending interrupts in the IRR and ISR registers are held and require masking or handling
by the CPU.

® A local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs
through the IPI mechanism and the ICR register if sending interrupts through this
mechanism is not desired.

® The reception or transmission of any IPIs that are in progress when the local APIC is
disabled are completed before the local APIC enters the software-disabled state.

® The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.

® (Pentium and P6 family processors) The local APIC continues to listen to all bus messages
in order to keep its arbitration ID synchronized with the rest of the system.

8.4.7.3. LOCAL APIC STATE AFTER AN INIT RESET (“WAIT-FOR-SIPI”
STATE)

An INIT reset of the processor can be initiated in either of two ways:
® By asserting the processor’s INIT# pin.

® By sending the processor an INIT IPI (sending it an IPI with the delivery mode set to
INIT).

Upon receiving an INIT through either of these two mechanisms, the processor responds by
beginning the initialization process of the processor core and the local APIC. The state of the

Vol. 3 8-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

local APIC following an INIT reset is the same as it is after a power-up or hardware RESET,
except that the APIC ID and arbitration ID registers are not affected. This state is also referred
to at the “wait-for-SIPI” state. See Section 7.5.2., “MP Initialization Protocol Requirements and
Restrictions for Intel Xeon Processors”, for a discussion of the effect of an INIT that follows a
power-up or RESET in an MP system.

8.4.7.4. LOCAL APIC STATE AFTER IT RECEIVES AN INIT-DEASSERT IPI

(Only the Pentium and P6 family processors support the INIT-deassert IPI.) An INIT-disassert
IPI has no affect on the state of the APIC, other than to reload the arbitration ID register with
the value in the APIC ID register.

8.4.8. Local APIC Version Register

The local APIC contains a hardwired version register, which software can use to identify the
APIC version (see Figure 8-7). In addition, this register specifies the number of entries in the
local vector table (LVT) for the specific implementation. The fields in the local APIC version
register are as follows:

Version The version numbers of the local APIC:
1XH Local APIC. For Pentium 4 and Intel Xeon proces-
sors, 14H is returned.
0XH 82489DX external APIC.

20H through FFHReserved.

Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel
Xeon processors (which have 6 LVT entries), the value returned in the
Max LVT field is 5; for the P6 family processors (which have 5 LVT
entries), the value returned is 4; for the Pentium processor (which has
4 LVT entries), the value returned is 3.

31 24 23 16 15 87 0

Max. LVT
Entry

Value after reset: 0OON O0OVVH
V = Version, N = # of LVT entries minus 1
Address: FEEO 0030H

Reserved Reserved Version

Figure 8-7. Local APIC Version Register

8-14 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.5. HANDLING LOCAL INTERRUPTS

The following sections describe the facilities that are provided in the local APIC for handling
local interrupts, which include the processor’s LINTO and LINT1 pins, the APIC timer, the
performance-monitoring counters, the thermal sensor, and the internal APIC error detector. The
local interrupt handling facilities include the LVT, the error status register (ESR), the divide
configuration register (DCR), and the initial count and current count registers.

8.5.1. Local Vector Table

The local vector table (LVT) allows software to specify the manner in which the local interrupts
are delivered to the processor core. It consists of the following five 32-bit APIC registers (see
Figure 8-8), one for each local interrupt:

® LVT Timer Register (FEEO 0320H)—Specifies interrupt delivery when the APIC timer
signals an interrupt (see Section 8.5.4., “APIC Timer”).

® LVT Thermal Monitor Register (FEEO 0330H)—Specifies interrupt delivery when the
thermal sensor generates an interrupt (see Section 13.16.2., “Thermal Monitor”). This LVT
entry is implementation specific, not architectural. If implemented, it will always be at
base address FEEO 0330H.

® LVT Performance Counter Register (FEEO 0340H)—Specifies interrupt delivery when a
performance counter generates an interrupt on overflow (see Section 15.10.6.9.,
“Generating an Interrupt on Overflow”). This LVT entry is implementation specific, not
architectural. If implemented, it is not guaranteed to be at base address FEEO 0340H.

® LVT LINTO Register (FEEO 0350H)—Specifies interrupt delivery when an interrupt is
signaled at the LINTO pin.

® LVT LINT1 Register (FEEO 0360H)—Specifies interrupt delivery when an interrupt is
signaled at the LINT1 pin.

® LVT Error Register (FEEO 0370H)—Specifies interrupt delivery when the APIC detects an
internal error (see Section 8.5.3., “Error Handling”).

NOTE

The LVT performance counter register and its associated interrupt were
introduced in the P6 processors and are also present in the Pentium 4 and
Intel Xeon processors. The LVT thermal monitor register and its associated
interrupt were introduced in the Pentium 4 and Intel Xeon processors

Note that as shown in Figures 8-8, some of these fields and flags are not available (and reserved)
for some entries.

Vol. 3 8-15

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

31 18 17 16 15 1312 11 87 0
Timer Vector
_ } A A Address: FEEO 0320H
Timer Mode Value after Reset: 0001 0000H
0: One-shot ’
1: Periodic Delivery Status
0: Idle
1: Send Pending
Maskt
0: Not Masked
1: Masked
Interrupt Input Delivery Mode
Pin Polarity 000: Fixed
010: SMI
100: NMI
Remote 111: ExtINT
IRR 101: INIT
All other combinations
are Reserved
Trigger Mode
0: Edge
1: Level
31 77y Y Y y y 1110]87 0
LINTO Vector
LINT1 Vector
Error Vector
Performance
Mon. Counters Vector
Thermal
Sensor Vector
16 15 14 13 12
D Reserved Address: FEEO 0350H
Address: FEEO 0360H
Address: FEEO 0370H
1 (Pentium 4 and Intel Xeon processors.) When a Address: FEEO 0340H
performance monitoring counters interrupt is generated, Address: FEEO 0330H

the mask bit for its associated LVT entry is set.

Value After Reset:

0001 0000H

8-16

Vol. 3

Figure 8-8. Local Vector Table (LVT)

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The setup information that can be specified in the registers of the LVT table is as follows:

Vector Interrupt vector number.

Delivery Mode Specifies the type of interrupt to be sent to the processor. Note that
some delivery modes will only operate as intended when used in
conjunction with a specific trigger mode. The allowable delivery
modes are as follows:

000 (Fixed)
010 (SMI)

100 (NMI)

101 (INIT)

111 (ExtINT)

Delivery Status (Read Only)

Delivers the interrupt specified in the vector field.

Delivers an SMI interrupt to the processor core
through the processor’s local SMI signal path.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

Delivers an NMI interrupt to the processor. The
vector information is ignored.

Delivers an INIT request to the processor core,
which causes the processor to perform an INIT.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

Causes the processor to respond to the interrupt as
if the interrupt originated in an externally connect-
ed (8259A-compatible) interrupt controller. A
special INTA bus cycle corresponding to ExtINT,
is routed to the external controller. The external
controller is expected to supply the vector infor-
mation. The APIC architecture supports only one
ExtINT source in a system, usually contained in
the compatibility bridge.

Indicates the interrupt delivery status, as follows:

0 (Idle)

There is currently no activity for this interrupt
source, or the previous interrupt from this source
was delivered to the processor core and accepted.

1 (Send Pending)

Interrupt Input Pin Polarity

Indicates that an interrupt from this source has
been delivered to the processor core, but has not
yet been accepted (see Section 8.5.5., “Local In-
terrupt Acceptance”).

Specifies the polarity of the corresponding interrupt pin: (0) active
high or (1) active low.

Vol. 3 8-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts, this flag is set when the
local APIC accepts the interrupt for servicing and is reset when an
EOI command is received from the processor. The meaning of this
flag is undefined for edge-triggered interrupts and other delivery
modes.

Trigger Mode Selects the trigger mode for the local LINTO and LINT1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used when the
delivery mode is Fixed. When the delivery mode is NMI, SMI, or
INIT, the trigger mode is always edge sensitive; when the delivery
mode is ExtINT, the trigger mode is always level sensitive. The timer
and error interrupts are always treated as edge sensitive.

If the local APIC is not used in conjunction with an I/O APIC and
fixed delivery mode is selected, the Pentium 4, Intel Xeon, and P6
family processors will always use level-sensitive triggering, regard-
less if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits
reception of the interrupt. When the local APIC handles a perfor-
mance-monitoring counters interrupt, it automatically sets the mask
flag in the corresponding LVT entry. This flag will remain set until
software clears it.

Timer Mode Selects the timer mode: (0) one-shot and (1) periodic (see Section
8.5.4., “APIC Timer”).

8.5.2. Valid Interrupt Vectors

The IA-32 architecture defines 256 vector numbers, ranging from 0 through 255 (see Section
5.2., “Exception and Interrupt Vectors”). The local and I/O APICs support 240 of these vectors
(in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the
APIC indicates an illegal vector in its Error Status Register [see Section 8.5.3., “Error
Handling”]. The IA-32 architecture reserves vectors 16 through 31 for predefined interrupts,
exceptions, and Intel-reserved encodings (see Table 5-1); however, the local APIC does not treat
vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed
(bits 8-11 equal 0), the APIC may signal an illegal vector error, without regard to whether the
mask bit is set or whether an interrupt is actually seen on the input.

8.5.3. Error Handling

The local APIC provides an error status register (ESR) that it uses to record errors that it detects
when handling interrupts (see Figure 8-9). An APIC error interrupt is generated when the local
APIC sets one of the error bits in the ESR. The LVT error register allows selection of the inter-

8-18 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

rupt vector to be delivered to the processor core when APIC error is detected. The LVT error
register also provides a means of masking the APIC error interrupt.

The functions of the ESR flags are as follows:

Send Checksum Error (P6 family and Pentium processors only.) Set when the local APIC
detects a checksum error for a message that it sent on the APIC bus.

Receive Checksum (P6 family and Pentium processors only.) Set when the local APIC

Error detects a checksum error for a message that it received on the APIC
bus.

Send Accept Error (P6 family and Pentium processors only.) Set when the local APIC
detects that a message it sent was not accepted by any APIC on the
APIC bus.

Receive Accept Error (P6 family and Pentium processors only.) Set when the local APIC
detects that the message it received was not accepted by any APIC
on the APIC bus, including itself.

Send Illegal Vector Set when the local APIC detects an illegal vector in the message that
it is sending.

Receive Illegal Vector Set when the local APIC detects an illegal vector in the message it
received, including an illegal vector code in the local vector table
interrupts or in a self-interrupt.

Illegal Reg. Address (Pentium 4, Intel Xeon, and P6 family processors only.) Set when
the processor is trying to access a register that is not implemented in
the processors’ local APIC register address space; that is, within the
address range of the APIC register base address (specified in the
IA32_APIC_BASE MSR) plus 4K Bytes.

31 876 54 3210
Reserved

Received lllegal Vector
Send lllegal Vector
Reserved
Receive Accept Error?
Send Accept Error?
Receive Checksum Error?
Send Checksum Error®

lllegal Register Address’ ‘ ’ |

Address: FEEO 0280H
Value after reset: OH

1. Only used in the Pentium 4, Intel Xeon, and P6 family
processors; reserved in the Pentium processor.

2. Only used in the P6 family and Pentium processors;
reserved in the Pentium 4 and Intel Xeon processors.

Figure 8-9. Error Status Register (ESR)

Vol. 3 8-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

The ESR is a write/read register. A write (of any value) to the ESR must be done just prior to
reading the ESR to update the register. This initial write causes the ESR contents to be updated
with the latest error status. Back-to-back writes clear the ESR register.

After an error bit is set in the register, it remains set until the register is cleared. Setting the mask
bit for the LVT error register prevents errors from being recorded in the ESR; however, the state
of the ESR before the mask bit was set is maintained.

8.5.4. APIC Timer

The local APIC unit contains a 32-bit programmable timer that is available to software to time
events or operations. This timer is set up by programming four registers: the divide configura-
tion register (see Figure 8-10), the initial-count and current-count registers (see Figure 8-11),
and the LVT timer register (see Figure 8-8).

31 4 3210
Reserved 0

Address: FEEO O3E0H Divide Value (bits 0, 1 and 3) j_‘

Value aft £ OH
alue after rese 000: Divide by 2

001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 8-10. Divide Configuration Register

31 0

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H
Value after reset: OH

Figure 8-11. Initial Count and Current Count Registers

The time base for the timer is derived from the processor’s bus clock, divided by the value spec-
ified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In
one-shot mode, the timer is started by programming its initial-count register. The initial count

8-20 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

value is then copied into the current-count register and count-down begins. After the timer
reaches zero, an timer interrupt is generated and the timer remains at its 0 value until repro-
grammed.

In periodic mode, the current-count register is automatically reloaded from the initial-count
register when the count reaches 0 and a timer interrupt is generated, and the count-down is
repeated. If during the count-down process the initial-count register is set, counting will restart,
using the new initial-count value. The initial-count register is a read-write register; the current-
count register is read only.

The LVT timer register determines the vector number that is delivered to the processor with the
timer interrupt that is generated when the timer count reaches zero. The mask flag in the LVT
timer register can be used to mask the timer interrupt.

8.5.5. Local Interrupt Acceptance

When a local interrupt is sent to the processor core, it is subject to the acceptance criteria spec-
ified in the interrupt acceptance flow chart in Figure 8-17. If the interrupt is accepted, it is logged
into the IRR register and handled by the processor according to its priority (see Section 8.8.4.,
“Interrupt Acceptance for Fixed Interrupts”). If the interrupt is not accepted, it is sent back to
the local APIC and retried.

8.6. ISSUING INTERPROCESSOR INTERRUPTS

The following sections describe the local APIC facilities that are provided for issuing interpro-
cessor interrupts (IPIs) from software. The primary local APIC facility for issuing IPIs is the
interrupt command register (ICR). The ICR can be used for the following functions:

¢ To send an interrupt to another processor.

® To allow a processor to forward an interrupt that it received but did not service to another
processor for servicing.

® To direct the processor to interrupt itself (perform a self interrupt).
® To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through
the system bus (for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and
Pentium processors). The ability for a processor to send a lowest priority IPI is model specific
and should be avoided by BIOS and operating system software.

8.6.1. Interrupt Command Register (ICR)

The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that
allows software running on the processor to specify and send interprocessor interrupts (IPIs) to
other IA-32 processors in the system.

Vol. 3 8-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and
the destination processor or processors. (All fields of the ICR are read-write by software with
the exception of the delivery status field, which is read-only.) The act of writing to the low

doubleword of the ICR causes the IPI to be sent.

63 56 55 32
Destination Field Reserved
31 2019181716 151413121110 8 7 0
Reserved Vector
Destination Shorthand J L Delivery Mode
00: No Shorthand 000: Fixed
01: Self 001: Lowest Priority"
10: All Including Self 010: SMI
11: All Excluding Self 011: Reserved
100: NMI
101: INIT

D Reserved

Address: FEEO 0300H (0 - 31)
FEEO 0310H (32 - 63)

Value after Reset: OH

NOTE:

1. The ability of a processor to send Lowest Priority IPI is model specific.

110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: ldle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

The ICR consists of the following fields.

Vector

Delivery Mode

Figure 8-12. Interrupt Command Register (ICR)

The vector number of the interrupt being sent.

000 (Fixed)

8-22 Vol. 3

Specifies the type of IPI to be sent. This field is also know as the IPI
message type field.

Delivers the interrupt specified in the vector field
to the target processor or processors.

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

001 (Lowest Priority)

010 (SMI)

011 (Reserved)
100 (NMI)

101 (INIT)

Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors specified in
the destination field. The ability for a processor to
send a lowest priority IPI is model specific and
should be avoided by BIOS and operating system
software.

Delivers an SMI interrupt to the target processor
or processors. The vector field must be pro-
grammed to OOH for future compatibility.

Delivers an NMI interrupt to the target processor
or processors. The vector information is ignored.

Delivers an INIT request to the target processor or
processors, which causes them to perform an
INIT. As a result of this IPI message, all the target
processors perform an INIT. The vector field must
be programmed to O0H for future compatibility.

101 (INIT Level De-assert)

110 (Start-Up)

(Not supported in the Pentium 4 and Intel Xeon
processors.) Sends a synchronization message to
all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the
values of their APIC IDs (see Section 8.7., “Sys-
tem and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger
mode flag to 1. This IPI is sent to all processors,
regardless of the value in the destination field or
the destination shorthand field; however, software
should specify the “all including self”” shorthand.

Sends a special “start-up” IPI (called a SIPI) to the
target processor or processors. The vector typical-
ly points to a start-up routine that is part of the
BIOS boot-strap code (see Section 7.5., “Multiple-
Processor (MP) Initialization”). Note that IPIs sent
with this delivery mode are not automatically re-
tried if the source APIC is unable to deliver it. It is
up to the software to determine if the SIPI was not
successfully delivered and to reissue the SIPI if
necessary.

Vol. 3 8-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

Destination Mode

Selects either physical (0) or logical (1) destination mode (see
Section 8.6.2., “Determining IPI Destination”).

Delivery Status (Read Only)

Level

Trigger Mode

Destination Shorthand

8-24 Vol. 3

Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local
APIC, or the previous IPI sent from this local
APIC was delivered and accepted by the target
Processor or processors.

1 (Send Pending)
Indicates that the last IPI sent from this local APIC
has not yet been accepted by the target processor
OI Processors.

For the INIT level de-assert delivery mode this flag must be set to O;
for all other delivery modes it must be set to 1. (This flag has no
meaning in Pentium 4 and Intel Xeon processors, and will always be
issued asa 1.)

Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It is ignored for all other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 0.)

Indicates whether a shorthand notation is used to specify the destina-
tion of the interrupt and, if so, which shorthand is used. Destination
shorthands are used in place of the 8-bit destination field, and can be
sent by software using a single write to the low doubleword of the
ICR. Shorthands are defined for the following cases: software self
interrupt, IPIs to all processors in the system including the sender,
IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination
of the IPIL. This destination shorthand allows soft-
ware to interrupt the processor on which it is exe-
cuting. An APIC implementation is free to deliver
the self-interrupt message internally or to issue the
message to the bus and “snoop” it as with any other
IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system in-
cluding the processor sending the IPI. The APIC
will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family proces-

intgl.

Destination

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

sors and to FFH for Pentium 4 and Intel Xeon pro-
Cessors.

11: (All Excluding Self)

The IPI is sent to all processors in a system with
the exception of the processor sending the IPI. The
APIC broadcasts a message with the physical des-
tination mode and destination field set to OxFH for
Pentium and P6 family processors and to OxFFH
for Pentium 4 and Intel Xeon processors. Support
for this destination shorthand in conjunction with
the lowest-priority delivery mode is model specif-
ic. For Pentium 4 and Intel Xeon processors, when
this shorthand is used together with lowest priority
delivery mode, the IPI may be redirected back to
the issuing processor

Specifies the target processor or processors. This field is only used
when the destination shorthand field is set to 00B. If the destination
mode is set to physical, then bits 56 through 59 contain the APIC ID
of the target processor for Pentium and P6 family processors and bits
56 through 63 contain the APIC ID of the target processor the for
Pentium 4 and Intel Xeon processors. If the destination mode is set
to logical, the interpretation of the 8-bit destination field depends on
the settings of the DFR and LDR registers of the local APICs in all
the processors in the system (see Section 8.6.2., “Determining IPI

Destination™).

Note that not all the combinations of options for the ICR are valid. Table 8-2 shows the valid
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-3
shows the valid combinations for the fields in the ICR for the P6 family processors.

Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register

Destination Valid/ | Trigger

Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes' Physical or Logical
No Shorthand Invalid® | Level All Modes Physical or Logical
Self Valid Edge | Fixed x3
Self Invalid® | Level Fixed X
Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Including Self | Valid Edge Fixed X
All Including Self | Invalid® | Level Fixed X
All Including Self | Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X

Vol. 3 8-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

intgl.

Table 8-2. Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC
Interrupt Command Register (Contd.)

Destination Valid/ | Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
All Excluding Self | Valid Edge Fixed, Lowest Priority*#, NMI, INIT, SMI, | X
Start-Up
All Excluding Self | Invalid® | Level Fixed, Lowest Priority*, NMI, INIT, SMI, X
Start-Up

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.

2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and
issue the interrupt as an edge triggered interrupt.

3. X—Setting is ignored.

4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redi-
rected back to the issuing APIC, which is essentially the same as the “all including self’ destination mode.

Table 8-3. Valid Combinations for the P6 Family Processors Local APIC Interrupt
Command Register

Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes' Physical or Logical
No Shorthand Valid? Level Fixed, Lowest Priority1, NMI Physical or Logical
No Shorthand Valid® Level INIT Physical or Logical
Self Valid Edge Fixed x4
Self 1 Level Fixed X
Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All including Self Valid Edge Fixed X
All including Self Valid® Level Fixed X
All including Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All excluding Self Valid Edge All Modes' X
All excluding Self | Valid? Level Fixed, Lowest Priority", NMI X
All excluding Self Invalid® Level SMI, Start-Up X
All excluding Self Valid® Level INIT X
X Invalid® Level SMI, Start-Up X

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.

2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when
level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the level bit set to
0. For all other messages the level bit must be set to 1.

4. X—Don't care.

5. The behavior of the APIC is undefined.

8-26 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.6.2. Determining IPI Destination

The destination of an IPI can be one, all, or a subset (group) of the processors on the system bus.
The sender of the IPI specifies the destination of an IPI with the following APIC registers and
fields within the registers:

® The ICR register—The following fields in the ICR register are used to specify the
destination of an IPI:

— Destination Mode—selects one of two destination modes (physical or logical).

— Destination field—In physical destination mode, used to specify the APIC ID of the
destination processor; in logical destination mode, used to specify a message
destination address (MDA) that can be used to select specific processors in clusters.

— Destination Shorthand—A quick method of specifying all processors, all excluding
self, or self as the destination.

— Delivery mode, Lowest Priority—Architecturally specifies that a lowest-priority
arbitration mechanism be used to select a destination processor from a specified group
of processors. The ability of a processor to send a lowest priority IPI is model specific
and should be avoided by BIOS and operating system software.

® Local destination register (LDR)—Used in conjunction with the logical destination mode
and MDA s to select the destination processors.

® Destination format register (DFR)—Used in conjunction with the logical destination mode
and MDA s to select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination
mode used: physical, logical, broadcast/self, or lowest-priority delivery mode. These destination
modes are described in the following sections.

8.6.2.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID (see
Section 8.4.6., “Local APIC ID”). For Pentium 4 and Intel Xeon processors, either a single desti-
nation (local APIC IDs O0OH through FEH) or a broadcast to all APICs (the APIC ID is FFH)
may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest
priority delivery mode is not supported in physical destination mode and must not be configured
by software. Also, for any non-broadcast IPI or I/O subsystem initiated interrupt with lowest
priority delivery mode, software must ensure that APICs defined in the interrupt address are
present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destina-
tion mode with a local APIC ID of OH through OEH, allowing up to 15 local APICs to be
addressed on the APIC bus. A broadcast to all local APICs is specified with OFH.

Vol. 3 8-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

NOTE

The actual number of local APICs that can be addressed on the system bus
may be restricted by hardware.

8.6.2.2. LOGICAL DESTINATION MODE

In logical destination mode, IPI destination is specified using an 8-bit message destination
address (MDA), which is entered in the destination field of the ICR. Upon receiving an IPI
message that was sent using logical destination mode, a local APIC compares the MDA in the
message with the values in its LDR and DFR to determine if it should accept and handle the IPI.
For both configurations of logical destination mode, when combined with lowest priority
delivery mode, software is responsible for ensuring that all of the local APICs included in or
addressed by the IPI or I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 8-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC
ID field in this register is used to create an identifier that can be compared with the MDA.

NOTE

The logical APIC ID should not be confused with the local APIC ID that is
contained in the local APIC ID register.

31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 8-13. Logical Destination Register (LDR)

Figure 8-14 shows the layout of the destination format register (DFR). The 4-bit model field in
this register selects one of two models (flat or cluster) that can be used to interpret the MDA
when using logical destination mode.

31 28 0

Model Reserved (All 1s)

\— Flat model: 1111B

Cluster model: 0000B

Address: OFEEQ O0EQOH
Value after reset: FFFF FFFFH

Figure 8-14. Destination Format Register (DFR)

8-28 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The interpretation of MDA for the two models is described in the following paragraphs.

Flat Model. This model is selected by programming DFR bits 28 through 31 to 1111. Here, a
unique logical APIC ID can be established for up to 8 local APICs by setting a different bit in
the logical APIC ID field of the LDR for each local APIC. An group of local APICs can then be
selected by setting one or more bits in the MDA.

Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condi-
tion is detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved
by setting the MDA to all 1s.

Cluster Model. This model is selected by programming DFR bits 28 through 31 to 0000. This
model supports two basic destination schemes: flat cluster and hierarchical cluster.

The flat cluster destination model is only supported for P6 family and Pentium processors.
Using this model, all APICs are assumed to be connected through the APIC bus. Bits 28 through
31 of the MDA contains the encoded address of the destination cluster, and bits 24 through 27
identify up to four local APICs within the cluster (each bit is assigned to one local APIC in the
cluster, as in the flat connection model). To identify one or more local APICs, bits 28 through
31 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC
is part of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 through 27 of
the LDR to identify a local APICs within the cluster.

Sets of processors within a cluster can be specified by writing the target cluster address in bits
28 through 31 of the MDA and setting selected bits in bits 24 through 27 of the MDA, corre-
sponding to the chosen members of the cluster. In this mode, 15 clusters (with cluster addresses
of 0 through 14) each having 4 local APICs can be specified in the message. For the P6 and
Pentium processor’s local APICs, however, the APIC arbitration ID supports only 15 APIC
agents, and hence the total number of processors and their local APICs supported in this mode
is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one.
This guarantees a match on all clusters, and selects all APICs in each cluster. A broadcast IPI or
I/O subsystem broadcast interrupt with lowest priority delivery mode is not supported in cluster
mode and must not be configured by software.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family,
or Pentium processors. With this model, a hierarchical network can be created by connecting
different flat clusters via independent system or APIC buses. This scheme requires a cluster
manager within each cluster, which is responsible for handling message passing between system
or APIC buses. One cluster contains up to 4 agents. Thus 15 cluster managers, each with 4
agents, can form a network of up to 60 APIC agents. Note that hierarchical APIC networks
requires a special cluster manager device, which is not part of the local or the /O APIC units.

8.6.2.3. BROADCAST/SELF DELIVERY MODE

The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of
broadcasting the IPI to all the processors on the system bus and/or back to itself (see Section
8.6.1., “Interrupt Command Register (ICR)”). Three destination shorthands are supported: self,
all excluding self, and all including self. The destination mode is ignored when a destination
shorthand is used.

Vol. 3 8-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

8.6.2.4. LOWEST PRIORITY DELIVERY MODE

With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors
on the system bus, using the logical or shorthand destination mechanism for selecting the
processor. The selected processors then arbitrate with one another over the system bus or the
APIC bus, with the lowest-priority processor accepting the IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from
the I/O APIC agents in the system and directs interrupts to the processors on the system bus.
When using the lowest priority delivery mode, the chipset chooses a target processor to receive
the interrupt out of the set of possible targets. The Pentium 4 processor provides a special bus
cycle on the system bus that informs the chipset of the current task priority for each logical
processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbi-
tration is contained in the arbitration priority register (APR) in each local APIC. Figure 8-15
shows the layout of the APR.

31 87 43 0

Reserved

Arbitration Priority—|

Address: FEEO 0090H Arbitration Priority Sub-Class
Value after reset: OH

Figure 8-15. Arbitration Priority Register (APR)

The APR value is computed as follows:

IF (TPR[7:4] = IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN
APR[7:0] < TPR[7:0]
ELSE
APR[7:4] < max(TPR([7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] « 0.

Here, the TPR value is the task priority value in the TPR (see Figure 8-18), the IRRV value is
the vector number for the highest priority bit that is set in the IRR (see Figure 8-20) or 00H (if
no IRR bit is set), and the ISRV value is the vector number for the highest priority bit that is set
in the ISR (see Figure 8-20). Following arbitration among the destination processors, the
processor with the lowest value in its APR handles the IPI and the other processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may
accept the interrupt, regardless of its priority. A processor is said to be the focus of an interrupt
if it is currently servicing that interrupt or if it has a pending request for that interrupt. For Intel
Xeon processors, the concept of a focus processor is not supported.

8-30 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

In operating systems that use the lowest priority delivery mode but do not update the TPR, the
TPR information saved in the chipset will potentially cause the interrupt to be always delivered
to the same processor from the logical set. This behavior is functionally backward compatible
with the P6 family processor but may result in unexpected performance implications.

8.6.3. IPI Delivery and Acceptance

When the low double-word of the ICR is written to, the local APIC creates an IPI message from
the information contained in the ICR and sends the message out on the system bus (Pentium 4
and Intel Xeon processors) or the APIC bus (P6 family and Pentium processors). The manner in
which these IPIs are handled after being issues in described in Section 8.8., “Handling Interrupts”.

8.7. SYSTEM AND APIC BUS ARBITRATION

When several local APICs and the I/O APIC are sending IPI and interrupt messages on the
system bus (or APIC bus), the order in which the messages are sent and handled is determined
through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mech-
anism defined for the system bus to determine the order in which IPIs are handled. This mech-
anism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitra-
tion mechanism to determine the order in which IPIs are handled. Here, each local APIC is given
an arbitration priority of from O to 15, which the I/O APIC uses during arbitration to determine
which local APIC should be given access to the APIC bus. The local APIC with the highest arbi-
tration priority always wins bus access. Upon completion of an arbitration round, the winning
local APIC lowers its arbitration priority to O and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbi-
tration ID (Arb ID) register. During reset, this register is initialized to the APIC ID number
(stored in the local APIC ID register). The INIT level-deassert IPI, which is issued with and ICR
command, can be used to resynchronize the arbitration priorities of the local APICs by resetting
Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and Intel Xeon
processors do not implement the Arb ID register.)

Section 8.10., “APIC Bus Message Passing Mechanism and Protocol (P6 Family and Pentium
Processors Only)”, describes the APIC bus arbitration protocols and bus message formats, while
Section 8.6.1., “Interrupt Command Register (ICR)”, describes the INIT level de-assert IPI
message.

Note that except for the SIPI IPI (see Section 8.6.1., “Interrupt Command Register (ICR)”), all
bus messages that fail to be delivered to their specified destination or destinations are automat-
ically retried. Software should avoid situations in which IPIs are sent to disabled or nonexistent
local APICs, causing the messages to be resent repeatedly.

Vol. 3 8-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

8.8. HANDLING INTERRUPTS

When a local APIC receives an interrupt from a local source, an interrupt message from an I/O
APIC, or and IPI, the manner in which it handles the message depends on processor implemen-
tation, as described in the following sections.

8.8.1. Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, inter-
rupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 8-16). If it is the specified
destination, it accepts the message; if it is not, it discards the message.

Wait to Receive
Bus Message

Belon
Discard No to 9
Message

Accept
Message

Destination?

Figure 8-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel
Xeon Processors)

2. If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the
processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC sets the
appropriate bit in the IRR.

4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1., “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5.,
“Signaling Interrupt Servicing Completion”). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been
completed. (A write to the EOI register must not be included in the handler routine for an
NMI, SMI, INIT, ExtINT, or SIPI.)

8-32 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.8.2. Interrupt Handling with the P6 Family and Pentium
Processors

With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt
messages, and IPIs it receives as follows (see Figure 8-17).

Wait to Receive
Bus Message
Y
Belon:
Discard No to 9
Message Destination?
Yes Accept
Message
No
Lowest
Delivery Priority
Mode?
P6 Family
Processor Specific
______ ‘I
Set Status Is Interrupt Accept |
“ to Retry Slot Available? Messa%e |
Is Status No Yes Discard |—_
a Retry? Message |
L - - — — - — — 4
No Accept
Message
Is
Set Status No Yes
-~ «————— Interrupt Slot Arbitrate
to Retry Available?
No mYes Accept
Winner? Message

Figure 8-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

1. (IPIs only.) It examines the IPI message to determines if it is the specified destination for
the IPI as described in Section 8.6.2., “Determining IPI Destination”. If it is the specified
destination, it continues its acceptance procedure; if it is not the destination, it discards the
IPI message. When the message specifies lowest-priority delivery mode, the local APIC

Vol. 3 8-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

will arbitrate with the other processors that were designated on recipients of the IPI
message (see Section 8.6.2.4., “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the
MP protocol IPI messages (BIPI, FIPI, and SIPI), the interrupt is sent directly to the
processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC looks for an
open slot in one of its two pending interrupt queues contained in the IRR and ISR registers
(see Figure 8-20). If a slot is available (see Section 8.8.4., “Interrupt Acceptance for Fixed
Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects the interrupt
request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1., “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5.,
“Signaling Interrupt Servicing Completion”). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A
write to the EOI register must not be included in the handler routine for an NMI, SMI,
INIT, ExtINT, or SIPL.)

The following sections describe the acceptance of interrupts and their handling by the local
APIC and processor in greater detail.

8.8.3. Interrupt, Task, and Processor Priority

For interrupts that are delivered to the processor through the local APIC, each interrupt has an
implied priority based on its vector number. The local APIC uses this priority to determine when
to service the interrupt relative to the other activities of the processor, including the servicing of
other interrupts.

For interrupt vectors in the range of 16 to 255, the interrupt priority is determined using the
following relationship:

priority = vector / 16

Here the quotient is rounded down to the nearest integer value to determine the priority, with 1
being the lowest priority and 15 is the highest. Because vectors O through 31 are reserved for
dedicated uses by the IA-32 architecture, the priorities of user defined interrupts range from 2
to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt priority class)
encompasses 16 vectors. Prioritizing interrupts within a priority level is determined by the

8-34 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

vector number. The higher the vector number, the higher the priority within that priority level.
In determining the priority of a vector and ranking of vectors within a priority group, the vector
number is often divided into two parts, with the high 4 bits of the vector indicating its priority
and the low 4 bit indicating its ranking within the priority group.

8.8.3.1. TASK AND PROCESSOR PRIORITIES

The local APIC also defines a task priority and a processor priority that it uses in determining
the order in which interrupts should be handled. The task priority is a software selected value
between 0 and 15 (see Figure 8-18) that is written into the task priority register (TPR). The TPR
is a read/write register.

31 87 43 0

Reserved

Task Priority;|
Address: FEEO 0080H Task Priority Sub-Class

Value after reset: OH

Figure 8-18. Task Priority Register (TPR)

NOTE

In this discussion, the term “task” refers to a software defined task, process,
thread, program, or routine that is dispatched to run on the processor by the
operating system. It does not refer an IA-32 architecture defined task as
described in Chapter 6, Task Management.

The task priority allows software to set a priority threshold for interrupting the processor. The
processor will service only those interrupts that have a priority higher than that specified in the
TPR. If software sets the task priority in the TPR to 0, the processor will handle all interrupts; it
is it set to 15, all interrupts are inhibited from being handled, except those delivered with the
NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery mode. This mechanism enables
the operating system to temporarily block specific interrupts (generally low priority interrupts)
from disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the local processor
(see Section 8.6.2.4., “Lowest Priority Delivery Mode”).

The processor priority is set by the processor, also to value between 0 and 15 (see Figure 8-19)
that is written into the processor priority register (PPR). The PPR is a read only register. The
processor priority represents the current priority at which the processor is executing. It is used
to determine whether a pending interrupt can be dispensed to the processor.

Vol. 3 8-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

31 87 43 0

Reserved

Processor PriorityJ

Address: FEEO 00AOH Processor Priority Sub-Class
Value after reset: OH

Figure 8-19. Processor Priority Register (PPR)

Its value in the PPR is computed as follows:

IF TPR[7:4] > ISRV[7:4]
THEN
PPR[7:0] < TPR[7:0]
ELSE
PPR[7:4] « ISRV[7:4]
PPR[3:0] « 0

Here, the ISRV value is the vector number of the highest priority ISR bit that is set, or 00H if no
ISR bit is set. Essentially, the processor priority is set to either to the highest priority pending
interrupt in the ISR or to the current task priority, whichever is higher.

8.8.4. Interrupt Acceptance for Fixed Interrupts

The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending regis-
ters: the interrupt request register (IRR) or in-service register (ISR). These two 256-bit read-only
registers are shown in Figure 8-20). The 256 bits in these registers represent the 256 possible
vectors; vectors 0 through 15 are reserved by the APIC (see also: Section 8.5.2.).

NOTE

All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert
delivery mode bypass the IRR and ISR registers and are sent directly to the
processor core for servicing.

8-36 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

255 16 15 0
Reserved IRR

Reserved ISR

Reserved TMR

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FEEO 0170H
TMR FEEO 0180H - FEEO 01FOH
Value after reset: OH

Figure 8-20. IRR, ISR and TMR Registers

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched
to the processor for servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR
that corresponds the vector of the accepted interrupt. When the processor core is ready to handle
the next interrupt, the local APIC clears the highest priority IRR bit that is set and sets the corre-
sponding ISR bit. The vector for the highest priority bit set in the ISR is then dispatched to the
processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send additional
fixed interrupts by setting bits in the IRR. When the interrupt service routine issues a write to
the EOI register (see Section 8.8.5., “Signaling Interrupt Servicing Completion”), the local
APIC responds by clearing the highest priority ISR bit that is set. It then repeats the process of
clearing the highest priority bit in the IRR and setting the corresponding bit in the ISR. The
processor core then begins executing the service routing for the highest priority bit set in the
ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the
bit for the vector both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon
processors, the IRR and ISR can queue two interrupts for each interrupt vector: one in the IRR
and one in the ISR. Any additional interrupts issued for the same interrupt vector are collapsed
into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than
two interrupts per priority level, and will reject other interrupts that are received within the same
priority level.

If the local APIC receives an interrupt with a priority higher than that of the interrupt currently
in serviced, and interrupts are enabled in the processor core, the local APIC dispatches the
higher priority interrupt to the processor immediately (without waiting for a write to the EOI
register). The currently executing interrupt handler is then interrupted so the higher-priority
interrupt can be handled. When the handling of the higher-priority interrupt has been completed,
the servicing of the interrupted interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure §8-20).
Upon acceptance of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-
triggered interrupts and set for level-triggered interrupts. If a TMR bit is set when an EOI cycle
for its corresponding interrupt vector is generated, an EOI message is sent to all I/O APICs.

Vol. 3 8-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

8.8.5. Signaling Interrupt Servicing Completion

For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-
Deassert delivery mode, the interrupt handler must include a write to the end-of-interrupt (EOI)
register (see Figure 8-21). This write must occur at the end of the handler routine, sometime
before the IRET instruction. This action indicates that the servicing of the current interrupt is
complete and the local APIC can issue the next interrupt from the ISR.

31 0

Address: OFEEO 00BOH
Value after reset: OH

Figure 8-21. EOI Register

Upon receiving and EOI, the APIC clears the highest priority bit in the ISR and dispatches the
next highest priority interrupt to the processor. If the terminated interrupt was a level-triggered
interrupt, the local APIC also sends an end-of-interrupt message to all I/O APICs.

For future compatibility, the software is requested to issue the end-of-interrupt command by
writing a value of OH into the EOI register.

8.9. SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal
to the level of the interrupt for which the processor INTR signal is currently being asserted. If
at the time the INTA cycle is issued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will deliver a spurious-interrupt vector. Dispensing
the spurious-interrupt vector does not affect the ISR, so the handler for this vector should return
without an EOL

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector
register (see Figure 8§-22). The functions of the fields in this register are as follows:

Spurious Vector Determines the vector number to be delivered to the processor when
the local APIC generates a spurious vector.

(Pentium 4 and Intel Xeon processors.) Bits O through 7 of the this
field are programmable by software.

(P6 family and Pentium processors). Bits 4 through 7 of the this field
are programmable by software, and bits 0 through 3 are hardwired to
logical ones. Software writes to bits O through 3 have no effect.

APIC Software Allows software to temporarily enable (1) or disable (0) the local
Enable/Disable APIC (see Section 8.4.3., “Enabling or Disabling the Local APIC”).

8-38 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Focus Processor Determines if focus processor checking is enabled (0) or disabled (1)
Checking when using the lowest-priority delivery mode. In Pentium 4 and Intel
Xeon processors, this bit is reserved and should be cleared to 0.

31 10 9 8 7 0

Reserved

Focus Processor Checking14
0: Enabled
1: Disabled

APIC Software Enable/Disable
0: APIC Disabled
1: APIC Enabled

Spurious Vector?

Address: FEEO O0FOH
Value after reset: 0000 00FFH

1. Not supported in Pentium 4 and Intel Xeon processors.

2. For the P6 family and Pentium processors, bits 0 through 3
of the spurious vector are hardwired to 1.

Figure 8-22. Spurious-Interrupt Vector Register (SVR)

8.10. APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY AND PENTIUM PROCESSORS
ONLY)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the
system bus, using the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the
serial APIC bus, as follows. Because only one message can be sent at a time on the APIC bus,
the I/O APIC and local APICs employ a “rotating priority” arbitration protocol to gain permis-
sion to send a message on the APIC bus. One or more APICs may start sending their messages
simultaneously. At the beginning of every message, each APIC presents the type of the message
it is sending and its current arbitration priority on the APIC bus. This information is used for
arbitration. After each arbitration cycle (within an arbitration round), only the potential winners
keep driving the bus. By the time all arbitration cycles are completed, there will be only one
APIC left driving the bus. Once a winner is selected, it is granted exclusive use of the bus, and
will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a priority of O (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,
but did not send a message, adopts the previous winner’s arbitration priority, increments by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues
a special End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its

Vol. 3 8-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

sender’s arbitration priority, unless more than one APIC issues an EOI message simultaneously.
In the latter case, the APICs sending the EOI messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 8.6.2.4., “Lowest Priority
Delivery Mode”) and multiple APICs are currently executing at the lowest priority (the value in
the APR register), the arbitration priorities (unique values in the Arb ID register) are used to
break ties. All 8 bits of the APR are used for the lowest priority arbitration.

8.10.1. Bus Message Formats

See Appendix F, APIC Bus Message Formats, for a description of bus message formats used to
transmit messages on the serial APIC bus.

8.11. MESSAGE SIGNALLED INTERRUPTS

The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message
signalled interrupts. Intel processors and chipsets with this capability currently include the
Pentium 4 and Intel Xeon processors. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI
devices to request service by writing a system-specified message to a system-
specified address (PCI DWORD memory write transaction). The transaction
address specifies the message destination while the transaction data specifies
the message. System software is expected to initialize the message
destination and message during device configuration, allocating one or more
non-shared messages to each MSI capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and
configure MSI capable PCI devices. Among other fields, this structure contains a Message Data
Register and a Message Address Register. To request service, the PCI device function writes the
contents of the Message Data Register to the address contained in the Message Address Register
(and the Message Upper Address register for 64-bit message addresses).

Section 8.11.1.and Section 8.11.2. provide layout details for the Message Address Register and
the Message Data Register. The operation issued by the device is a PCI write command to the
Message Address Register with the Message Data Register contents. The operation follows
semantic rules as defined for PCI write operations and is a DWORD operation.

8.11.1. Message Address Register Format

The format of the Message Address Register (lower 32-bits) is shown in Figure 8-23.

8-40 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

31 20 19 12 1 4 3 2 1 0

OFEEH Destination ID | Reserved RH DM XX

Figure 8-23. Layout of the MSI Message Address Register

Fields in the Message Address Register are as follows:

1.

Bits 31-20: These bits contain a fixed value for interrupt messages (OFEEH). This value
locates interrupts at the 1MB area with a base address of 4G — 18M. All accesses to this
region are directed as interrupt messages. Care must to be taken to ensure that no other
device claims the region as I/O space.

Destination ID: This field contains an 8-bit destination ID. It identifies the message’s target
processor(s). The destination ID corresponds to bits 63:56 of the I/O APIC Redirection
Table Entry if the IOAPIC is used to dispatch the interrupt to the processor(s).

Redirection Hint Indication (RH): This bit indicates whether the message should be
directed to the processor with the lowest interrupt priority among processors that can
receive the interrupt.

* When RH is 0, the interrupt is directed to the processor listed in the Destination ID
field.

¢ When RH is 1 and the physical destination mode is used, the Destination ID field
must not be set to OxFF; it must point to a processor that is present and enabled to
receive the interrupt.

® When RH is 1 and the logical destination mode is active in a system using a flat
addressing model, the Destination ID field must be set so that bits set to 1 identify
processors that are present and enabled to receive the interrupt.

¢ IfRHissetto 1 and the logical destination mode is active in a system using cluster
addressing model, then Destination ID field must not be set to OxFF; the
processors identified with this field must be present and enabled to receive the
interrupt.

Destination Mode (DM): This bit indicates whether the Destination ID field should be
interpreted as logical or physical APIC ID for delivery of the lowest priority interrupt. If
RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the
processor in the system that has the matching APIC ID is considered for delivery of that
interrupt (this means no re-direction). If RH is 1 and DM is 1, the Destination ID Field is
interpreted as in logical destination mode and the redirection is limited to only those
processors that are part of the logical group of processors based on the processor’s logical

Vol. 3 8-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) Intel ®

APIC ID and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical Destination
Register in each local APIC. The details are similar to those described in Section 8.6.2.,
“Determining IPI Destination”. If RH is 0, then the DM bit is ignored and the message is
sent ahead independent of whether the physical or logical destination mode is used.

8.11.2. Message Data Register Format

The layout of the Message Data Register is shown in Figure 8-24.

63 32
Reserved
31 16 15 14 18 11 10 8 7 0
Reserved Reserved Vector
Trigger Mode Delivery Mode
0 - Edge 000 - Fixed
1 - Level 001 - Lowest Priority
010 - SMI
Level for Trigger Mode = 0 011 - Reserved
X - Don’t care 001 - NMI
Level for Trigger Mode = 1 101 - INIT
R 110 - Reserved
0 - Deassert
1 - Assert 111 - ExtINT

Figure 8-24. Layout of the MSI Message Data Register

Reserved fields are not assumed to be any value. Software must preserve their contents on
writes. Other fields in the Message Data Register are described below.

1. Vector: This 8-bit field contains the interrupt vector associated with the message. Values
range from 010H to OFEH. Software must guarantee that the field is not programmed with
vector 00OH to OFH.

8-42 Vol. 3

Intel® ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Delivery Mode: This 3-bit field specifies how the interrupt receipt is handled. Delivery

Modes operate only in conjunction with specified Trigger Modes. Correct Trigger Modes
must be guaranteed by software. Restrictions are indicated below:

a.

000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The
Trigger Mode for fixed delivery mode can be edge or level.

001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest
priority of all agents listed in the destination field. The trigger mode can be edge or
level.

010B (System Management Interrupt or SMI) — The delivery mode is edge only. For
systems that rely on SMI semantics, the vector field is ignored but must be
programmed to all zeroes for future compatibility.

100B (NMI) — Deliver the signal to all the agents listed in the destination field. The
vector information is ignored. NMI is an edge triggered interrupt regardless of the
Trigger Mode Setting.

101B (INIT) — Deliver this signal to all the agents listed in the destination field. The
vector information is ignored. INIT is an edge triggered interrupt regardless of the
Trigger Mode Setting.

111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination
field (as an interrupt that originated from an 8259A compatible interrupt controller).
The vector is supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt.

Level: Edge triggered interrupt messages are always interpreted as assert messages. For

edge triggered interrupts this field is not used. For level triggered interrupts, this bit
reflects the state of the interrupt input.

a.
b.

Trigger Mode: This field indicates the signal type that will trigger a message.

0 — Indicates edge sensitive.

1 — Indicates level sensitive.

Vol. 3 8-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8-44 Vol. 3

Processor
Management and
Initialization

CHAPTER 9
PROCESSOR MANAGEMENT AND
INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
initializing the processor. The subjects covered include: processor initialization, x87 FPU
initialization, processor configuration, feature determination, mode switching, the MSRs (in the
Pentium, P6 family, Pentium 4, and Intel Xeon processors), and the MTRRs (in the P6 family,
Pentium 4, and Intel Xeon processors).

9.1. INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, each processor on the system bus
performs a hardware initialization of the processor (known as a hardware reset) and an optional
built-in self-test (BIST). A hardware reset sets each processor’s registers to a known state and
places the processor in real-address mode. It also invalidates the internal caches, translation
lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, the action taken
depends on the processor family:

¢ Pentium 4 and Intel Xeon processors—All the processors on the system bus (including a
single processor in a uniprocessor system) execute the multiple processor (MP) initial-
ization protocol. The processor that is selected through this protocol as the bootstrap
processor (BSP) then immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. The application (non-BSP)
processors (APs) go into a Wait For Startup IPI (SIPI) state while the BSP is executing
initialization code. See Section 7.5., “Multiple-Processor (MP) Initialization”, for more
details. Note that in a uniprocessor system, the single Pentium 4 or Intel Xeon processor
automatically becomes the BSP.

® P6 family processors—The action taken is the same as for the Pentium 4 and Intel Xeon
processors (as described in the previous paragraph).

® Pentium processors—In either a single- or dual- processor system, a single Pentium
processor is always pre-designated as the primary processor. Following a reset, the primary
processor behaves as follows in both single- and dual-processor systems. Using the dual-
processor (DP) ready initialization protocol, the primary processor immediately starts
executing software-initialization code in the current code segment beginning at the offset
in the EIP register. The secondary processor (if there is one) goes into a halt state.

® Intel486 processor—The primary processor (or single processor in a uniprocessor system)
immediately starts executing software-initialization code in the current code segment
beginning at the offset in the EIP register. (The Intel486 does not automatically execute a
DP or MP initialization protocol to determine which processor is the primary processor.)

Vol.3 9-1

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

The software-initialization code performs all system-specific initialization of the BSP or
primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or
secondary) processor to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor
begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initial-
ization code can then be executed to perform operations such as setting the precision of the x87
FPU and the exception masks. No special initialization of the x87 FPU is required to switch
operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference is that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state
are left unchanged (although, the TLBs and BTB are invalidated as with a hardware reset). An
INIT provides a method for switching from protected to real-address mode while maintaining
the contents of the internal caches.

9.1.1. Processor State After Reset

Table 9-1 shows the state of the flags and other registers following power-up for the Pentium 4,
Intel Xeon, P6 family, and Pentium processors. The state of control register CRO is 60000010H
(see Figure 9-1), which places the processor is in real-address mode with paging disabled.

9.1.2. Processor Built-In Self-Test (BIST)

Hardware may request that the BIST be performed at power-up. The EAX register is cleared
(OH) if the processor passes the BIST. A nonzero value in the EAX register after the BIST indi-
cates that a processor fault was detected. If the BIST is not requested, the contents of the EAX
register after a hardware reset is OH.

The overhead for performing a BIST varies between processor families. For example, the BIST
takes approximately 30 million processor clock periods to execute on the Pentium 4 processor.
(This clock count is model-specific, and Intel reserves the right to change the exact number of
periods, for any of the IA-32 processors, without notification.)

9-2 Vol. 3

intgl.

Table 9-1.

PROCESSOR MANAGEMENT AND INITIALIZATION

32-Bit IA-32 Processor States Following Power-up, Reset, or INIT

Pentium 4 and Intel Xeon

Register Processor P6 Family Processor Pentium Processor

EFLAGS' 00000002H 00000002H 00000002H

EIP 0000FFFOH 0000FFFOH 0000FFFOH

CRO 60000010H? 60000010H? 60000010H?

CR2, CR3, CR4 | 00000000H 00000000H 00000000H

CS Selector = FOOOH Selector = FOOOH Selector = FOOOH
Base = FFFFOO00H Base = FFFFOO00H Base = FFFFOO00H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed

SS, DS, ES, FS, | Selector = 0000H Selector = 0000H Selector = 0000H

GS Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed

EDX 00000FxxH 000006xxH 000005xxH

EAX 08 08 08

EBX, ECX, ESI, | 00000000H 00000000H 00000000H

EDI, EBP, ESP

STO through Pwr up or Reset: +0.0 Pwr up or Reset: +0.0 Pwr up or Reset: +0.0

sT7* FINIT/ENINIT: Unchanged | FINIT/FNINIT: Unchanged | FINIT/FNINIT: Unchanged

x87 FPU Control
Word?*

x87 FPU Status
Word*

x87 FPU Tag
Word*

x87 FPU Data
Operand and CS
Seg. Selectors?

x87 FPU Data

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset:

Operand and 00000000H 00000000H 00000000H
Inst. Pointers FINIT/FNINIT: 00000000H | FINIT/FNINIT: 00000000H | FINIT/FNINIT: 00000000H
MMO through Pwr up or Reset: Pentium II and Pentium Il | Pentium with MMX
MM74 0000000000000000H Processors Only— Technology Only—
INIT or FINIT/ENINIT: Pwr up or Reset: Pwr up or Reset:
Unchanged 0000000000000000H 0000000000000000H
INIT or FINIT/FNINIT: INIT or FINIT/FNINIT:
Unchanged Unchanged
XMMO through Pwr up or Reset: Pentium Il processor NA
XMM7 0000000000000000H Only—
INIT: Unchanged Pwr up or Reset:
0000000000000000H

INIT: Unchanged

Vol.3 9-3

PROCESSOR MANAGEMENT AND INITIALIZATION

intgl.

Table 9-1. 32-Bit IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Pentium 4 and Intel Xeon

Register Processor P6 Family Processor Pentium Processor
MXCSR Pwr up or Reset: 1F80H Pentium Il processor only- | NA
INIT: Unchanged Pwr up or Reset: 1F80H
INIT: Unchanged
GDTR, IDTR Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/'W AR = Present, R/'W AR = Present, R/'W
LDTR, Task Selector = 0000H Selector = 0000H Selector = 0000H
Register Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/'W AR = Present, R/'W AR = Present, R/'W
DRO, DR1, DR2, | 00000000H 00000000H 00000000H
DR3
DR6 FFFFOFFOH FFFFOFFOH FFFFOFFOH
DR7 00000400H 00000400H 00000400H
Time-Stamp Power up or Reset: OH Power up or Reset: OH Power up or Reset: OH
Counter INIT: Unchanged INIT: Unchanged INIT: Unchanged

Perf. Counters
and Event Select

Power up or Reset: OH
INIT: Unchanged

Power up or Reset: OH
INIT: Unchanged

Power up or Reset: OH
INIT: Unchanged

All Other MSRs

Pwr up or Reset:

Pwr up or Reset:

Pwr up or Reset:

Undefined Undefined Undefined
INIT: Unchanged INIT: Unchanged INIT: Unchanged
Data and Code Invalid Invalid Invalid
Cache, TLBs
Fixed MTRRs Pwr up or Reset: Disabled | Pwr up or Reset: Disabled | Not Implemented

INIT: Unchanged

INIT: Unchanged

Variable MTRRs

Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
Undefined
INIT: Unchanged

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

APIC

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot
be invoked during an INIT.)

4. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

9-4 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Paging disabled: 0
Caching disabled: 1
Not write-through disabled: 1

Alignment check disabled: 0
’7 Write-protect disabled: 0

31302928 1918 171615 6 543210
P|CIN Al (W N[, |T|E[m[P
G[DW M (P E|'|s|M[P|E

External x87 FPU error reporting: 0 ‘ ‘
(Not used): 1

No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

D Reserved

Figure 9-1. Contents of CRO Register after Reset

9.1.3. Model and Stepping Information

Following a hardware reset, the EDX register contains component identification and revision
information (see Figure 9-2). For example, the model, family, and processor type returned for
the first processor in the Intel Pentium 4 family is as follows: model (0000B), family (1111B),
and processor type (00B).

31 24 23 20 19 1615 14 13 12 11 87 43 0

Extended Extended . Stepping
EAX Family Model Family | Model D

Processor Type ‘
Family (1111B for the Pentium 4 Processor Family)

Model (Beginning with 0000B)

Figure 9-2. Version Information in the EDX Register after Reset

The stepping ID field contains a unique identifier for the processor’s stepping ID or revision
level. The extended family and extended model fields were added to the IA-32 architecture in
the Pentium 4 processors.

Vol.3 9-5

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.1.4. First Instruction Executed

The first instruction that is fetched and executed following a hardware reset is located at physical
address FFFFFFFOH. This address is 16 bytes below the processor’s uppermost physical
address. The EPROM containing the software-initialization code must be located at this address.

The address FFFFFFFOH is beyond the 1-MByte addressable range of the processor while in
real-address mode. The processor is initialized to this starting address as follows. The CS
register has two parts: the visible segment selector part and the hidden base address part. In real-
address mode, the base address is normally formed by shifting the 16-bit segment selector value
4 bits to the left to produce a 20-bit base address. However, during a hardware reset, the segment
selector in the CS register is loaded with FOOOH and the base address is loaded with
FFFFOO0OH. The starting address is thus formed by adding the base address to the value in the
EIP register (that is, FFFF0000 + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a hardware reset, the processor
will follow the normal rule for address translation in real-address mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the CS register remains
unchanged until the EPROM based software-initialization code is completed, the code must not
contain a far jump or far call or allow an interrupt to occur (which would cause the CS selector
value to be changed).

9.2. X87 FPU INITIALIZATION

Software-initialization code can determine the whether the processor contains an x87 FPU by
using the CPUID instruction. The code must then initialize the x87 FPU and set flags in control
register CRO to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is different from
the state the x87 FPU is placed in following the execution of an FINIT or FNINIT instruction
(also shown in Table 9-1). If the x87 FPU is to be used, the software-initialization code should
execute an FINIT/FNINIT instruction following a hardware reset. These instructions, tag all
data registers as empty, clear all the exception masks, set the TOP-of-stack value to 0, and select
the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1. Configuring the x87 FPU Environment

Initialization code must load the appropriate values into the MP, EM, and NE flags of control
register CRO. These bits are cleared on hardware reset of the processor. Figure 9-2 shows the
suggested settings for these flags, depending on the IA-32 processor being initialized. Initializa-
tion code can test for the type of processor present before setting or clearing these flags.

9-6 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-2. Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE 1A-32 processor
1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.
0 1 10r0° Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and
Intel 487 SX processors, and Intel386 DX and Intel386 SX
processors when a companion math coprocessor is present.

NOTE:
* The setting of the NE flag depends on the operating system being used.

The EM flag determines whether floating-point instructions are executed by the x87 FPU (EM
is cleared) or a device-not-available exception (#NM) is generated for all floating-point instruc-
tions so that an exception handler can emulate the floating-point operation (EM = 1). Ordinarily,
the EM flag is cleared when an x87 FPU or math coprocessor is present and set if they are not
present. If the EM flag is set and no x87 FPU, math coprocessor, or floating-point emulator is
present, the processor will hang when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag.
If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP
flag is set, they will generate a device-not-available exception (#NM) if the TS flag is set. Gener-
ally, the MP flag should be set for processors with an integrated x87 FPU and clear for proces-
sors without an integrated x87 FPU and without a math coprocessor present. However, an
operating system can choose to save the floating-point context at every context switch, in which
case there would be no need to set the MP bit.

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions based on the
settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating
a floating-point error exception internally (NE is set, native mode) or through an external inter-
rupt (NE is cleared). In systems where an external interrupt controller is used to invoke numeric
exception handlers (such as MS-DOS-based systems), the NE bit should be cleared.

9.2.2. Setting the Processor for x87 FPU Software Emulation

Setting the EM flag causes the processor to generate a device-not-available exception (#NM)
and trap to a software exception handler whenever it encounters a floating-point instruction.
(Table 9-2 shows when it is appropriate to use this flag.) Setting this flag has two functions:

® [t allows x87 FPU code to run on an IA-32 processor that has neither an integrated x87
FPU nor is connected to an external math coprocessor, by using a floating-point emulator.

® It allows floating-point code to be executed using a special or nonstandard floating-point
emulator, selected for a particular application, regardless of whether an x87 FPU or math
coprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CRO should
be set as shown in Table 9-3.

Vol.3 9-7

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

Table 9-3. Software Emulation Settings of EM, MP, and NE Flags

CRO Bit Value
EM 1
MP 0
NE 1

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-not-avail-
able exception (#NM) upon encountering any floating-point instruction.

9.3. CACHE ENABLING

The IA-32 processors (beginning with the Intel486 processor) contain internal instruction and
data caches. These caches are enabled by clearing the CD and NW flags in control register CRO.
(They are set during a hardware reset.) Because all internal cache lines are invalid following
reset initialization, it is not necessary to invalidate the cache before enabling caching. Any
external caches may require initialization and invalidation using a system-specific initialization
and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional config-
uration of the processor’s caching facilities will probably be required. Beginning with the
Intel486 processor, page-level caching can be controlled with the PCD and PWT flags in page-
directory and page-table entries. Beginning with the P6 family processors, the memory type
range registers (MTRRs) control the caching characteristics of the regions of physical memory.
(For the Intel486 and Pentium processors, external hardware can be used to control the caching
characteristics of regions of physical memory.) See Chapter 10, Memory Cache Control, for
detailed information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and
P6 family processors and system memory.

9.4. MODEL-SPECIFIC REGISTERS (MSRS)

The Pentium 4, Intel Xeon, P6 family, and Pentium processors contain a model-specific registers
(MSRs). These registers are by definition implementation specific; that is, they are not guaran-
teed to be supported on future IA-32 processors and/or to have the same functions. The MSRs
are provided to control a variety of hardware- and software-related features, including:

® The performance-monitoring counters (see Section 15.9., “Performance Monitoring
Overview”).

® (Pentium 4, Intel Xeon, and P6 family processors only.) Debug extensions (see Section
15.4., “Last Branch Recording Overview”).

® (Pentium 4, Intel Xeon, and P6 family processors only.) The machine-check exception
capability and its accompanying machine-check architecture (see Chapter 14, Machine-
Check Architecture).

9-8 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

® (Pentium 4, Intel Xeon, and P6 family processors only.) The MTRRs (see Section 10.11.,
“Memory Type Range Registers (MTRRs)”).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of a Pentium 4, Intel Xeon, P6 family, or Pentium
processor, many of the MSRs will need to be initialized to set up things like performance-moni-
toring events, run-time machine checks, and memory types for physical memory.

The list of available performance-monitoring counters for the Pentium 4, Intel Xeon, P6 family,
and Pentium processors is given in Appendix A, Performance-Monitoring Events, and the list
of available MSRs for the Pentium 4, Intel Xeon, P6 family, and Pentium processors is given in
Appendix B, Model-Specific Registers (MSRs). The references earlier in this section show
where the functions of the various groups of MSRs are described in this manual.

9.5. MEMORY TYPE RANGE REGISTERS (MTRRS)

Memory type range registers (MTRRs) were introduced into the IA-32 architecture with the
Pentium Pro processor. They allow the type of caching (or no caching) to be specified in system
memory for selected physical address ranges. They allow memory accesses to be optimized for
various types of memory such as RAM, ROM, frame buffer memory, and memory-mapped I/O
devices.

In general, initializing the MTRRs is normally handled by the software initialization code or
BIOS and is not an operating system or executive function. At the very least, all the MTRRs
must be cleared to 0, which selects the uncached (UC) memory type. See Section 10.11.,
“Memory Type Range Registers (MTRRs)”, for detailed information on the MTRRs.

9.6. INITIALIZING SSE/SSE2/SSE3 EXTENSION3

For processors that contain SSE/SSE2/SSE3 extensions, steps must be taken when initializing
the processor to allow execution of these instructions.

® Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3 extensions
(respectively: EDX bits 25 and 26, ECX bit 0) and support for the FXSAVE and
FXRSTOR instructions (EDX bit 24). Also check for support for the CLFLUSH
instruction (EDX bit 19). The CPUID feature flags are loaded in the EDX and ECX
registers when the CPUID instruction is executed with a 1 in the EAX register.

® Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system
supports saving and restoring the SSE/SSE2/SSE3 execution environment (XXM and
MXCSR registers) with the FXSAVE and FXRSTOR instructions, respectively. See
Section 2.5., “Control Registers”, for a description of the OSFXSR flag.

® Set the OSXMMEXCEPT flag (bit 10 in control register CR4) to indicate that the operating
system supports the handling of SSE/SSE2/SSE3 SIMD floating-point exceptions (#XF).
See Section 2.5., “Control Registers”, for a description of the OSXMMEXCPT flag.

Vol.3 9-9

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

¢ Set the mask bits and flags in the MXCSR register according to the mode of operation
desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See “MXCSR Control and
Status Register” in Chapter 10 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1 for a detailed description of the bits and flags in the MXCSR register.

9.7. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE
OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the
processor is placed in real-address mode and begins executing software initialization code from
physical address FFFFFFFOH. Software initialization code must first set up the necessary data
structures for handling basic system functions, such as a real-mode IDT for handling interrupts
and exceptions. If the processor is to remain in real-address mode, software must then load addi-
tional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data
structures to operate in protected mode and then switch to protected mode. The protected-mode
data structures that must be loaded are described in Section 9.8., “Software Initialization for
Protected-Mode Operation”.

9.7.1. Real-Address Mode IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT
(also called the “interrupt vector table”). By default, the address of the base of the IDT is phys-
ical address OH. This address can be changed by using the LIDT instruction to change the base
address value in the IDTR. Software initialization code needs to load interrupt- and exception-
handler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM;
however, the code must be located within the 1-MByte addressable range of the processor in
real-address mode. If the handler code is to be stored in RAM, it must be loaded along with the
IDT.

9.7.2. NMI Interrupt Handling

The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and
the NMI interrupt handler need to be loaded into RAM, there will be a period of time following
hardware reset when an NMI interrupt cannot be handled. During this time, hardware must
provide a mechanism to prevent an NMI interrupt from halting code execution until the IDT and
the necessary NMI handler software is loaded. Here are two examples of how NMIs can be
handled during the initial states of processor initialization:

® A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI
interrupt to be handled immediately after reset initialization.

9-10 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

® The system hardware can provide a mechanism to enable and disable NMIs by passing the
NMI# signal through an AND gate controlled by a flag in an I/O port. Hardware can clear
the flag when the processor is reset, and software can set the flag when it is ready to handle
NMI interrupts.

9.8. SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this point in the
initialization process, some basic data structures and code modules must be loaded into physical
memory to support further initialization of the processor, as described in Section 9.7., “Software
Initialization for Real-Address Mode Operation”. Before the processor can be switched to
protected mode, the software initialization code must load a minimum number of protected
mode data structures and code modules into memory to support reliable operation of the
processor in protected mode. These data structures include the following:

® A protected-mode IDT.

* AGDT.

* ATSS.

® (Optional.) An LDT.

® If paging is to be used, at least one page directory and one page table.

® A code segment that contains the code to be executed when the processor switches to
protected mode.

® One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the
processor can be switched to protected mode:

¢ The GDTR.

® (Optional.) The IDTR. This register can also be initialized immediately after switching to
protected mode, prior to enabling interrupts.

® Control registers CR1 through CR4.

® (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range registers
(MTRRs).

With these data structures, code modules, and system registers initialized, the processor can be
switched to protected mode by loading control register CR0O with a value that sets the PE flag
(bit 0).

Vol. 3 9-11

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.8.1. Protected-Mode System Data Structures

The contents of the protected-mode system data structures loaded into memory during software
initialization, depend largely on the type of memory management the protected-mode operating-
system or executive is going to support: flat, flat with paging, segmented, or segmented with

paging.

To implement a flat memory model without paging, software initialization code must at a
minimum load a GDT with one code and one data-segment descriptor. A null descriptor in the
first GDT entry is also required. The stack can be placed in a normal read/write data segment,
so no dedicated descriptor for the stack is required. A flat memory model with paging also
requires a page directory and at least one page table (unless all pages are 4 MBytes in which case
only a page directory is required). See Section 9.8.3., “Initializing Paging”.

Before the GDT can be used, the base address and limit for the GDT must be loaded into the
GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as
segments and LDTs for each application program. LDTs require segment descriptors in the
GDT. Some operating systems allocate new segments and LDTs as they are needed. This
provides maximum flexibility for handling a dynamic programming environment. However,
many operating systems use a single LDT for all tasks, allocating GDT entries in advance. An
embedded system, such as a process controller, might pre-allocate a fixed number of segments
and LDTs for a fixed number of application programs. This would be a simple and efficient way
to structure the software environment of a real-time system.

9.8.2. Initializing Protected-Mode Exceptions and Interrupts

Software initialization code must at a minimum load a protected-mode IDT with gate descriptor
for each exception vector that the processor can generate. If interrupt or trap gates are used, the
gate descriptors can all point to the same code segment, which contains the necessary exception
handlers. If task gates are used, one TSS and accompanying code, data, and task segments are
required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for
one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR
register using an LIDT instruction. This operation is typically carried out immediately after
switching to protected mode.

9-12 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.8.3. Initializing Paging

Paging is controlled by the PG flag in control register CRO. When this flag is clear (its state
following a hardware reset), the paging mechanism is turned off; when it is set, paging is enabled.
Before setting the PG flag, the following data structures and registers must be initialized:

® Software must load at least one page directory and one page table into physical memory.
The page table can be eliminated if the page directory contains a directory entry pointing to
itself (here, the page directory and page table reside in the same page), or if only 4-MByte
pages are used.

¢ Control register CR3 (also called the PDBR register) is loaded with the physical base
address of the page directory.

® (Optional) Software may provide one set of code and data descriptors in the GDT or in an
LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to
protected mode at the same time by loading control register CRO with an image in which the PG
and PE flags are set. (Paging cannot be enabled before the processor is switched to protected
mode.)

9.8.4. Initializing Multitasking

If the multitasking mechanism is not going to be used and changes between privilege levels are
not allowed, it is not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are
allowed, software initialization code must load at least one TSS and an accompanying TSS
descriptor. (A TSS is required to change privilege levels because pointers to the privileged-level
0, 1, and 2 stack segments and the stack pointers for these stacks are obtained from the TSS.)
TSS descriptors must not be marked as busy when they are created; they should be marked busy
by the processor only as a side-effect of performing a task switch. As with descriptors for LDTs,
TSS descriptors reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used to load a
segment selector for a TSS descriptor into the task register. This instruction marks the TSS
descriptor as busy, but does not perform a task switch. The processor can, however, use the TSS
to locate pointers to privilege-level 0, 1, and 2 stacks. The segment selector for the TSS must be
loaded before software performs its first task switch in protected mode, because a task switch
copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are
performed by task switching. As with other segments and LDTs, TSSs and TSS descriptors can
be either pre-allocated or allocated as needed.

Vol. 3 9-13

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.9. MODE SWITCHING

To use the processor in protected mode, a mode switch must be performed from real-address
mode. Once in protected mode, software generally does not need to return to real-address mode.
To run software written to run in real-address mode (8086 mode), it is generally more convenient
to run the software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1. Switching to Protected Mode

Before switching to protected mode, a minimum set of system data structures and code modules
must be loaded into memory, as described in Section 9.8., “Software Initialization for Protected-
Mode Operation”. Once these tables are created, software initialization code can switch into
protected mode.

Protected mode is entered by executing a MOV CRO instruction that sets the PE flag in the CRO
register. (In the same instruction, the PG flag in register CRO can be set to enable paging.)
Execution in protected mode begins with a CPL of 0.

The 32-bit IA-32 processors have slightly different requirements for switching to protected
mode. To insure upwards and downwards code compatibility with all 32-bit IA-32 processors,
it is recommended that the following steps be performed:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that no
exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the
GDT.

3. Execute a MOV CRO instruction that sets the PE flag (and optionally the PG flag) in
control register CRO.

4. Immediately following the MOV CRO instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in the
instruction stream.)

The JMP or CALL instruction immediately after the MOV CRO instruction changes the
flow of execution and serializes the processor.

If paging is enabled, the code for the MOV CRO instruction and the JMP or CALL
instruction must come from a page that is identity mapped (that is, the linear address before
the jump is the same as the physical address after paging and protected mode is enabled).
The target instruction for the JMP or CALL instruction does not need to be identity
mapped.

5. 1If a local descriptor table is going to be used, execute the LLDT instruction to load the
segment selector for the LDT in the LDTR register.

6. Execute the LTR instruction to load the task register with a segment selector to the initial
protected-mode task or to a writable area of memory that can be used to store TSS
information on a task switch.

9-14 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

7. After entering protected mode, the segment registers continue to hold the contents they had
in real-address mode. The JMP or CALL instruction in step 4 resets the CS register.
Perform one of the following operations to update the contents of the remaining segment
registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers
are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets the
values of the segment registers and branches to a new code segment.

8. Execute the LIDT instruction to load the IDTR register with the address and limit of the
protected-mode IDT.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will
be readily seen in some situations, such as when instructions that reference memory are inserted
between steps 3 and 4 while in system management mode.

9.9.2. Switching Back to Real-Address Mode

The processor switches back to real-address mode if software clears the PE bit in the CRO
register with a MOV CRO instruction. A procedure that re-enters real-address mode should
perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical
addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.
— Clear the PG bit in the CRO register.
— Move OH into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH).
This operation loads the CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing
the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (OFFFFH)
— Byte granular (G =0)

— Expand up (E =0)

— Writable (W =1)

Vol. 3 9-15

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

— Present (P=1)
— Base = any value

The segment registers must be loaded with non-null segment selectors or the segment
registers will be unusable in real-address mode. Note that if the segment registers are not
reloaded, execution continues using the descriptor attributes loaded during protected
mode.

Execute an LIDT instruction to point to a real-address mode interrupt table that is within
the 1-MByte real-address mode address range.

Clear the PE flag in the CRO register to switch to real-address mode.

Execute a far JMP instruction to jump to a real-address mode program. This operation
flushes the instruction queue and loads the appropriate base and access rights values in the
CS register.

Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any
of the registers are not going to be used in real-address mode, write Os to them.

Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and
the linear addresses in that page must be identity mapped to physical
addresses.

9.10. INITIALIZATION AND MODE SWITCHING EXAMPLE

This section provides an initialization and mode switching example that can be incorporated into
an application. This code was originally written to initialize the Intel386 processor, but it will
execute successfully on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.
The code in this example is intended to reside in EPROM and to run following a hardware reset
of the processor. The function of the code is to do the following:

Establish a basic real-address mode operating environment.
Load the necessary protected-mode system data structures into RAM.

Load the system registers with the necessary pointers to the data structures and the
appropriate flag settings for protected-mode operation.

Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware reset and
the starting point of this example. The EPROM that contains the initialization code resides at the
upper end of the processor’s physical memory address range, starting at address FFFFFFFFH
and going down from there. The address of the first instruction to be executed is at FFFFFFFOH,
the default starting address for the processor following a hardware reset.

9-16 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

The main steps carried out in this example are summarized in Table 9-4. The source listing for
the example (with the filename STARTUP.ASM) is given in Example 9-1. The line numbers
given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:

When the processor is switched into protected mode, the original code segment base-
address value of FFFFOOOOH (located in the hidden part of the CS register) is retained and
execution continues from the current offset in the EIP register. The processor will thus
continue to execute code in the EPROM until a far jump or call is made to a new code
segment, at which time, the base address in the CS register will be changed.

Maskable hardware interrupts are disabled after a hardware reset and should remain
disabled until the necessary interrupt handlers have been installed. The NMI interrupt is
not disabled following a reset. The NMI# pin must thus be inhibited from being asserted
until an NMI handler has been loaded and made available to the processor.

The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to address 0
and a limit of 4 GBytes. When the DS and ES registers are loaded with this descriptor, the
temporary GDT is no longer needed and can be replaced by the application GDT.

This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be
loaded into RAM. If there are LDTs they may be loaded as well.

Vol. 3 9-17

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

After Reset

FFFF FFFFH
[CS.BASE+EIP] —» — — — — — — — FFFF FFFOH
64K EPROM
EIP = 0000 FFFOH
CS.BASE = FFFF 0000H FFFF 0000H
DS.BASE = OH
ES.BASE = OH
SS.BASE = OH
ESP = OH
< <
[SP, DS, SS, ES] —> 0

Figure 9-3. Processor State After Reset

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM
Line Numbers

From To Description

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
(1) - rI;L/I\I/IV data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CRO with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire
physical memory space

188 195 Per(fjorm specific board initialization that is imposed by the new protected
mode

9-18 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM
Line Numbers
From To Description

196 218 Copy the application's GDT from ROM into RAM
220 238 Copy the application's IDT from ROM into RAM
241 243 Load application's GDTR
244 245 Load application's IDTR
247 261 Copy the application's TSS from ROM into RAM
263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)
277 277 Load the task register (without task switch) using LTR instruction
282 286 Load SS, ESP with the value found in the application's TSS
287 287 Push EFLAGS value found in the application's TSS
288 288 Push CS value found in the application's TSS
289 289 Push EIP value found in the application's TSS
290 293 Load DS, ES with the value found in the application's TSS
296 296 Perform IRET; pop the above values and enter the application code

9.10.1. Assembler Usage

In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and
build the initialization code module. The following assumptions are used when using the Intel
ASM386 and BLD386 tools.

The ASM386 will generate the right operand size opcodes according to the code-segment
attribute. The attribute is assigned either by the ASM386 invocation controls or in the
code-segment definition.

If a code segment that is going to run in real-address mode is defined, it must be set to a
USE 16 attribute. If a 32-bit operand is used in an instruction in this code segment (for
example, MOV EAX, EBX), the assembler automatically generates an operand prefix for
the instruction that forces the processor to execute a 32-bit operation, even though its
default code-segment attribute is 16-bit.

Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the default-
segment attribute will be used to generate the right opcode.

Vol. 3 9-19

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.10.2. STARTUP.ASM Listing

Example 9-1 provides high-level sample code designed to move the processor into protected
mode. This listing does not include any opcode and offset information.

Example 9-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386 (TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92
PAGE 1

MS-DOS 5.0(045-N) 386 (TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.ab8 pw (132)

LINE SOURCE
1 NAME STARTUP
2
3 Fiii
4
5 ; ASSUMPTIONS:
6
7 1. The bottom 64K of memory is ram, and can be used for
8 scratch space by this module.
9
10 2. The system has sufficient free usable ram to copy the
11 initial GDT, IDT, and TSS
12 ;
13 iii
14
15 ; configuration data - must match with build definition
16
17 CS_BASE EQU OFFFFO0000H
18
19 ; CS_BASE is the linear address of the segment STARTUP_CODE
20 ; - this is specified in the build language file
21
22 RAM_START EQU 400H
23
24 ; RAM_START 1is the start of free, usable ram in the linear
25 ; memory space. The GDT, IDT, and initial TSS will be
26 ; copied above this space, and a small data segment will be
27 ; discarded at this linear address. The 32-bit word at
28 ; RAM_START will contain the linear address of the first
29 ; free byte above the copied tables - this may be useful if
30 ; a memory manager is used.
31
32 TSS_INDEX EQU 10
33
34 ; TSS_INDEX is the 1index of the TSS of the first task to

9-20 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

35 ; run after startup

36

37

38 Fiii
39

40 ;e STRUCTURES and EQU --—-——---—-—--———-—
41 ; structures for system data
42

43 ; TSS structure

44 TASK_STATE STRUC

45 link DW ?
46 link_h DW ?
47 ESPO DD ?
48 SS0 Dw ?
49 SS0_h DW ?
50 ESP1 DD ?
51 SS1 Dw ?
52 SS1_h DW ?
53 ESP2 DD ?
54 SS2 Dw ?
55 SS2_h DW ?
56 CR3_reg DD ?
57 EIP_reg DD ?
58 EFLAGS_reg DD ?
59 EAX_reg DD ?
60 ECX_reg DD ?
61 EDX_reg DD ?
62 EBX_reg DD ?
63 ESP_reg DD ?
64 EBP_reg DD ?
65 ESI_reg DD ?
66 EDI_reg DD ?
67 ES_reg DwW ?
68 ES_h Dw ?
69 CS_reg DW ?
70 CS_h Dw ?
71 SS_reg DW ?
72 SS_h Dw ?
73 DS_reg DwW ?
74 DS_h Dw ?
75 FS_reg DWW ?
76 FS_h Dw ?
77 GS_reg DwW ?
78 GS_h Dw ?
79 LDT_reg DwW ?
80 LDT_h Dw ?
81 TRAP_reg DW ?
82 I0_map_base DW ?
83 TASK_STATE ENDS

84

85 ; basic structure of a descriptor
86 DESC STRUC

Vol. 3 9-21

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

9-22 Vol. 3

lim_0_15 DW ?

bas_0_15 DWW ?

bas_16_23 DB ?

access DB ?

gran DB ?

bas_24_31 DB ?
DESC ENDS

I

structure for use with LGDT and LIDT instructions

TABLE_REG STRUC

table_lim DW ?
table_linear DD ?

TABLE_REG ENDS

1

offset of GDT and IDT descriptors in builder generated GDT

GDT_DESC_OFF EQU 1*SIZE(DESC)
IDT_DESC_OFF EQU 2*SIZE(DESC)

7

equates for building temporary GDT in RAM

LINEAR_SEL EQU 1*SIZE (DESC)
LINEAR_PROTO_LO EQU 0O0000FFFFH ; LINEAR_ALIAS
LINEAR_PROTO_HI EQU 000CF9200H

I

Protection Enable Bit in CRO

PE_BIT EQU 1B

7

7

Initially, this data segment starts at linear 0, according
to the processor’s power-up state.

STARTUP_DATA SEGMENT RW

free_mem linear_base LABEL DWORD

TEMP_GDT LABEL BYTE ; must be first in segment
TEMP_GDT_NULL_DESC DESC <>

TEMP_GDT_LINEAR_DESC DESC <>

7

scratch areas for LGDT and LIDT instructions

TEMP_GDT_SCRATCH TABLE_REG <>
APP_GDT_RAM TABLE_REG <>
APP_IDT_RAM TABLE_REG <>

; align end_data

fill Dw ?

i

last thing in this segment - should be on a dword boundary

end_data LABEL BYTE

i

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189

————————————————————————— CODE SEGMENT-—=-==—====—=—=———————

STARTUP_CODE SEGMENT ER PUBLIC USEl6

I

filled in by builder
PUBLIC GDT_EPROM

GDT_EPROM TABLE_REG <>

7

filled in by builder
PUBLIC IDT_EPROM

IDT_EPROM TABLE_REG <>

7
1

7

entry point into startup code - the bootstrap will vector
here with a near JMP generated by the builder. This
label must be in the top 64K of linear memory.

PUBLIC STARTUP

STARTUP:

i

7

I

i

7

DS,ES address the bottom 64K of flat linear memory
ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA

See Figure 9-4

load GDTR with temporary GDT

LEA EBX, TEMP_GDT ; build the TEMP_GDT in low ram,
MOV DWORD PTR [EBX],O0 ; where we can address
MOV DWORD PTR [EBX]+4,0
MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO
MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI
MOV TEMP_GDT_scratch.table_linear, EBX
MOV TEMP_GDT_scratch.table_1lim, 15

DB 66H ; execute a 32 bit LGDT
LGDT TEMP_GDT_scratch

enter protected mode

MOV EBX, CRO
OR EBX, PE_BIT
MOV CRO, EBX

clear prefetch queue
JMP CLEAR_LABEL

CLEAR_LABEL:

i

make DS and ES address 4G of linear memory

MOV CX,LINEAR_SEL
MOV DS, CX
MOV ES,CX

; do board specific initialization

i

Vol. 3 9-23

PROCESSOR MANAGEMENT AND INITIALIZATION

190 ;

191 PR

192 i

193

194

195 ; See Figure 9-5

196 ; copy EPROM GDT to ram at:

197 ; RAM_START + size (STARTUP_DATA)
198 MOV EAX,RAM_START

199 ADD EAX,OFFSET (end_data)

200 MOV EBX,RAM_START

201 MOV ECX, CS_BASE

202 ADD ECX, OFFSET (GDT_EPROM)

203 MOV ESI, [ECX].table_linear

204 MOV EDI, EAX

205 MOVZX ECX, [ECX].table_1lim

206 MOV APP_GDT_ram[EBX] .table_lim,CX

207 INC ECX

208 MOV EDX, EAX

209 MOV APP_GDT_ram[EBX] .table_linear, EAX
210 ADD EAX, ECX

211 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[EST]
212

213 ; fixup GDT base in descriptor

214 MOV ECX, EDX

215 MOV [EDX] .bas_0_15+GDT_DESC_OFF, CX
216 ROR ECX, 16

217 MOV [EDX] .bas_16_23+GDT_DESC_OFF,CL
218 MOV [EDX] .bas_24_31+GDT_DESC_OFF,CH
219

220 ; copy EPROM IDT to ram at:

221 ; RAM_START+size (STARTUP_DATA)+SIZE (EPROM GDT)
222 MOV ECX, CS_BASE

223 ADD ECX, OFFSET (IDT_EPROM)

224 MOV ESI, [ECX].table_linear

225 MOV EDI, EAX

226 MOVZX ECX, [ECX].table_lim

227 MOV APP_IDT ram[EBX].table_lim,CX

228 INC ECX

229 MOV APP_IDT ram[EBX].table_linear, EAX
230 MOV EBX, EAX

231 ADD EAX, ECX

232 REP MOVS BYTE PTR ES: [EDI],BYTE PTR DS:[ESI]
233

234 ; fixup IDT pointer in GDT

235 MOV [EDX] .bas_0_15+IDT_DESC_OFF, BX
236 ROR EBX, 16

237 MOV [EDX] .bas_16_23+IDT_DESC_OFF, BL
238 MOV [EDX] .bas_24_31+IDT_DESC_OFF,BH
239

240 ; load GDTR and IDTR

241 MOV EBX,RAM_START

9-24 Vol. 3

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

LGDT

LIDT

MOV
MOV
MOV
MOV
MOV
MOV
ROL
MOV
MOV
LSL
INC
MOV
ADD
REP MOVS

MOV
ROL
MOV
MOV
ROL
;save start
MOV

;assume no

PROCESSOR MANAGEMENT AND INITIALIZATION

DB 66H ; execute a 32 bit LGDT
APP_GDT_ram[EBX]
DB 66H ; execute a 32 bit LIDT

APP_IDT ram[EBX]

; move the TSS

EDI, EAX

EBX, TSS_INDEX*SIZE (DESC)
ECX,GDT_DESC_OFF ;build linear address for TSS
GS,CX

DH,GS: [EBX] .bas_24_31
DL,GS: [EBX] .bas_16_23

EDX, 16

DX,GS: [EBX] .bas_0_15

ESI, EDX

ECX, EBX

ECX

EDX, EAX

EAX, ECX

BYTE PTR ES:[EDI],BYTE PTR DS:[EST]

; fixup TSS pointer

GS: [EBX] .bas_0_15,DX

EDX, 16

GS: [EBX] .bas_24_31,DH

GS: [EBX] .bas_16_23,DL

EDX, 16

of free ram at linear location RAMSTART
free_mem_linear_ base+RAM START, EAX

LDT used in the initial task - if necessary,

;code to move the LDT could be added, and should resemble
;that used to move the TSS

; load task
LTR

register
BX ; No task switch, only descriptor loading

; See Figure 9-6
; load minimal set of registers necessary to simulate task

; switch

MOV
MOV
MOV
MOV
PUSH
PUSH
PUSH
MOV
MOV
MOV
MOV

AX, [EDX] .SS_reg ; start loading registers
EDI, [EDX] .ESP_reg

SS, AX

ESP, EDI ; stack now valid

DWORD PTR [EDX] .EFLAGS_reg

DWORD PTR [EDX].CS_reg

DWORD PTR [EDX].EIP_reg

AX, [EDX] .DS_reg

BX, [EDX] .ES_reg

DS, AX ; DS and ES no longer linear memory
ES, BX

Vol. 3 9-25

PROCESSOR MANAGEMENT AND INITIALIZATION

294

295 ; simulate far jump to initial task
296 IRETD

297

298 STARTUP_CODE ENDS
**% WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED
INSTRUCTION (S)

299

300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

301

302
ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.
FFFF FFFFH
START: [CS.BASE+EIP] ——> FFFF 0000H
e Jump near start
¢ Construct TEMP_GDT
* LGDT
* Move to protected mode
DS, ES = GDT[1] <4jB
____Base____
Limit GDT_SCRATCH
GDT [1] | Base=0, Limit=4G
GDT [0] 0 TEMP_GDT

Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines

162-172 of List File)

9-26 Vol. 3

tel® PROCESSOR MANAGEMENT AND INITIALIZATION
FFFF FFFFH
— TSS
IDT
GDT
* Move the GDT, IDT, TSS
from ROM to RAM
¢ Fix Aliases
*LTR e <
> TSS RAM
> IDT RAM
> GDT RAM RAM_START
0

Figure 9-5. Moving the GDT, IDT and TSS from ROM to RAM (Lines 196-261 of List File)

Vol. 3 9-27

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

EIP
SS =TSS.SS EFLAGS
ESP = TSS.ESP :
PUSH TSS.EFLAG :
PUSH TSS.CS
PUSH TSS.EIP ESP
ES = TSS.ES .
DS = TSS.DS
IRET ES e e
CcS
ss
DS
GDT
TSS RAM
IDT Alias IDT RAM
I: GDTOAllaS GDT RAM RAM_START

Figure 9-6. Task Switching (Lines 282-296 of List File)

9.10.3. MAIN.ASM Source Code

The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for this appli-
cation and can be substituted with the main module task written in a high-level language that is
invoked by the IRET instruction executed by STARTUP.ASM.

Example 9-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS

stack stackseg 800
CODE SEGMENT ER use32 PUBLIC
main_start:
nop
nop
nop
CODE ENDS
END main_start, ds:data, ss:stack

9-28 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.10.4. Supporting Files

The batch file shown in Example 9-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile (EPROM.BLD) bootstrap (STARTUP)
Bootload

BLD386 performs several operations in this example:

® It allocates physical memory location to segments and tables.

® It generates tables using the build file and the input files.

® It links object files and resolves references.

® [t generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above functions.

Example 9-4. Build File

INIT_BLD_EXAMPLE;

SEGMENT
*SEGMENTS (DPL = 0)
, startup.startup_code (BASE = OFFFFO00O0OH)
TASK
BOOT_TASK (OBJECT = startup, INITIAL,DPL = O,
NOT INTENABLED)
, PROTECTED_MODE_TASK (OBJECT = main_module,DPL = 0,
NOT INTENABLED)
TABLE
GDT (
LOCATION = GDT_EPROM
, ENTRY = (
10: PROTECTED_MODE_TASK

, startup.startup_code
, startup.startup_data

, main_module.data

, main_module.code

, main_module.stack

)

Vol. 3 9-29

PROCESSOR MANAGEMENT AND INITIALIZATION

IDT (

LOCATION = IDT_EPROM

)i

MEMORY
(

RESERVE = (0..3FFFH

ROM

END

-- Area for the GDT,

60000H. . OFFFEFFFFH)
, RANGE = (ROM_AREA = ROM (OFFFFOOOOH..OFFFFFFFFH))
-- Eprom size 64K
, RANGE = (RAM_AREA = RAM (4000H..O05FFFFH))

IDT, TSS copied from

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5. Relationship Between BLD Item and ASM Source File

BLD386 Controls and BLD

...memory (RANGE(
ROM_AREA = ROM(x..y))

Item ASM386 and Startup.A58 file Effect
Bootstrap public startup bootstrap Near jump at
startup: start(startup) OFFFFFFFOH to start.
GDT location public GDT_EPROM TABLE The location of the
GDT_EPROM TABLE_REG <> | GDT(location = GDT will be
GDT_EPROM) programmed into the
GDT_EPROM location.
IDT location public IDT_EPROM TABLE The location of the IDT
IDT_EPROM TABLE_REG <> | IDT(location = IDT_EPROM | will be programmed
into the IDT_EPROM
location.
RAM start RAM_START equ 400H memory (reserve = RAM_START is used
(0..3FFFH)) as the ram destination
for moving the tables. It
must be excluded from
the application's
segment area.
Locationofthe | TSS_INDEX EQU 10 TABLE GDT(Put the descriptor of
application ENTRY=(10: the application TSS in
TSS in the PROTECTED_MODE_ GDT entry 10.
GDT TASK))
EPROM size size and location of the SEGMENT startup.code Initialization code size
and location initialization code (base= OFFFFO000H) must be less than 64K

and resides at upper
most 64K of the 4 GB
memory space.

9-30 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.11. MICROCODE UPDATE FACILITIES

The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct errata by
loading an Intel-supplied data block into the processor. The data block is called a microcode
update. This section describes the mechanisms the BIOS needs to provide in order to use this
feature during system initialization. It also describes a specification that permits the incorpora-
tion of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a
processor stepping and completes a full-stepping level validation for releases of microcode
updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update
loader, is responsible for loading the update on processors during system initialization (Figure
9-7). There are two steps to this process: the first is to incorporate the necessary update data
blocks into the BIOS; the second is to load update data blocks into the processor.

Update
Loader
Y
- Update
New Update > Blocks CPU
BIOS

Figure 9-7. Applying Microcode Updates

9.11.1. Microcode Update

A microcode update consists of an Intel-supplied binary that contains a descriptive header and
data. No executable code resides within the update. Each microcode update is tailored for a
specific list of processor signatures. A mismatch of the processor’s signature with the signature
contained in the update will result in a failure to load. A processor signature includes the
extended family, extended model, type, family, model, and stepping of the processor (starting
with processor family OfH, model 03H, a given microcode update may be associated with one
of multiple processor signatures; see Section 9.11.2. for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then
by an optional extended signature table. Table 9-6 provides a definition of the fields; Table 9-7
shows the format of an update.

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update
header and its reserved fields are interpreted by software based upon the header version. An
encoding scheme guards against tampering and provides a means for determining the authen-

Vol. 3 9-31

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

ticity of any given update. For microcode updates with a data size field equal to 00000000H, the
size of the microcode update is 2048 bytes. The first 48 bytes contain the microcode update
header. The remaining 2000 bytes contain encrypted data.

For microcode updates with a data size not equal to 00000000H, the total size field specifies the
size of the microcode update. The first 48 bytes contain the microcode update header. The
second part of the microcode update is the encrypted data. The data size field of the microcode
update header specifies the encrypted data size, its value must be a multiple of the size of
DWORD. The optional extended signature table if implemented follows the encrypted data, and
its size is calculated by (Total Size — (Data Size + 48)).

NOTE

The optional extended signature table is supported starting with processor
family OFH, model O3H.

Table 9-6. Microcode Update Field Definitions

Offset Length
Field Name (bytes) (bytes) Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for
the update signature provided by the processor to
indicate the current update functioning within the
processor. Used by the BIOS to authenticate the
update and verify that the processor loads
successfully. The value in this field cannot be used for
processor stepping identification alone. This is a
signed 32-bit number.

Date 8 4 Date of the update creation in binary format:
mmddyyyy (e.g. 07/18/98 is 07181998H).

Processor 12 4 Extended family, extended model, type, family, model,
Signature and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor. The BIOS uses the
processor signature field in conjunction with the
CPUID instruction to determine whether or not an
update is appropriate to load on a processor. The
information encoded within this field exactly
corresponds to the bit representations returned by the
CPUID instruction.

Checksum 16 4 Checksum of update data and header. Used to verify
the integrity of the update header and data. Checksum
is correct when the summation of the DWORDs that

comprise the microcode update results in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is
00000001H.

9-32 Vol. 3

intgl.

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-6. Microcode Update Field Definitions (Contd.)

Field Name

Offset
(bytes)

Length
(bytes)

Description

Processor Flags

24

4

Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.

Data Size

28

Specifies the size of the encrypted data in bytes, and
must be a multiple of DWORDs. If this value is
00000000H, then the microcode update encrypted
data is 2000 bytes (or 500 DWORDs).

Total Size

32

Specifies the total size of the microcode update in
bytes. It is the summation of the header size, the
encrypted data size and the size of the optional
extended signature table.

Reserved

36

12

Reserved fields for future expansion

Update Data

48

Data Size
or 2000

Update data

Extended
Signature Count

Data Size +
48

4

Specifies the number of extended signature structures
(Processor Signature[n], processor flags[n] and
checksum[n]) that exist in this microcode update.

Extended
Checksum

Data Size +
52

Checksum of update extended processor signature
table. Used to verify the integrity of the extended
processor signature table. Checksum is correct when
the summation of the DWORDs that comprise the
extended processor signature table results in
00000000H.

Reserved

Data Size +
56

12

Reserved fields

Processor
Signature[n]

Data Size +
68 + (n*12)

Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor. The BIOS uses the
processor signature field in conjunction with the
CPUID instruction to determine whether or not an
update is appropriate to load on a processor. The
information encoded within this field exactly
corresponds to the bit representations returned by the
CPUID instruction.

Vol. 3 9-33

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-6. Microcode Update Field Definitions (Contd.)

intgl.

the new microcode updates is constructed wi
optional extended processor signature table.

Offset Length
Field Name (bytes) (bytes) Description
Processor Flags[n] | Data Size + | 4 Platform type information is encoded in the lower 8 bits
72+ (n*12) of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.
Checksum|[n] Data Size + |4 Used by utility software to decompose a microcode
76+ (n*12) update into multiple microcode updates where each of

thout the

Table 9-7. Microcode Update Format

31 24 16 8 0 Bytes
Header Version 0
Update Revision 4
Month: 8 Day: 8 Year: 16 8
Processor Signature (CPUID) 12
53] m =m o] = il =)
© < © b~
8 55| 25| 8| 3 3 2 s
- g3 22| 3| w g - E
o ~2 a EN & Q
e IS
Checksum 16
Loader Revision 20
Processor Flags 24
Reserved (24 bits) TEEIRBIRIEE
Data Size 28
Total Size 32
Reserved (12 Bytes) 36
Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48
Extended Signature Count ‘n’ Data Size
+48
Extended Processor Signature Table Checksum Data Size
+52
Reserved (12 Bytes) Data Size
+ 56

9-34 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-7. Microcode Update Format (Contd.)

31 24 16 8 0 Bytes

Processor Signature[n] Data Size
+ 68 +
(n*12)

Processor Flags[n] Data Size
+72 +
(n*12)

Checksum[n] Data Size
+76 +
(n*12)

9.11.2. Optional Extended Signature Table

The extended signature table is a structure that may be appended to the end of the encrypted data
when the encrypted data only supports a single processor signature (optional case). The
extended signature table will always be present when the encrypted data supports multiple
processor steppings and/or models (required case).

The extended signature table consists of a 20-byte extended signature header structure, which
contains the extended signature count, the extended processor signature table checksum, and 12
reserved bytes (Table 9-8). Following the extended signature header structure, the extended
signature table contains O-to-n extended processor signature structures.

Each processor signature structure consist of the processor signature, processor flags, and a
checksum (Table 9-9).

The extended signature count in the extended signature header structure indicates the number of
processor signature structures that exist in the extended signature table.

The extended processor signature table checksum is a checksum of all DWORDs that comprise
the extended signature table. That includes the extended signature count, extended processor
signature table checksum, 12 reserved bytes and the n processor signature structures. A valid
extended signature table exists when the result of a DWORD checksum is 00000000H.

Table 9-8. Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Vol. 3 9-35

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-9. Processor Signature Structure

Processor Signature[n]

Data Size + 68 + (n * 12)

Processor Flags[n]

Data Size + 72 + (n * 12)

Checksum|n]

Data Size + 76 + (n * 12)

9.11.3. Processor Identification

Each microcode update is designed to for a specific processor or set of processors. To determine
the correct microcode update to load, software must ensure that one of the processor signatures
embedded in the microcode update matches the 32-bit processor signature returned by the
CPUID instruction when executed by the target processor with EAX = 1. Attempting to load a
microcode update that does not match a processor signature embedded in the microcode update
with the processor signature returned by CPUID will cause the processor to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the processor

and microcode update.

Example 9-5. Pseudo Code to Validate the Processor Signature

ProcessorSignature <« CPUID(1) :EAX

If (Update.HeaderVersion == 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature == Update.ProcessorSignature)

Success

// if extended signature is present

Else If (Update.TotalSize > (Update.DataSize + 48))

{

//

// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[0].

/7

For (N ¢« 0; ((N < Update.ExtendedSignatureCount) AND
(ProcessorSignature != Update.ProcessorSignature([N]));

// if the loops ended when the iteration count is
// less than the number of processor signatures in

// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

Else

9-36 Vol. 3

N++) ;

intgl.

Else

Fail

Fail

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.4. Platform Identification

In addition to verifying the processor signature, the intended processor platform type must be
determined to properly target the microcode update. The intended processor platform type is
determined by reading the IA32_PLATFORM_ID register, (MSR 17H). This 64-bit register
must be read using the RDMSR instruction.

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate the bit
position in the microcode update header’s processor flags field associated with the installed
processor. The processor flags in the 48-byte header and the processor flags field associated
with the extended processor signature structures may have multiple bits set. Each set bit repre-

sents a different platform ID that the update supports.

Register Name:

MSR Address:
Access:

IA32_PLATFORM_ID

017H
Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a

RDMSR instruction.

Table 9-10. Processor Flags

Bit Descriptions

63:53 Reserved

52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for the
processor. See also Table 9-7.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

To validate the platform information, software may implement an algorithm similar to the algo-
rithms in Example 9-6.

Vol. 3 9-37

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

Example 9-6. Pseudo Code Example of Processor Flags Test

Flag < 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion == 00000001h)
{

If (Update.ProcessorFlags & Flag)

{

Load Update

}

Else

{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[N] and a match

// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

9.11.5. Microcode Update Checksum

Each microcode update contains a DWORD checksum located in the update header. It is soft-
ware’s responsibility to ensure that a microcode update is not corrupt. To check for a corrupt
microcode update, software must perform a unsigned DWORD (32-bit) checksum of the micro-
code update. Even though some fields are signed, the checksum procedure treats all DWORDs
as unsigned. Microcode updates with a header version equal to 00000001H must sum all
DWORDs that comprise the microcode update. A valid checksum check will yield a value of
00000000H. Any other value indicates the microcode update is corrupt and should not be
loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the microcode update
as an array of unsigned DWORD:s. If the data size DWORD field at byte offset 32 equals
00000000H, the size of the encrypted data is 2000 bytes, resulting in 500 DWORDs. Otherwise
the microcode update size in DWORDs = (Total Size / 4).

9-38 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Example 9-7. Pseudo Code Example of Checksum Test

N « 512

If (Update.DataSize != 00000000H)
N ¢« Update.TotalSize / 4

ChkSum « 0
For (I « 0; I < N; I++)
{
ChkSum ¢ ChkSum + MicrocodeUpdate[I]

If (ChkSum == 00000000H)
Success

Else
Fail

9.11.6. Microcode Update Loader

This section describes an update loader used to load an update into a Pentium 4, Intel Xeon, or
P6 family processor. It also discusses the requirements placed on the BIOS to ensure proper
loading. The update loader described contains the minimal instructions needed to load an
update. The specific instruction sequence that is required to load an update is dependent upon
the loader revision field contained within the update header. This revision is expected to change

infrequently (potentially, only when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 00000001H. Note that

the microcode update must be aligned on a 16-byte boundary.

Example 9-8. Assembly Code Example of Simple Microcode Update Loader

mov ecx, 79h ; MSR to read in ECX

XOr eax, eax ; clear EAX

xor ebx, ebx ; clear EBX

mov ax, Ccs ; Segment of microcode update

shl eax, 4
mov bx,offset Update; Offset of microcode update

add eax, ebx ; Linear Address of Update in EAX

add eax, 48d ; Offset of the Update Data within the Update
xor edx, edx ; Zero in EDX

WRMSR ; microcode update trigger

Vol. 3 9-39

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

The loader shown in Example 9-8 assumes that update is the address of a microcode update
(header and data) embedded within the code segment of the BIOS. It also assumes that the
processor is operating in real mode. The data may reside anywhere in memory, aligned on a 16-
byte boundary, that is accessible by the processor within its current operating mode (real,
protected).

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following
must be true:

¢ EAX contains the linear address of the start of the update data
¢ EDX contains zero

® ECX contains 79H (address of IA32_BIOS_UPDT_TRIG)
Other requirements are:

® If the update is loaded while the processor is in real mode, then the update data may not
cross a segment boundary.

® If the update is loaded while the processor is in real mode, then the update data may not
exceed a segment limit.

® If paging is enabled, pages that are currently present must map the update data.

® The microcode update data requires a 16-byte boundary alignment.

9.11.6.1. Hard Resets in Update Loading

The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each
time a hard reset is asserted during the BIOS POST, the update must be reloaded on all proces-
sors that observed the reset. The effects of a loaded update are, however, maintained across a
processor INIT. There are no side effects caused by loading an update into a processor multiple
times.

9.11.6.2. Update in a Multiprocessor System

A multiprocessor (MP) system requires loading each processor with update data appropriate for
its CPUID and platform ID bits. The BIOS is responsible for ensuring that this requirement is
met and that the loader is located in a module executed by all processors in the system. If a
system design permits multiple steppings of Pentium 4, Intel Xeon, and P6 family processors to
exist concurrently; then the BIOS must verify individual processors against the update header
information to ensure appropriate loading. Given these considerations, it is most practical to
load the update during MP initialization.

9-40 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.6.3. Update in a System with Intel Hyper-Threading Technology

Intel Hyper-Threading Technology has implications on the loading of the microcode update.
The update must be loaded for each core in a physical processor. Thus, for a processor
supporting Hyper-Threading Technology, only one logical processor per core is required to load
the microcode update. Each individual logical processor can independently load the update.
However, MP initialization must provide some mechanism (e.g. a software semaphore) to force
serialization of microcode update loads and to prevent simultaneous load attempts to the same
core.

9.11.6.4. Update Loader Enhancements

The update loader presented in Section 9.11.6., “Microcode Update Loader” is a minimal imple-
mentation that can be enhanced to provide additional functionality. Potential enhancements are
described below:

® BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4,
Intel Xeon, and P6 family processors. This feature provides for operating in a mixed
stepping environment on an MP system and enables a user to upgrade to a later version of
the processor. In this case, modify the loader to check the CPUID and platform ID bits of
the processor that it is running on against the available headers before loading a particular
update. The number of updates is only limited by available BIOS space.

® A loader can load the update and test the processor to determine if the update was loaded
correctly. See Section 9.11.7., “Update Signature and Verification”.

® A loader can verify the integrity of the update data by performing a checksum on the
double words of the update summing to zero. See Section 9.11.5., “Microcode Update
Checksum”.

® A loader can provide power-on messages indicating successful loading of an update.

9.11.7. Update Signature and Verification

The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the authen-
ticity of a particular update and to identify the current update revision. This section describes the
model-specific extensions of processors that support this feature. The update verification
method below assumes that the BIOS will only verify an update that is more recent than the revi-
sion currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values.
The semantics of CPUID cause it to deposit an update ID value in the 64-bit model-specific
register at address 08BH (IA32_BIOS_SIGN_ID). If no update is present in the processor, the
value in the MSR remains unmodified. The BIOS must pre-load a zero into the MSR before
executing CPUID. If a read of the MSR at 8BH still returns zero after executing CPUID, this
indicates that no update is present.

Vol. 3 9-41

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

The update ID value returned in the EDX register after RDMSR executes indicates the revision
of the update loaded in the processor. This value, in combination with the CPUID value returned
in the EAX register, uniquely identifies a particular update. The signature ID can be directly
compared with the update revision field in a microcode update header for verification of a
correct load. No consecutive updates released for a given stepping of a processor may share the
same signature. The processor signature returned by CPUID differentiates updates for different
steppings.

9.11.7.1. Determining the Signature

An update that is successfully loaded into the processor provides a signature that matches the
update revision of the currently functioning revision. This signature is available any time after
the actual update has been loaded. Requesting the signature does not have a negative impact
upon a loaded update.

The procedure for determining this signature shown in Example 9-9.

Example 9-9. Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH;IA32_BIOS_SIGN_ID
XOR EAX, EAX;clear EAX

XOR EDX, EDX;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX register after the
RDMSR instruction executes.

1A32_BIOS_SIGN_ID Microcode Update Signature Register
MSR Address: 08BH Accessed as a Qword

Default Value: XXXX XXXX XXXX XXXXh

Access: Read/Write

The TA32_BIOS_SIGN_ID register is used to report the microcode update signature when
CPUID executes. The signature is returned in the upper DWORD (Table 9-11).

Table 9-11. Microcode Update Signature

Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded
microcode update when read following the execution of the CPUID instruction, function 1. ltis
required that this register field be pre-loaded with zero prior to executing the CPUID, function
1. If the field remains equal to zero, then there is no microcode update loaded. Another non-
zero value will be the signature.

31:0 Reserved.

9-42 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.7.2. Authenticating the Update

An update may be authenticated by the BIOS using the signature primitive, described above, and
the algorithm in Example 9-10.

Example 9-10. Pseudo Code to Authenticate the Update

7 ¢ Obtain Update Revision from the Update Header to be authenticated;
X ¢ Obtain Current Update Signature from MSR 8BH;

If (Z > X)

{
Load Update that is to be authenticated;
Y ¢ Obtain New Signature from MSR 8BH;

If (2 ==Y)
Success
Else
Fail

Else
Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a numerically larger
revision than the currently loaded revision, where Current Signature (X) < New Update Revi-
sion (Z). A processor with no loaded update is considered to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to verify an
update from a potentially hostile source. As an example, this mechanism in conjunction with
other safeguards provides security for dynamically incorporating field updates into the BIOS.

9.11.8. Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically integrate
processor-specific updates into the system BIOS. In this discussion, the application is referred
to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS.
This extension allows an application to read and modify the contents of the microcode update
data in NVRAM. The update loader, which is part of the system BIOS, cannot be updated by the
interface. All of the functions defined in the specification must be implemented for a system to
be considered compliant with the specification. The INT15 functions are accessible only from
real mode.

Vol. 3 9-43

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.11.8.1. Responsibilities of the BIOS

If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = OH), it must implement all
of the sub-functions defined in the INT 15H, AX = 0D042H specification. There are no optional
functions. BIOS must load the appropriate update for each processor during system initialization.

A Header Version of an update block containing the value OFFFFFFFFH indicates that the
update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for each
potential processor stepping within a system. This storage unit consists of one or more update
blocks. An update block is a contiguous 2048-byte block of memory. The BIOS for a single
processor system need only provide update blocks to store one microcode update. If the BIOS
for a multiple processor system is intended to support mixed processor steppings, then the BIOS
needs to provide enough update blocks to store each unique microcode update or for each
processor socket on the OEM’s system board.

The BIOS is responsible for managing the NVRAM update blocks. This includes garbage
collection, such as removing microcode updates that exist in NVRAM for which a corre-
sponding processor does not exist in the system. This specification only provides the mechanism
for ensuring security, the uniqueness of an entry, and that stale entries are not loaded. The actual
update block management is implementation specific on a per-BIOS basis.

As an example, the BIOS may use update blocks sequentially in ascending order with CPU
signatures sorted versus the first available block. In addition, garbage collection may be imple-
mented as a setup option to clear all NVRAM slots or as BIOS code that searches and eliminates
unused entries during boot.

NOTE

For IA-32 processors starting with family OFH and model 03H, the
microcode update may be as large as 16 KBytes. Thus, BIOS must allocate 8
update blocks for each microcode update. In a MP system, a common
microcode update may be sufficient for each socket in the system.

For IA-32 processors earlier than family OFH and model 03H, the microcode
update is 2 KBytes. An MP-capable BIOS that supports multiple steppings
must allocate a block for each socket in the system.

A single-processor BIOS that supports variable-sized microcode update and
fixed-sized microcode update must allocate one 16 KByte region and a
second region of at least 2 KBytes.

9-44 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

The following algorithm (Example 9-11) describes the steps performed during BIOS initializa-
tion used to load the updates into the processor(s). The algorithm assumes:

® The BIOS ensures that no update contained within NVRAM has a header version or loader
version that does not match one currently supported by the BIOS.

® The update contains a correct checksum.
® The BIOS ensures that (at most) one update exists for each processor stepping.
® Older update revisions are not allowed to overwrite more recent ones.

These requirements are checked by the BIOS during the execution of the write update function
of this interface. The BIOS sequentially scans through all of the update blocks in NVRAM
starting with index 0. The BIOS scans until it finds an update where the processor fields in the
header match the processor signature (extended family, extended model, type, family, model,
and stepping) as well as the platform bits of the current processor.

Example 9-11. Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system

{
Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits « 1 << IA32_PLATFORM ID[52:50];

For (I « UpdateBlock 0, I < NumOfBlocks; I++)
{
If (Update.Header_Version == 0x00000001)
{
If ((Update.ProcessorSignature == Processor Signature) &&
(Update.ProcessorFlags & Platform Bits))

Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor
Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{
N «< 0
While (N < Update.ExtendedSignatureCount)
{
If ((Update.ProcessorSignature[N] ==
Processor Signature) &&
(Update.ProcessorFlags[N] & Platform Bits))

Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;

Vol. 3 9-45

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

N« N+ 1

}

I « I + (Update.TotalSize / 2048)

If ((Update.TotalSize MOD 2048) == 0)
I« I+1

NOTE

The platform Id bits in IA32_PLATFORM_ID are encoded as a three-bit
binary coded decimal field. The platform bits in the microcode update header
are individually bit encoded. The algorithm must do a translation from one
format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has
no knowledge of platform specific requirements. It is the responsibility of BIOS calls to manage
all chipset and platform specific prerequisites for managing the NVRAM device. When writing
the update data using the Write Update sub-function, the BIOS must maintain implementation
specific data requirements (such as the update of NVRAM checksum). The BIOS should also
attempt to verify the success of write operations on the storage device used to record the update.

9.11.8.2. Responsibilities of the Calling Program

This section of the document lists the responsibilities of a calling program using the interface
specifications to load microcode update(s) into BIOS NVRAM.

The calling program should call the INT 15H, 0D042H functions from a pure real mode
program and should be executing on a system that is running in pure real mode.

The caller should issue the presence test function (sub function 0) and verify the signature
and return codes of that function.

It is important that the calling program provides the required scratch RAM buffers for the
BIOS and the proper stack size as specified in the interface definition.

The calling program should read any update data that already exists in the BIOS in order to
make decisions about the appropriateness of loading the update. The BIOS must refuse to
overwrite a newer update with an older version. The update header contains information
about version and processor specifics for the calling program to make an intelligent
decision about loading.

There can be no ambiguous updates. The BIOS must refuse to allow multiple updates for
the same CPU to exist at the same time; it also must refuse to load updates for processors
that don’t exist on the system.

9-46 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

® The calling application should implement a verify function that is run after the update
write function successfully completes. This function reads back the update and verifies that
the BIOS returned an image identical to the one that was written.

Example 9-12 represents a calling program.

Example 9-12. INT 15 DO42 Calling Program Pseudo-code

//

// We must be in real mode

//

If the system is not in Real mode exit

//

// Detect the presence of Genuine Intel processor(s) that can be updated

// using (CPUID)

//

If no Intel processors exist that can be updated exit

//

// Detect the presence of the Intel microcode update extensions

//

If the BIOS fails the PresenceTestexit

//

// If the APIC is enabled, see if any other processors are out there

//

Read IA32_APICBASE

If APIC enabled

{
Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID and record the Processor Signature
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50] and record Platform
Id Bits

If current processor cannot be updated

exit
}
//
// Determine the number of unique update blocks needed for this system
//

NumBlocks = 0
For each processor
{
If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

Checksum the update from the database;
If Checksum fails
exit
NumBlocks ¢ NumBlocks + size of microcode update / 2048

Vol. 3 9-47

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

//
// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor steppings
than update blocks provided by the BIOS
exit
//
// Do we need any update blocks at all? If not, we are done

//

If (NumBlocks == 0)
exit
//
// Record updates for processors in NVRAM.
//

For (I=0; I<NumBlocks; I++)
{
//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{
Display Error -- BIOS is not managing NVRAM appropriately
exit
If (INVALID_REVISION) returned
Display Message: More recent update already loaded in NVRAM for
this stepping
continue

If any other error returned

Display Diagnostic

exit
}
//
// Verify the update was loaded correctly
//

Issue the ReadUpdate function
If an error occurred

{
Display Diagnostic

9-48 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

exit
}
//
// Compare the Update read to that written
//
If (Update read != Update written)

Display Diagnostic
exit

I < I + (size of microcode update / 2048)

}
//
// Enable Update Loading, and inform user

//
Issue the Update Control function with Task = Enable.

9.11.8.3. Microcode Update Functions

Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode update
functions.

Table 9-12. Microcode Update Functions

Microcode Update Function
Function Number Description Required/Optional
Presence test OOH Returns information about the supported Required
functions.
Write update data 01H Writes one of the update data areas (slots). Required
Update control 02H Globally controls the loading of updates. Required
Read update data 03H Reads one of the update data areas (slots). Required

Vol. 3 9-49

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.11.8.4. INT 15H-based Interface

Intel recommends that a BIOS interface be provided that allows additional microcode updates
to be added to system flash. The INT15H interface is the Intel-defined method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas
for BIOS use during calls to the read and write functions. These RAM scratch pads can be used
by the BIOS for any purpose, but only for the duration of the function call. The calling routine
places real mode segments pointing to the RAM blocks in the CX, DX and SI registers. Calls to
functions in this interface must be made with a minimum of 32 kilobytes of stack available to
the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The
general return codes and other constant definitions are listed in Section 9.11.8.9., “Return
Codes”.

The OEM error field (AL) is provided for the OEM to return additional error information
specific to the platform. If the BIOS provides no additional information about the error, OEM
error must be set to SUCCESS. The OEM error field is undefined if AH contains either
SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must be set with either
SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5. Function 00H—Presence Test

This function verifies that the BIOS has implemented required microcode update functions.
Table 9-13 lists the parameters and return codes for the function.

Table 9-13. Parameters for the Presence Test

Input

AX Function Code 0D042H

BL Sub-function 0OH - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status
Carry Clear - All return values valid

AH Return Code

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

Sl Update Count Number of 2048 update blocks in NVRAM the BIOS allocated
to storing microcode updates

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

9-50 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-13. Parameters for the Presence Test (Contd.)

Input

AX Function Code 0DO042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status
Carry Clear - All return values valid

AH Return Code

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

Sl Update Count Number of 2048 update blocks in NVRAM the BIOS allocated
to storing microcode updates

Return Codes (see Table 9-18 for code definitions)

NOT_IMPLEMENTED The function is not implemented.

Description

In order to assure that the BIOS function is present, the caller must verify the carry flag, the
return code, and the 64-bit signature. The update count reflects the number of 2048-byte blocks
available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is included
in the system BIOS image.

Vol. 3 9-51

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

9.11.8.6. Function 01H—Write Microcode Update Data

This function integrates a new microcode update into the BIOS storage device. Table 9-14 lists
the parameters and return codes for the function.

Table 9-14. Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is
2048 bytes in length if the processor supports only fixed-size
microcode update or...
Real Mode pointer to the Intel Update structure. This buffer is
64K-bytes in length if the processor supports a variable-size
microcode update.

CX Scratch Pad1 Real mode segment address of 64 kilobytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 kilobytes of RAM block

Sl Scratch Pad3 Real mode segment address of 64 kilobytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status
Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

WRITE_FAILURE Qfajlure occurred because of the inability to write the storage

evice.

9-52 Vol. 3

intgl.

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-14. Parameters for the Write Update Data Function (Contd.)

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is
2048 bytes in length if the processor supports only fixed-size
microcode update or...
Real Mode pointer to the Intel Update structure. This buffer is
64K-bytes in length if the processor supports a variable-size
microcode update.

CX Scratch Pad1 Real mode segment address of 64 kilobytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 kilobytes of RAM block

Sl Scratch Pad3 Real mode segment address of 64 kilobytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status
Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code

definitions)

ERASE_FAILURE

A failure occurred because of the inability to erase the storage
device.

READ_FAILURE

A failure occurred because of the inability to read the storage
device.

STORAGE_FULL

The BIOS non-volatile storage area is unable to accommodate
the update because all available update blocks are filled with
updates that are needed for processors in the system.

CPU_NOT_PRESENT

The processor stepping does not currently exist in the system.

INVALID_HEADER

The update header contains a header or loader version that is
not recognized by the BIOS.

INVALID_HEADER_CS

The update does not checksum correctly.

SECURITY_FAILURE

The processor rejected the update.

INVALID_REVISION

The same or more recent revision of the update exists in the
storage device.

Vol. 3 9-53

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for
storing the new update. This BIOS is also responsible for ensuring the integrity of the informa-
tion provided by the caller, including authenticating the proposed update before incorporating it
into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update structure
meets the following criteria in the following order:

1. The update header version should be equal to an update header version recognized by the
BIOS.

2. The update loader version in the update header should be equal to the update loader
version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit summation of all
double words in the structure, including the header, data, and processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate update. The
BIOS can select any available update block as long as it guarantees that only a single update
exists for any given processor stepping in non-volatile storage. If the update block selected
already contains an update, the following additional criteria apply to overwrite it:

® The processor signature in the proposed update must be equal to the processor signature in
the header of the current update in NVRAM (Processor Signature + platform ID bits).

® The update revision in the proposed update should be greater than the update revision in
the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can over-
write update block(s) for a processor stepping that is no longer present in the system. This can
be done by scanning the update blocks and comparing the processor steppings, identified in the
MP Specification table, to the processor steppings that currently exist in the system.

Finally, before storing the proposed update in NVRAM, the BIOS must verify the authenticity
of the update via the mechanism described in Section 9.11.6., “Microcode Update Loader”. This
includes loading the update into the current processor, executing the CPUID instruction, reading
MSR 08Bh, and comparing a calculated value with the update revision in the proposed update
header for equality.

When performing the write update function, the BIOS must record the entire update, including
the header, the update data, and the extended processor signature table (if applicable). When
writing an update, the original contents may be overwritten, assuming the above criteria have
been met. It is the responsibility of the BIOS to ensure that more recent updates are not over-
written through the use of this BIOS call, and that only a single update exists within the NVRAM
for any processor stepping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update block and
ensure the integrity of the data when it stores the new microcode update.

9-54 Vol. 3

PROCESSOR MANAGEMENT AND INITIALIZATION

Write Microcode Update

Does Update Match A
CPUin The System

Yes

Valid Update
Header Version?

Loader Revision Match
BIOS's Loader?

Does Update
Checksum Correctly?

Return
CPU_NOT_PRESENT

Return
INVALID_HEADER

Return
INVALID_HEADER

Return
INVALID_HEADER_CS

Figure 9-8. Microcode Update Write Operation Flow [1]

Vol. 3 9-55

PROCESSOR MANAGEMENT AND INITIALIZATION

Update Matching CPU Replacement

Already In NVRAM?

Space Available in
NVRAM?

No policy implemented?

Yes Yes No

Return Return

pdate Revision Newer No P
o INVALID_REVISION STORAGE_FULL

Than NVRAM Update?

Yes

Return
SECURITY_FAILURE

Update Pass
Authenticity Test?

Yes

v

Update NMRAM Record

\4

Return
SUCCESS

Figure 9-9. Microcode Update Write Operation Flow [2]

9-56 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.8.7. Function 02H—Microcode Update Control

This function enables loading of binary updates into the processor. Table 9-15 lists the parame-
ters and return codes for the function.

Table 9-15. Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 kilobytes of RAM block

DX Scratch Pad2 Real mode segment of 64 kilobytes of RAM block

Sl Scratch Pad3 Real mode segment of 64 kilobytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status
Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information.

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the storage
device.

Description

This control is provided on a global basis for all updates and processors. The caller can deter-
mine the current status of update loading (enabled or disabled) without changing the state. The
function does not allow the caller to disable loading of binary updates, as this poses a security
risk.

The caller specifies the requested operation by placing one of the values from Table 9-16 in the
BH register. After successfully completing this function, the BL register contains either the
enable or the disable designator. Note that if the function fails, the update status return value is
undefined.

Table 9-16. Mnemonic Values

Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without changing
its status.

Vol. 3 9-57

intgl.

The READ_FAILURE error code returned by this function has meaning only if the control func-
tion is implemented in the BIOS NVRAM. The state of this feature (enabled/disabled) can also

PROCESSOR MANAGEMENT AND INITIALIZATION

be implemented using CMOS RAM bits where READ failure errors cannot occur.

9.11.8.8.

Function 03H—Read Microcode Update Data

This function reads a currently installed microcode update from the BIOS storage into a caller-
provided RAM buffer. Table 9-17 lists the parameters and return codes for the function.

Table 9-17. Parameters for the Read Microcode Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that will be
written with the binary data

ECX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block
(lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block
(upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block

SS:SP Stack pointer 32 kilobytes of Stack Minimum

Sl Update Number This is the index number of the update block to be read. This
value is zero based and must be less than the update count
returned from the presence test function.

Output

CF Carry Flag Carry Set - Failure - AH contains Status

Carry Clear - All

return values

are valid.

AH Return Code Status of the Call

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code

definitions)

SUCCESS

The function completed successfully.

READ_FAILURE

There was a failure because of the inability to read the storage
device.

UPDATE_NUM_INVALID

Update number exceeds the maximum number of update
blocks implemented by the BIOS.

NOT_EMPTY

The specified update block is a subsequent block in use to
store a valid microcode update that spans multiple blocks.
The specified block is not a header block and is not empty.

9-58 Vol. 3

Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Description

The read function enables the caller to read any microcode update data that already exists in a
BIOS and make decisions about the addition of new updates. As a result of a successful call,
the BIOS copies the microcode update into the location pointed to by ES:DI, with the contents
of all Update block(s) that are used to store the specified microcode update.

If the specified block is not a header block, but does contain valid data from a microcode update
that spans multiple update blocks, then the BIOS must return Failure with the NOT_EMPTY
error code in AH.

An update block is considered unused and available for storing a new update if its Header
Version contains the value OFFFFFFFFH after return from this function call. The actual imple-
mentation of NVRAM storage management is not specified here and is BIOS dependent. As an
example, the actual data value used to represent an empty block by the BIOS may be zero, rather
than OFFFFFFFFH. The BIOS is responsible for translating this information into the header
provided by this function.

9.11.8.9. Return Codes

After the call has been made, the return codes listed in Table 9-18 are available in the AH
register.

Table 9-18. Return Code Definitions

Return Code Value Description

SUCCESS O00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented

ERASE_FAILURE 90H A failure because of the inability to erase the storage
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage
device.

READ_FAILURE 92H A failure because of the inability to read the storage device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to

accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the
system.

INVALID_HEADER 95H The update header contains a header or loader version
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists in

the storage device.

Vol. 3 9-59

PROCESSOR MANAGEMENT AND INITIALIZATION Intel ®

Table 9-18. Return Code Definitions (Contd.)

Return Code Value Description

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use to
store a valid microcode update that spans multiple blocks.

The specified block is not a header block and is not empty.

9-60 Vol. 3

10

Memory Cache
Control

CHAPTER 10
MEMORY CACHE CONTROL

This chapter describes the IA-32 architecture’s memory cache and cache control mechanisms, the
TLBs, and the store buffer. It also describes the memory type range registers (MTRRs) found in
the P6 family processors and how they are used to control caching of physical memory locations.

10.1. INTERNAL CACHES, TLBS, AND BUFFERS

The IA-32 architecture supports caches, translation look aside buffers (TLBs), and a store buffer
for temporary on-chip (and external) storage of instructions and data. (Figure 10-1 shows the
arrangement of caches, TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.)
Table 10-1 shows the characteristics of these caches and buffers for the Pentium 4, Intel Xeon,
P6 family, and Pentium processors. The sizes and characteristics of these units are machine
specific and may change in future versions of the processor. The CPUID instruction returns
the sizes and characteristics of the caches and buffers for the processor on which the instruction
is executed (see “CPUID—CPU Identification” in Chapter 3 of the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2).

Physical
Memory

System Bus 4
(External)

»| Data Cache
L2 Cache L3 Cachet Unit (L1)
A A]
Y Instruction
TLBs

Y .

Instruction Decoder | Trace Cache

|
Bus Interface Unit
€ L» Data TLBs

Store Buffer

T Intel Xeon processors only

Figure 10-1. Cache Structure of the Pentium 4 and Intel Xeon Processors

Vol. 3 10-1

MEMORY CACHE CONTROL Intel ®

Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining
Buffer in 1A-32 processors

Cache or Buffer Characteristics

Trace Cachel - Pentium 4 and Intel Xeon processors: 12 Kuops, 8-way set associative.
- Pentium M processor: not implemented.
- P6 family and Pentium processors: not implemented.

L1 Instruction Cache | - Pentium 4 and Intel Xeon processors: not implemented.

- Pentium M processor: 32-KByte, 8-way set associative.

- P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,
32-byte cache line size; 2-way set associative for earlier Pentium processors.

L1 Data Cache - Pentium 4 and Intel Xeon processors: 8-KByte, 4-way set associative, 64-byte
cache line size.

- Pentium M processor: 32-KByte, 8-way set associative, 64-byte cache line size.

- P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size;
8-KBytes, 2-way set associative for earlier P6 family processors.

- Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size;
8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache - Pentium 4 and Intel Xeon processors: 256-or 512-KByte, 8-way set associative,
64-byte cache line size, 128-byte sector size.

- Pentium M processor: 1-MByte, 8-way set associative, 64-byte cache line size.

- P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte,
4-way set associative, 32-byte cache line size.

- Pentium processor (external optional): System specific, typically 256- or 512-
KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache - Intel Xeon processors: 512-KByte or 1-MByte, 8-way set associative, 64-byte
cache line size, 128-byte sector size.

Instruction TLB - Pentium 4 and Intel Xeon processors: 128 entries, 4-way set associative.

(4-KByte Pages) - Pentium M processor: 128 entries, 4-way set associative.

- P6 family processors: 32 entries, 4-way set associative.
- Pentium processor: 32 entries, 4-way set associative; fully set associative for
Pentium processors with MMX technology.

Data TLB (4-KByte - Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared

Pages) with large page data TLBs.

- Pentium M processor: 128 entries, 4-way set associative.

- Pentium and P6 family processors: 64 entries, 4-way set associative; fully set.
associative for Pentium processors with MMX technology.

Instruction TLB - Pentium 4 and Intel Xeon processors: large pages are fragmented.
(Large Pages) - Pentium M processor: 2 entries, fully associative.

- P6 family processors: 2 entries, fully associative.

- Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large - Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared

Pages) with small page data TLBs.

- Pentium M processor: 8 entries, fully associative.

- P6 family processors: 8 entries, 4-way set associative.

- Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for
4-KByte pages in Pentium processors with MMX technology.

10-2 Vol. 3

|nte|® MEMORY CACHE CONTROL

Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining
Buffer in 1A-32 processors (Contd.)

Cache or Buffer Characteristics

Store Buffer - Pentium 4 and Intel Xeon processors: 24 entries.

- Pentium M processor: 16 entries.

- P6 family processors: 12 entries.

- Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX
technology have 4 buffers for 4 entries).

Write Combining - Pentium 4 and Intel Xeon processors: 6 entries.
(WC) Buffer - Pentium M processor: 6 entries.
- P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

The IA-32 processors implement four types of caches: the trace cache, the level 1 (L1) cache,
the level 2 (L2) cache, and the level 3 (L3) cache (see Figure 10-1). The uses of these caches
differs from the Pentium 4, Intel Xeon, and P6 family processors, as follows:

® Pentium 4 and Intel Xeon processors—The trace cache caches decoded instructions (LLops)
from the instruction decoder, and the L1 cache contains only data. The L2 and L3 caches
are unified data and instruction caches that are located on the processor chip. (The L3
cache is only implemented on Intel Xeon processors.)

® P6 family processors—The L1 cache is divided into two sections: one dedicated to caching
IA-32 architecture instructions (pre-decoded instructions) and one to caching data. The L2
cache is a unified data and instruction cache that is located on the processor chip. The P6
family processors do not implement a trace cache.

® Pentium processors—The L1 cache has the same structure as on the P6 family processors
(and a trace cache is not implemented). The L2 cache is a unified data and instruction
cache that is external to the processor chip on earlier Pentium processors and implemented
on the processor chip in later Pentium processors. For Pentium processors where the L2
cache is external to the processor, access to the cache is through the system bus.

The cache lines for the L1 and L2 caches in the Pentium 4 and the L1, L2, and L3 caches in the
Intel Xeon processors are 64 bytes wide. The processor always reads a cache line from system
memory beginning on a 64-byte boundary. (A 64-byte aligned cache line begins at an address
with its 6 least-significant bits clear.) A cache line can be filled from memory with a 8-transfer
burst transaction. The caches do not support partially-filled cache lines, so caching even a single
doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with
cache line reads from system memory beginning on a 32-byte boundary (5 least-significant bits
of amemory address clear.) A cache line can be filled from memory with a 4-transfer burst trans-
action. Partially-filled cache lines are not supported.

The trace cache in the Pentium 4 and Intel Xeon processors is an integral part of the Intel
NetBurst micro-architecture and is available in all execution modes: protected mode, system

Vol. 3 10-3

MEMORY CACHE CONTROL Intel ®

management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also available
in all execution modes; however, use of them must be handled carefully in SMM (see Section
13.4.2., “SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up
memory accesses when paging is enabled by reducing the number of memory accesses that are
required to read the page tables stored in system memory. The TLBs are divided into four
groups: instruction TLBs for 4-KByte pages, data TLBs for 4-KByte pages; instruction TLBs
for large pages (2-MByte or 4-MByte pages), and data TLBs for large pages. The TLBs are
normally active only in protected mode with paging enabled. When paging is disabled or the
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly
flushed (see Section 10.9., “Invalidating the Translation Lookaside Buffers (TLBs)”).

The store buffer is associated with the processors instruction execution units. It allows writes to
system memory and/or the internal caches to be saved and in some cases combined to optimize
the processor’s bus accesses. The store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions
and data flow through these caches without the need for explicit software control. However,
knowledge of the behavior of these caches may be useful in optimizing software performance.
For example, knowledge of cache dimensions and replacement algorithms gives an indication
of how large of a data structure can be operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances,
require intervention by system software. For these rare cases, the processor provides privileged
cache control instructions for use in flushing caches and forcing memory ordering.

The Pentium Ill, Pentium 4, and Intel Xeon processors introduced several instructions that soft-
ware can use to improve the performance of the L1, L2, and L3 caches, including the
PREFETCH# and CLFLUSH instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are
discussed in Section 10.5.5., “Cache Management Instructions”.

10.2. CACHING TERMINOLOGY

The IA-32 architecture (beginning with the Pentium processor) uses the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in
other processors (see Section 10.4., “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the
processor reads an entire cache line into the appropriate cache (L1, L2, L3, or all). This operation
is called a cache line fill. If the memory location containing that operand is still cached the next
time the processor attempts to access the operand, the processor can read the operand from the
cache instead of going back to memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it first checks
if a cache line for that memory location exists in the cache. If a valid cache line does exist, the
processor (depending on the write policy currently in force) can write the operand into the cache
instead of writing it out to system memory. This operation is called a write hit. If a write misses

10-4 Vol. 3

|nte|® MEMORY CACHE CONTROL

the cache (that is, a valid cache line is not present for area of memory being written to), the
processor performs a cache line fill, write allocation. Then it writes the operand into the cache
line and (depending on the write policy currently in force) can also write it out to memory. If the
operand is to be written out to memory, it is written first into the store buffer, and then written
from the store buffer to memory when the system bus is available. (Note that for the Pentium
processor, write misses do not result in a cache line fill; they always result in a write to memory.
For this processor, only read misses result in cache line fills.)

When operating in an MP system, [A-32 processors (beginning with the Intel486 processor)
have the ability to snoop other processor’s accesses to system memory and to their internal
caches. They use this snooping ability to keep their internal caches consistent both with system
memory and with the caches in other processors on the bus. For example, in the Pentium and P6
family processors, if through snooping one processor detects that another processor intends to
write to a memory location that it currently has cached in shared state, the snooping processor
will invalidate its cache line forcing it to perform a cache line fill the next time it accesses the
same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping) that another
processor is trying to access a memory location that it has modified in its cache, but has not yet
written back to system memory, the snooping processor will signal the other processor (by
means of the HITM# signal) that the cache line is held in modified state and will preform an
implicit write-back of the modified data. The implicit write-back is transferred directly to the
initial requesting processor and snooped by the memory controller to assure that system memory
has been updated. Here, the processor with the valid data may pass the data to the other proces-
sors without actually writing it to system memory; however, it is the responsibility of the
memory controller to snoop this operation and update memory.

10.3. METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the L1, L2, and L3 caches.
Within individual pages or regions of system memory, it also allows the type of caching (also
called memory type) to be specified, using a variety of system flags and registers (see Section
10.5., “Cache Control”). The memory types currently defined for the IA-32 architecture are as
follows. (Table 10-2 summarizes the memory types and gives their basic characteristics.)

® Strong Uncacheable (UC)—System memory locations are not cached. All reads and writes
appear on the system bus and are executed in program order without reordering. No
speculative memory accesses, page-table walks, or prefetches of speculated branch targets
are made. This type of cache-control is useful for memory-mapped I/O devices. When
used with normal RAM, it greatly reduces processor performance.

Vol. 3 10-5

MEMORY CACHE CONTROL

intgl.

Table 10-2. Memory Types and Their Properties

Allows
Memory Type and Writeback | Speculative
Mnemonic Cacheable | Cacheable Reads Memory Ordering Model

Strong Uncacheable No No No Strong Ordering

(UC)

Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can be
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for reads; No Yes Speculative Processor Ordering.

no for writes Available by programming
MTRRs.

Uncacheable (UC-)—Has same characteristics as the strong uncacheable (UC) memory
type, except that this memory type can be overridden by programming the MTRRs for the
WC memory type. This memory type is available in the Pentium 4, Intel Xeon, and
Pentium Il processors and can only be selected through the PAT.

Write Combining (WC)—System memory locations are not cached (as with uncacheable
memory) and coherency is not enforced by the processor’s bus coherency protocol.
Speculative reads are allowed. Writes may be delayed and combined in the write
combining buffer (WC buffer) to reduce memory accesses. If the WC buffer is partially
filled, the writes may be delayed until the next occurrence of a serializing event; such as,
an SFENCE or MFENCE instruction, CPUID execution, a read or write to uncached
memory, an interrupt occurrence, or a LOCK instruction execution. This type of cache-
control is appropriate for video frame buffers, where the order of writes is unimportant as
long as the writes update memory so they can be seen on the graphics display. See Section
10.3.1., “Buffering of Write Combining Memory Locations”, for more information about
caching the WC memory type. This memory type is available in the Pentium Pro and
Pentium II processors by programming the MTRRs or in the Pentium |ll, Pentium 4, and
Intel Xeon processors by programming the MTRRs or by selecting it through the PAT.

Write-through (WT)—Writes and reads to and from system memory are cached. Reads
come from cache lines on cache hits; read misses cause cache fills. Speculative reads are
allowed. All writes are written to a cache line (when possible) and through to system
memory. When writing through to memory, invalid cache lines are never filled, and valid
cache lines are either filled or invalidated. Write combining is allowed. This type of cache-
control is appropriate for frame buffers or when there are devices on the system bus that
access system memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

Write-back (WB)—Writes and reads to and from system memory are cached. Reads come
from cache lines on cache hits; read misses cause cache fills. Speculative reads are

10-6 Vol. 3

MEMORY CACHE CONTROL

intgl.

allowed. Write misses cause cache line fills (in the Pentium 4, Intel Xeon, and P6 family
processors), and writes are performed entirely in the cache, when possible. Write
combining is allowed. The write-back memory type reduces bus traffic by eliminating
many unnecessary writes to system memory. Writes to a cache line are not immediately
forwarded to system memory; instead, they are accumulated in the cache. The modified
cache lines are written to system memory later, when a write-back operation is performed.
Write-back operations are triggered when cache lines need to be deallocated, such as when
new cache lines are being allocated in a cache that is already full. They also are triggered
by the mechanisms used to maintain cache consistency. This type of cache-control
provides the best performance, but it requires that all devices that access system memory
on the system bus be able to snoop memory accesses to insure system memory and cache
coherency.

Write protected (WP)—Reads come from cache lines when possible, and read misses
cause cache fills. Writes are propagated to the system bus and cause corresponding cache
lines on all processors on the bus to be invalidated. Speculative reads are allowed. This
memory type is available in the Pentium 4, Intel Xeon, and P6 family processors by
programming the MTRRs (see Table 10-6).

Table 10-3 shows which of these caching methods are available in the Pentium, P6 Family,
Pentium 4, and Intel Xeon processors.

Table 10-3. Methods of Caching Available in Pentium 4, Intel Xeon, P6 Family, and
Pentium Processors

Pentium 4 and Intel
Memory Type Xeon Processors P6 Family Processors Pentium Processor
Strong Uncacheable (UC) Yes Yes Yes
Uncacheable (UC-) Yes Yes* No
Write Combining (WC) Yes Yes No
Write Through (WT) Yes Yes Yes
Write Back (WB) Yes Yes Yes
Write Protected (WP) Yes Yes No

NOTES:

* Introduced in the Pentium Il processor; not available in the Pentium Pro or Pentium II processors

10.3.1.

Buffering of Write Combining Memory Locations

Writes to the WC memory type are not cached in the typical sense of the word cached. They are
retained in an internal write combining buffer (WC buffer) that is separate from the internal L1,
L2, and L3 caches and the store buffer. The WC buffer is not snooped and thus does not provide
data coherency. Buffering of writes to WC memory is done to allow software a small window
of time to supply more modified data to the WC buffer while remaining as non-intrusive to soft-
ware as possible. The buffering of writes to WC memory also causes data to be collapsed; that

Vol. 3 10-7

MEMORY CACHE CONTROL Intel ®

is, multiple writes to the same memory location will leave the last data written in the location
and the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Pentium 4 and
Intel Xeon processors, the WC buffer is made up of several 64-byte WC buffers. For the P6
family processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC buffers one
at a time. When one or more WC buffers has been filled, the processor has the option of evicting
the buffers to system memory. The protocol for evicting the WC buffers is implementation
dependent and should not be relied on by software for system memory coherency. When using
the WC memory type, software must be sensitive to the fact that the writing of data to system
memory is being delayed and must deliberately empty the WC buffers when system memory
coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will
make a bus-transaction style decision based on how much of the buffer contains valid data. If
the buffer is full (for example, all bytes are valid) the processor will execute a burst-write trans-
action on the bus that will result in all 32 bytes (P6 family processors) or 64 bytes (Pentium 4
and Intel Xeon processor) being transmitted on the data bus in a single burst transaction. If one
or more of the WC buffer’s bytes are invalid (for example, have not been written by software)
then the processor will transmit the data to memory using “partial write” transactions (one chunk
at a time, where a “chunk” is 8 bytes).

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8
partial write transactions (for the Pentium 4 and Intel Xeon processors) for one WC buffer of
data sent to memory.

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has
started, the data is subject to the weak ordering semantics of its definition. Ordering is not main-
tained between the successive allocation/deallocation of WC buffers (for example, writes to WC
buffer 1 followed by writes to WC buffer 2 may appear as buffer 2 followed by buffer 1 on the
system bus). When a WC buffer is evicted to memory as partial writes there is no guaranteed
ordering between successive partial writes (for example, a partial write for chunk 2 may appear
on the bus before the partial write for chunk 1 or vice versa). The only elements of WC propa-
gation to the system bus that are guaranteed are those provided by transaction atomicity. For
example, with a P6 family processor, a completely full WC buffer will always be propagated as
a single 32-bit burst transaction using any chunk order. In a WC buffer eviction where the data
will be evicted as partials, all data contained in the same chunk (0 mod 8 aligned) will be prop-
agated simultaneously. Likewise, with a Pentium 4 or Intel Xeon processor, a full WC buffer
will always be propagated as a single burst transactions, using any chunk order within a trans-
action. For partial buffer propagations, all data contained in the same chunk will be propagated
simultaneously.

10-8 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.3.2. Choosing a Memory Type

The simplest system memory model does not use memory-mapped I/O with read or write side
effects, does not include a frame buffer, and uses the write-back memory type for all memory.
An I/O agent can perform direct memory access (DMA) to write-back memory and the cache
protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should
always use strong uncacheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes
desirable, because those writes cannot be observed at the other port until they reach the memory
agent. A system can use strong uncacheable, uncacheable, write-through, or write-combining
memory for frame buffers or dual-ported memory that contains pixel values displayed on a
screen. Frame buffer memory is typically large (a few megabytes) and is usually written more
than it is read by the processor. Using strong uncacheable memory for a frame buffer generates
very large amounts of bus traffic, because operations on the entire buffer are implemented using
partial writes rather than line writes. Using write-through memory for a frame buffer can
displace almost all other useful cached lines in the processor's L2 and L3 caches and L1 data
cache. Therefore, systems should use write-combining memory for frame buffers whenever
possible.

Software can use page-level cache control, to assign appropriate effective memory types when
software will not access data structures in ways that benefit from write-back caching. For
example, software may read a large data structure once and not access the structure again until
the structure is rewritten by another agent. Such a large data structure should be marked as
uncacheable, or reading it will evict cached lines that the processor will be referencing again.

A similar example would be a write-only data structure that is written to (to export the data to
another agent), but never read by software. Such a structure can be marked as uncacheable,
because software never reads the values that it writes (though as uncacheable memory, it will be
written using partial writes, while as write-back memory, it will be written using line writes,
which may not occur until the other agent reads the structure and triggers implicit write-backs).

On the Pentium Ill, Pentium 4, and Intel Xeon processors, new instructions are provided that
give software greater control over the caching, prefetching, and the write-back characteristics of
data. These instructions allow software to use weakly ordered or processor ordered memory
types to improve processor performance, but when necessary to force strong ordering on
memory reads and/or writes. They also allow software greater control over the caching of data.
(For a description of these instructions and there intended use, see Section 10.5.5., “Cache
Management Instructions”™).

10.4. CACHE CONTROL PROTOCOL

The following section describes the cache control protocol currently defined for the IA-32 archi-
tecture. This protocol is used by the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

In the L1 data cache and in the L2 and L3 unified caches, the MESI (modified, exclusive, shared,
invalid) cache protocol maintains consistency with caches of other processors. The L1 data

Vol. 3 10-9

MEMORY CACHE CONTROL

intgl.

cache and the L2 and L3 unified caches have two MESI status flags per cache line. Each line
can thus be marked as being in one of the states defined in Table 10-4. In general, the operation
of the MESI protocol is transparent to programs.

Table 10-4. MESI Cache Line States

the system bus.

the system bus.

processor to
gain exclusive

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)
This cache line is valid? Yes Yes Yes No
The memory copy is... ...out of date ...valid ...valid —
Copies exist in caches of No No Maybe Maybe
other processors?
A write to this linedoesnotgoto | ...doesnotgoto | ...causes the ...goes directly

to the system
bus.

ownership of the
line.

The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI
protocol, because the instruction cache is not writable. The instruction cache monitors changes
in the data cache to maintain consistency between the caches when instructions are modified.
See Section 10.6., “Self-Modifying Code”, for more information on the implications of caching
instructions.

10.5. CACHE CONTROL

The IA-32 architecture provides a variety of mechanisms for controlling the caching of data and
instructions and for controlling the ordering of reads and writes between the processor, the
caches, and memory. These mechanisms can be divided into two groups:

® Cache control registers and bits. The IA-32 architecture defines several dedicated registers
and various bits within control registers and page- and directory-table entries that control
the caching system memory locations in the L1, L2, and L3 caches. These mechanisms
control the caching of virtual memory pages and of regions of physical memory.

® Cache Control and Memory Ordering Instructions. The IA-32 architecture provides several
instructions that control the caching of data, the ordering of memory reads and writes, and
the prefetching of data. These instructions allow software to control the caching of specific
data structures, to control memory coherency for specific locations in memory, and to
force strong memory ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

10-10 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.5.1. Cache Control Registers and Bits

The current IA-32 architecture provides the following cache-control registers and bits for use in
enabling and/or restricting caching to various pages or regions in memory (see Figure 10-2):

® CD flag, bit 30 of control register CRO—Controls caching of system memory locations
(see Section 2.5., “Control Registers”). If the CD flag is clear, caching is enabled for the
whole of system memory, but may be restricted for individual pages or regions of memory
by other cache-control mechanisms. When the CD flag is set, caching is restricted in the
processor’s caches (cache hierarchy) for the Pentium 4, Intel Xeon, and P6 family
processors and prevented for the Pentium processor (see note below). With the CD flag set,
however, the caches will still respond to snoop traffic. Caches should be explicitly flushed
to insure memory coherency. For highest processor performance, both the CD and the NW
flags in control register CRO should be cleared. Table 10-5 shows the interaction of the CD
and NW flags.

NOTE

The effect of setting the CD flag is somewhat different for the Pentium 4,
Intel Xeon, and P6 family processors than for the Pentium processor (see
Table 10-5). To insure memory coherency after the CD flag is set, the caches
should be explicitly flushed (see Section 10.5.3., “Preventing Caching”).
Setting the CD flag for the Pentium 4, Intel Xeon, and P6 family processors
modifies cache line fill and update behaviour. Also for the Pentium 4, Intel
Xeon, and P6 family processors, setting the CD flag does not force strict
ordering of memory accesses unless the MTRRs are disabled and/or all
memory is referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).

Vol.3 10-11

MEMORY CACHE CONTROL

CR4
)
G
E
CRS3
)
C|w
D|IT

>

—> Enables global pages
designated with G flag

Control caching of
page directory

Page-Directory or

CRO Page-Table Entry
P4 _IP|P
c|N Alg'lc|w
bW T [B|T

CD and NW Flags

of system memory

control overall caching

control page-level
caching

G flag controls page-
level flushing of TLBs

IA32_MISC_ENABLE MSR

3 Level

Cache Disable

Store Buffer

TLBs

Physical Memory

PCD and PWT flags

FFFFFFFFH?

—————————— ~—_

PAT#

PAT controls caching
of virtual memory
pages

MTRRs?

MTRRs control caching
of selected regions of
physical memory

1. G flag only available in Pentium 4, Intel Xeon, and P6 family

processors.

2. If 36-bit physical addressing is being used, the maximum

physical address size is FFFFFFFFFH.

3. MTRRs available only in Pentium 4 and P6 family processors;
similar control available in Pentium processor with the KEN#
and WB/WT# pins.

4. PAT available only in Pentium Ill and Pentium 4 processors.

Figure 10-2. Cache-Control Registers and Bits Available in IA-32 Processors

10-12 Vol. 3

|nte|® MEMORY CACHE CONTROL

Table 10-5. Cache Operating Modes

CD | N\W Caching and Read/Write Policy L1 L2/L3"
0 0 | Normal Cache Mode. Highest performance cache operation.
- Read hits access the cache; read misses may cause replacement. Yes Yes
- Write hits update the cache. Yes Yes
- Only writes to shared lines and write misses update system memory. Yes Yes
- Write misses cause cache line fills. Yes Yes
- Write hits can change shared lines to modified under control of the Yes Yes
MTRRs and with associated read invalidation cycle.
- (Pentium processor only.) Write misses do not cause cache line fills. Yes
- (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of WB/WT#.
- Invalidation is allowed. Yes Yes
- External snoop traffic is supported. Yes Yes
0 1 Invalid setting.
Generates a general-protection exception (#GP) with an error code of 0. NA NA
1 0 | No-fill Cache Mode. Memory coherency is maintained.
- (Pentium 4 and Intel Xeon processors.) State of processor after a power Yes Yes
up or reset.
- Read hits access the cache; read misses do not cause replacement Yes Yes
(see Pentium 4 and Intel Xeon processors reference below).
- Write hits update the cache. Yes Yes
- Only writes to shared lines and write misses update system memory. Yes Yes
- Write misses access memory. Yes Yes
- Write hits can change shared lines to exclusive under control of the Yes Yes
MTRRs and with associated read invalidation cycle.
- (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of the WB/WT#.
- (Pentium 4, Intel Xeon, and P6 family processors only.) Strict memory Yes Yes

ordering is not enforced unless the MTRRs are disabled and/or all
memory is referenced as uncached (see Section 7.2.4., “Strengthening
or Weakening the Memory Ordering Model”).

- Invalidation is allowed. Yes Yes

- External snoop traffic is supported. Yes Yes

- (Pentium 4 and Intel Xeon processors) Allows cache line fills and Yes Yes
replacements unless the accessed memory is mapped as uncached.

1 1 Memory coherency is not maintained.?

- (P6 family and Pentium processors.) State of the processor after a Yes Yes
power up or reset.

- Read hits access the cache; read misses do not cause replacement. Yes Yes

- Write hits update the cache and change exclusive lines to modified. Yes Yes

- Shared lines remain shared after write hit. Yes Yes

- Write misses access memory. Yes Yes

- Invalidation is inhibited when snooping; but is allowed with INVD and Yes Yes
WBINVD instructions.

- External snoop traffic is supported. No Yes

NOTE:

1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is
intended to represent what could be implemented in a system based on a Pentium processor with an
external, platform specific, write-back L2 cache.

2. The Pentium 4 and Intel Xeon processors do not support this mode; setting the CD and NW bits to 1
selects the no-fill cache mode.

Vol.3 10-13

MEMORY CACHE CONTROL Intel ®

® NW flag, bit 29 of control register CRO—Controls the write policy for system memory
locations (see Section 2.5., “Control Registers”). If the NW and CD flags are clear, write-
back is enabled for the whole of system memory, but may be restricted for individual pages
or regions of memory by other cache-control mechanisms. Table 10-5 shows how the other
combinations of CD and NW flags affects caching.

NOTE

For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag;
that is, when the CD flag is set, the processor uses the no-fill cache mode,
regardless of the setting of the NW flag.

For the Pentium processor, when the L1 cache is disabled (the CD and NW
flags in control register CRO are set), external snoops are accepted in DP
(dual-processor) systems and inhibited in uniprocessor systems. When
snoops are inhibited, address parity is not checked and APCHK# is not
asserted for a corrupt address; however, when snoops are accepted, address
parity is checked and APCHK# is asserted for corrupt addresses.

® PCD flag in the page-directory and page-table entries—Controls caching for individual
page tables and pages, respectively (see Section 3.7.6., “Page-Directory and Page-Table
Entries”). This flag only has effect when paging is enabled and the CD flag in control
register CRO is clear. The PCD flag enables caching of the page table or page when clear
and prevents caching when set.

® PWT flag in the page-directory and page-table entries—Controls the write policy for
individual page tables and pages, respectively (see Section 3.7.6., “Page-Directory and
Page-Table Entries”). This flag only has effect when paging is enabled and the NW flag in
control register CRO is clear. The PWT flag enables write-back caching of the page table or
page when clear and write-through caching when set.

® PCD and PWT flags in control register CR3. Control the global caching and write policy
for the page directory (see Section 2.5., “Control Registers”). The PCD flag enables
caching of the page directory when clear and prevents caching when set. The PWT flag
enables write-back caching of the page directory when clear and write-through caching
when set. These flags do not affect the caching and write policy for individual page tables.
These flags only have effect when paging is enabled and the CD flag in control register
CRO is clear.

® G (global) flag in the page-directory and page-table entries (introduced to the IA-32 archi-
tecture in the P6 family processors)—Controls the flushing of TLB entries for individual
pages. See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for more information
about this flag.

® PGE (page global enable) flag in control register CR4—Enables the establishment of
global pages with the G flag. See Section 3.11., “Translation Lookaside Buffers (TLBs)”,
for more information about this flag.

10-14 Vol. 3

|nte|® MEMORY CACHE CONTROL

® Memory type range registers (MTRRs) (introduced in the P6 family processors)—Control
the type of caching used in specific regions of physical memory. Any of the caching types
described in Section 10.3., “Methods of Caching Available”, can be selected. See Section
10.11., “Memory Type Range Registers (MTRRs)”, for a detailed description of the
MTRRs.

® Page Attribute Table (PAT) MSR (Introduced in the Pentium Il processor)—Extends the
memory typing capabilities of the processor to permit memory types to be assigned on a
page-by-page basis (see Section 10.12., “Page Attribute Table (PAT)”).

® Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Introduced in
the Intel Xeon processors)—Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches.

¢ KEN# and WB/WT# pins (Pentium processor)—Allow external hardware to control the
caching method used for specific areas of memory. They perform similar (but not
identical) functions to the MTRRs in the P6 family processors.

® PCD and PWT pins (Pentium processor)—These pins (which are associated with the PCD
and PWT flags in control register CR3 and in the page-directory and page-table entries)
permit caching in an external L2 cache to be controlled on a page-by-page basis, consistent
with the control exercised on the L1 cache of these processors. The Pentium 4, Intel Xeon,
and P6 family processors do not provide these pins because the L2 cache in internal to the
chip package.

10.5.2. Precedence of Cache Controls

The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the
CD flag is set, caching is prevented globally (see Table 10-5). If the CD flag is clear, the page-
level cache control flags and/or the MTRRs can be used to restrict caching. If there is an overlap
of page-level and MTRR caching controls, the mechanism that prevents caching has prece-
dence. For example, if an MTRR makes a region of system memory uncachable, a page-level
caching control cannot be used to enable caching for a page in that region. The converse is also
true; that is, if a page-level caching control designates a page as uncachable, an MTRR cannot
be used to make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching
policies to a page and aregion of memory, the write-through policy takes precedence. The write-
combining policy (which can only be assigned through an MTRR or the PAT) takes precedence
over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used
to select memory types for pages, as described in the following sections.

Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) takes precedence over
the CD flag, MTRRs, and PAT for the L3 cache. That is, when the third-level cache disable flag
is set (cache disabled), the other cache controls have no affect on the L3 cache; when the flag is
clear (enabled), the cache controls have the same affect on the L3 cache as they have on the L1
and L2 caches.

Vol.3 10-15

MEMORY CACHE CONTROL Intel ®

10.5.2.1. SELECTING MEMORY TYPES FOR PENTIUM PRO AND PENTIUM II
PROCESSORS

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory
type for a page is selected with the MTRRs and the PCD and PWT bits in the page-table or page-
directory entry for the page. Table 10-6 describes the mapping of MTRR memory types and
page-level caching attributes to effective memory types, when normal caching is in effect (the
CD and NW flags in control register CRO are clear). Combinations that appear in gray are imple-
mentation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 10-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors*

MTRR Memory Type PCD Value PWT Value Effective Memory Type
uc X X uc
wC 0 0 wC

0 1 wWC
1 0 WC
1 1 uc
WT 0 X WT
1 X uc
WP 0 0 WP
0 1 WP
1 0 WC
1 1 uc
wB 0 0 wB
0 1 WT
1 X uc
Note:

* These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium Il processors when
the PAT bit is not used (set to 0) in page-table and page-directory entries.

When normal caching is in effect, the effective memory type shown in Table 10-6 is determined
using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is
identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. [If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the
WB memory type and the MTRR-defined memory type for all other memory types.

10-16 Vol. 3

|nte|® MEMORY CACHE CONTROL

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP
and WC memory types and architecturally-defined for the WB, WT, and UC memory

types.

10.5.2.2. SELECTING MEMORY TYPES FOR PENTIUM 4, INTEL XEON, AND
PENTIUM Il PROCESSORS

The Pentium 4, Intel Xeon, and Pentium Il processors use the PAT to select effective page-level
memory types. Here, a memory type for a page is selected by the MTRRs and the value in a PAT
entry that is selected with the PAT, PCD and PWT bits in a page-table or page-directory entry
(see Section 10.12.3., “Selecting a Memory Type from the PAT”). Table 10-7 describes the
mapping of MTRR memory types and PAT entry types to effective memory types, when normal
caching is in effect (the CD and NW flags in control register CRO are clear). The combinations
shown in gray are implementation-defined for the Pentium 4, Intel Xeon, and Pentium Il proces-
sors. System designers are encouraged to avoid the implementation-defined combinations.

Table 10-7. Effective Page-Level Memory Types for Pentium Ill, Pentium 4, and
Intel Xeon Processors

MTRR Memory Type PAT Entry Value Effective Memory Type

uc uc uc'
uc- uc’
wC wC
WT uc'
wB uc'
wpP uc'

we uc uc?
ucC- wWC
wC wWC
WT Undefined
WB WC
WP Undefined

WT uc uc?
uc- uc?
wC wC
WT WT
WB WT
WP Undefined

Vol.3 10-17

MEMORY CACHE CONTROL Intel ®

Table 10-7. Effective Page-Level Memory Types for Pentium Ill, Pentium 4, and
Intel Xeon Processors (Contd.)

wB uc uc?
uc- uc?
wcC wcC
WT WT
wB wB
wp wp

wp uc uc?
ucC- Undefined
wcC wcC
WT Undefined
wB WP
wp wp

NOTES:

1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since
the data could never have been cached. This attribute is preferred for performance reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required to check
their caches because the data may be cached due to page aliasing, which is not recommended.

10.5.2.3. WRITING VALUES ACROSS PAGES WITH DIFFERENT MEMORY
TYPES

If two adjoining pages in memory have different memory types, and a word or longer operand
is written to a memory location that crosses the page boundary between those two pages, the
operand might be written to memory twice. This action does not present a problem for writes to
actual memory; however, if a device is mapped the memory space assigned to the pages, the
device might malfunction.

10.5.3. Preventing Caching

To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills,
perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and the NW flag
to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the
uncached memory type (see the discussion of the discussion of the TYPE field and the E
flag in Section 10.11.2.1., “TA32_MTRR_DEF TYPE MSR”).

10-18 Vol. 3

|nte|® MEMORY CACHE CONTROL

The caches must be flushed (step 2) after the CD flag is set to insure system memory coherency.
If the caches are not flushed, cache hits on reads will still occur and data will be read from valid
cache lines.

NOTE

Setting the CD flag in control register CRO modifies the processor’s caching
behaviour as indicated in Table 10-5, but it does not force the effective
memory type for all physical memory to be UC nor does it force strict
memory ordering. To force the UC memory type and strict memory ordering
on all of physical memory, either the MTRRs must all be programmed for the
UC memory type or they must be disabled.

For the Pentium 4 and Intel Xeon processors, after the sequence of steps
given above has been executed, the cache lines containing the code between
the end of the WBINVD instruction and before the MTRRS have actually
been disabled may be retained in the cache hierarchy. Here, to remove code
from the cache completely, a second WBINVD instruction must be executed
after the MTRRs have been disabled.

10.5.4. Disabling and Enabling the L3 Cache

Third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache
to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to
disable or enable the L3 cache, software should disable and flush all the processor caches, as
described earlier in Section 10.5.3., “Preventing Caching”, to prevent of loss of information
stored in the L3 cache. After the L3 cache has been disabled or enabled, caching for the whole
processor can be restored.

10.5.5. Cache Management Instructions

The IA-32 architecture provide several instructions for managing the L1, L2, and L3 caches. The
INVD, WBINVD, and WBINVD instructions are system instructions that operate on the L1, L2,
and L3 caches as a whole. The PREFETCH/ and CLFLUSH instructions and the non-temporal
move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which
were introduced in SSE/SSE?2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3
caches. The INVD instruction invalidates all internal cache entries, then generates a special-
function bus cycle that indicates that external caches also should be invalidated. The INVD
instruction should be used with care. It does not force a write-back of modified cache lines;
therefore, data stored in the caches and not written back to system memory will be lost. Unless
there is a specific requirement or benefit to invalidating the caches without writing back the
modified lines (such as, during testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

Vol.3 10-19

MEMORY CACHE CONTROL Intel ®

The WBINVD instruction first writes back any modified lines in all the internal caches, then
invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache coherency with
main memory is maintained regardless of the write policy in effect (that is, write-through or
write-back). Following this operation, the WBINVD instruction generates one (P6 family
processors) or two (Pentium and Intel486 processors) special-function bus cycles to indicate to
external cache controllers that write-back of modified data followed by invalidation of external
caches should occur.

The PREFETCH?Z instructions allow a program to suggest to the processor that a cache line from
a specified location in system memory be prefetched into the cache hierarchy (see Section 10.8.,
“Explicit Caching”).

The CLFLUSH instruction allow selected cache lines to be flushed from memory. This instruc-
tion give a program the ability to explicitly free up cache space, when it is known that cached
section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD) allow data to be moved from the processor’s registers directly into system memory
without being also written into the L1, L2, and/or L3 caches. These instructions can be used to
prevent cache pollution when operating on data that is going to be modified only once before
being stored back into system memory. These instructions operate on data in the general-
purpose, MMX, and XMM registers.

10.5.6. L1 Data Cache Context Mode

First-level data cache context mode is a feature of the Intel Pentium 4 processor supporting
Hyper-Threading Technology. When the Context ID feature flag (ECX[10]) is set after
executing the CPUID instruction with EAX = 1, then the processor supports setting of the L1
Data Cache Context Mode using IA32_MISC_ENABLE MSR. The selectable modes are Adap-
tive Mode (default) and Shared Mode.

The BIOS is responsible for configuring the L1 data cache context mode.

10.5.6.1. ADAPTIVE MODE

In adaptive mode, memory accessed using the page directory is mapped identically across
logical processors sharing an L1 data cache. Since mapping is identical, the targeted cache
appears as full size to each logical processor (instead of being competitively shared).

If the CR3 register is configured the same for logical processors that share an L1 data cache, the
cache will take advantage of the adaptive mode feature. If the L1 data cache is configured for
adaptive mode, but CR3 registers are not programmed identical across the logical processors
that share the same L1 data cache, then each logical processor will compete for L1 data cache
resources. In this case, the cache does not look full size to any of the logical processors.

10-20 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.5.6.2. @ SHARED MODE

In shared mode, the L1 data cache is competitively shared. This is true even when CR3 registers
are configured identically across logical processors that share the same L1 data cache.

10.6. SELF-MODIFYING CODE

A write to a memory location in a code segment that is currently cached in the processor causes
the associated cache line (or lines) to be invalidated. This check is based on the physical address
of the instruction. In addition, the P6 family and Pentium processors check whether a write to a
code segment may modify an instruction that has been prefetched for execution. If the write
affects a prefetched instruction, the prefetch queue is invalidated. This latter check is based on
the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a
snoop of an instruction in a code segment, where the target instruction is already decoded and
resident in the trace cache, invalidates the entire trace cache. The latter behavior means that
programs that self-modify code can cause severe degradation of performance when run on the
Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-
32 processors. Applications that include self-modifying code use the same linear address for
modifying and fetching the instruction. Systems software, such as a debugger, that might
possibly modify an instruction using a different linear address than that used to fetch the instruc-
tion, will execute a serializing operation, such as a CPUID instruction, before the modified
instruction is executed, which will automatically resynchronize the instruction cache and
prefetch queue. (See Section 7.1.3., “Handling Self- and Cross-Modifying Code”, for more
information about the use of self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache
and memory, but if the instruction was prefetched before the write, the old version of the instruc-
tion could be the one executed. To prevent the old instruction from being executed, flush the
instruction prefetch unit by coding a jump instruction immediately after any write that modifies
an instruction.

10.7. IMPLICIT CACHING (PENTIUM 4, INTEL XEON, AND P6
FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the
element may never have been accessed in the normal von Neumann sequence. Implicit caching
occurs on the Pentium 4, Intel Xeon, and P6 family processors due to aggressive prefetching,
branch prediction, and TLB miss handling. Implicit caching is an extension of the behavior of
existing Intel386, Intel486, and Pentium processor systems, since software running on these
processor families also has not been able to deterministically predict the behavior of instruction
prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate
the cache when changes are made to cacheable data that the cache coherency mechanism does
not automatically handle. This includes writes to dual-ported or physically aliased memory

Vol. 3 10-21

MEMORY CACHE CONTROL Intel ®

boards that are not detected by the snooping mechanisms of the processor, and changes to page-
table entries in memory.

The code in Example 10-1 shows the effect of implicit caching on page-table entries. The linear
address FOOOH points to physical location BOOOH (the page-table entry for FOOOH contains the
value BOOOH), and the page-table entry for linear address FOOO is PTE_FO000.

Example 10-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3 ; Invalidate the TLB

mov CR3, EAX ; by copying CR3 to itself

mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [FOO0OH];

Because of speculative execution in the Pentium 4, Intel Xeon, and P6 family processors, the
last MOV instruction performed would place the value at physical location BOOOH into EBX,
rather than the value at the new physical address AOOOH. This situation is remedied by placing
a TLB invalidation between the load and the store.

10.8. EXPLICIT CACHING

The Pentium Il processor introduced four new instructions, the PREFETCH? instructions, that
provide software with explicit control over the caching of data. These instructions provide
“hints” to the processor that the data requested by a PREFETCH# instruction should be read into
cache hierarchy now or as soon as possible, in anticipation of its use. The instructions provide
different variations of the hint that allow selection of the cache level into which data will be read.

The PREFETCH?# instructions can help reduce the long latency typically associated with
reading data from memory and thus help prevent processor “stalls.” However, these instructions
should be used judiciously. Overuse can lead to resource conflicts and hence reduce the perfor-
mance of an application. Also, these instructions should only be used to prefetch data from
memory; they should not be used to prefetch instructions. For more detailed information on the
proper use of the prefetch instruction, refer to Chapter 6, “Optimizing Cache Usage for the Intel
Pentium 4 Processors”, in the Pentium 4 Processor Optimization Reference Manual (see
Section 1.4., “Related Literature”, for the document order number).

10.9. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS
(TLBS)

The processor updates its address translation caches (TLBs) transparently to software. Several
mechanisms are available, however, that allow software and hardware to invalidate the TLBs
either explicitly or as a side effect of another operation.

The INVLPG instruction invalidates the TLB for a specific page. This instruction is the most
efficient in cases where software only needs to invalidate a specific page, because it improves

10-22 Vol. 3

|nte|® MEMORY CACHE CONTROL

performance over invalidating the whole TLB. This instruction is not affected by the state of the
G flag in a page-directory or page-table entry.

The following operations invalidate all TLB entries except global entries. (A global entry is one
for which the G (global) flag is set in its corresponding page-directory or page-table entry. The
global flag was introduced into the IA-32 architecture in the P6 family processors, see Section
10.5., “Cache Control”.)

® Writing to control register CR3.

® A task switch that changes control register CR3.

The following operations invalidate all TLB entries, irrespective of the setting of the G flag:
® Asserting or de-asserting the FLUSH# pin.

® (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to an MTRR (with a
WRMSR instruction).

® Writing to control register CRO to modify the PG or PE flag.

® (Pentium 4, Intel Xeon, and P6 family processors only.) Writing to control register CR4 to
modify the PSE, PGE, or PAE flag.

See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for additional information about the
TLBs.

10.10. STORE BUFFER

IA-32 processors temporarily store each write (store) to memory in a store buffer. The store
buffer improves processor performance by allowing the processor to continue executing instruc-
tions without having to wait until a write to memory and/or to a cache is complete. It also allows
writes to be delayed for more efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use
multiple processors. The processor ensures that write operations are always carried out in
program order. It also insures that the contents of the store buffer are always drained to memory
in the following situations:

® When an exception or interrupt is generated.

® (Pentium 4, Intel Xeon, and P6 family processors only.) When a serializing instruction is
executed.

® When an I/O instruction is executed.
® When a LOCK operation is performed.

® (Pentium 4, Intel Xeon, and P6 family processors only.) When a BINIT operation is
performed.

Vol.3 10-23

MEMORY CACHE CONTROL Intel ®

® (Pentium lll, Pentium 4, and Intel Xeon processors only.) When using an SFENCE
instruction to order stores.

® (Pentium 4 and Intel Xeon processors only.) When using an MFENCE instruction to order
stores.

The discussion of write ordering in Section 7.2., “Memory Ordering”, gives a detailed descrip-
tion of the operation of the store buffer.

10.11. MEMORY TYPE RANGE REGISTERS (MTRRS)

The following section pertains only to the Pentium 4, Intel Xeon, and P6 family processors.

The memory type range registers (MTRRs) provide a mechanism for associating the memory
types (see Section 10.3., “Methods of Caching Available”) with physical-address ranges in
system memory. They allow the processor to optimize operations for different types of memory
such as RAM, ROM, frame-buffer memory, and memory-mapped I/O devices. They also
simplify system hardware design by eliminating the memory control pins used for this function
on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical memory, and
it defines a set of model-specific registers (MSRs) for specifying the type of memory that is
contained in each range. Table 10-8 shows the memory types that can be specified and their
properties; Figure 10-3 shows the mapping of physical memory with MTRRs. See Section 10.3.,
“Methods of Caching Available”, for a more detailed description of each memory type.

Following a hardware reset, a Pentium 4, Intel Xeon, or P6 family processor disables all the
fixed and variable MTRRs, which in effect makes all of physical memory uncachable. Initial-
ization software should then set the MTRRs to a specific, system-defined memory map. Typi-
cally, the BIOS (basic input/output system) software configures the MTRRs. The operating
system or executive is then free to modify the memory map using the normal page-level cache-
ability attributes.

In a multiprocessor system, different Pentium 4, Intel Xeon, or P6 family processors MUST use
the identical MTRR memory map so that software has a consistent view of memory, indepen-
dent of the processor executing a program.

10-24 Vol. 3

intgl.

Table 10-8. Memory Types That

MEMORY CACHE CONTROL

Can Be Encoded in MTRRs

Memory Type and Mnemonic

Encoding in MTRR

Uncacheable (UC) O0OH
Write Combining (WC) 01H
Reserved* 02H
Reserved* 03H
Write-through (WT) 04H
Write-protected (WP) 05H
Writeback (WB) 06H

Reserved*

7H through FFH

NOTE:

* Using these encoding result in a general-protection exception (#GP) being generated.

Physical Memory

Address ranges not
mapped by an MTRR —
are set to a default type

8 variable ranges
(from 4 KBytes to
maximum size of
physical memory)

FFFFFFFFH

100000H

64 fixed ranges
(4 KBytes each) >

FFFFFH

256 KBytes
C0000H

16 fixed ranges

(16 KBytes each))

BFFFFH

256 KByt
56 KBytes 80000H

8 fixed ranges

(64-KBytes each) >

7FFFFH
512 KBytes

0

Figure 10-3. Mapping Physical Memory With MTRRs

Vol.3 10-25

MEMORY CACHE CONTROL Intel ®

10.11.1. MTRR Feature Identification

The availability of the MTRR feature is model-specific. Software can determine if MTRRs are
supported on a processor by executing the CPUID instruction and reading the state of the MTRR
flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional informa-
tion about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap
MSR for the P6 family processors). The IA32_MTRRCAP MSR is a read-only MSR that can
be read with the RDMSR instruction. Figure 10-4 shows the contents of the IA32_MTRRCAP
MSR. The functions of the flags and field in this register are as follows:

VCNT (variable range registers count) field, bits 0 through 7
Indicates the number of variable ranges implemented on the processor. The
Pentium 4, Intel Xeon, and P6 family processors have eight pairs of MTRRs
for setting up eight variable ranges.

63 11109 8 7 0
wl |F
Reserved c)I(VCNT

WC—Write-combining memory type supported J
FIX—Fixed range registers supported
VCNT—Number of variable range registers

D Reserved

Figure 10-4. 1A32_MTRRCAP Register

FIX (fixed range registers supported) flag, bit 8
Fixed range MTRRs (IA32_MTRR_FIX64K_00000 through
IA32_MTRR_FIX4K_O0F8000) are supported when set; no fixed range regis-
ters are supported when clear.

WC (write combining) flag, bit 10
The write-combining (WC) memory type is supported when set; the WC type
is not supported when clear.

Bit 9 and bits 11 through 63 in the IA32_ MTRRCAP MSR are reserved. If software attempts to
write to the IA32_ MTRRCAP MSR, a general-protection exception (#GP) is generated.

For the Pentium 4, Intel Xeon, and P6 family processors, the IA32_MTRRCAP MSR always
contains the value SO8H.

10-26 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.11.2. Setting Memory Ranges with MTRRs

The memory ranges and the types of memory specified in each range are set by three groups of
registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range
MTRRs. These registers can be read and written to using the RDMSR and WRMSR instruc-
tions, respectively. The IA32_MTRRCAP MSR indicates the availability of these registers on
the processor (see Section 10.11.1., “MTRR Feature Identification™).

10.11.2.1. 1A32_MTRR_DEF_TYPE MSR

The IA32_ MTRR_DEF TYPE MSR (named MTRRdefType MSR for the P6 family proces-
sors) sets the default properties of the regions of physical memory that are not encompassed by
MTRRs. The functions of the flags and field in this register are as follows:

Type field, bits 0 through 7
Indicates the default memory type used for those physical memory address
ranges that do not have a memory type specified for them by an MTRR (see
Table 10-8 for the encoding of this field). The legal values for this field are O,
1, 4,5, and 6. All other values result in a general-protection exception (#GP)
being generated.

Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the UC type to
nonexistent memory locations, it can either be specified as the default type in
the Type field or be explicitly assigned with the fixed and variable MTRRs.

63 1211109 8 7 0

Reserved EIE Type

E—MTRR enable/disable #

FE—Fixed-range MTRRs enable/disable
Type—Default memory type

D Reserved

Figure 10-5. 1A32_MTRR_DEF_TYPE MSR

FE (fixed MTRRs enabled) flag, bit 10
Fixed-range MTRRs are enabled when set; fixed-range MTRRs are disabled
when clear. When the fixed-range MTRRs are enabled, they take priority over
the variable-range MTRRs when overlaps in ranges occur. If the fixed-range
MTRRs are disabled, the variable-range MTRRs can still be used and can map
the range ordinarily covered by the fixed-range MTRRs.

Vol. 3 10-27

MEMORY CACHE CONTROL Intel ®

E (MTRRs enabled) flag, bit 11
MTRRs are enabled when set; all MTRRSs are disabled when clear, and the UC
memory type is applied to all of physical memory. When this flag is set, the FE
flag can disable the fixed-range MTRRs; when the flag is clear, the FE flag has
no affect. When the E flag is set, the type specified in the default memory type
field is used for areas of memory not already mapped by either a fixed or vari-
able MTRR.

Bits 8 and 9, and bits 12 through 63, in the [A32_MTRR_DEF_TYPE MSR are reserved; the
processor generates a general-protection exception (#GP) if software attempts to write nonzero
values to them.

10.11.2.2. FIXED RANGE MTRRS

The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these
registers is divided into 8-bit fields that are used to specify the memory type for each of the sub-
ranges the register controls:

¢ Register IA32_MTRR_FIX64K_00000. Maps the 512-KByte address range from OH to
7FFFFH. This range is divided into eight 64-KByte sub-ranges.

® Registers IA32_ MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000. Maps the
two 128-KByte address ranges from 80000H to BFFFFH. This range is divided into
sixteen 16-KByte sub-ranges, 8 ranges per register.

¢ Registers IA32_ MTRR_FIX4K_C0000 through IA32 MTRR_FIX4K_F8000. Maps
eight 32-KByte address ranges from COO00H to FFFFFH. This range is divided into sixty-
four 4-KByte sub-ranges, 8 ranges per register.

Table 10-9 shows the relationship between the fixed physical-address ranges and the corre-
sponding fields of the fixed-range MTRRs; Table 10-8 shows the possible encoding of these
fields.

Note that for the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

10.11.2.3. VARIABLE RANGE MTRRS

The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory
type for eight variable-size address ranges, using a pair of MTRRs for each range. The first of
each pair JA32_MTRR_PHYSBASERn) defines the base address and memory type for the
range, and the second (IA32_MTRR_PHYSMASK#) contains a mask that is used to determine
the address range. The “n” suffix indicates registers pairs 0 through 7.

Note that for the P6 family processors, the prefixes for the variable range MTRRs are MTRR-
physBase and MTRRphysMask.

10-28 Vol. 3

intgl.

Table 10-9. Address Mapping for Fixed-Range MTRRs

MEMORY CACHE CONTROL

Address Range (hexadecimal) MTRR
63 56 |55 48 |47 40 |39 32 (31 24 (23 16|15 8 |7 O
70000- | 60000- |50000- |40000- |30000- |20000- | 10000- | 00000- |IA32_MTRR_
7FFFF | 6FFFF | 5FFFF | 4FFFF | 3FFFF | 2FFFF | 1FFFF | OFFFF | FIX64K_00000
9C000 | 98000- | 94000- |90000- |8CO000- |88000- |84000- |80000- |IA32_MTRR_
9FFFF | 98FFF | 97FFF | 93FFF | 8FFFF | 8BFFF |87FFF |83FFF | FIX16K_80000
BCO00 | B8000- | B4000- | BOO0OO- | ACO00- | A8B000- | A4000- | A0O00O- |IA32_MTRR_
BFFFF | BBFFF | B7FFF | B3FFF | AFFFF | ABFFF | A7FFF | ABFFF | FIX16K_A0000
C7000 | C6000- | C5000- | C4000- | C3000- | C2000- | C1000- | CO000- |IA32_MTRR_
C7FFF | C6FFF | C5FFF | CAFFF | C3FFF | C2FFF | C1FFF | COFFF | FIX4K_C0000
CF000 | CE000- | CDO00O- | CCO00- | CB00O- | CA000O- | C9000- | C8000- |IA32_MTRR_
CFFFF | CEFFF | CDFFF | CCFFF | CBFFF | CAFFF | COFFF | C8FFF | FIX4K_C8000
D7000 | D6000- | D5000- | D4000- | D3000- | D2000- | D1000- | DO00O- |IA32_MTRR_
D7FFF | D6FFF | D5FFF | DAFFF | D3FFF | D2FFF | D1FFF | DOFFF | FIX4K_D0000
DF000 | DE00OO- | DD000O- | DC000- | DBO0O- | DAOOO- | D9000- | D8000- |IA32_MTRR_
DFFFF | DEFFF | DDFFF | DCFFF | DBFFF | DAFFF | D9FFF | D8FFF | FIX4K_D8000
E7000 E6000- | E5000- | E4000- | E3000- | E2000- | E1000- | EO000- |IA32_MTRR_
E7FFF | E6FFF | ESFFF | E4AFFF | EBFFF | E2FFF | E1FFF | EOFFF | FIX4K_E0000
EF000 | EE000- | EDOOO- | ECO00- | EBOOO- | EA00O- | E9000- | E8000- |IA32_MTRR_
EFFFF | EEFFF | EDFFF | ECFFF | EBFFF | EAFFF | EQFFF | ESBFFF | FIX4K_E8000
F7000 F6000- | F5000- | F4000- | F3000- | F2000- | F1000- | FO000- |IA32_MTRR_
F7FFF | F6FFF | F5FFF | FAFFF | F3FFF | F2FFF | FIFFF | FOFFF | FIX4K_F0000
FF000 FEO000- | FDO0OO- | FCO00- | FBOOO- | FAOOO- | F9000- | F8000- |IA32_MTRR_
FFFFF | FEFFF | FDFFF | FCFFF | FBFFF | FAFFF | FOFFF | FBFFF | FIX4K_F8000

Figure 10-6 shows flags and fields in these registers. The functions of the flags and fields in

these registers are as follows:

Type field, bits 0 through 7

Specifies the memory type for the range (see Table 10-8 for the encoding of this
field).

PhysBase field, bits 12 through 35
Specifies the base address of the address range. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns
the address on a 4-KByte boundary.

Vol.3 10-29

MEMORY CACHE CONTROL Intel ®

PhysMask field, bits 12 through 35
Specifies a 24-bit mask that determines the range of the region being mapped,
according to the following relationship:

Address_Within_Range AND PhysMask = PhysBase AND PhysMask

This 24-bit value is extended by 12 bits at the low end to form the mask value.
See Section 10.11.3., “Example Base and Mask Calculations”, for more infor-
mation and some examples of base address and mask computations.

V (valid) flag, bit 11
Enables the register pair when set; disables register pair when clear.

IA32_MTRR_PHYSBASEnN Register
63 36 35 1211 87 0

Reserved PhysBase Type

PhysBase—Base address of range J
Type—Memory type for range

IA32_MTRR_PHYSMASKn Register
63 36 35 121110 0

Reserved PhysMask \ Reserved

PhysMask—Sets range mask J
V—Valid

D Reserved

Figure 10-6. 1A32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range
Register Pair

All other bits in the IA32_MTRR_PHYSBASE#n and IA32_MTRR_PHYSMASK® registers are
reserved; the processor generates a general-protection exception (#GP) if software attempts to
write to them.

Overlapping variable MTRR ranges are not supported generically. However, two variable
ranges are allowed to overlap, if the following conditions are present:

® If both of them are UC (uncached).
® If one range is of type UC and the other is of type WB (write back).

In both cases above, the effective type for the overlapping region is UC. The processor’s
behavior is undefined for all other cases of overlapping variable ranges.

A variable range can overlap a fixed range (provided the fixed range MTRR’s are enabled).
Here, the memory type specified in the fixed range register overrides the one specified in vari-
able-range register pair.

10-30 Vol. 3

|nte|® MEMORY CACHE CONTROL

NOTE

Some mask values can result in discontinuous ranges. In a discontinuous
range, the area not mapped by the mask value is set to the default memory
type. Intel does not encourage the use of discontinuous ranges, because they
could require physical memory to be present throughout the entire 4-GByte
physical memory map. If memory is not provided for the complete memory
map, the behaviour of the processor is undefined.

10.11.3. Example Base and Mask Calculations

The base and mask values entered into the variable-range MTRR pairs are 24-bit values that the
processor extends to 36-bits. For example, to enter a base address of 2 MBytes (200000H) to the
IA32_MTRR_PHYSBASES3 register, the 12 least-significant bits are truncated and the value
000200H is entered into the PhysBase field. The same operation must be performed on mask
values. For instance, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4
MBytes), a mask value of FFFEOOOOOH is required. Here again, the 12 least-significant bits of
this mask value are truncated, so that the value entered in the PhysMask field of the
IA32_MTRR_PHYSMASKS3 register is FFFEOOH. This mask is chosen so that when any
address in the 200000H to 3FFFFFH range is ANDed with the mask value it will return the same
value as when the base address is ANDed with the mask value (which is 200000H).

To map the address range from 400000H 7FFFFFH (4 MBytes to 8 MBytes), a base value of
000400H is entered in the PhysBase field and a mask value of FFFCOOH is entered in the Phys-
Mask field.

Here is a real-life example of setting up the MTRRs for an entire system. Assume that the system
has the following characteristics:

® 96 MBytes of system memory is mapped as write-back memory (WB) for highest system
performance.

¢ A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64
MBytes. This restriction forces the 96 MBytes of system memory to be addressed from 0
to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 4-MByte hole for the I/O
card.

® An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at
address AOOOOOOOH.

® The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

Vol. 3 10-31

MEMORY CACHE CONTROL Intel ®

The following settings for the MTRRs will yield the proper mapping of the physical address
space for this system configuration.

IA32_MTRR_PHYSBASEO = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASKO = 0000 000F FC00 0800H
Caches 0-64 MB as WB cache type.
IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FEOO 0800H
Caches 64-96 MB as WB cache type.
IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFCO 0800H
Caches 96-100 MB as WB cache type.
IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFCO 0800H
Caches 64-68 MB as UC cache type.
IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFF0O 0800H
Caches 15-16 MB as UC cache type
IA32_MTRR_PHYSBASES5 = 0000 0000 AO0O 0001H
IA32_MTRR_PHYSMASK5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are
mapped to WB and UC memory types) to minimize the number of MTRR registers that are
required to configure the memory environment. This setup also fulfills the requirement that two
register pairs are left for operating system usage.

10.11.4. Range Size and Alignment Requirement

The range that is to be mapped to a variable-range MTRR must meet the following “power of
2” size and alignment rules:

1. The minimum range size is 4 KBytes, and the base address of this range must be on at least
a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2" and its base address
must be aligned on a 2" boundary, where 7 is a value equal to or greater than 12. The base-
address alignment value cannot be less than its length. For example, an §-KByte range
cannot be aligned on a 4-KByte boundary. It must be aligned on at least an 8-KByte
boundary.

10-32 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.11.4.1. MTRR PRECEDENCES

If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR),
then all memory accesses are of the UC memory type. If the MTRRs are enabled, then the
memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs
are enabled, the processor uses the memory type stored for the appropriate fixed-range
MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type range
set with a pair of variable-range MTRRs:

a. If one variable memory range matches, the processor uses the memory type stored in
the IA32_MTRR_PHYSBASER® register for that range.

b. If two or more variable memory ranges match and the memory types are identical,
then that memory type is used.

c. If two or more variable memory ranges match and one of the memory types is UC, the
UC memory type used.

d. If two or more variable memory ranges match and the memory types are WT and WB,
the WT memory type is used.

e. If two or more variable memory ranges match and the memory types are other than UC
and WB, the behaviour of the processor is undefined.

3. Ifno fixed or variable memory range matches, the processor uses the default memory type.

10.11.5. MTRR Initialization

On a hardware reset, a Pentium 4, Intel Xeon, or P6 family processor clears the valid flags in the
variable-range MTRRs and clears the E flag in the [A32_MTRR_DEF_TYPE MSR to disable
all MTRRs. All other bits in the MTRRs are undefined. Prior to initializing the MTRRs, soft-
ware (normally the system BIOS) must initialize all fixed-range and variable-range MTRR
registers fields to 0. Software can then initialize the MTRRs according to the types of memory
known to it, including memory on devices that it auto-configures. This initialization is expected
to occur prior to booting the operating system.

See Section 10.11.8., “MTRR Considerations in MP Systems”, for information on initializing
MTRRs in MP (multiple-processor) systems.

Vol.3 10-33

MEMORY CACHE CONTROL Intel ®

10.11.6. Remapping Memory Types

A system designer may re-map memory types to tune performance or because a future processor
may not implement all memory types supported by the Pentium 4, Intel Xeon, and P6 family
processors. The following rules support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker
memory ordering model. For example, the uncacheable type cannot be mapped into any
other type, and the write-back, write-through, and write-protected types cannot be mapped
into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that
does delay writes, because applications of such a memory type may rely on its write-
through behavior. Accordingly, the write-back type cannot be mapped into the write-
through type.

3. A memory type that views write data as not necessarily stored and read back by a
subsequent read, such as the write-protected type, can only be mapped to another type with
the same behaviour (and there are no others for the Pentium 4, Intel Xeon, and P6 family
processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how a memory
type is used, allowing additional mappings. For example, write-through memory with no asso-
ciated write side effects can be mapped into write-back memory.

10.11.7. MTRR Maintenance Programming Interface

The operating system maintains the MTRRs after booting and sets up or changes the memory
types for memory-mapped devices. The operating system should provide a driver and applica-
tion programming interface (API) to access and set the MTRRs. The function calls
MemTypeGet() and MemTypeSet() define this interface.

10.11.7.1. MEMTYPEGET() FUNCTION

The MemTypeGet() function returns the memory type of the physical memory range specified
by the parameters base and size. The base address is the starting physical address and the size is
the number of bytes for the memory range. The function automatically aligns the base address
and size to 4-KByte boundaries. Pseudocode for the MemTypeGet() function is given in
Example 10-2.

Example 10-2. MemTypeGet() Pseudocode
#define MIXED_TYPES -1 /* 0 < MIXED_TYPES Il MIXED_TYPES > 256 */
IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space

10-34 Vol. 3

|nte|® MEMORY CACHE CONTROL

THEN return INVALID;
Fl;
IF MTRRdefType.E = 0
THEN return UC;
Fl;
FirstType «<— GetdKMemType (BASE);
/* Obtains memory type for first 4-KByte range */
/* See GetdKMemType (4KByteRange) in Example 10-3 */
FOR each additional 4-KByte range specified in SIZE
NextType < GetdKMemType (4KByteRange);
IF NextType # FirstType
THEN return MixedTypes;
Fl;
ROF,;
return FirstType;

ELSE return UNSUPPORTED;
Fl;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs
are not enabled, then the UC memory type is returned. If more than one memory type corre-
sponds to the specified range, a status of MIXED_TYPES is returned. Otherwise, the memory
type defined for the range (UC, WC, WT, WB, or WP) is returned.

The pseudocode for the Get4dKMemType() function in Example 10-3 obtains the memory type
for a single 4-KByte range at a given physical address. The sample code determines whether an
PHY_ADDRESS falls within a fixed range by comparing the address with the known fixed
ranges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH (16-KByte regions), and CO000H
to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the appropriate bits
within one of its MTRRs determine the memory type.

Example 10-3. Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range
return IA32_MTRR_FIX.Type;
Fl;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT
IF IA32_MTRR_PHYSMASK.V =0
THEN continue;
Fl;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =
(IA32_MTRR_PHYSBASE.Base
AND IA32_MTRR_PHYSMASK.Mask)
THEN
return IA32_MTRR_PHYSBASE.Type;
Fl;
ROF;
return MTRRdefType.Type;

Vol.3 10-35

MEMORY CACHE CONTROL Intel ®

10.11.7.2. MEMTYPESET() FUNCTION

The MemTypeSet() function in Example 10-4 sets a MTRR for the physical memory range spec-
ified by the parameters base and size to the type specified by type. The base address and size are
multiples of 4 KBytes and the size is not 0.

Example 10-4. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN
IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID;
Fl;
IF (BASE + SIZE) wrap 4-GByte address space
THEN return INVALID;
Fl;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family processors
THEN return UNSUPPORTED;
Fl;
IF TYPE is WC and not supported
THEN return UNSUPPORTED;
Fl;
IF IA32_MTRRCAP.FIX is set AND range can be mapped using a fixed-range MTRR
THEN
pre_mtrr_change();
update affected MTRR,;
post_mtrr_change();
Fl;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT =0
THEN return UNSUPPORTED;

Fl;

IF conflicts with current variable ranges
THEN return RANGE_OVERLAP;

Fl;

IF no MTRRs available
THEN return VAR_NOT_AVAILABLE;

Fl;

IF BASE and SIZE do not meet the power of 2 requirements for variable MTRRs
THEN return INVALID_VAR_REQUEST;

Fl;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

Fl;

pre_mtrr_change()

10-36 Vol. 3

|nte|® MEMORY CACHE CONTROL

BEGIN
disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;

Fl;

END

post_mtrr_change()

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects
conflicts with current variable range registers by cycling through them and determining whether
the physical address in question matches any of the current ranges. During this scan, the algo-
rithm can detect whether any current variable ranges overlap and can be concatenated into a
single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid
executing code with a partially valid MTRR setup. The algorithm disables caching by setting
the CD flag and clearing the NW flag in control register CR0. The caches are invalidated using
the WBINVD instruction. The algorithm disables the page global flag (PGE) in control register
CR4, if necessary, then flushes all TLB entries by updating control register CR3. Finally, it
disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and
again invalidates the caches and TLBs. This second invalidation is required because of the
processor's aggressive prefetch of both instructions and data. The algorithm restores interrupts
and re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache inval-
idations occur.

10.11.8. MTRR Considerations in MP Systems

In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency
between all the processors in the system. The Pentium 4, Intel Xeon, and P6 family processors
provide no hardware support to maintain this consistency. In general, all processors must have
the same MTRR values.

Vol.3 10-37

MEMORY CACHE CONTROL Intel ®

This requirement implies that when the operating system initializes an MP system, it must load
the MTRRs of the boot processor while the E flag in register MTRRdefType is 0. The operating
system then directs other processors to load their MTRRs with the same memory map. After all
the processors have loaded their MTRRs, the operating system signals them to enable their
MTRRs. Barrier synchronization is used to prevent further memory accesses until all processors
indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-down style
algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat
the loading and enabling process to maintain consistency, using the following procedure:

1. Broadcast to all processors to execute the following code sequence.
2. Disable interrupts.

3. Wait for all processors to reach this point.

4

Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and the NW flag
to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that supports self-
snooping, CPUID feature flag bit 27, this step is unnecessary.

6. Clear the PGE flag in control register CR4 (if set).

7. Flush all TLBs. (Execute a MOV from control register CR3 to another register and then a
MOV from that register back to CR3.)

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only
variable ranges are being modified, software may clear the valid bits for the affected
register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only
variable-range registers were modified and their individual valid bits were cleared, then set
the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4,
Intel Xeon, and P6 family processors. Executing the WBINVD instruction is not needed
when using Pentium 4, Intel Xeon, and P6 family processors, but it may be needed in
future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control
register CRO to 0.)

13. Set PGE flag in control register CR4, if previously cleared.
14. Wait for all processors to reach this point.

15. Enable interrupts.

10-38 Vol. 3

|nte|® MEMORY CACHE CONTROL

10.11.9. Large Page Size Considerations

The MTRRs provide memory typing for a limited number of regions that have a 4 KByte gran-
ularity (the same granularity as 4-KByte pages). The memory type for a given page is cached in
the processor’s TLBs. When using large pages (2 or 4 MBytes), a single page-table entry covers
multiple 4-KByte granules, each with a single memory type. Because the memory type for a
large page is cached in the TLB, the processor can behave in an undefined manner if a large page
is mapped to a region of memory that MTRRs have mapped with multiple memory types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within a
large page are of the same type. If a large page maps to a region of memory containing different
MTRR-defined memory types, the PCD and PWT flags in the page-table entry should be set for
the most conservative memory type for that range. For example, a large page used for memory
mapped I/O and regular memory is mapped as UC memory. Alternatively, the operating system
can map the region using multiple 4-KByte pages each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory type implies
that large pages with different memory types may suffer a performance penalty, since they must
be marked with the lowest common denominator memory type.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the physical
memory range from 0 to 4 MBytes, which is potentially mapped by both the fixed and vari-
able MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or P6 family processor
detects a large page overlapping the first 1 MByte of this memory range with a memory type
that conflicts with the fixed MTRRs. Here, the processor maps the memory range as multiple
4-KByte pages within the TLB. This operation insures correct behavior at the cost of perfor-
mance. To avoid this performance penalty, operating-system software should reserve the
large page option for regions of memory at addresses greater than or equal to 4 MBytes.

10.12. PAGE ATTRIBUTE TABLE (PAT)

The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to allow
memory types to be assigned to regions of physical memory based on linear address mappings.
The PAT is a companion feature to the MTRRs; that is, the MTRRs allow mapping of memory
types to regions of the physical address space, where the PAT allows mapping of memory types
to pages within the linear address space. The MTRRs are useful for statically describing memory
types for physical ranges, and are typically set up by the system BIOS. The PAT extends the
functions of the PCD and PWT bits in page tables to allow all five of the memory types that can
be assigned with the MTRRS (plus one additional memory type) to also be assigned dynamically
to pages of the linear address space.

The PAT was introduced into the IA-32 architecture in the Pentium Il processor and is also
available in the Pentium 4 and Intel Xeon processors.

Vol.3 10-39

MEMORY CACHE CONTROL Intel ®

NOTE

In multiple processor systems, the operating system must maintain MTRR
consistency between all the processors in the system (that is, all processors
must use the same MTRR values). The Pentium 4, Intel Xeon, and P6 family
processors provide no hardware support for maintaining this consistency.

10.12.1. Detecting Support for the PAT Feature

An operating system or executive can detect the availability of the PAT by executing the CPUID
instruction with a value of 1 in the EAX register. Support for the PAT is indicated by the PAT
flag (bit 16 of the values returned to EDX register). If the PAT is supported, the operating system
or executive can use the IA32_CR_PAT MSR to program the PAT. When memory types have
been assigned to entries in the PAT, software can then use of the PAT-index bit (PAT) in the page-
table and page-directory entries along with the PCD and PWT bits to assign memory types from
the PAT to individual pages.

Note that there is no separate flag or control bit in any of the control registers that enables the
PAT. The PAT is always enabled on all processors that support it, and the table lookup always
occurs whenever paging is enabled, in all paging modes.

10.12.2. IA32_CR_PAT MSR

The IA32_CR_PAT MSR is located at MSR address 277H (see to Appendix B, Model-Specific
Registers (MSRs), and this address will remain at the same address on future IA-32 processors
that support the PAT feature. Figure 10-7 shows the format of the 64-bit IA32_CR_PAT MSR.

The IA32_CR_PAT MSR contains eight page attribute fields: PAO through PA7. The three low-
order bits of each field are used to specify a memory type. The five high-order bits of each field
are reserved, and must be set to all Os. Each of the eight page attribute fields can contain any of
the memory type encodings specified in Table 10-10.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
‘Reserved‘ PA3 ‘Reserved‘ PA2 ‘Reserved‘ PA1 ‘Reserved‘ PAO ‘

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
‘Reserved‘ PA7 ‘Reserved‘ PA6 ‘Reserved‘ PA5 ‘Reserved‘ PA4 ‘

Figure 10-7. 1A32_CR_PAT MSR

Note that for the P6 family processors, the IA32_CR_PAT MSR is named the PAT MSR.

10-40 Vol. 3

|nte|® MEMORY CACHE CONTROL

Table 10-10. Memory Types That Can Be Encoded With PAT

Encoding Mnemonic
00H Uncacheable (UC)
01H Write Combining (WC)
02H Reserved”
03H Reserved”
04H Write Through (WT)
05H Write Protected (WP)
06H Write Back (WB)
07H Uncached (UC-)
08H - FFH Reserved”

Note:
* Using these encoding result in a general-protection exception (#GP) being generated.

10.12.3. Selecting a Memory Type from the PAT

To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, PCD, and
PWT bits must be encoded in the page-table or page-directory entry for the page. Table 10-11
shows the possible encodings of the PAT, PCD, and PWT bits and the PAT entry selected with
each encoding. The PAT bit is bit 7 in page-table entries that point to 4-KByte pages (see Figures
3-14 and 3-20) and bit 12 in page-directory entries that point to 2-MByte or 4-MByte pages (see
Figures 3-15, 3-21, and 3-23). The PCD and PWT bits are always bits 4 and 3, respectively, in
page-table and page-directory entries.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the region
of physical memory in which the page is mapped to determine the effective memory type for the
page, as shown in Table 10-7.

Table 10-11. Selection of PAT Entries with PAT, PCD, and PWT Flags

PAT PCD PWT PAT Entry
0 0 0 PATO
0 0 1 PATA
0 1 0 PAT2
0 1 1 PAT3
1 0 0 PAT4
1 0 1 PAT5
1 1 0 PAT6
1 1 1 PAT7

Vol. 3 10-41

MEMORY CACHE CONTROL Intel ®

10.12.4. Programming the PAT

Table 10-12 shows the default setting for each PAT entry following a power up or reset of the
processor. The setting remain unchanged following a soft reset (INIT reset).

Table 10-12. Memory Type Setting of PAT Entries Following a Power-up or Reset

PAT Entry Memory Type Following Power-up or Reset
PATO WB
PAT1 WT
PAT2 ucC-
PAT3 uc
PAT4 WB
PAT5 WT
PAT6 ucC-
PAT7 uc

The values in all the entries of the PAT can be changed by writing to the IA32_CR_PAT MSR
using the WRMSR instruction. The IA32_CR_PAT MSR is read and write accessible (use of
the RDMSR and WRMSR instructions, respectively) to software operating at a CPL of 0.
Table 10-10 shows the allowable encoding of the entries in the PAT. Attempting to write an
undefined memory type encoding into the PAT causes a general-protection (#GP) exception
to be generated.

NOTE

In a multiple processor system, the PATs of all processors must contain the
same values.

The operating system is responsible for insuring that changes to a PAT entry occur in a manner
that maintains the consistency of the processor caches and translation lookaside buffers (TLB).
This is accomplished by following the procedure as specified in Section 10.11.8., “MTRR
Considerations in MP Systems” for changing the value of an MTRR in a multiple processor
system. It requires a specific sequence of operations that includes flushing the processors caches
and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it is possible
to have a single physical page mapped to two or more different linear addresses, each with
different memory types. Intel does not support this practice because it may lead to undefined
operations that can result in a system failure. In particular, a WC page must never be aliased to
a cacheable page because WC writes may not check the processor caches. When remapping a
page that was previously mapped as a cacheable memory type to a WC page, an operating
system can avoid this type of aliasing by doing the following:

1. Remove the previous mapping to a cacheable memory type in the page tables; that is, make
them not present.

2. Flush the TLBs of processors that may have used the mapping, even speculatively.

10-42 Vol. 3

|nte|® MEMORY CACHE CONTROL

3. Create a new mapping to the same physical address with a new memory type, for instance,
WC.

4. Flush the caches on all processors that may have used the mapping previously. Note on
processors that support self-snooping, CPUID feature flag bit 27, this step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) and enable page
size extensions must carefully scrutinize the use of the PAT index bit for the 4-KByte page-table
entries. The PAT index bit for a page-table entry (bit 7) corresponds to the page size bit in a page-
directory entry. Therefore, the operating system can only use PAT entries PAO through PA3
when setting the caching type for a page table that is also used as a page directory. If the oper-
ating system attempts to use PAT entries PA4 through PA7 when using this memory as a page
table, it effectively sets the PS bit for the access to this memory as a page directory.

NOTE

For compatibility with earlier IA-32 processors that do not support the PAT,
care should be taken in selecting the encodings for entries in the PAT (see
Section 10.12.5., “PAT Compatibility with Earlier IA-32 Processors™).

10.12.5. PAT Compatibility with Earlier IA-32 Processors

For TA-32 processors that support the PAT, the IA32_CR_PAT MSR is always active. That is,
the PCD and PWT bits in page-table entries and in page-directory entries (that point to pages)
are always select a memory type for a page indirectly by selecting an entry in the PAT. They
never select the memory type for a page directly as they do in earlier IA-32 processors that do
not implement the PAT (see Table 10-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not support the
PAT, the PAT mechanism has been designed to allow backward compatibility to earlier proces-
sors. This compatibility is provided through the ordering of the PAT, PCD, and PWT bits in the
3-bit PAT entry index. For processors that do not implement the PAT, the PAT index bit (bit 7 in
the page-table entries and bit 12 in the page-directory entries) is reserved and set to 0. With the
PAT bit reserved, only the first four entries of the PAT can be selected with the PCD and PWT
bits. At power-up or reset (see Table 10-12), these first four entries are encoded to select the
same memory types as the PCD and PWT bits would normally select directly in an IA-32
processor that does not implement the PAT. So, if encodings of the first four entries in the PAT
are left unchanged following a power-up or reset, code written to run on earlier [A-32 processors
that do not implement the PAT will run correctly on IA-32 processors that do implement the PAT.

Vol.3 10-43

MEMORY CACHE CONTROL

10-44 Vol. 3

intel.

11

Intel MMX
Technology
System Programming

CHAPTER 11
INTEL® MMX™ TECHNOLOGY SYSTEM
PROGRAMMING

This chapter describes those features of the Inte]® MMX™ technology that must be considered
when designing or enhancing an operating system to support MMX technology. It covers MMX
instruction set emulation, the MMX state, aliasing of MMX registers, saving MMX state, task
and context switching considerations, exception handling, and debugging.

11.1. EMULATION OF THE MMX INSTRUCTION SET

The TA-32 architecture does not support emulation of the MMX instructions, as it does for x87
FPU instructions. The EM flag in control register CRO (provided to invoke emulation of x87
FPU instructions) cannot be used for MMX instruction emulation. If an MMX instruction is
executed when the EM flag is set, an invalid opcode exception (UD#) is generated. Table 11-1
shows the interaction of the EM, MP, and TS flags in control register CRO when executing
MMX instructions.

Table 11-1. Action Taken By MMX Instructions for Different Combinations of EM,

MP and TS
CRO Flags
EM MP* TS Action
0 1 0 Execute.
0 1 1 #NM exception.
1 1 0 #UD exception.
1 1 1 #UD exception.

Note:
* For processors that support the MMX instructions, the MP flag should be set.

11.2. THE MMX STATE AND MMX REGISTER ALIASING

The MMX state consists of eight 64-bit registers (MMO through MM7). These registers are
aliased to the low 64-bits (bits 0 through 63) of floating-point registers RO through R7 (see
Figure 11-1). Note that the MMX registers are mapped to the physical locations of the floating-
point registers (RO through R7), not to the relative locations of the registers in the floating-point
register stack (STO through ST7). As a result, the MMX register mapping is fixed and is not
affected by value in the Top Of Stack (TOS) field in the floating-point status word (bits 11
through 13).

Vol.3 11-1

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING Intel ®

x87 FPU Tag ina-Poi i
Register ~ 79 64 63 Floating-Point Registers 0
00 ! Il R7
00 K /| re
00 I’ | Rs
00 ,I I | R4
00 / ! |R3
00 , ! | Re
00 / Y
00 ! , |Ro
1 I ! i
x87 FPU Status Register / ! |
13 11 / ! /I I
}
‘ ‘ 000 ‘ ‘ ! II MMX Regist ! II
Tos 83 egisters d /
] !
, MM?,
I MM6
1 I
! MM5
K M4
! MM3
t !
I MM2
}
; fm1
TOS=0 | MMo

Figure 11-1. Mapping of MMX Registers to Floating-Point Registers

When a value is written into an MMX register using an MMX instruction, the value also appears
in the corresponding floating-point register in bits O through 63. Likewise, when a floating-point
value written into a floating-point register by a x87 FPU, the low 64 bits of that value also

appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state contained in

the floating-point registers, the x87 FPU tag word, and the x87 FPU status word. These side

effects are as follows:

® When an MMX instruction writes a value into an MMX register, at the same time, bits 64
through 79 of the corresponding floating-point register are set to all 1s.

® When an MMX instruction (other than the EMMS instruction) is executed, each of the tag
fields in the x87 FPU tag word is set to 00B (valid). (See also Section 11.2.1., “Effect of
MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag Word”.)

® When the EMMS instruction is executed, each tag field in the x87 FPU tag word is set to
11B (empty).
® Each time an MMX instruction is executed, the TOS value is set to 000B.

11-2 Vol. 3

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

intgl.

Execution of MMX instructions does not affect the other bits in the x87 FPU status word (bits
0 through 10 and bits 14 and 15) or the contents of the other x87 FPU registers that comprise the
x87 FPU state (the x87 FPU control word, instruction pointer, data pointer, or opcode registers).

Table 11-2 summarizes the effects of the MMX instructions on the x87 FPU state.

Table 11-2. Effects of MMX Instructions on x87 FPU State

MMX TOS Field of Bits 64 Through | Bits 0 Through
Instruction x87 FPU Tag x87 FPU Other x87 FPU 79 of x87 FPU 63 of x87 FPU

Type Word Status Word Registers Data Registers | Data Registers
Read from All tags setto | 000B Unchanged Unchanged Unchanged
MMX register 00B (Valid)
Write to MMX All tags setto | 000B Unchanged Setto all 1s Overwritten with
register 00B (Valid) MMX data
EMMS Allfields setto | 000B Unchanged Unchanged Unchanged

11B (Empty)
11.2.1. Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR

Instructions on the x87 FPU Tag Word

Table 11-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE and
FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding tags in an
image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX registers
or the execution of MMX instructions. However, the MMX instructions do modify the contents
of the x87 FPU tag word, as is described in Section 11.2., “The MMX State and MMX Register
Aliasing”. These modifications may affect the operation of the x87 FPU when executing x87
FPU instructions, if the x87 FPU state is not initialized or restored prior to beginning x87 FPU
instruction execution.

Note that the FSAVE, FXSAVE, and FSTENYV instructions (which save x87 FPU state informa-
tion) read the x87 FPU tag register and contents of each of the floating-point registers, determine
the actual tag values for each register (empty, nonzero, zero, or special), and store the updated
tag word in memory. After executing these instructions, all the tags in the x87 FPU tag word are
set to empty (11B). Likewise, the EMMS instruction clears MMX state from the MMX/floating-
point registers by setting all the tags in the x87 FPU tag word to 11B.

Vol. 3 11-3

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING Intel ®

Table 11-3. Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word

Instruction Image of x87 FPU Tag Word
Type Instruction x87 FPU Tag Word Stored in Memory
MMX All (except EMMS) | All tags are set to 00B (valid). Not affected.
MMX EMMS All tags are set to 11B (empty). | Not affected.
x87 FPU All (except FSAVE, | Tag for modified floating-point Not affected.
FSTENV, FRSTOR, | register is set to 00B or 11B.
FLDENV)
x87 FPU and | FSAVE, FSTENV, Tags and register values are Tags are set according to the
FXSAVE FXSAVE read and interpreted; then all actual values in the floating-
tags are set to 11B. point registers; that is, empty

registers are marked 11B and
valid registers are marked 00B
(nonzero), 01B (zero), or 10B

(special).
x87 FPU and | FRSTOR, FLDENYV, | All tags marked 11B in memory | Tags are read and interpreted,
FXRSTOR FXRSTOR are set to 11B; all other tags are | but not modified.

set according to the value in the
corresponding floating-point
register: 00B (nonzero), 01B
(zero), or 10B (special).

11.3. SAVING AND RESTORING THE MMX STATE AND
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state can be
saved to memory and restored from memory as follows:

¢ Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to memory.
(The FXSAVE instruction also saves the state of the XMM and MXCSR registers.)

® Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from memory.
(The FXRSTOR instruction also restores the state of the XMM and MXCSR registers.)

The save and restore methods described above are required for operating systems (see Section
11.4., “Saving MMX State on Task or Context Switches”). Applications can in some cases save
and restore only the MMX registers in the following way:

® Execute eight MOVQ instructions to save the contents of the MMXO0 through MMX7
registers to memory. An EMMS instruction may then (optionally) be executed to clear the
MMX state in the x87 FPU.

¢ Execute eight MOVQ instructions to read the saved contents of MMX registers from
memory into the MMXO0 through MMX7 registers.

11-4 Vol. 3

Intel® INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

NOTE

The IA-32 architecture does not support scanning the x87 FPU tag word and
then only saving valid entries.

11.4. SAVING MMX STATE ON TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the MMX state.
As a general rule, if the existing task switching code for an operating system includes facilities
for saving the state of the x87 FPU, these facilities can also be relied upon to save the MMX
state, without rewriting the task switch code. This reliance is possible because the MMX state
is aliased to the x87 FPU state (see Section 11.2., “The MMX State and MMX Register
Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of SSE/SSE2/SSE3
extensions to the IA-32 architecture, it is possible (and more efficient) to create state saving
facilities in the operating system or executive that save the x87 FPU/MMX/SSE/SSE2/SSE3
state in one operation. Section 12.5., “Designing Operating System Facilities for Automatically
Saving x87 FPU, MMX, SSE, SSE2 and SSE3 state on Task or Context Switches” describes
how to design such facilities. The techniques describes in this section can be adapted to saving
only the MMX and x87 FPU state if needed.

11.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX
INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they affect the
processor’s status flags in the EFLAGS register or the x87 FPU status word. The following
exceptions can be generated during the execution of an MMX instruction:

® Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
® System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CRO is set when an MMX
instruction is executed (see Section 11.1., “Emulation of the MMX Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS flag in
control register CRO is set. (See Section 12.5.1., “Using the TS Flag to Control the
Saving of the x87 FPU, MMX, SSE, SSE2 and SSE3 State”.)

® Floating-point error (#MF). (See Section 11.5.1., “Effect of MMX Instructions on Pending
x87 Floating-Point Exceptions™.)

Vol.3 11-5

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING Intel ®

® Other exceptions can occur indirectly due to the faulty execution of the exception handlers
for the above exceptions.

11.5.1. Effect of MMX Instructions on Pending x87 Floating-Point
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an MMX
instruction, the processor generates a x87 FPU floating-point error (#MF) prior to executing the
MMX instruction, to allow the pending exception to be handled by the x87 FPU floating-point
error exception handler. While this exception handler is executing, the x87 FPU state is main-
tained and is visible to the handler. Upon returning from the exception handler, the MMX
instruction is executed, which will alter the x87 FPU state, as described in Section 11.2., “The
MMX State and MMX Register Aliasing”.

11.6. DEBUGGING MMX CODE

The debug facilities of the IA-32 architecture operate in the same manner when executing MMX
instructions as when executing other IA-32 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the FSAVE/FNSAVE
or FXSAVE image in memory, a debugger needs to take account of the relationship between the
x87 FPU register’s logical locations relative to TOS and the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the TOS.
However, the tags in the x87 FPU tag word are associated with the physical locations of the x87
FPU registers (RO through R7). The MMX registers always refer to the physical locations of the
registers (with MMO through MM7 being mapped to RO through R7). Figure 11-2 shows this
relationship. Here, the inner circle refers to the physical location of the x87 FPU and MMX
registers. The outer circle refers to the x87 FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 11-2), STO points to the physical location RO on the
floating-point stack. MMO maps to STO, MM1 maps to ST1, and so on.

When the TOS equals 2 (case B in Figure 11-2), STO points to the physical location R2. MMO
maps to ST6, MM1 maps to ST7, MM2 maps to STO, and so on.

11-6 Vol. 3

Intel® INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

woush® ‘000" x87 FPU “push”
x87 FPU “push” o1 x87 FPU “pop sTe P

AR

STO

/)(87 FPU “pop”

Case A: TOS=0 Case B: TOS=2

Outer circle = x87 FPU data register’s logical location relative to TOS
Inner circle = x87 FPU tags = MMX register’s location = FP registers’s physical location

Figure 11-2. Mapping of MMX Registers to x87 FPU Data Register Stack

Vol. 3 11-7

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

11-8 Vol. 3

SSE and SSE2

System Programming

intgl.

CHAPTER 12
SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

This chapter describes features of the streaming SIMD extensions (SSE), streaming SIMD
extensions 2 (SSE2) and streaming SIMD extensions 3 (SSE3) that must be considered when
designing or enhancing an operating system to support the Pentium |ll, Pentium 4, and Intel
Xeon processors. It covers enabling SSE/SSE2/SSE3 extensions, providing operating system or
executive support for the SSE/SSE2/SSE3 extensions, SIMD floating-point exceptions, excep-
tion handling, and task (context) switching considerations.

12.1. PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3 EXTENSIONS

To use SSE/SSE2/SSE3 extensions, the operating system or executive must provide support for
initializing the processor to use the extensions, for handling the FXSAVE and FXRSTOR state
saving instructions, and for handling SIMD floating-point exceptions. The following sections
give some guidelines for providing this support in an operating-system or executive. Because
SSE/SSE2/SSE3 extensions share the same state and perform companion operations, these
guidelines apply to all three sets of extensions.

Chapter 11, Programming with the Streaming SIMD Extensions 2 (SSE2) and Chapter 12,
Programming with the Streaming SIMD Extensions 3 (SSE3) in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1 discusses support for SSE/SSE2/SSE3 extensions from the
point of view of an applications program.

12.1.1. Adding Support to an Operating System for
SSE/SSE2/SSE3 Extensions

The following guidelines describe operations that an operating system or executive must
perform to support SSE/SSE2/SSE3 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3 extensions.

2. Check that the processor supports the FXSAVE and FXRESTOR instructions.
3. Provide an initialization for the SSE, SSE2 and SSE3 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.
5

Provide support (if necessary) in non-numeric exception handlers for exceptions generated
by the SSE and SSE2 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XF).

The following sections describe how to implement each of these guidelines.

Vol. 3 12-1

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING Intel®

12.1.2. Checking for SSE/SSE2/SSE3 Extension Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3 instruction, the processor
will generate an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use SSE/SSE2/SSE3 extensions, it should
check that support is present on the processor. To make this check, execute CPUID with an argu-
ment of 1 in the EAX register. Make sure the following bits are set:

* EDX, bit 25 (SSE)
* EDX, bit 26 (SSE2)
* ECX, bit 0 (SSE3)

12.1.3. Checking for Support for the FXSAVE and FXRSTOR
Instructions

A separate check must be made to insure that the processor supports FXSAVE and FXRSTOR.
To make this check, execute CPUID with an argument of 1 in the EAX register. Make sure the
following bit is set:

* EDX, bit 24 (FXSR)

12.1.4. |Initialization of the SSE/SSE2/SSE3 Extensions

The operating system or executive should carry out the following steps to set up the
SSE/SSE2/SSE3 extensions for use by application programs.

1. Set bit 9 of CR4 (the OSFXSR bit) to 1. Setting this flag assumes that the operating system
provides facilities for saving and restoring SSE/SSE2/SSE3 states using FXSAVE and
FXRSTOR instructions. These instructions are commonly used to save the
SSE/SSE2/SSE3 state during task switches and when invoking the SIMD floating-point
exception (#XF) handler (see Section 12.4., “Saving the SSE/SSE2/SSE3 State on Task or
Context Switches” and Section 12.1.6., “Providing an Handler for the SIMD Floating-
Point Exception (#XF)”, respectively). If the processor does not support the FXSAVE and
FXRSTOR instructions, attempting to set the OSFXSR flag will cause an exception (#GP)
to be generated.

2. Set bit 10 of CR4 (the OSXMMEXCPT bit) to 1. Setting this flag assumes that the
operating system provides an SIMD floating-point exception (#XF) handler (see Section
12.1.6., “Providing an Handler for the SIMD Floating-Point Exception (#XF)”).

12-2 Vol. 3

Intel® SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

NOTE

The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set
by the operating system. The processor has no other way of detecting
operating-system support for the FXSAVE and FXRSTOR instructions or for
handling SIMD floating-point exceptions.

3. Clear the EM flag (bit 2) of control register CRO. This action disables emulation of the x87
FPU, which is required when executing SSE/SSE2/SSE3 instructions (see Section 2.5.,
“Control Registers”).

4. Clear the MP flag (bit 1) of control register CRO. This setting is the required setting for all
IA-32 processors that support the SSE/SSE2/SSE3 extensions (see Section 9.2.1., “Config-
uring the x87 FPU Environment”).

Table 12-1 shows the actions of the processor when an SSE/SSE2/SSE3 instruction is executed,
depending on the:

® OSFXSR and OSXMMEXCPT flags in control register CR4
® SSE/SSE2/SSE3 feature flags returned by CPUID
¢ EM, MP, and TS flags in control register CRO

Table 12-1. Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2,
SSE3, EM, MP, and TS'

CR4 CPUID CRO Flags
OSFXSR | OSXMMEXCPT SSE, EM | MP?2 | TS Action
SSE2,
SSE3

0 X3 X X | 1 X | #UD exception.

1 X 0 X 1 X | #UD exception.

1 X 1 1 1 X | #UD exception.

1 1 0 1 0 | Execute instruction; #UD exception if
unmasked SIMD floating-point exception
is detected.

1 1 1 0 1 0 | Execute instruction; #XF exception if
unmasked SIMD floating-point exception
is detected.

1 X 1 0 1 1 | #NM exception.

Note:

1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHhA, SFENCE, LFENCE,
MFENCE, MOVNTI, and CLFLUSH instructions.

2. For processors that support the MMX instructions, the MP flag should be set.
3. X—Don’t care.

The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero flag (bit 15),
the denormals-are-zero flag (bit 6), and the rounding control field (bits 13 and 14) in the

Vol. 3 12-3

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING Intel®

MXCSR register should be left in their default values of 0. This permits the application to deter-
mine how these features are to be used.

12.1.5. Providing Non-Numeric Exception Handlers for
Exceptions Generated by the SSE/SSE2/SSE3 Instructions

SSE/SSE2/SSE3 instructions can generate the same type of memory access exceptions (such as,
page fault, segment not present, and limit violations) and other non-numeric exceptions as other
IA-32 architecture instructions generate.

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions
without code modification. However, depending on the mechanisms used in existing exception
handlers, some modifications might need to be made.

The SSE/SSE2/SSE3 extensions can generate the non-numeric exceptions listed below:
® Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with an
unaligned 128-bit memory reference generates a general-protection exception. (The
MOVUPS and MOVUPD instructions allow unaligned a loads or stores of 128-bit
memory locations, without generating a general-protection exception.) A 128-bit
reference within the stack segment that is not aligned to a 16-byte boundary will also
generate a general-protection exception, instead a stack-segment fault exception
(#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on
operands that are less than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the
generation of alignment check exceptions, do the following:

* Set the AM flag (bit 18 of control register CRO)
e Set the AC flag (bit 18 of the EFLAGS register)
* CPL must be 3.

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will
be detected for the MOVUPD and MOVUPS instructions; detection of 128-bit
misalignment is not guaranteed and may vary with implementation.

¢ System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing
SSE/SSE2/SSE3 instructions under the following conditions:

* SSE/SSE2/SSES3 feature flags returned by CPUID are set to 0. This condition does
not affect the CLFLUSH instruction.

12-4 Vol. 3

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

The CLFSH feature flag returned by the CPUID instruction is set to 0. This
exception condition only pertains to the execution of the CLFLUSH instruction.

The EM flag (bit 2) in control register CRO is set to 1, regardless of the value of
TS flag (bit 3) of CRO. This condition does not affect the PAUSE, PREFETCH#,
MOVNTI, SFENCE, LFENCE, MFENSE, and CLFLUSH instructions.

The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does
not affect the PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB,
PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW,
MASKMOVQ, MOVNTQ, MOVNTI, PAUSE, PREFETCH#A, SFENCE,
LFENCE, MFENCE, and CLFLUSH instructions.

Executing a instruction that causes a SIMD floating-point exception when the
OSXMMEXCEPT flag (bit 10) in control register CR4 is set to 0. See Section
12.5.1., “Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE,
SSE2 and SSE3 State”

— Device not available (#NM). This exception is generated by executing a
SSE/SSE2/SSE3 instruction when the TS flag (bit 3) of CRO is set to 1.

Other exceptions can occur indirectly due to faulty execution of the above exceptions.

12.1.6. Providing an Handler for the SIMD Floating-Point

Exception (#XF)

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer operations.
They can generate the following numeric (SIMD floating-point) exceptions on packed and
scalar single-precision and double-precision floating-point operations.

® Invalid operation (#I)

¢ Divide-by-zero (#2)

¢ Denormal operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand exception)
are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic and represent the
same conditions that cause x87 FPU floating-point error exceptions (#MF) to be generated for
x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a reasonable result
to the destination operand without invoking an exception handler. However, if any of these
exceptions are left unmasked, detection of the exception condition results in a SIMD floating-
point exception (#XF) being generated. See Chapter 5, “Interrupt 19—SIMD Floating-Point
Exception (#XF)”.

Vol. 3 12-5

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING Intel®

To handle unmasked SIMD floating-point exceptions, the operating system or executive must
provide an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Excep-
tions” in Chapter 11 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1,
describes the SIMD floating-point exception classes and gives suggestions for writing an excep-
tion handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions
(#XF), the OSXMMEXCPT flag (bit 10) must be set in control register CRO.

12.1.6.1. NUMERIC ERROR FLAG AND IGNNE#

SSE/SSE2/SSE3 extensions ignore the NE flag in control register CRO (that is, treats it as if it
were always set) and the IGNNE# pin. When an unmasked SIMD floating-point exception is
detected, it is always reported by generating a SIMD floating-point exception (#XF).

12.2. EMULATION OF SSE/SSE2/SSE3 EXTENSIONS

The TA-32 architecture does not support emulation of the SSE/SSE2/SSE3 instructions, as it
does for x87 FPU instructions. The EM flag in control register CRO (provided to invoke emula-
tion of x87 FPU instructions) cannot be used to invoke emulation of SSE/SSE2/SSE3 instruc-
tions. If an SSE/SSE2/SSE3 instruction is executed when the EM flag is set, an invalid opcode
exception (#UD) is generated (see Table 12-1).

12.3. SAVING AND RESTORING THE SSE/SSE2/SSE3 STATE

The SSE/SSE2/SSES3 state consists of the state of the XMM and MXCSR registers. The recom-
mended method of saving and restoring this state follows:

¢ Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers to
memory.

¢ Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR registers
from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for operating systems (see Section 12.5., “Designing
Operating System Facilities for Automatically Saving x87 FPU, MMX, SSE, SSE2 and SSE3
state on Task or Context Switches”).

In some cases, applications can only save the XMM and MXCSR registers in the following way:

® Execute eight MOVDAQ instructions to save the contents of the XMMO through XMM?7
registers to memory.

¢ Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

12-6 Vol. 3

Intel® SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

In some cases, applications can only restore the XMM and MXCSR registers in the following
way:

¢ Execute eight MOVDQ instructions to read the saved contents of XMM registers from
memory into the XMMO through XMM?7 registers.

¢ Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

12.4. SAVING THE SSE/SSE2/SSE3 STATE ON TASK OR
CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the
SSE/SSE2/SSE3 state. The FXSAVE and FXRSTOR instructions provide a simple method for
saving and restoring this state (as described in Section 12.3., “Saving and Restoring the
SSE/SSE2/SSE3 State”). These instructions offer the added benefit of saving the x87 FPU and
MMX state as well. Guidelines for writing such procedures are in Section 12.5., “Designing
Operating System Facilities for Automatically Saving x87 FPU, MMX, SSE, SSE2 and SSE3
state on Task or Context Switches”.

12.5. DESIGNING OPERATING SYSTEM FACILITIES FOR
AUTOMATICALLY SAVING X87 FPU, MMX, SSE, SSE2 AND
SSE3 STATE ON TASK OR CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3 state consists of the state of the x87 FPU, MMX, XMM,
and MXCSR registers. The FXSAVE and FXRSTOR instructions provide a fast method of
saving ad restoring this state. If task or context switching facilities are already implemented in
an operating system or executive and they use FSAVE/FNSAVE and FRSTOR to save the x87
FPU and MMX state, these facilities can also be extended to save and restore the
SSE/SSE2/SSE3 state by substituting FXSAVE and FXRSTOR for FSAVE/FNSAVE and
FRSTOR.

In cases where task or content switching facilities must be written from scratch, several
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and restore
the 87 FPU/MMX/SSE/SSE2/SSE3 state:

® The operating system can require applications that are intended be run as tasks take
responsibility for saving the state of the x87 FPU, MMX, XXM, and MXCSR registers
prior to a task suspension during a task switch and for restoring the registers when the task
is resumed. This approach is appropriate for cooperative multitasking operating systems,
where the application has control over (or is able to determine) when a task switch is about
to occur and can save state prior to the task switch.

® The operating system can take the responsibility for automatically saving the x87 FPU,
MMX, XXM, and MXCSR registers as part of the task switch process (using an FXSAVE
instruction) and automatically restoring the state of the registers when a suspended task is
resumed (using an FXRSTOR instruction). Here, the x87 FPU/MMX/SSE/SSE2/SSE3
state must be saved as part of the task state. This approach is appropriate for preemptive

Vol. 3 12-7

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING Intel®

multitasking operating systems, where the application cannot know when it is going to be
preempted and cannot prepare in advance for task switching. Here, the operating system is
responsible for saving and restoring the task and the x87 FPU/MMX/SSE/SSE2/SSE3
state when necessary.

® The operating system can take the responsibility for saving the x87 FPU, MMX, XXM,
and MXCSR registers as part of the task switch process, but delay the saving of the MMX
and x87 FPU state until an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction is actually
executed by the new task. Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3 state
is saved only if an x87 FPU/MMX/SSE/SSE2/SSE3 instruction needs to be executed in the
new task. (See Section 12.5.1., “Using the TS Flag to Control the Saving of the x87 FPU,
MMX, SSE, SSE2 and SSE3 State”, for more information on this technique.)

12.5.1. Using the TS Flag to Control the Saving of the x87 FPU,
MMX, SSE, SSE2 and SSE3 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3 state using FXSAVE requires processor overhead.
If the new task does not access x87 FPU, MMX, XXM, and MXCSR registers, avoid overhead
by not automatically saving the state on a task switch.

The TS flag in control register CRO is provided to allow the operating system to delay saving
the x87 FPU/MMX/SSE/SSE2/SSE3 state until an instruction that actually accesses this state is
encountered in a new task. When the TS flag is set, the processor monitors the instruction stream
for an x87 FPU/MMX/SSE/SSE2/SSE3 instruction. When the processor detects one of these
instructions, it raises a device-not-available exception (#NM) prior to executing the instruction.
The device-not-available exception handler can then be used to save the x87
FPU/MMX/SSE/SSE2/SSES3 state for the previous task (using an FXSAVE instruction) and load
the x87 FPU/MMX/SSE/SSE2/SSE3 state for the current task (using an FXRSTOR instruction).
If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3 instruction, the device-not-
available exception will not be raised and a task state will not be saved unnecessarily.

The TS flag can be set either explicitly (by executing a MOV instruction to control register CRO)
or implicitly (using the IA-32 architecture’s native task switching mechanism). When the native
task switching mechanism is used, the processor automatically sets the TS flag on a task switch.
After the device-not-available handler has saved the x87 FPU/MMX/SSE/SSE2/SSE3 state, it
should execute the CLTS instruction to clear the TS flag.

Figure 12-1 gives an example of an operating system that implements x87
FPU/MMX/SSE/SSE2/SSE3 state saving using the TS flag. In this example, task A is the
currently running task and task B is the new task. The operating system maintains a save area
for the x87 FPU/MMX/SSE/SSE2/SSE3 state for each task and defines a variable
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the state. In this
example, task A is the current owner.

On a task switch, the operating system task switching code must execute the following pseudo-
code to set the TS flag according to the current owner of the x87 FPU/MMX/SSE/SSE2/SSE3
state. If the new task (task B in this example) is not the current owner of this state, the TS flag
is set to 1; otherwise, it is set to 0.

12-8 Vol. 3

Intel® SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

@ Owner of x87 FPU, @
MMX, SSE, SSE2,

Application SSE3 State
Operating System
. Task/A CRO0.TS=1 and x87 FPU &7 F;)SS/EAMX/
SSEISSERSSES Intructon s encountered | SSE/SSE2/SSES
State Save Area State Save Area

Operating System
Task Switching Code
Loads Task B

Saves Task A~ | Device-Not-Available x87 FPU/MMX/
x87 FPU/MMX/ Exception Handler SSE/SSE2/SSE3 State
SSE/SSE2/SSES3 State

Figure 12-1. Example of Saving the x87 FPU, MMX, SSE, and SSE2 State During an
Operating-System Controlled Task Switch

IF Task_Being_Switched_To # x87FPU_MMX_SSE_SSE2_SSE3_StateOwner
THEN
CRO.TS « 1;
ELSE
CRO.TS « 0;
Fl;

If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the TS
flag is set to 1, a device-not-available exception (#NM) is generated. The device-not-available
exception handler executes the following pseudo-code.

FSAVE “To x87FPU/MMX/SSE/SSE2/SSE3 State Save Area for Current
x87FPU_MMX_SSE_SSE2_SSE3_StateOwner”;

FRSTOR “x87FPU/MMX/SSE/SSE2/SSE3 State From Current Task’s

x87FPU/MMX/SSE/SSE2/SSES3 State Save Area”;
x87FPU_MMX_SSE_SSE2_SSE3_StateOwner « Current_Task;
CRO.TS « 0;

This exception handler code performs the following tasks:

® Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the
current owner of the x87 FPU/MMX/SSE/SSE2/SSE3 state.

® Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save area
for the x87 FPU/MMX/SSE/SSE2/SSE3 state.

¢ Updates the current x87 FPU/MMX/SSE/SSE2/SSE3 state owner to be the current task.
® C(lears the TS flag.

Vol. 3 12-9

SSE, SSE2 AND SSE3 SYSTEM PROGRAMMING

12-10 Vol. 3

13

System Management

CHAPTER 13
SYSTEM MANAGEMENT

This chapter describes the two aspects of IA-32 architecture used to manage system resources:
system management mode (SMM) and the thermal monitoring facilities.

SMM provides an alternate operating environment that can be used to monitor and manage
various system resources for more efficient energy usage, to control system hardware, and/or to
run proprietary code. It was introduced into the IA-32 architecture in the Intel386 SL processor
(a mobile specialized version of the Intel386 processor). It is also available in the Pentium 4,
Intel Xeon, P6 family, and Pentium and Intel486 processors (beginning with the enhanced
versions of the Intel486 SL and Intel486 processors). For a detailed description of the hardware
that supports SMM, see the developer’s manual for each of the IA-32 processors.

The thermal monitoring facilities enable monitoring and controlling the core temperature of an
IA-32 processor. These facilities were introduced in the P6 family processors and extended in
the Pentium 4, Intel Xeon and Pentium M processors.

13.1. SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-purpose operating mode provided for handling system-wide functions like
power management, system hardware control, or proprietary OEM-designed code. It is intended
for use only by system firmware, not by applications software or general-purpose systems soft-
ware. The main benefit of SMM is that it offers a distinct and easily isolated processor environ-
ment that operates transparently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the
current state of the processor (the processor’s context), then switches to a separate operating
environment contained in system management RAM (SMRAM). While in SMM, the processor
executes SMI handler code to perform operations such as powering down unused disk drives or
monitors, executing proprietary code, or placing the whole system in a suspended state. When
the SMI handler has completed its operations, it executes a resume (RSM) instruction. This
instruction causes the processor to reload the saved context of the processor, switch back to
protected or real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and operating
systems:

® The only way to enter SMM is by means of an SMI.

® The processor executes SMM code in a separate address space (SMRAM) that can be
made inaccessible from the other operating modes.

¢ Upon entering SMM, the processor saves the context of the interrupted program or task.

Vol. 3 13-1

SYSTEM MANAGEMENT InU®

¢ All interrupts normally handled by the operating system are disabled upon entry into
SMM.

® The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address mapping.
An SMM program can address up to 4 GBytes of memory and can execute all I/O and applicable
system instructions. See Section 13.5., “SMI Handler Execution Environment”, for more infor-
mation about the SMM execution environment.

NOTE

The physical address extension (PAE) mechanism available in the P6 family
processors is not supported when a processor is in SMM.

13.2. SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or
through an SMI message received through the APIC bus. The SMI is a nonmaskable external
interrupt that operates independently from the processor’s interrupt- and exception-handling
mechanism and the local APIC. The SMI takes precedence over an NMI and a maskable inter-
rupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in SMM.

NOTE

In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that
is designated as an application processor during an MP initialization
sequence is waiting for a startup IPI (SIPI), it is in a mode where SMIs are
masked. However if a SMI is received while an application processor is in the
wait for SIPI mode, the SMI will be pended. The processor then responds on
receipt of a SIPI by immediately servicing the pended SMI and going into
SMM before handling the SIPI.

13.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES

Figure 2-2 shows how the processor moves between SMM and the other processor operating
modes (protected, real-address, and virtual-8086). Signaling an SMI while the processor is in
real-address, protected, or virtual-8086 modes always causes the processor to switch to SMM.
Upon execution of the RSM instruction, the processor always returns to the mode it was in when
the SMI occurred.

13-2 Vol. 3

I ntel ® SYSTEM MANAGEMENT

13.3.1. Entering SMM

The processor always handles an SMI on an architecturally defined “interruptible” point in
program execution (which is commonly at an IA-32 architecture instruction boundary). When
the processor receives an SMI, it waits for all instructions to retire and for all stores to complete.
The processor then saves its current context in SMRAM (see Section 13.4., “SMRAM”), enters
SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has begun.
The signaling mechanism used is implementation dependent. For the P6 family processors, an
SMI acknowledge transaction is generated on the system bus and the multiplexed status signal
EXF4 is asserted each time a bus transaction is generated while the processor is in SMM. For
the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI,
maskable hardware interrupt, or a debug exception occurs at an instruction boundary along with
an SMI, only the SMI is handled. Subsequent SMI requests are not acknowledged while the
processor is in SMM. The first SMI interrupt request that occurs while the processor is in SMM
(that is, after SMM has been acknowledged to external hardware) is latched and serviced when
the processor exits SMM with the RSM instruction. The processor will latch only one SMI while
in SMM.

See Section 13.5., “SMI Handler Execution Environment”, for a detailed description of the
execution environment when in SMM.

13.3.2. Exiting From SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only avail-
able to the SMI handler; if the processor is not in SMM, attempts to execute the RSM instruction
result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from
SMRAM back into the processor’s registers. The processor then returns an SMIACK transaction
on the system bus and returns program control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware
that SMM has been exited. For the P6 family processors, an SMI acknowledge transaction is
generated on the system bus and the multiplexed status signal EXF4 is no longer generated on
bus cycles. For the Pentium and Intel486 processors, the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown
state and generates a special bus cycle to indicate it has entered shutdown state. Shutdown
happens only in the following situations:

® A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not
happen unless SMI handler code modifies reserved areas of the SMRAM saved state map
(see Section 13.4.1., “SMRAM State Save Map”). Note that CR4 is saved in the state map
in a reserved location and cannot be read or modified in its saved state.

Vol. 3 13-3

SYSTEM MANAGEMENT InU®

® An illegal combination of bits is written to control register CRO, in particular PG set to 1
and PE set to 0, or NW set to 1 and CD set to 0.

® (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE
register when an RSM instruction is executed is not aligned on a 32-KByte boundary. This
restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or
NMI# is asserted. While Pentium family processors recognize the SMI# signal in shutdown
state, P6 family and Intel486 processors do not. Intel does not support using SMI# to recover
from shutdown states for any processor family; the response of processors in this circumstance
is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR and A20M
but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no
action is taken in the SMM handler to uninhibit them (see Section 13.8.).

If the processor is in the HALT state when the SMI is received, the processor handles the return
from SMM slightly differently (see Section 13.11., “Auto HALT Restart”). Also, the SMBASE
address can be changed on a return from SMM (see Section 13.12., “SMBASE Relocation”).

13.4. SMRAM

While in SMM, the processor executes code and stores data in the SMRAM space. The SMRAM
space is mapped to the physical address space of the processor and can be up to 4 GBytes in size.
The processor uses this space to save the context of the processor and to store the SMI handler
code, data and stack. It can also be used to store system management information (such as the
system configuration and specific information about powered-down devices) and OEM-specific
information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory
called the SMBASE (see Figure 13-1). The SMBASE default value following a hardware reset
is 30000H. The processor looks for the first instruction of the SMI handler at the address
[SMBASE + 8000H]. It stores the processor’s state in the area from [SMBASE + FEOOH] to
[SMBASE + FFFFH]. See Section 13.4.1., “SMRAM State Save Map”, for a description of the
mapping of the state save area.

The system logic is minimally required to decode the physical address range for the SMRAM
from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The
size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section
13.12., “SMBASE Relocation”). It should be noted that all processors in a multiple-processor
system are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not overlap
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM
memory. The processor generates an SMI acknowledge transaction (P6 family processors) or
asserts the SMIACT# pin (Pentium and Intel486 processors) when the processor receives an
SMI (see Section 13.3.1., “Entering SMM”).

13-4 Vol. 3

|nte|® SYSTEM MANAGEMENT

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to
decode accesses to the SMRAM and redirect them (if desired) to specific SMRAM memory. If
a separate RAM memory is used for SMRAM, system logic should provide a programmable
method of mapping the SMRAM into system memory space when the processor is not in SMM.
This mechanism will enable start-up procedures to initialize the SMRAM space (that is, load the
SMI handler) before executing the SMI handler during SMM.

13.4.1. SMRAM State Save Map

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM.
The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE +
8000H + 7EO0H]. Table 13-1 shows the state save map. The offset in column 1 is relative to the
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read
and changed by the SMI handler, with the changed values restored to the processor registers by
the RSM instruction. Some register images are read-only, and must not be modified (modifying
these registers will result in unpredictable behavior). An SMI handler should not rely on any
values stored in an area that is marked as reserved.

SMRAM

SMBASE + FFFFH
Start of State Save Area

SMI Handler Entry Point
SMBASE + 8000H

SMBASE

Figure 13-1. SMRAM Usage

Table 13-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H) Register Writable?
7FFCH CRO No
7FF8H CR3 No
7FF4H EFLAGS Yes
7FFOH EIP Yes
7FECH EDI Yes

Vol. 3 13-5

SYSTEM MANAGEMENT I ntGI ®

Table 13-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +

8000H) Register Writable?
7FE8H ESI Yes
7FE4H EBP Yes
7FEOH ESP Yes
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TR* No
7FCOH Reserved No
7FBCH GS* No
7FB8H FS* No
7FB4H Ds* No
7FBOH SS8* No
7FACH cs* No
7FA8H ES* No
7FA4H I/0 State Field, see Section 13.7. No
7FAOH 1/0 Memory Address Field, see Section 13.7. No

7F9FH-7FO3H Reserved No
7F02H Auto HALT Restart Field (Word) Yes
7FO00H I/O Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EOOH Reserved No

NOTE:
* Upper two bytes are reserved.

13-6 Vol. 3

|nte|® SYSTEM MANAGEMENT

The following registers are saved (but not readable) and restored upon exiting SMM:
® Control register CR4. (This register is cleared to all Os while in SMM).

® The hidden segment descriptor information stored in segment registers CS, DS, ES, FS,
GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all
reserved locations in the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM
instruction, respectively:

® Debug registers DRO through DR3.
® The x87 FPU registers.

® The MTRRs.

¢ Control register CR2.

® The model-specific registers (for the P6 family and Pentium processors) or test registers
TR3 through TR7 (for the Pentium and Intel486 processors).

® The state of the trap controller.

® The machine-check architecture registers.

® The APIC internal interrupt state (ISR, IRR, etc.).
® The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before
returning to SMM, which will reset much of this state back to its default values. So an SMI
handler that is going to trigger power down should first read these registers listed above directly,
and save them (along with the rest of RAM) to nonvolatile storage. After the power-on reset, the
continuation of the SMI handler should restore these values, along with the rest of the system's
state. Anytime the SMI handler changes these registers in the processor, it must also save and
restore them.

NOTE

A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and therefore
cannot be saved and restored. SMM-based power-down and restoration
should only be performed with operating systems that do not use or rely on
the values of these registers. Operating system developers should be aware of
this fact and insure that their operating-system assisted power-down and
restoration software is immune to unexpected changes in these register
values.

Vol. 3 13-7

SYSTEM MANAGEMENT InU®

13.4.2. SMRAM Caching

An IA-32 processor does not automatically write back and invalidate its caches before entering
SMM or before exiting SMM. Because of this behavior, care must be taken in the placement of
the SMRAM in system memory and in the caching of the SMRAM to prevent cache incoherence
when switching back and forth between SMM and protected mode operation. Either of the
following three methods of locating the SMRAM in system memory will guarantee cache coher-
ency:

® Place the SRAM in a dedicated section of system memory that the operating system and
applications are prevented from accessing. Here, the SRAM can be designated as
cacheable (WB, WT, or WC) for optimum processor performance, without risking cache
incoherence when entering or exiting SMM.

® Place the SRAM in a section of memory that overlaps an area used by the operating system
(such as the video memory), but designate the SMRAM as uncacheable (UC). This method
prevents cache access when in SMM to maintain cache coherency, but the use of
uncacheable memory reduces the performance of SMM code.

® Place the SRAM in a section of system memory that overlaps an area used by the operating
system and/or application code, but explicitly flush (write back and invalidate) the caches
upon entering and exiting SMM mode. This method maintains cache coherency, but the
incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of
locating the SMRAM is recommended. Here the SMRAM is split between an overlapping and
a dedicated region of memory. Upon entering SMM, the SMRAM space that is accessed over-
laps video memory (typically located in low memory). This SMRAM section is designated as
UC memory. The initial SMM code then jumps to a second SMRAM section that is located in a
dedicated region of system memory (typically in high memory). This SMRAM section can be
cached for optimum processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method described
above), the cache flush can be accomplished by asserting the FLUSH# pin at the same time as
the request to enter SMM (generally initiated by asserting the SMI# pin). The priorities of the
FLUSH# and SMI# pins are such that the FLUSH# is serviced first. To guarantee this behavior,
the processor requires that the following constraints on the interaction of FLUSH# and SMI# be
met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold
times are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchro-
nous systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to guar-
antee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction
should be executed prior to leaving SMM to flush the caches.

13-8 Vol. 3

SYSTEM MANAGEMENT

intgl.

NOTE

In systems based on the Pentium processor that use the FLUSH# pin to write
back and invalidate cache contents before entering SMM, the processor will
prefetch at least one cache line in between when the Flush Acknowledge
cycle is run, and the subsequent recognition of SMI# and the assertion of
SMIACTH#. It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

13.5. SMI HANDLER EXECUTION ENVIRONMENT

After saving the current context of the processor, the processor initializes its core registers to the
values shown in Table 13-2. Upon entering SMM, the PE and PG flags in control register CR0O
are cleared, which places the processor is in an environment similar to real-address mode. The
differences between the SMM execution environment and the real-address mode execution
environment are as follows:

® The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The
physical address extension (enabled with the PAE flag in control register CR4) is not
supported in SMM.)

® The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.

® The default operand and address sizes are set to 16 bits, which restricts the addressable
SMRAM address space to the 1-MByte real-address mode limit for native real-address-
mode code. However, operand-size and address-size override prefixes can be used to
access the address space beyond the 1-MByte.

Table 13-2. Processor Register Initialization in SMM

Register Contents
General-purpose registers Undefined
EFLAGS 00000002H
EIP 00008000H
CS selector SMM Base shifted right 4 bits (default 3000H)
CS base SMM Base (default 30000H)
DS, ES, FS, GS, SS Selectors 0000H
DS, ES, FS, GS, SS Bases 000000000H
DS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS and PG flags set to 0; others unmodified
CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Vol. 3 13-9

SYSTEM MANAGEMENT InU®

® Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit
operand-size override prefix is used. Due to the real-address-mode style of base-address
formation, a far call or jump cannot transfer control to a segment with a base address of
more than 20 bits (1 MByte). However, since the segment limit in SMM is 4 GBytes,
offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit
operand-size override prefix truncates the EIP value to the 16 low-order bits.

® Data and the stack can be located anywhere in the 4-GByte address space, but can be
accessed only with a 32-bit address-size override if they are located above 1 MByte. As
with the code segment, the base address for a data or stack segment cannot be more than 20
bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE
shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. When the EIP value
is added to shifted CS value (the SMBASE), the resulting linear address points to the first
instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits
are set to 4 GBytes. In this state, the SMRAM address space may be treated as a single flat 4-
Gbyte linear address space. If a segment register is loaded with a 16-bit value, that value is then
shifted left by 4 bits and loaded into the segment base (hidden part of the segment register). The
limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts,
single-step traps, breakpoint traps, and INIT operations are inhibited when the processor enters
SMM. Maskable hardware interrupts, exceptions, single-step traps, and breakpoint traps can be
enabled in SMM if the SMM execution environment provides and initializes an interrupt table
and the necessary interrupt and exception handlers (see Section 13.6., “Exceptions and Inter-
rupts Within SMM”).

13.6. EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following manner:

® The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware
interrupts from being generated.

® The TF flag in the EFLAGS register is cleared, which disables single-step traps.

® Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a
debugger from accidentally breaking into an SMM handler if a debug breakpoint is set in
normal address space that overlays code or data in SMRAM.)

® NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 13.8.,
“NMI Handling While in SMM”, for further information about how NMIs are handled in
SMM.)

13-10 Vol. 3

|nte|® SYSTEM MANAGEMENT

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts
can be enabled by setting the IF flag. Intel recommends that SMM code be written in so that it
does not invoke software interrupts (with the INT n, INTO, INT 3, or BOUND instructions) or
generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table and the
necessary exception and interrupt handlers must be created and initialized from within SMM.
Until the interrupt table is correctly initialized (using the LIDT instruction), exceptions and soft-
ware interrupts will result in unpredictable processor behavior.

The following restrictions apply when designing SMM interrupt and exception-handling
facilities:

® The interrupt table should be located at linear address 0 and must contain real-address
mode style interrupt vectors (4 bytes containing CS and IP).

® Due to the real-address mode style of base address formation, an interrupt or exception
cannot transfer control to a segment with a base address of more that 20 bits.

® An interrupt or exception cannot transfer control to a segment offset of more than 16 bits
(64 KBytes).

® When an exception or interrupt occurs, only the 16 least-significant bits of the return
address (EIP) are pushed onto the stack. If the offset of the interrupted procedure is greater
than 64 KBytes, it is not possible for the interrupt/exception handler to return control to
that procedure. (One solution to this problem is for a handler to adjust the return address on
the stack.)

® The SMBASE relocation feature affects the way the processor will return from an interrupt
or exception generated while the SMI handler is executing. For example, if the SMBASE
is relocated to above 1 MByte, but the exception handlers are below 1 MByte, a normal
return to the SMI handler is not possible. One solution is to provide the exception handler
with a mechanism for calculating a return address above 1 MByte from the 16-bit return
address on the stack, then use a 32-bit far call to return to the interrupted procedure.

® If an SMI handler needs access to the debug trap facilities, it must insure that an SMM
accessible debug handler is available and save the current contents of debug registers DRO
through DR3 (for later restoration). Debug registers DRO through DR3 and DR7 must then
be initialized with the appropriate values.

¢ [If an SMI handler needs access to the single-step mechanism, it must insure that an SMM
accessible single-step handler is available, and then set the TF flag in the EFLAGS
register.

® If the SMI design requires the processor to respond to maskable hardware interrupts or
software-generated interrupts while in SMM, it must ensure that SMM accessible interrupt
handlers are available and then set the IF flag in the EFLAGS register (using the STI
instruction). Software interrupts are not blocked upon entry to SMM, so they do not need
to be enabled.

Vol.3 13-11

SYSTEM MANAGEMENT InU®

13.7. MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not
always possible for an SMI handler to distinguish between a synchronous SMI (triggered during
an I/O instruction) and an asynchronous SMI. To facilitate the discrimination of these two
events, incremental state information has been added to the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental state infor-
mation described below.

13.7.1. 1/O State Implementation

Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an
SMI is either taken immediately after a successful 1/O instruction or is taken after a successful
iteration of a REP I/O instruction (note that the successful notion pertains to the processor point
of view; not necessarily to the corresponding platform function). When set, the IO_SMI bit
provides a strong indication that the corresponding SMI was synchronous. In this case, the SMM
State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O
Port Address may be used in conjunction with the information logged by the platform to confirm
that the SMI was indeed synchronous.

Note that the IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchro-
nous. This is because an asynchronous SMI might coincidentally be taken after an I/O instruc-
tion. In such a case, the IO_SMI bit would still be set in the SMM state save map.

Information characterizing the 1/O instruction is saved in two locations in the SMM State Save
Map (Table 13-3). Note that the IO_SMI bit also serves as a valid bit for the rest of the I/O infor-
mation fields. The contents of these I/O information fields are not defined when the IO_SMI bit
is not set.

Table 13-3. 1/O Instruction Information in the SMM State Save Map

State (SMM Rev. ID: 30004H or Format
higher)
31 16 | 15 8|7 43 1 0
I/0 State Field 3 D o) o))
SMRAM offset 7FA4 2 2 ° o i
4 < o)
5 3 3 | =
e E4
31 0
1/0 Memory Address Field I/O Memory Address
SMRAM offset 7FAO

13-12 Vol. 3

|nte|® SYSTEM MANAGEMENT

When IO_SMI is set, the other fields may be interpreted as follows:
¢ /O length:

e 001 -Byte

e (010-Word

e 100 -Dword

® [/O instruction type:

Table 13-4. 1/0O Instruction Type

Encodings
Instruction Encoding
IN Immediate 1001
IN DX 0001
OUT Immediate 1000
OUT DX 0000
INS 0011
OuUTS 0010
REP INS 0111
REP OUTS 0110

13.8. NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the
SMI handler, it is latched and serviced after the processor exits SMM. Only one NMI request
will be latched during the SMI handler. If an NMI request is pending when the processor
executes the RSM instruction, the NMI is serviced before the next instruction of the interrupted
code sequence. This assumes that NMIs were not blocked before the SMI occurred. If NMIs
were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled
through software by executing an IRET/IRETD instruction. If the SMM handler requires the use
of NMI interrupts, it should invoke a dummy interrupt service routine for the purpose of
executing an IRET/IRETD instruction. Once an IRET/IRETD instruction is executed, NMI
interrupt requests are serviced in the same “real mode” manner in which they are handled
outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI
occurs. During NMI interrupt handling, NMI interrupts are disabled, so normally NMI inter-
rupts are serviced and completed with an IRET instruction one at a time. When the processor
enters SMM while executing an NMI handler, the processor saves the SMRAM state save map
but does not save the attribute to keep NMI interrupts disabled. Potentially, an NMI could be
latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous

Vol.3 13-13

SYSTEM MANAGEMENT InU®

NMI handler has still not completed. One or more NMlIs could thus be nested inside the first
NMI handler. The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI
interrupts from inside of SMM. This behavior is implementation specific for the Pentium
processor and is not part the IA-32 architecture.

13.9. SAVING THE X87 FPU STATE WHILE IN SMM

In some instances (for example prior to powering down system memory when entering a 0-volt
suspend state), it is necessary to save the state of the x87 FPU while in SMM. Care should be
taken when performing this operation to insure that relevant x87 FPU state information is not
lost. The safest way to perform this task is to place the processor in 32-bit protected mode before
saving the x87 FPU state. The reason for this is as follows.

The FSAVE instruction saves the x87 FPU context in any of four different formats, depending
on which mode the processor is in when FSAVE is executed (see Figures 8-9 through 8-12 in
the IA-32 Intel Architecture Software Developer’s Manual, Volume I). When in SMM, by
default, the 16-bit real-address mode format is used (shown in Figure 8-12). If an SMI interrupt
occurs while the processor is in a mode other than 16-bit real-address mode, FSAVE and
FRSTOR will be unable to save and restore all the relevant x87 FPU information, and this situ-
ation may result in a malfunction when the interrupted program is resumed. To avoid this
problem, the processor should be in 32-bit protected mode when executing the FSAVE and
FRSTOR instructions.

The following guidelines should be used when going into protected mode from an SMI handler
to save and restore the x87 FPU state:

® Use the CPUID instruction to insure that the processor contains an x87 FPU.

® Create a 32-bit code segment in SMRAM space that contains procedures or routines to
save and restore the x87 FPU using the FSAVE and FRSTOR instructions, respectively. A
GDT with an appropriate code-segment descriptor (D bit is set to 1) for the 32-bit code
segment must also be placed in SMRAM.

® Write a procedure or routine that can be called by the SMI handler to save and restore the
x87 FPU state. This procedure should do the following:

— Place the processor in 32-bit protected mode as describe in Section 9.9.1., “Switching
to Protected Mode”.

— Execute a far JMP to the 32-bit code segment that contains the x87 FPU save and
restore procedures.

— Place the processor back in 16-bit real-address mode before returning to the SMI
handler (see Section 9.9.2., “Switching Back to Real-Address Mode”).

The SMI handler may continue to execute in protected mode after the x87 FPU state has been
saved and return safely to the interrupted program from protected mode. However, it is recom-
mended that the handler execute primarily in 16- or 32-bit real-address mode.

13-14 Vol. 3

I ntel ® SYSTEM MANAGEMENT

13.10. SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM exten-
sions that are supported by the processor (see Figure 13-2). The SMM revision identifier is
written during SMM entry and can be examined in SMRAM space at offset 7EFCH. The
lower word of the SMM revision identifier refers to the version of the base SMM architecture.

Register Offset

7EFCH

31 181716 15 0
Reserved SMM Revision Identifier

SMBASE Relocation4
1/0O Instruction Restart
D Reserved

Figure 13-2. SMM Revision Identifier

The upper word of the SMM revision identifier refers to the extensions available. If the I/O
instruction restart flag (bit 16) is set, the processor supports the I/O instruction restart (see
Section 13.13., “I/O Instruction Restart”); if the SMBASE relocation flag (bit 17) is set,
SMRAM base address relocation is supported (see Section 13.12., “SMBASE Relocation”).

13.11. AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it
receives an SMI, the processor records the fact in the auto HALT restart flag in the saved
processor state (see Figure 13-3). (This flag is located at offset 7FO2H and bit O in the state save
area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI
occurred when the processor was in the HALT state), the SMI handler has two options:

® [t can leave the auto HALT restart flag set, which instructs the RSM instruction to return
program control to the HLT instruction. This option in effect causes the processor to re-
enter the HALT state after handling the SMI. (This is the default operation.)

® It can clear the auto HALT restart flag, with instructs the RSM instruction to return
program control to the instruction following the HLT instruction.

Vol.3 13-15

SYSTEM MANAGEMENT InU®

Register Offset
7F02H

D Reserved

Auto HALT Restart J

Figure 13-3. Auto HALT Restart Field

These options are summarized in Table 13-5. Note that if the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to 1 will
cause unpredictable behavior when the RSM instruction is executed.

Table 13-5. Auto HALT Restart Flag Values

Value of Flag After Entry Value of Flag When
to SMM Exiting SMM Action of Processor When Exiting SMM
0 0 Returns to next instruction in interrupted program
or task
0 1 Unpredictable
1 0 Returns to next instruction after HLT instruction
1 1 Returns to HALT state

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT
instruction (if it is not in the internal cache), and execute a HLT bus transaction. This behavior
results in multiple HLT bus transactions for the same HLT instruction.

13.11.1. Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled
by setting the IF flag in the EFLAGS register. If the processor is halted in SMM, the only event
that can remove the processor from this state is a maskable hardware interrupt or a hardware
reset.

13.12. SMBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an internal
processor register called the SMBASE register. The operating system or executive can relocate
the SMRAM by setting the SMBASE field in the saved state map (at offset 7JEF8H) to a new
value (see Figure 13-4). The RSM instruction reloads the internal SMBASE register with the
value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use the

13-16 Vol. 3

|nte|® SYSTEM MANAGEMENT

new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and
the SMRAM state save area (from SMBASE + FEOOH to SMBASE + FFFFH). (The processor
resets the value in its internal SMBASE register to 30000H on a RESET, but does not change it
on an INIT.)

31 0

Register Offset
SMM Base 7EF8H

Figure 13-4. SMBASE Relocation Field

In multiple-processor systems, initialization software must adjust the SMBASE value for each
processor so that the SMRAM state save areas for each processor do not overlap. (For Pentium
and Intel486 processors, the SMBASE values must be aligned on a 32-KByte boundary or the
processor will enter shutdown state during the execution of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability
to relocate the SMBASE (see Section 13.10., “SMM Revision Identifier”).

13.12.1. Relocating SMRAM to an Address Above 1 MByte

In SMM, the segment base registers can only be updated by changing the value in the segment
registers. The segment registers contain only 16 bits, which allows only 20 bits to be used for a
segment base address (the segment register is shifted left 4 bits to determine the segment base
address). If SMRAM is relocated to an address above 1 MByte, software operating in real-
address mode can no longer initialize the segment registers to point to the SMRAM base address
(SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to generate an
offset to the correct address. For example, if the SMBASE has been relocated to FFFFFFH
(immediately below the 16-MByte boundary) and the DS, ES, FS, and GS registers are still
initialized to OH, data in SMRAM can be accessed by using 32-bit displacement registers, as in
the following example:

mov esi, 00FFxxxxH; 64K segment immediately below 16M
mov ax,ds: [esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

13.13. /0 INSTRUCTION RESTART

If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 13.10.,
“SMM Revision Identifier”), the I/O instruction restart mechanism is present on the processor.
This mechanism allows an interrupted I/O instruction to be re-executed upon returning from
SMM mode. For example, if an I/O instruction is used to access a powered-down I/O device, a
chip set supporting this device can intercept the access and respond by asserting SMI#. This

Vol.3 13-17

SYSTEM MANAGEMENT InU®

action invokes the SMI handler to power-up the device. Upon returning from the SMI handler,
the I/0O instruction restart mechanism can be used to re-execute the I/O instruction that caused
the SMI.

The I/0O instruction restart field (at offset 7FOOH in the SMM state-save area, see Figure 13-5)
controls I/O instruction restart. When an RSM instruction is executed, if this field contains the
value FFH, then the EIP register is modified to point to the I/O instruction that received the SMI
request. The processor will then automatically re-execute the I/O instruction that the SMI
trapped. (The processor saves the necessary machine state to insure that re-execution of the
instruction is handled coherently.)

15 0

I/O Instruction Restart Field

Register Offset
7FO0H

Figure 13-5. 1/O Instruction Restart Field

If the I/O instruction restart field contains the value 0OH when the RSM instruction is executed,
then the processor begins program execution with the instruction following the I/O instruction.
(When a repeat prefix is being used, the next instruction may be the next I/O instruction in the
repeat loop.) Not re-executing the interrupted I/O instruction is the default behavior; the
processor automatically initializes the I/O instruction restart field to OOH upon entering SMM.
Table 13-6 summarizes the states of the I/O instruction restart field.

Table 13-6. 1/O Instruction Restart Field Values

Value of Flag After Value of Flag When
Entry to SMM Exiting SMM Action of Processor When Exiting SMM
00H 00H Does not re-execute trapped I/O instruction.
00H FFH Re-executes trapped I/O instruction.

Note that the I/O instruction restart mechanism does not indicate the cause of the SMI. It is the
responsibility of the SMI handler to examine the state of the processor to determine the cause of
the SMI and to determine if an I/O instruction was interrupted and should be restarted upon
exiting SMM. If an SMI interrupt is signaled on a non-I/O instruction boundary, setting the I/O
instruction restart field to FFH prior to executing the RSM instruction will likely result in a
program error.

13.13.1. Back-to-Back SMI Interrupts When I/O Instruction Restart
Is Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred
on an I/O instruction boundary, the processor will service the new SMI request before restarting
the originally interrupted I/O instruction. If the I/O instruction restart field is set to FFH prior to
returning from the second SMI handler, the EIP will point to an address different from the orig-
inally interrupted I/O instruction, which will likely lead to a program error. To avoid this situa-

13-18 Vol. 3

I ntel ® SYSTEM MANAGEMENT

tion, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts
when I/O instruction restart is being used and insure that the handler sets the I/O instruction
restart field to OOH prior to returning from the second invocation of the SMI handler.

13.14. SMM MULTIPLE-PROCESSOR CONSIDERATIONS

The following should be noted when designing multiple-processor systems:
® Any processor in a multiprocessor system can respond to an SMM.

® Each processor needs its own SMRAM space. This space can be in system memory or in a
separate RAM.

® The SMRAMSs for different processors can be overlapped in the same memory space. The
only stipulation is that each processor needs its own state save area and its own dynamic
data storage area. (Also, for the Pentium and Intel486 processors, the SMBASE address
must be located on a 32-KByte boundary.) Code and static data can be shared among
processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family
processors because they do not require that the SMBASE address be on a 32-KByte
boundary.

® The SMI handler will need to initialize the SMBASE for each processor.

® Processors can respond to local SMIs through their SMI# pins or to SMIs received through
the APIC interface. The APIC interface can distribute SMIs to different processors.

® Two or more processors can be executing in SMM at the same time.

® When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is
driven only by the MRM processor and should be sampled with ADS#. For additional
details, see Chapter 14 of the Pentium Processor Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE.
If there is a need to support two or more processors in SMM mode at the same time then each
processor should have dedicated SMRAM spaces. This can be done by using the SMBASE
Relocation feature (see Section 13.12., “SMBASE Relocation”).

13.15. ENHANCED INTEL SPEEDSTEP® TECHNOLOGY

Enhanced Intel SpeedStep® Technology on the Pentium M processor efficiently manages
processor power consumption via performance state transitions. Processor performance states
are defined as discrete operating points associated with different frequencies.

Enhanced Intel SpeedStep Technology on the Pentium M processor differs from previous gener-
ations of Intel SpeedStep Technology in two basic ways:

® Centralization of the control mechanism and software interface in the processor by using
model-specific registers.

® Reduced hardware overhead; this permits more frequent performance state transitions.

Vol.3 13-19

SYSTEM MANAGEMENT InU®

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep
state, holding off bus master transfers for the duration of a performance state transition. Perfor-
mance state transitions under the Enhanced Intel SpeedStep Technology are discrete transitions
to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Tech-
nology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of
IA32_MISC_ENABLE MSR is cleared.

13.15.1. Software Interface For Initiating Performance State
Transitions

State transitions are initiated by writing a 16-bit value to the MSR_PERF_CTL register. If a tran-
sition is already in progress, transition to a new value will take effect subsequently.

Reads of MSR_PERF_CTL determine the last targeted operating point. The current operating
point can be read from MSR_PERF_STATUS. MSR_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and
performance tools are not expected to use either MSR_PERF_CTL or MSR_PERF_STATUS
and should treat both as reserved. Performance monitoring tools can access model-specific
events and report the occurrences of state transitions.

13.16. THERMAL MONITORING AND PROTECTION

The IA-32 architecture provides three mechanisms for monitoring temperature and controlling
power consumption of an IA-32 processor:

1. A catastrophic shutdown detector that forces processor execution to stop if the
processor’s core temperature rises above a preset limit.

2. An automatic thermal monitoring mechanism that forces the processor to reduce it’s
power consumption in order to maintain a predetermined temperature limit.

3. A software controlled clock modulation mechanism that permits operating system to
implement a power management policy to reduce the power consumption of an IA-32
processor; this is in addition to the reduction offered by the automatic thermal monitoring
mechanism.

The first mechanism is not visible to software. The other two mechanisms are visible to software
using processor feature information returned by executing CPUID with EAX = 1.

The second mechanism, automatic thermal monitoring, provides two modes of operation. One
mode modulates the clock duty cycle; the second mode changes the processor’s frequency. Both
modes are used to control the core temperature of the processor.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 13-6,
the phrase ‘duty cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers
to the time period during which the clock signal is allowed to drive the processor chip. By using

13-20 Vol. 3

I ntel ® SYSTEM MANAGEMENT

the stop clock mechanism to control how often the processor is clocked, processor power
consumption can be modulated.

Clock Applied to Processor

i 111111

Stop-Clock Duty Cycle

25% Duty Cycle (example only)

Figure 13-6. Processor Modulation Through Stop-Clock Mechanism

13.16.1. Catastrophic Shutdown Detector

P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector.
This catastrophic shutdown detector was also implemented in Pentium 4, Intel Xeon and
Pentium M processors. It is always enabled. When processor core temperature reaches a factory
preset level, the sensor trips and processor execution is halted until after the next reset cycle.

13.16.2. Thermal Monitor

Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that
is factory-calibrated to trip when the processor’s core temperature crosses a level corresponding
to the recommended thermal design envelop. The trip-temperature of the second sensor is cali-
brated below the temperature assigned to the catastrophic shutdown detector.

13.16.2.1. THERMAL MONITOR 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism
called TM1 (Thermal Monitor 1) to control the core temperature of the processor. TM1 controls
the processor’s temperature by modulating the duty cycle of the processor clock. Modulation of
duty cycles is processor model specific. Note that the processors STPCLK# pin is not used here;
the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID EDX feature bit 29.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see
Appendix B, Model-Specific Registers (MSRs)]. Following a power-up or reset, the flag is
cleared, disabling TM1. BIOS is required to enable only one automatic thermal monitoring
modes. Operating systems and applications must not disable the operation of these mechanisms.

Vol. 3 13-21

SYSTEM MANAGEMENT InU®

13.16.2.2. THERMAL MONITOR 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was
introduced in the Intel Pentium M processor and also incorporated in newer models of the
Pentium 4 processor family. TM2 controls the core temperature of the processor by reducing the
operating frequency and voltage of the processor and offers a higher performance level for a
given level of power reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. Support for TM2 in the [A-32
processor family is indicated by CPUID ECX feature bit 8. The mechanism to enable TM2 may
be implemented differently across various IA-32 processor families with different CPUID
signatures in the family encoding value, but will be uniform within an IA-32 processor family.

On Pentium M processors: TM2 is enabled if the TM_SELECT flag (bit 16) of the
MSR_THERM?2_CTL register is set to 1 and bit 3 of the [A32_MISC_ENABLE register is set
to 1.

Following a power-up or reset, the TM_SELECT flag is cleared. BIOS is required to enable
either TM1 or TM2. Operating systems and applications must not disable the mechanisms that
enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is set and TM_SELECT flag
of the MSR_THERM?2_CTL register is cleared, TM1 is enabled.

31 16 0

Reserved

TM_SELECT J

|:| Reserved

Figure 13-7. MSR_THERM2_CTL Register for the Pentium M Processor

On Pentium 4 processors: support for TM2 is also reported using ECX bit 8 of the CPUID
instruction, but the interface to enable TM2 is slightly different. For a Pentium 4 processor that
supports TM2, TM2 is enable by setting bit 13 of IA32 MISC_ENABLE register to 1.

The target operating frequency and voltage for the TM?2 transition after TM2 is triggered is spec-
ified by the value written to MSR_THERM?2_CTL, bits 15:0. Following a power-up or reset,
BIOS is required to enable at least one of these two thermal monitoring mechanisms. If both
TM1 and TM2 are supported, BIOS may choose to enable TM2 instead of TM1. Operating
systems and applications must not disable the mechanisms that enable TM1or TM2; and they
must not alter the value in bits 15:0 of the MSR_THERM?2_CTL register.

13-22 Vol. 3

|nte|® SYSTEM MANAGEMENT

63 15 0

Reserved

TM2 Transition Target J

Figure 13-8. MSR_THERM2_CTL Register for the Pentium 4 Processor Supporting TM2

13.16.2.3. PERFORMANCE STATE TRANSITIONS AND THERMAL
MONITORING

If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the
MSR_PERF_CTL will effect a new target operating point as follows:

® If TMI1 is enabled and the TCC is engaged, the performance state transition can commence
before the TCC is disengaged.

® If TM2 is enabled and the TCC is engaged, the performance state transition specified by a
write to the MSR_PERF_CTL will commence after the TCC has disengaged.

13.16.2.4. THERMAL STATUS INFORMATION

The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated
through the thermal status flag (bit 0) and thermal status log flag (bit 1) in the
IA32_THERM_STATUS MSR (see Figure 13-9).

The functions of these flags are:

¢ Thermal Status flag, bit 0. When set, indicates that the processor core temperature is
currently at the trip temperature of the thermal monitor and that the processor power
consumption is being reduced via either TM1 or TM2, depending on which is enabled.
When clear, the flag indicates that the core temperature is below the thermal monitor trip
temperature. This flag is read only.

¢ Thermal Status Log flag, bit 1. When set, indicates that the thermal sensor has tripped
since the last power-up or reset or since the last time that software cleared this flag. This
flag is a sticky bit; once set it remains set until cleared by software or until a power-up or
reset of the processor. The default state is clear.

63 210

Thermal Status LogJ
Thermal Status

Figure 13-9. 1A32_THERM_STATUS MSR

Reserved

Vol.3 13-23

SYSTEM MANAGEMENT InU®

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will
remain engaged for a minimum time period (on the order of 1 ms). The thermal monitor will
remain engaged until the processor core temperature drops below the preset trip temperature of
the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the
processor. This holding off of interrupts increases the interrupt latency, but does not cause inter-
rupts to be lost. Outstanding interrupts remain pending until clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor when the
thermal sensor is tripped. The delivery mode, mask and vector for this interrupt can be
programmed through the thermal entry in the local APIC’s LVT (see Section 8.5.1., “Local
Vector Table). The low-temperature interrupt enable and high-temperature interrupt enable
flags (bits 0 and 1, respectively) in the IA32_THERM_INTERRUPT MSR (see Figure 13-10)
control when the interrupt is generated; that is, on a transition from a temperature below the trip
point to above and/or vice-versa.

63 210

Reserved

Low-Temperature Interrupt Enable4

High-Temperature Interrupt Enable

Figure 13-10. 1A32_THERM_INTERRUPT MSR

¢ Low-Temperature Interrupt Enable flag, bit 1. Enables an interrupt to be generated on
the transition from a high-temperature to a low-temperature when set; disables the
interrupt when clear.

¢ High-Temperature Interrupt Enable flag, bit 0. Enables an interrupt to be generated on
the transition from a low-temperature to a high-temperature when set; disables the
interrupt when clear.(R/W).

The thermal monitor interrupt can be masked by the thermal LVT entry. After a power-up or
reset, the low-temperature interrupt enable and high-temperature interrupt enable flags in the
[IA32_THERM_INTERRUPT MSR are cleared (interrupts are disabled) and the thermal LVT
entry is set to mask interrupts. This interrupt should be handled either by the operating system
or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate
of the processor's internal high-resolution timer (time stamp counter).

13.16.3. Software Controlled Clock Modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modu-
lation. This provides a means for operating systems to implement a power management policy

13-24 Vol. 3

|nte|® SYSTEM MANAGEMENT

to reduce the power consumption of the processor. Here, the stop-clock duty cycle is controlled
by software through the IA32_CLOCK_MODULATIONMSR (see Figure 13-11).

63 543 10

Reserved

On-Demand Clock Modulation Duty Cycle

On-Demand Clock Modulation Enable4 ‘
Reserved

Figure 13-11. 1A32_CLOCK_MODULATION MSR

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable
software-controlled clock modulation and to select the clock modulation duty cycle:

® On-Demand Clock Modulation Enable, bit 4. Enables on-demand software controlled
clock modulation when set; disables software-controlled clock modulation when clear.

¢ On-Demand Clock Modulation Duty Cycle, bits 1 through 3. Selects the on-demand
clock modulation duty cycle (see Table 13-7). This field is only active when the on-
demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the
processor’s stop-clock circuitry internally to modulate the clock signal. The STPCLK# pin is not
used in this mechanism.

Table 13-7. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle
0ooB Reserved
001B 12.5% (Default)
010B 25.0%
011B 37.5%
100B 50.0%
101B 63.5%
110B 75%
111B 87.5%

The on-demand clock modulation mechanism can be used to control processor power consump-
tion. Power management software can write to the IA32_CLOCK_MODULATION MSR to
enable clock modulation and to select a modulation duty cycle. If on-demand clock modulation
and TM1 are both enabled and the thermal status of the processor is hot (bit 0 of the
IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

Vol.3 13-25

SYSTEM MANAGEMENT InU®

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION
register is duplicated for each logical processor. In order for the On-demand clock modulation
feature to work properly, the IA32 CLOCK_MODULATION register must be programmed
identically on all logical processors in the same physical processor.

For the P6 family processors, on-demand clock modulation was implemented through the
chipset, which controlled clock modulation through the processor’s STPCLK# pin.

13.16.4. Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the
IA32_THERM_STATUS, IA32 THERM_INTERRUPT, IA32_CLOCK_MODULATION
MSRs, and the XxAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal
monitoring facilities that modulate clock duty cycles.

13-26 Vol. 3

14

Machine-Check
Architecture

CHAPTER 14
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mecha-
nism found in the Pentium 4, Intel Xeon, and P6 family processors. See Chapter 5, “Interrupt
18—Machine-Check Exception (#MC)”, for more information on machine-check exceptions. A
brief description of the Pentium processor’s machine check capability is also given.

14.1. MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE

The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check architecture
that provides a mechanism for detecting and reporting hardware (machine) errors, such as:
system bus errors, ECC errors, parity errors, cache errors, and TLB errors. It consists of a set of
model-specific registers (MSRs) that are used to set up machine checking and additional banks
of MSRs used for recording errors that are detected.

The processor signals the detection of a machine-check error by generating a machine-check
exception (#MC), which is an abort class exception. The implementation of the machine-check
architecture does not ordinarily permit the processor to be restarted reliably after generating a
machine-check exception. However, the machine-check-exception handler can collect informa-
tion about the machine-check error from the machine-check MSRs.

14.2. COMPATIBILITY WITH PENTIUM PROCESSOR

The Pentium 4, Intel Xeon, and P6 family processors support and extend the machine-check
exception mechanism introduced in the Pentium processor. The Pentium processor reports the
following machine-check errors:

® data parity errors during read cycles
® unsuccessful completion of a bus cycle

The above errors are reported using the PS_MC_TYPE and P5_MC_ADDR MSRs (implemen-
tation specific for the Pentium processor). Use the RDMSR instruction to read these MSRs. See
Table B-4 for the addresses.

The machine-check error reporting mechanism that Pentium processors use is similar to that
used in Pentium 4, Intel Xeon, and P6 family processors. When an error is detected, it is
recorded in PS_MC_TYPE and P5S_MC_ADDR; the processor then generates a machine-check
exception (#MC).

See Section 14.3.3., Mapping of the Pentium Processor Machine-Check Errors to the Machine-
Check Architecture, and Section 14.7.3., Pentium Processor Machine-Check Exception
Handling, for information on compatibility between machine-check code written to run on the
Pentium processors and code written to run on P6 family processors.

Vol. 3 14-1

MACHINE-CHECK ARCHITECTURE Intel®

14.3. MACHINE-CHECK MSRS

Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist of a set of
global control and status registers and several error-reporting register banks (see Figure 14-1).
Each error-reporting bank is associated with a specific hardware unit (or group of hardware
units) in the processor. Use RDMSR and WRMSR to read and to write these registers.

Global Control MSRs Error-Reporting Bank Registers
(One Set for Each Hardware Unit)
63 0 63 0
IA32_MCG_CAP MSR IA32_MCi_CTL MSR
63 0 63 0
IA32_MCG_STATUS MSR IA32_MCi_STATUS MSR
63 0 63 0
IA32_MCG_CTL MSR IA32_MCi_ADDR MSR
63 0
IA32_MCi_MISC MSR

Figure 14-1. Machine-Check MSRs

14.3.1. Machine-Check Global Control MSRs

The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS,
and IA32_MCG_CTL. See Appendix B, Model-Specific Registers (MSRs), for the addresses of
these registers.

The structure of the IA32_MCG_CAP is implemented differently in Pentium 4 and Intel Xeon
processors and in P6 family processors. Also, note that the register names used for P6 family
processors do not have the ‘TA32’ prefix.

14-2 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

14.3.1.1. 1A32_MCG_CAP MSR (Pentium 4 and Intel Xeon Processors)

The IA32_MCG_CAP MSR is a read-only register that provides information about the
machine-check architecture implementation in Pentium 4 and Intel Xeon processors (see Figure
14-2).

63 24 23 1615 10987 0
Reserved Res'd Count
MCG_EXT_CNT J
MCG_EXT_P
MCG_CTL_P

Figure 14-2. 1A32_MCG_CAP Register

Where:

Count field, bits 0 through 7
Indicates the number of hardware unit error-reporting banks available in a particular

processor implementation.

MCG_CTL_P (control MSR present) flag, bit 8
Indicates that the processor implements the IA32_MCG_CTL MSR when set; this

register is absent when clear.

MCG_EXT_P (extended MSRs present) flag, bit 9
Indicates that the processor implements the extended machine-check state registers
found starting at MSR address 180H; these registers are absent when clear. This is a
feature was introduced in the Pentium 4 and Intel Xeon processors.

MCG_EXT_CNT, bits 16 through 23
Indicates the number of extended machine-check state registers present. This field is

meaningful only when the MCG_EXT_P flag is set.

Bits 10 through 15 and 24 through 63 are reserved. The effect of writing to the
IA32_MCG_CAP register is undefined.

Vol. 3 14-3

MACHINE-CHECK ARCHITECTURE Intel®

14.3.1.2. MCG_CAP MSR (P6 Family Processors)

The MCG_CAP MSR is a read-only register that provides information about the machine-check
architecture implementation in P6 family processors (see Figure 14-3).

63 987 0

Reserved Count

MCG_CTL_P—MCG_CTL register presentJ
Count—Number of reporting banks

Figure 14-3. MCG_CAP Register

Where:

Count field, bits 0 through 7

Indicates the number of hardware unit error-reporting banks available in a particular
processor implementation.

MCG_CTL_P (register present) flag, bit 8
Indicates that the MCG_CTL register is present when set and absent when clear.

Bits 9 through 63 are reserved. The effect of writing to the MCG_CAP register is undefined.

14.3.1.3. IA32_MCG_STATUS MSR

The IA32_MCG_STATUS MSR (called the MCG_STATUS MSR for P6 family processors)

describes the current state of the processor after a machine-check exception has occurred (see
Figure 14-4).

63 3

Reserved

MCIP—Machine check in progress flag4

EIPV—Error IP valid flag
RIPV—Restart IP valid flag

Figure 14-4. 1A32_MCG_STATUS Register

<UTV—T|O

v-0g|N
<UT—m|=

14-4 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

Where:

RIPYV (restart IP valid) flag, bit 0
Indicates (when set) that program execution can be restarted reliably at the instruction
pointed to by the instruction pointer pushed on the stack when the machine-check
exception is generated. When clear, the program cannot be reliably restarted at the
pushed instruction pointer.

EIPV (error IP valid) flag, bit 1
Indicates (when set) that the instruction pointed to by the instruction pointer pushed
onto the stack when the machine-check exception is generated is directly associated
with the error. When this flag is cleared, the instruction pointed to may not be associ-
ated with the error.

MCIP (machine check in progress) flag, bit 2
Indicates (when set) that a machine-check exception was generated. Software can set
or clear this flag. The occurrence of a second Machine-Check Event while MCIP is set
will cause the processor to enter a shutdown state. For information on processor
behavior in the shutdown state, please refer to the description in Chapter 5, Interrupt
and Exception Handling: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 3 through 63 in IA32_MCG_STATUS are reserved.

14.3.1.4. 1A32_MCG_CTL MSR

The IA32_MCG_CTL MSR (called the MCG_CTL MSR in P6 family processors) is present if
the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR (or the MCG_CAP MSR).

IA32_MCG_CTL (or MCG_CTL) controls the reporting of machine-check exceptions. If
present, writing all 1s to this register enables all machine-check features and writing all Os
disables all machine-check features. All other values are undefined and/or implementation
specific.

14.3.2. Error-Reporting Register Banks

Each error-reporting register bank can contain an the IA32_MCi_CTL, IA32_MCi_STATUS,
IA32_MCi_ADDR, and IA32 MCi_ MISC MSRs (called MCi_CTL, MCi_STATUS,
MCi_ADDR, and MCi_MISC in P6 family processors). The Pentium 4 and Intel Xeon proces-
sors provide four banks of error-reporting registers; the P6 family processors provide five banks
of error-reporting registers. The first error-reporting register 1A32_MCO0_CTL) always starts at
address 400H.

See Table B-1 for the addresses of the error-reporting registers in the Pentium 4 and Intel Xeon
processors; see Table B-3 for the addresses of the error-reporting registers P6 family processors.

Vol. 3 14-5

MACHINE-CHECK ARCHITECTURE Intel®

14.3.2.1. 1A32_MCi_CTL MSRs

The IA32_MCi_CTL MSR (called MCi_CTL in P6 family processors) controls error reporting
for errors produced by a particular hardware unit (or group of hardware units). Each of the 64
flags (EEj) represents a potential error. Setting an EEj flag enables reporting of the associated
error and clearing it disables reporting of the error. Writing the 64-bit value
FFFFFFFFFFFFFFFFH to an MCi_CTL register enables logging of all errors. The processor
does not write changes to bits that are not implemented. Figure 14-5 shows the bit fields of
IA32_MCi_CTL.

o]
w
(o]
N
o
e
w

L]

L]

L]

L]

L]
rpomm | N
—omm |—
comm|©

womm
nNomm
—omm

EEj—Error reporting enable flag
(where jis 00 through 63)

Figure 14-5. 1A32_MCi_CTL Register

NOTE

For P6 family processors only: the operating system or executive software
must not modify the contents of the MCO_CTL MSR. This MSR is internally
aliased to the EBL_CR_POWERON MSR and controls platform-specific
error handling features. System specific firmware (the BIOS) is responsible
for the appropriate initialization of the MCO_CTL MSR. P6 family
processors only allow the writing of all 1s or all Os to the MCi_CTL MSR.

14.3.2.2. I1A32_MCi_STATUS MSRs

Each IA32_MCi_STATUS MSR (called MCi_STATUS in P6 family processors) contains infor-
mation related to a machine-check error if its VAL (valid) flag is set (see Figure 14-6). Software
is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing Os to them; writing
Is to them causes a general-protection exception.

14-6 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

63 62 6160 5958 5756 32 31 16 15 0
\ P . ifi
A|O 8 E ¢ Other Information Model-Specific MCA Error Code
L C Error Code

\— PCC—Processor context corrupt
ADDRV—MC/_ADDR register valid

MISCV—MC_MISC register valid
EN—Error enabled
UC—Uncorrected error
OVER—Error overflow
VAL—MC,_STATUS register valid

Figure 14-6. 1A32_MCi_STATUS Register

Where:

MCA (machine-check architecture) error code field, bits 0 through 15
Specifies the machine-check architecture-defined error code for the machine-check
error condition detected. The machine-check architecture-defined error codes are
guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 14.6., Interpreting the MCA Error Codes and Appendix E,
Interpreting Machine-Check Error Codes, for information on machine-check error
codes.

Model-specific error code field, bits 16 through 31
Specifies the model-specific error code that uniquely identifies the machine-check
error condition detected. The model-specific error codes may differ among [A-32
processors for the same machine-check error condition. See Appendix E, Interpreting
Machine-Check Error Codes, for information on model-specific error codes.

Other information field, bits 32 through 56
The functions of these bits are implementation specific and are not part of the machine-
check architecture. Software that is intended to be portable among IA-32 processors
should not rely on these values.

PCC (processor context corrupt) flag, bit 57
Indicates (when set) that the state of the processor might have been corrupted by the
error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s
state.

ADDRY (IA32_MCi_ADDR register valid) flag, bit 58
Indicates (when set) that the IA32_MCi_ADDR register contains the address where the
error occurred (see Section 14.3.2.3., IA32_MCi_ADDR MSRs). When clear, this flag
indicates that the IA32_MCi_ADDR register is either not implemented or does not
contain the address where the error occurred. Do not read these registers if they are not
implemented in the processor.

Vol. 3 14-7

MACHINE-CHECK ARCHITECTURE Intel®

MISCYV (IA32_MCi_MISC register valid) flag, bit 59
Indicates (when set) that the IA32_MCi_MISC register contains additional informa-
tion regarding the error. When clear, this flag indicates that the IA32_MCi_MISC
register is either not implemented or does not contain additional information regarding
the error. Do not read these registers if they are not implemented in the processor

EN (error enabled) flag, bit 60
Indicates (when set) that the error was enabled by the associated EEj bit of the
IA32_MCi_CTL register.

UC (error uncorrected) flag, bit 61
Indicates (when set) that the processor did not or was not able to correct the error condi-
tion. When clear, this flag indicates that the processor was able to correct the error
condition.

OVER (machine check overflow) flag, bit 62
Indicates (when set) that a machine-check error occurred while the results of a previous
error were still in the error-reporting register bank (that is, the VAL bit was already set
in the IA32_MCi_STATUS register). The processor sets the OVER flag and software
is responsible for clearing it. Enabled errors are written over disabled errors, and uncor-
rected errors are written over corrected errors. Uncorrected errors are not written over
previous valid uncorrected errors.

VAL (IA32_MCi_STATUS register valid) flag, bit 63
Indicates (when set) that the information within the IA32_MCi_STATUS register is
valid. When this flag is set, the processor follows the rules given for the OVER flag in
the TA32_MCi_STATUS register when overwriting previously valid entries. The
processor sets the VAL flag and software is responsible for clearing it.

14.3.2.3. 1A32_MCi_ADDR MSRs

The IA32_MCi_ADDR MSR (called MCi_ADDR in the P6 family processors) contains the
address of the code or data memory location that produced the machine-check error if the
ADDRY flag in the IA32_MCi_STATUS register is set (see Section 14-7, IA32_MCi_ADDR
MSR). The 1A32_MCi_ADDR register is either not implemented or contains no address if the
ADDRYV flag in the TA32_MCi_STATUS register is clear. When not implemented in the
processor, all reads and writes to this MSR will cause a general protection exception.

The address returned is either 32-bit offset into a segment, 32-bit linear address, or 36-bit phys-
ical address, depending upon the type of error encountered.

Bits 36-63 of this register are reserved for future address expansion and are always read as zeros.
These registers can be cleared by explicitly writing all Os to them; writing 1s to them will cause
a general-protection exception to be generated (see Figure 14-7).

14-8 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

63 36 35 0

Reserved Address

Figure 14-7. 1A32_MCi_ADDR MSR

14.3.2.4. 1A32_MCi_MISC MSRs

The IA32_MCi_MISC MSR (called the MCi_MISC MSR in the P6 family processors) contains
additional information describing the machine-check error if the MISCV flag in the
IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or
does not contain additional information if the MISCV flag in the IA32_MCi_STATUS register
is clear.

When not implemented in the processor, all reads and writes to this MSR will cause a general
protection exception. When implemented in a processor, these registers can be cleared by
explicitly writing all Os to them; writing 1s to them causes a general-protection exception to be
generated. This register is not implemented in any of the error-reporting register banks for the
P6 family processors.

14.3.2.5. 1A32_MCG Extended Machine Check State MSRs

The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-
check state MSRs (the architectural entries are documented in Table 14-1). The MCG_EXT_P
flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the
MCG_EXT_CNT field indicates the number of these registers actually implemented (see
Section 14.3.1.1., IA32_MCG_CAP MSR (Pentium 4 and Intel Xeon Processors)).

There may be registers available beyond the IA32_MCG_MISC register. These registers should
be referred to as IA32_ MCG_RESERVEDI to IA32_MCG_RESERVEDn depending on the
actual number.

Vol. 3 14-9

MACHINE-CHECK ARCHITECTURE Intel®

Table 14-1. Extended Machine Check State MSRs

MSR Address Description

IA32_MCG_EAX 180H State of the EAX register at the time of the machine-check error.
IA32_MCG_EBX 181H State of the EBX register at the time of the machine-check error.
IA32_MCG_ECX 182H State of the ECX register at the time of the machine-check error.
IA32_MCG_EDX 183H State of the EDX register at the time of the machine-check error.
IA32_MCG_ESI 184H State of the ESI register at the time of the machine-check error.
IA32_MCG_EDI 185H State of the EDI register at the time of the machine-check error.
IA32_MCG_EBP 186H State of the EBP register at the time of the machine-check error.
IA32_MCG_ESP 187H State of the ESP register at the time of the machine-check error.
IA32_MCG_EFLAGS 188H State of the EFLAGS register at the time of the machine-check error.
IA32_MCG_EIP 189H State of the EIP register at the time of the machine-check error.
IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during

DS normal operation.

When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor
saves the state of the general-purpose registers, the EFLAGS register, and the EIP in these
extended machine-check state MSRs. This information can be used by a debugger to analyze the

€I1or.

These registers are read/write to zero registers. This means software can read them; but if soft-
ware writes to them, only all zeros is allowed. If software attempts to write a non-zero value into
one of these registers, a general-protection (#GP) exception is generated. These registers are
cleared on a hardware reset (power-up or RESET), but maintain their contents following a soft

reset (INIT reset).

14-10 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

14.3.3. Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and
P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family processors map these registers to the
IA32_MCi_STATUS and IA32_MCi_ADDR in the error-reporting register bank. This bank
reports on the same type of external bus errors reported in P5_MC_TYPE and P5_MC_ADDR.

The information in these registers can then be accessed in two ways:

® By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general
machine-check exception handler written for Pentium 4 and P6 family processors.

® By reading the P5S_MC_TYPE and P5_MC_ADDR registers using the RDMSR
instruction.

The second capability permits a machine-check exception handler written to run on a Pentium
processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There is a limitation in
that information returned by the Pentium 4, Intel Xeon, and P6 family processors is encoded
differently than information returned by the Pentium processor. To run a Pentium processor
machine-check exception handler on a Pentium 4, Intel Xeon, or P6 family processor; the
handler must be written to interpret P5_MC_TYPE encodings correctly.

14.4. MACHINE-CHECK AVAILABILITY

The machine-check architecture and machine-check exception (#MC) are model-specific
features. Software can execute the CPUID instruction to determine whether a processor imple-
ments these features. Following the execution of the CPUID instruction, the settings of the MCA
flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the processor implements the
machine-check architecture and machine-check exception.

14.5. MACHINE-CHECK INITIALIZATION

To use the processors machine-check architecture, software must initialize the processor to acti-
vate the machine-check exception and the error-reporting mechanism.

Example 14-1 gives pseudocode for performing this initialization. This pseudocode checks for
the existence of the machine-check architecture and exception; it then enables machine-check
exception and the error-reporting register banks. The pseudocode shown is compatible with the
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have
valid data until after they are initially cleared to zero by software (as shown in the initialization
pseudocode in Example 14-1). In addition, when using P6 family processors, software must set
MCi_STATUS registers to zero when doing a soft-reset.

Vol.3 14-11

MACHINE-CHECK ARCHITECTURE Intel®

Example 14-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE

THEN

IF CPU supports MCA

THEN

IF (IA32_MCG_CAP.MCG_CTL_P =1)
(* IA32_MCG_CTL register is present *)
THEN

Fl

IA32_MCG_CTL « FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

(* Determine number of error-reporting banks supported *)
COUNT« IA32_MCG_CAP.Count;
MAX_BANK_NUMBER « COUNT - 1;

IF (Processor Family is 6H)
THEN

(* Enable logging of all errors except for MCO_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL <« OFFFFFFFFFFFFFFFFH;
oD

(* Clear all errors *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO
IA32_MCi_STATUS « 0;
oD

ELSE IF (Processor Family is OFH) (*any Processor Extended Family *)
THEN

14-12 Vol. 3

(* Enable logging of all errors including MCO_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL <« OFFFFFFFFFFFFFFFFH;
oD

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO
IA32_MCi_STATUS « 0;
oD
ELSE

Intel® MACHINE-CHECK ARCHITECTURE

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors

(OS only) IA32_MCi_STATUS « 0;
oD

Fl
Fl
Fl

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
Fl

14.6. INTERPRETING THE MCA ERROR CODES

When the processor detects a machine-check error condition, it writes a 16-bit error code to the
MCA error code field of one of the IA32_MCi_STATUS registers and sets the VAL (valid) flag
in that register. The processor may also write a 16-bit model-specific error code in the
IA32_MCi_STATUS register depending on the implementation of the machine-check architec-
ture of the processor.

The MCA error codes are architecturally defined for IA-32 processors. However, the specific
IA32_MCi_STATUS register that a code is ‘written to’ is model specific. To determine the cause
of a machine-check exception, the machine-check exception handler must read the VAL flag for
each TA32_MCi_STATUS register. If the flag is set, the machine check-exception handler must
then read the MCA error code field of the register. It is the encoding of the MCA error code field
[15:0] that determines the type of error being reported and not the register bank reporting it.

There are two types of MCA error codes: simple error codes and compound error codes.

14.6.1. Simple Error Codes

Table 14-2 shows the simple error codes. These unique codes indicate global error information.

Vol.3 14-13

MACHINE-CHECK ARCHITECTURE Intel®

Table 14-2. 1A32_MCi_Status [15:0] Simple Error Code Encoding

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM Parity 0000 0000 0000 0010 Parity error in internal microcode ROM

Error

External Error 0000 0000 0000 0011 The BINIT# from another processor caused
this processor to enter machine check.’

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check)
master/slave error

Internal Unclassified 0000 01XX XXXX XXXX Internal unclassified errors?

NOTES:

1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same
external bus) has BINIT# observation enabled during power-on configuration (hardware strapping) and if
machine check exceptions are enabled (by setting CR4.MCE = 1).

2. Internal unclassified errors have not been classified. This is because no additional information is included
in the machine check register.

14.6.2. Compound Error Codes

Compound error codes describe errors related to the TLBs, memory, caches, bus and intercon-
nect logic, and internal timer. A set of sub-fields is common to all of compound errors. These
sub-fields describe the type of access, level in the memory hierarchy, and type of request. Table
14-4 shows the general form of the compound error codes. The interpretation column indicates
the name of a compound error. The name is constructed by substituting mnemonics from Tables
14-4 through 14-7 for the sub-field names given within curly braces.

For example, the error code ICACHEL1_RD_ERR is constructed from the form:
{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by |, {LL} is replaced by L1, and {RRRR} is replaced by RD.

Table 14-3. 1A32_MCi_Status [15:0] Compound Error Code Encoding

Type Form Interpretation
TLB Errors 0000 0000 0001 TTLL | {TT}TLB{LL}_ERR
Memory Hierarchy Errors 0000 0001 RRRR TTLL | {TT}CACHE{LL}_{RRRR}_ERR
Bus and Interconnect 0000 1PPT RRRRIILL | BUS{LL}_{PP}_{RRRR}_{lI}_{T}_ERR
Errors
Internal Timer 0000 0100 0000 0000

14-14 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

The 2-bit TT sub-field (Table 14-4) indicates the type of transaction (data, instruction, or
generic). The sub-field applies to the TLB, cache, and interconnect error conditions. Note that
interconnect error conditions are primarily associated with P6 family and Pentium processors,
which utilize an external APIC bus separate from the system bus. The generic type is reported
when the processor cannot determine the transaction type.

Table 14-4. Encoding for TT (Transaction Type) Sub-Field

Transaction Type Mnemonic Binary Encoding
Instruction | 00
Data D 01
Generic G 10

The 2-bit LL sub-field (see Table 14-5) indicates the level in the memory hierarchy where the
error occurred (level 0, level 1, level 2, or generic). The LL sub-field also applies to the TLB,
cache, and interconnect error conditions. The Pentium 4, Intel Xeon, and P6 family processors
support two levels in the cache hierarchy and one level in the TLBs. Again, the generic type is
reported when the processor cannot determine the hierarchy level.

Table 14-5. Level Encoding for LL (Memory Hierarchy Level) Sub-Field

Hierarchy Level Mnemonic Binary Encoding
Level O LO 00
Level 1 L1 o1
Level 2 L2 10
Generic LG 1

The 4-bit RRRR sub-field (see Table 14-6) indicates the type of action associated with the error.
Actions include read and write operations, prefetches, cache evictions, and snoops. Generic
error is returned when the type of error cannot be determined. Generic read and generic write
are returned when the processor cannot determine the type of instruction or data request that
caused the error. Eviction and snoop requests apply only to the caches. All of the other requests
apply to TLBs, caches and interconnects.

Vol.3 14-15

MACHINE-CHECK ARCHITECTURE

Table 14-6. Encoding of Request (RRRR) Sub-Field

intgl.

Request Type Mnemonic Binary Encoding
Generic Error ERR 0000
Generic Read RD 0001
Generic Write WR 0010
Data Read DRD 0011
Data Write DWR 0100
Instruction Fetch IRD 0101
Prefetch PREFETCH 0110
Eviction EVICT 0111
Snoop SNOOP 1000

The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out),
and 2-bit II (memory or I/O) sub-fields, in addition to the LL. and RRRR sub-fields (see Table
14-7). The bus error conditions are implementation dependent and related to the type of bus
implemented by the processor. Likewise, the interconnect error conditions are predicated on a
specific implementation-dependent interconnect model that describes the connections between
the different levels of the storage hierarchy. The type of bus is implementation dependent, and
as such is not specified in this document. A bus or interconnect transaction consists of a request
involving an address and a response.

Table 14-7. Encodings of PP, T, and Il Sub-Fields

Binary
Sub-Field Transaction Mnemonic Encoding

PP (Participation) Local processor1 originated request SRC 00
Local processor1 responded to request RES 01
Local processor1 observed error as third party OBS 10
Generic 1

T (Time-out) Request timed out TIMEOUT 1
Request did not time out NOTIMEOUT 0

I (Memory or I/O) Memory Access M 00
Reserved 01
1/O 10 10
Other transaction 11

NOTES:

1. Local processor differentiates the processor reporting the error from other system components (including
the APIC, other processors, etc.).

14-16 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

14.6.3. Machine-Check Error Codes Interpretation

Appendix E, Interpreting Machine-Check Error Codes, provides information on interpreting the
MCA error code, model-specific error code, and other information error code fields. For P6
family processors, information has been included on decoding external bus errors. For Pentium
4 and Intel Xeon processors; information is included on external bus, internal timer and memory
hierarchy errors.

14.7. GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE

The machine-check architecture and error logging can be used in two different ways:

® To detect machine errors during normal instruction execution, using the machine-check
exception (#MC).

® To periodically check and log machine errors.

To use the machine-check exception, the operating system or executive software must provide
a machine-check exception handler. This handler can be designed specifically for Pentium 4 and
Intel Xeon processors or for P6 family processors. It can also be a portable handler that handles
processor machine-check errors from several generations of IA-32 processors.

A special program or utility is required to log machine errors.

Guidelines for writing a machine-check exception handler or a machine-error logging utility are
given in the following sections.

14.7.1. Machine-Check Exception Handler

The machine-check exception (#MC) corresponds to vector 18. To service machine-check
exceptions, a trap gate must be added to the IDT. The pointer in the trap gate must point to a
machine-check exception handler. Two approaches can be taken to designing the exception
handler:

1. The handler can merely log all the machine status and error information, then call a
debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, attempt to
correct the error and restart the processor.

For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-check
conditions cannot be corrected (they result in abort-type exceptions). The logging of status and
error information is therefore a baseline implementation requirement. See Section 14.7. for more
information on logging errors.

Vol.3 14-17

MACHINE-CHECK ARCHITECTURE Intel®

When recovery from a machine-check error may be possible, consider the following when
writing a machine-check exception handler:

To determine the nature of the error, the handler must read each of the error-reporting
register banks. The count field in the IA32_MCG_CAP register gives number of register
banks. The first register of register bank 0 is at address 400H.

The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error
information in the register is valid. If this flag is clear, the registers in that bank do not
contain valid error information and do not need to be checked.

To write a portable exception handler, only the MCA error code field in the
IA32_MCi_STATUS register should be checked. See Section 14.6. for information that
can be used to write an algorithm to interpret this field.

The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether
recovery from the error is possible. If one of these fields is set, recovery is not possible.
The OVER field indicates that two or more machine-check errors occurred. When
recovery is not possible, the handler typically records the error information and signals an
abort to the operating system.

Correctable errors are corrected automatically by the processor. The UC flag in each
TIA32_MCi_STATUS register indicates whether the processor automatically corrected an
erTor.

The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be
restarted at the instruction indicated by the instruction pointer (the address of the
instruction pushed on the stack when the exception was generated). If this flag is clear, the
processor may still be able to be restarted (for debugging purposes) but not without loss of
program continuity.

For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates
whether the instruction indicated by the instruction pointer pushed on the stack (when the
exception was generated) is related to the error. If the flag is clear, the pushed instruction
may not be related to the error.

The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check
exception was generated. Before returning from the machine-check exception handler,
software should clear this flag so that it can be used reliably by an error logging utility. The
MCIP flag also detects recursion. The machine-check architecture does not support
recursion. When the processor detects machine-check recursion, it enters the shutdown
state.

14.7.2. Enabling BINIT# Drive and BINIT# Observation

For complete operation of the processors machine check capabilities, it is essential that the
system BIOS enable BINIT# drive and BINIT# observation. This allows the processor to use
BINIT# to clear internal blocking states and some external blocking states. This also allows the
processor to correctly report a wide range of machine check exceptions.

14-18 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

For example, on a Pentium |l processor that is:

¢ Executing a locked CMPXCHGSB instruction.

® Reports a machine check exception on the initial data read.
® And the comparison operation fails.

The processor unlocks the bus after completion of the locked sequence by asserting a BINIT#
signal. Without BINIT# drive (UP environment) or BINIT# drive and observation enabled (MP
environment); the machine check error is logged but the machine check exception is not taken
(if MCE's are enabled).

Example 14-2 gives typical steps carried out by a machine-check exception handler.

Example 14-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE

THEN
IF CPU supports MCA
THEN
call errorlogging routine; (* returns restartability *)
Fl;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;
Fl;
IF error is not restartable
THEN
report RESTARTABILITY to console;
abort system;
Fl;
CLEAR MCIP flag in IA32_MCG_STATUS;

14.7.3. Pentium Processor Machine-Check Exception Handling

To make the machine-check exception handler portable to the Pentium 4, Intel Xeon, P6 family,
and Pentium processors, checks can be made (using CPUID) to determine the processor type.
Then based on the processor type, machine-check exceptions can be handled specifically for
Pentium 4, Intel Xeon, P6 family, or Pentium processors.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in
control register CR4), the machine-check exception handler uses the RDMSR instruction to read
the error type from the P5_MC_TYPE register and the machine check address from the
P5_MC_ADDR register. The handler then normally reports these register values to the system
console before aborting execution (see Example 14-2).

Vol.3 14-19

MACHINE-CHECK ARCHITECTURE Intel®

14.7.4. Logging Correctable Machine-Check Errors

If a machine-check error is correctable, the processor does not generate a machine-check excep-
tion for it. To detect correctable machine-check errors, a utility program must be written that
reads each of the machine-check error-reporting register banks and logs the results in an
accounting file or data structure. This utility can be implemented in either of the following ways.

® A system daemon that polls the register banks on an infrequent basis, such as hourly or
daily.

® A user-initiated application that polls the register banks and records the exceptions. Here,
the actual polling service is provided by an operating-system driver or through the system
call interface.

Example 14-3 gives pseudocode for an error logging utility.

Example 14-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA
THEN
FOR each bank of machine-check registers
DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS =1
THEN
IF ADDRYV flag in IA32_MCj_STATUS =1
THEN READ IA32_MCj_ADDR,;
Fl;
IF MISCV flag in IA32_MCi_STATUS =1
THEN READ IA32_MCj_MISC;
Fl;
IF MCIP flag in IA32_MCG_STATUS =1
(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCj_STATUS = 1
AND RIPV flag in IA32_MCG_STATUS =0
(* execution is not restartable *)
THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;
Fl;
Save time-stamp counter and processor ID;
Set IA32_MCj_STATUS to all Os;
Execute serializing instruction (i.e., CPUID);
Fl;
OD;
Fl;

14-20 Vol. 3

Intel® MACHINE-CHECK ARCHITECTURE

If the processor supports the machine-check architecture, the utility reads through the banks of
error-reporting registers looking for valid register entries. It then saves the values of the
IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and IA32_MCG_STATUS regis-
ters for each bank that is valid. The routine minimizes processing time by recording the raw data
into a system data structure or file, reducing the overhead associated with polling. User utilities
analyze the collected data in an off-line environment.

When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is
in progress and the machine-check exception handler has called the exception logging routine.

Once the logging process has been completed the exception-handling routine must determine
whether execution can be restarted, which is usually possible when damage has not occurred
(The PCC flag is clear, in the IA32_MCi_STATUS register) and when the processor can guar-
antee that execution is restartable (the RIPV flag is set in the IA32_MCG_STATUS register). If
execution cannot be restarted, the system is not recoverable and the exception-handling routine
should signal the console appropriately before returning the error status to the Operating System
kernel for subsequent shutdown.

The machine-check architecture allows buffering of exceptions from a given error-reporting
bank although the Pentium 4, Intel Xeon, and P6 family processors do not implement this
feature. The error logging routine should provide compatibility with future processors by
reading each hardware error-reporting bank's IA32_MCi_STATUS register and then writing Os
to clear the OVER and VAL flags in this register. The error logging utility should re-read the
IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor will
write the next error into the register bank and set the VAL flags.

Additional information that should be stored by the exception-logging routine includes the
processor’s time-stamp counter value, which provides a mechanism to indicate the frequency of
exceptions. A multiprocessing operating system stores the identity of the processor node incur-
ring the exception using a unique identifier, such as the processor’s APIC ID (see Section 8.8.,
Handling Interrupts).

The basic algorithm given in Example 14-3 can be modified to provide more robust recovery
techniques. For example, software has the flexibility to attempt recovery using information
unavailable to the hardware. Specifically, the machine-check exception handler can, after
logging carefully analyze the error-reporting registers when the error-logging routine reports an
error that does not allow execution to be restarted. These recovery techniques can use external
bus related model-specific information provided with the error report to localize the source of
the error within the system and determine the appropriate recovery strategy.

Vol. 3 14-21

MACHINE-CHECK ARCHITECTURE

14-22 Vol. 3

15

Debugging and
Performance
Monitoring

intgl.

CHAPTER 15
DEBUGGING AND PERFORMANCE MONITORING

The IA-32 architecture provides extensive debugging facilities for use in debugging code and
monitoring code execution and processor performance. These facilities are valuable for debug-
ging applications software, system software, and multitasking operating systems.

The debugging support is accessed through the debug registers (DBO through DB7) and two
model-specific registers (MSRs). The debug registers of the IA-32 processors hold the addresses
of memory and I/O locations, called breakpoints. Breakpoints are user-selected locations in a
program, a data-storage area in memory, or specific I/O ports where a programmer or system
designer wishes to halt execution of a program and examine the state of the processor by
invoking debugger software. A debug exception (#DB) is generated when a memory or I/O
access is made to one of these breakpoint addresses. A breakpoint is specified for a particular
form of memory or I/O access, such as a memory read and/or write operation or an I/O read
and/or write operation. The debug registers support both instruction breakpoints and data break-
points. The MSRs (which were introduced into the IA-32 architecture in the P6 family proces-
sors) monitor branches, interrupts, and exceptions and record the addresses of the last branch,
interrupt or exception taken and the last branch taken before an interrupt or exception.

15.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

¢ Debug exception (#DB)—Transfers program control to a debugger procedure or task
when a debug event occurs.

® Breakpoint exception (#BP)—Transfers program control to a debugger procedure or task
when an INT 3 instruction is executed.

¢ Breakpoint-address registers (DR0O through DR3)—Specifies the addresses of up to 4
breakpoints.

® Debug status register (DR6)—Reports the conditions that were in effect when a debug or
breakpoint exception was generated.

¢ Debug control register (DR7)—Specifies the forms of memory or I/O access that cause
breakpoints to be generated.

¢ T (trap) flag, TSS—Generates a debug exception (#DB) when an attempt is made to
switch to a task with the T flag set in its TSS.

® RF (resume) flag, EFLAGS register— Suppresses multiple exceptions to the same
instruction.

¢® TF (trap) flag, EFLAGS register—Generates a debug exception (#DB) after every
execution of an instruction.

Vol. 3 15-1

DEBUGGING AND PERFORMANCE MONITORING Intel®

¢ Breakpoint instruction (INT 3)—Generates a breakpoint exception (#BP), which
transfers program control to the debugger procedure or task. This instruction is an
alternative way to set code breakpoints. It is especially useful when more than four
breakpoints are desired, or when breakpoints are being placed in the source code.

® Last branch recording facilities—See Section 15.5., “Last Branch, Interrupt, and
Exception Recording (Pentium 4 and Intel Xeon Processors)” and Section 15.7., “Last
Branch, Interrupt, and Exception Recording (P6 Family Processors)”.

These facilities allow a debugger to be called as a separate task or as a procedure in the context
of the current program or task. The following conditions can be used to invoke the debugger:

® Task switch to a specific task.

¢ Execution of the breakpoint instruction.

¢ Execution of any instruction.

¢ Execution of an instruction at a specified address.

® Read or write of a byte, word, or doubleword at a specified memory address.
® Write to a byte, word, or doubleword at a specified memory address.

® Input of a byte, word, or doubleword at a specified I/O address.

® Output of a byte, word, or doubleword at a specified I/O address.

¢ Attempt to change the contents of a debug register.

15.2. DEBUG REGISTERS

The eight debug registers (see Figure 15-1) control the debug operation of the processor. These
registers can be written to and read using the move to or from debug register form of the MOV
instruction. A debug register may be the source or destination operand for one of these instruc-
tions. The debug registers are privileged resources; a MOV instruction that accesses these regis-
ters can only be executed in real-address mode, in SMM, or in protected mode at a CPL of 0. An
attempt to read or write the debug registers from any other privilege level generates a general-
protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints,
numbered O though 3. For each breakpoint, the following information can be specified and
detected with the debug registers:

® The linear address where the breakpoint is to occur.

® The length of the breakpoint location (1, 2, or 4 bytes).

® The operation that must be performed at the address for a debug exception to be generated.
® Whether the breakpoint is enabled.

® Whether the breakpoint condition was present when the debug exception was generated.

15-2 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

e e o gl o 10 gig o el on

31 1615141312110 9 8 7 6 5 4 3 2 1 0
Reserved (setto 1) B8Blo111111115BBIpRe

31 0
Reserved DR5

31 0
Reserved DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint 0 Linear Address DRO

[] Reserved Bits, DO NOT DEFINE

Figure 15-1. Debug Registers

The following paragraphs describe the functions of flags and fields in the debug registers.

15.2.1. Debug Address Registers (DR0-DR3)

Each of the debug-address registers (DRO through DR3) holds the 32-bit linear address of a
breakpoint (see Figure 15-1). Breakpoint comparisons are made before physical address trans-
lation occurs. The contents of debug register DR7 further specifies each breakpoint condition.

Vol. 3 15-3

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.2.2. Debug Registers DR4 and DR5

Debug registers DR4 and DRS are reserved when debug extensions are enabled (when the DE
flag in control register CR4 is set), and attempts to reference the DR4 and DRS registers cause
an invalid-opcode exception (#UD) to be generated. When debug extensions are not enabled
(when the DE flag is clear), these registers are aliased to debug registers DR6 and DR7.

15.2.3. Debug Status Register (DR6)

The debug status register (DR6) reports the debug conditions that were sampled at the time the
last debug exception was generated (see Figure 15-1). Updates to this register only occur when
an exception is generated. The flags in this register show the following information:

B0 through B3 (breakpoint condition detected) flags (bits 0 through 3)
Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described
for each breakpoint by the LEN#n, and R/Wn flags in debug control register
DR?7 is true. They are set even if the breakpoint is not enabled by the Ln and
Gn flags in register DR7.

BD (debug register access detected) flag (bit 13)
Indicates that the next instruction in the instruction stream will access one of
the debug registers (DRO through DR7). This flag is enabled when the GD
(general detect) flag in debug control register DR7 is set. See Section 15.2.4.,
“Debug Control Register (DR7)”, for further explanation of the purpose of this
flag.

BS (single step) flag (bit 14)
Indicates (when set) that the debug exception was triggered by the single-step
execution mode (enabled with the TF flag in the EFLAGS register). The single-
step mode is the highest-priority debug exception. When the BS flag is set, any
of the other debug status bits also may be set.

BT (task switch) flag (bit 15)
Indicates (when set) that the debug exception resulted from a task switch where
the T flag (debug trap flag) in the TSS of the target task was set (see Section
6.2.1., “Task-State Segment (TSS)”, for the format of a TSS). There is no flag
in debug control register DR7 to enable or disable this exception; the T flag of
the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are
never cleared by the processor. To avoid confusion in identifying debug exceptions, debug
handlers should clear the register before returning to the interrupted task.

15-4 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.2.4. Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions
(see Figure 15-1). The flags and fields in this register control the following things:

L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6)
Enable (when set) the breakpoint condition for the associated breakpoint for
the current task. When a breakpoint condition is detected and its associated Ln
flag is set, a debug exception is generated. The processor automatically clears
these flags on every task switch to avoid unwanted breakpoint conditions in the
new task.

GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7)
Enable (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

LE and GE (local and global exact breakpoint enable) flags (bits 8 and 9)
(Not supported in the P6 family processors and later IA-32 processors.) When
set, these flags cause the processor to detect the exact instruction that caused a
data breakpoint condition. For backward and forward compatibility with other
IA-32 processors, Intel recommends that the LE and GE flags be set to 1 if
exact breakpoints are required.

GD (general detect enable) flag (bit 13)

Enables (when set) debug-register protection, which causes a debug exception
to be generated prior to any MOV instruction that accesses a debug register.
When such a condition is detected, the BD flag in debug status register DR6 is
set prior to generating the exception. This condition is provided to support in-
circuit emulators. (When the emulator needs to access the debug registers,
emulator software can set the GD flag to prevent interference from the program
currently executing on the processor.) The processor clears the GD flag upon
entering to the debug exception handler, to allow the handler access to the
debug registers.

R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29)
Specifies the breakpoint condition for the corresponding breakpoint. The DE
(debug extensions) flag in control register CR4 determines how the bits in the
R/Whn fields are interpreted. When the DE flag is set, the processor interprets
these bits as follows:

00—Break on instruction execution only.

01—Break on data writes only.

10—Break on I/0O reads or writes.

11—Break on data reads or writes but not instruction fetches.

Vol.3 15-5

DEBUGGING AND PERFORMANCE MONITORING Intel®

When the DE flag is clear, the processor interprets the R/Wn bits the same as
for the Intel386™ and Intel486™ processors, which is as follows:

00—Break on instruction execution only.

01—Break on data writes only.

10—Undefined.

11—Break on data reads or writes but not instruction fetches.

LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31)
Specify the size of the memory location at the address specified in the corre-
sponding breakpoint address register (DRO through DR3). These fields are
interpreted as follows:

00—1-byte length
01—2-byte length
10—Undefined

11—4-byte length

If the corresponding RWn field in register DR7 is 00 (instruction execution),
then the LEN# field should also be 00. The effect of using any other length is
undefined. See Section 15.2.5., “Breakpoint Field Recognition”, for further
information on the use of these fields.

15.2.5. Breakpoint Field Recognition

The breakpoint address registers (debug registers DRO through DR3) and the LEN= fields for
each breakpoint define a range of sequential byte addresses for a data or I/O breakpoint. The
LENn fields permit specification of a 1-, 2-, or 4-byte range beginning at the linear address spec-
ified in the corresponding debug register (DRn). Two-byte ranges must be aligned on word
boundaries and 4-byte ranges must be aligned on doubleword boundaries. I/O breakpoint
addresses are zero extended from 16 to 32 bits for purposes of comparison with the breakpoint
address in the selected debug register. These requirements are enforced by the processor; it uses
the LEN® field bits to mask the lower address bits in the debug registers. Unaligned data or I/O
breakpoint addresses do not yield the expected results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an
access is within the range defined by a breakpoint address register and its LEN# field. Table 15-1
gives an example setup of the debug registers and the data accesses that would subsequently trap
or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where
each breakpoint is byte-aligned, and the two breakpoints together cover the operand. These
breakpoints generate exceptions only for the operand, not for any neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LEN= field is
set to 00). The behavior of code breakpoints for other operand sizes is undefined. The processor
recognizes an instruction breakpoint address only when it points to the first byte of an instruc-
tion. If the instruction has any prefixes, the breakpoint address must point to the first prefix.

15-6 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.3. DEBUG EXCEPTIONS

The IA-32 processors dedicate two interrupt vectors to handling debug exceptions: vector 1
(debug exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections
describe how these exceptions are generated and typical exception handler operations for
handling these exceptions.

Table 15-1. Breakpointing Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
DRO R/WO = 11 (Read/Write) AO0001H LENO = 00 (1 byte)
DR1 R/W1 =01 (Write) A0002H LEN1 =00 (1 byte)
DR2 R/W2 = 11 (Read/Write) B0O002H LEN2 = 01) (2 bytes)
DR3 R/W3 = 01 (Write) CO0000H LEN3 = 11 (4 bytes)

Data Accesses

Access Length

Operation Address (In Bytes)

Data operations that trap

- Read or write AO0001H 1
- Read or write AO001H 2
- Write A0002H 1
- Write A0002H 2
- Read or write B0O0O1H 4
- Read or write B0002H 1
- Read or write B0002H 2
- Write CO0000H 4
- Write CO0001H 2
- Write CO0003H 1
Data operations that do not trap

- Read or write AO000H 1
- Read A0002H 1
- Read or write AO003H 4
- Read or write BOOOOH 2
- Read CO0000H 2
- Read or write CO0004H 4

15.3.1. Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or is part of a larger software
system. The processor generates a debug exception for any of several conditions. The debugger
can check flags in the DR6 and DR7 registers to determine which condition caused the exception
and which other conditions might also apply. Table 15-2 shows the states of these flags
following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect conditions (see Section 15.3.1.3., “General-Detect
Exception Condition”) result in faults; other debug-exception conditions result in traps. The
debug exception may report either or both at one time. The following sections describe each
class of debug exception. See Chapter 5, “Interrupt l—Debug Exception (#DB)”, for additional
information about this exception.

Vol.3 15-7

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
address specified in a breakpoint-address register (DBO through DR3) that has been set up to
detect instruction execution (R/W flag is set to 0). Upon reporting the instruction breakpoint, the
processor generates a fault-class, debug exception (#DB) before it executes the target instruction
for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any
other exceptions detected during the decoding or execution of an instruction. Note, however,
that if a code instruction breakpoint is placed on an instruction located immediately after a POP
SS/MOV SS instruction, it may not be triggered. In most situations, POP SS/MOV SS will
inhibit such interrupts (see “MOV-Move” and “POP-Pop a Value from the Stack” in the IA-32
Intel Architecture Software Developer’s Manual, Volumes 2A & 2B).

Table 15-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested | DR7 Flags Tested | Exception Class
Single-step trap BS =1 Trap
Instruction breakpoint, at addresses Bn=1and R/Wn =0 Fault
defined by DRnand LENn (GnorLn=1)

Data write breakpoint, at addresses Bn=1and R/Wn =1 Trap
defined by DRnand LENn (GnorLn=1)

1/O read or write breakpoint, at addresses | Bn=1 and R/Wn =2 Trap
defined by DRnand LENn (GnorLn=1)

Data read or write (but not instruction Bn=1and R/Wn =3 Trap
fetches), at addresses defined by DRn (GnorLn=1)

and LENn

General detect fault, resulting from an BD =1 Fault
attempt to modify debug registers

(usually in conjunction with in-circuit

emulation)

Task switch BT =1 Trap

Because the debug exception for an instruction breakpoint is generated before the instruction is
executed, if the instruction breakpoint is not removed by the exception handler, the processor
will detect the instruction breakpoint again when the instruction is restarted and generate another
debug exception. To prevent looping on an instruction breakpoint, the IA-32 architecture
provides the RF flag (resume flag) in the EFLAGS register (see Section 2.3., “System Flags and
Fields in the EFLAGS Register”’). When the RF flag is set, the processor ignores instruction
breakpoints.

All TA-32 processors manage the RF flag as follows. The processor sets the RF flag automati-
cally prior to calling an exception handler for any fault-class exception except a debug exception
that was generated in response to an instruction breakpoint. For debug exceptions resulting from
instruction breakpoints, the processor does not set the RF flag prior to calling the debug excep-
tion handler. The debug exception handler then has the option of disabling the instruction break-

15-8 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

point or setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS
image is set when the processor returns from the exception handler, it is copied into the RF flag
in the EFLAGS register by the IRETD or task switch instruction that causes the return. The
processor then ignores instruction breakpoints for the duration of the next instruction. (Note that
the POPF, POPFD, and IRET instructions do not transfer the RF image into the EFLAGS
register.) Setting the RF flag does not prevent other types of debug-exception conditions (such
as, I/0 or data breakpoints) from being detected, nor does it prevent non-debug exceptions from
being generated. After the instruction is successfully executed, the processor clears the RF flag
in the EFLAGS register, except after an IRETD instruction or after a JMP, CALL, or INT =
instruction that causes a task switch.

(Note that the processor also does not set the RF flag when calling exception or interrupt
handlers for trap-class exceptions, for hardware interrupts, or for software-generated interrupts.)

For the Pentium processor, when an instruction breakpoint coincides with another fault-type
exception (such as a page fault), the processor may generate one spurious debug exception after
the second exception has been handled, even though the debug exception handler set the RF flag
in the EFLAGS image. To prevent this spurious exception with Pentium processors, all fault-
class exception handlers should set the RF flag in the EFLAGS image.

15.3.1.2. DATA MEMORY AND I/0 BREAKPOINT EXCEPTION CONDITIONS

Data memory and I/O breakpoints are reported when the processor attempts to access a memory
or I/O address specified in a breakpoint-address register (DBO through DR3) that has been set
up to detect data or I/O accesses (R/W flagis setto 1, 2, or 3). The processor generates the excep-
tion after it executes the instruction that made the access, so these breakpoint condition causes
a trap-class exception to be generated.

Because data breakpoints are traps, the original data is overwritten before the trap exception is
generated. If a debugger needs to save the contents of a write breakpoint location, it should save
the original contents before setting the breakpoint. The handler can report the saved value after
the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

The Intel486 and later IA-32 processors ignore the GE and LE flags in DR7. In the Intel386
processor, exact data breakpoint matching does not occur unless it is enabled by setting the LE
and/or the GE flags.

The P6 family processors, however, are unable to report data breakpoints exactly for the REP
MOVS and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the
processor generates the exception after the completion of the first iteration. Repeated INS and
OUTS instructions generate an I/O-breakpoint debug exception after the iteration in which the
memory address breakpoint location is accessed.

Vol. 3 15-9

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.3.1.3. GENERAL-DETECT EXCEPTION CONDITION

When the GD flag in DR7 is set, the general-detect debug exception occurs when a program
attempts to access any of the debug registers (DRO through DR7) at the same time they are being
used by another application, such as an emulator or debugger. This additional protection feature
guarantees full control over the debug registers when required. The debug exception handler can
detect this condition by checking the state of the BD flag of the DR6 register. The processor
generates the exception before it executes the MOV instruction that accesses a debug register,
which causes a fault-class exception to be generated.

15.3.1.4. SINGLE-STEP EXCEPTION CONDITION

The processor generates a single-step debug exception if (while an instruction is being executed)
it detects that the TF flag in the EFLAGS register is set. The exception is a trap-class exception,
because the exception is generated after the instruction is executed. (Note that the processor does
not generate this exception after an instruction that sets the TF flag. For example, if the POPF
instruction is used to set the TF flag, a single-step trap does not occur until after the instruction
that follows the POPF instruction.)

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a
TSS at the time of a task switch, the exception occurs after the first instruction is executed in the
new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT »n and INTO
instructions, however, do clear this flag. Therefore, software debuggers that single-step code
must recognize and emulate INT n or INTO instructions rather than executing them directly. To
maintain protection, the operating system should check the CPL after any single-step trap to see
if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops.
When both an external interrupt and a single-step interrupt occur together, the single-step inter-
rupt is processed first. This operation clears the TF flag. After saving the return address or
switching tasks, the external interrupt input is examined before the first instruction of the single-
step handler executes. If the external interrupt is still pending, then it is serviced. The external
interrupt handler does not run in single-step mode. To single step an interrupt handler, single step
an INT 7 instruction that calls the interrupt handler.

15.3.1.5. ' TASK-SWITCH EXCEPTION CONDITION

The processor generates a debug exception after a task switch if the T flag of the new task's TSS
is set. This exception is generated after program control has passed to the new task, and prior to
the execution of the first instruction of that task. The exception handler can detect this condition
by examining the BT flag of the DR6 register.

Note that, if the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the processor in a loop.

15-10 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.3.2. Breakpoint Exception (#BP)—Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction (see
Chapter 5, “Interrupt 3—Breakpoint Exception (#BP)”). Debuggers use break exceptions in the
same way that they use the breakpoint registers; that is, as a mechanism for suspending program
execution to examine registers and memory locations. With earlier IA-32 processors, breakpoint
exceptions are used extensively for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the
breakpoint-address registers (DRO through DR3). However, the breakpoint exception still is
useful for breakpointing debuggers, because the breakpoint exception can call a separate excep-
tion handler. The breakpoint exception is also useful when it is necessary to set more breakpoints
than there are debug registers or when breakpoints are being placed in the source code of a
program under development.

Note that with Pentium M processors, #BPs for fast string operations are reported only on cache
line boundaries.

15.4. LAST BRANCH RECORDING OVERVIEW

The P6 family processors introduced the ability to set breakpoints on taken branches, interrupts,
and exceptions, and to single-step from one branch to the next. This capability was modified and
extended in the Pentium 4 and Intel Xeon processors to allow the logging of branch trace
messages in a branch trace store (BTS) buffer in memory. See the following sections for descrip-
tions of the two mechanisms for last branch recording:

® Section 15.5., “Last Branch, Interrupt, and Exception Recording (Pentium 4 and Intel
Xeon Processors)”

® Section 15.7., “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The TA-32 branch instructions that are tracked with the last branch recording mechanism are the
JMP, Jcc, LOOP, and CALL instructions.

15.5. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM 4 AND INTEL XEON PROCESSORS)

The Pentium 4 and Intel Xeon processors provide the following methods of recording taken
branches, interrupts and exceptions:

® Store branch records in the last branch record (LBR) stack MSRs for the most recent taken
branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address.

® Send the branch records out on the system bus as branch trace messages (BTMs).

® Log BTMs in a memory-resident branch trace store (BTS) buffer.

Vol.3 15-11

DEBUGGING AND PERFORMANCE MONITORING Intel®

To support these functions, the processor provides the following MSRs:

MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording;
single-stepping on taken branches; branch trace messages (BTMs); and branch trace store
(BTS). This register is named DebugCtIMSR in the P6 family processors.

Debug store (DS) feature flag (bit 21), returned by the CPUID instruction—Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to be stored
in a memory-resident BTS buffer.

[IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.

Last Branch Record (LBR) Stack — The LBR stack is a circular stack that consists of four
MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4
and Intel Xeon processor family [CPUID family OFH, models OH-02H]. The LBR stack
consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP through
MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP through
MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon processor family
[CPUID family OFH, model 03H].

Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 2-bit
pointer (0-3) to the MSR in the LBR stack that contains the most recent branch, interrupt,
or exception recorded for the Pentium 4 and Intel Xeon processor family [CPUID family
OFH, models OH-02H]. This pointer becomes a 4-bit pointer (0-15) for the Pentium 4 and
Intel Xeon processor family [CPUID family OFH, model 03H]. See also: Table 15-2,
Figure 15-3, and Section 15.5.2.

Last Exception Record — See Section 15.5.6., “Last Exception Records (Pentium 4 and
Intel Xeon Processors)”.

15-12 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

Table 15-2. LBR MSR Stack Structure for the Pentium 4 and Intel Xeon Processor Family

LBR MSRs for Family OFH, Models O0H-02H;
MSRs at locations 1DBH-1DEH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-1)

MSR_LASTBRANCH_0
MSR_LASTBRANCH_1
MSR_LASTBRANCH_2
MSR_LASTBRANCH_3

0
1
2
3

LBR MSRs for Family OFH, Models; MSRs at
locations 680H-68FH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-3)

MSR_LASTBRANCH_0_FROM_LIP
MSR_LASTBRANCH_1_FROM_LIP
MSR_LASTBRANCH_2_FROM_LIP
MSR_LASTBRANCH_3_FROM_LIP
MSR_LASTBRANCH_4_FROM_LIP
MSR_LASTBRANCH_5_FROM_LIP
MSR_LASTBRANCH_6_FROM_LIP
MSR_LASTBRANCH_7_FROM_LIP
MSR_LASTBRANCH_8_FROM_LIP
MSR_LASTBRANCH_9_FROM_LIP
MSR_LASTBRANCH_10_FROM_LIP
MSR_LASTBRANCH_11_FROM_LIP
MSR_LASTBRANCH_12_FROM_LIP
MSR_LASTBRANCH_13_FROM_LIP
MSR_LASTBRANCH_14_FROM_LIP
MSR_LASTBRANCH_15_FROM_LIP

LBR MSRs for Family OFH, Model 03H; MSRs
at locations 6COH-6CFH.

MSR_LASTBRANCH_0_TO_LIP
MSR_LASTBRANCH_1_TO_LIP
MSR_LASTBRANCH_2_TO_LIP
MSR_LASTBRANCH_3_TO_LIP
MSR_LASTBRANCH_4_TO_LIP
MSR_LASTBRANCH_5_TO_LIP
MSR_LASTBRANCH_6_TO_LIP
MSR_LASTBRANCH_7_TO_LIP
MSR_LASTBRANCH_8_TO_LIP
MSR_LASTBRANCH_9_TO_LIP
MSR_LASTBRANCH_10_TO_LIP
MSR_LASTBRANCH_11_TO_LIP
MSR_LASTBRANCH_12_TO_LIP
MSR_LASTBRANCH_13_TO_LIP
MSR_LASTBRANCH_14_TO_LIP
MSR_LASTBRANCH_15_TO_LIP

©CoO~NOOUTAWN-—=O

Vol.3 15-13

DEBUGGING AND PERFORMANCE MONITORING Intel®

31

Reserved

Family OFH, Models 01-02H 4
Top-of-stack pointer (TOS)

a1 3 0

Reserved

Family OFH, Model 03H+ 4
Top-of-stack pointer (TOS)

Figure 15-3. MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4 and Intel Xeon
Processor Family

The following sections describe the MSR_DEBUGCTLA MSR and the various last branch
recording mechanisms. See Appendix B, Model-Specific Registers (MSRs), for a detailed
description of each of the last branch recording MSRs described above.

15.5.1. MSR_DEBUGCTLA MSR (Pentium 4 and Intel Xeon
Processors)

The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mecha-
nisms described in the previous section. This register can be written to using the WRMSR
instruction, when operating at privilege level O or when in real-address mode. A protected-mode
operating system procedure is required to provide user access to this register. Figure 15-4 shows
the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as follows:

LBR (last branch/interrupt/exception) flag (bit 0)—When set, the processor records a
running trace of the most recent branches, interrupts, and/or exceptions taken
by the processor (prior to a debug exception being generated) in the last branch
record (LBR) stack. Each branch, interrupt, or exception is recorded as a 64-bit
branch record (see Section 15.5.2., “LBR Stack (Pentium 4 and Intel Xeon
Processors)”). The processor clears this flag whenever a debug exception is
generated (for example, when an instruction or data breakpoint or a single-step
trap occurs).

BTF (single-step on branches) flag (bit 1)
When set, the processor treats the TF flag in the EFLAGS register as a “single-
step on branches” flag rather than a “single-step on instructions” flag. This
mechanism allows single-stepping the processor on taken branches, interrupts,

15-14 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

and exceptions. See Section 15.5.4., “Single-Stepping on Branches, Excep-
tions, and Interrupts” for more information about the BTF flag.

TR (trace message enable) flag (bit 2)
When set, branch trace messages are enabled. Thereafter, when the processor
detects a taken branch, interrupt, or exception, it sends the branch record out
on the system bus as a branch trace message (BTM). See Section 15.5.5.,
“Branch Trace Messages” for more information about the TR flag.

31 543210

Reserved

BTS — Branch trace store
TR — Trace messages enable
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

BTINT — Branch trace interrupt |

Figure 15-4. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

BTS (branch trace store) flag (bit 3)
When set, enables the BTS facilities to log BTMs to a memory-resident BTS
buffer that is part of the DS save area (see Section 15.10.5., “DS Save Area”).

BTINT (branch trace interrupt) flag (bits 4)
When set, the BTS facilities generate an interrupt when the BTS buffer is full.
When clear, BTMs are logged to the BTS buffer in a circular fashion. (See
Section 15.5.7., “Branch Trace Store (BTS)” for a description of this mechanism.)

15.5.2. LBR Stack (Pentium 4 and Intel Xeon Processors)

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack.
The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR
pair) that contains the most recent (last) branch record placed on the stack. Prior to placing a new
branch record on the stack, the TOS is incremented by 1. When the TOS pointer reaches it
maximum value, it wraps around to 0. See Table 15-2 and Figure 15-3.

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only
and can be read using the RDMSR instruction.

Figure 15-5 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch
record consists of two linear addresses, which represent the “from” and “to” instruction pointers

Vol.3 15-15

DEBUGGING AND PERFORMANCE MONITORING Intel®

for a branch, interrupt, or exception. The contents of the from and to addresses differ, depending
on the source of the branch:

® Taken Branch—If the record is for a taken branch, the “from” address is the address of the
branch instruction and the “to” address is the target instruction of the branch.

® Interrupt—If the record is for an interrupt, the “from” address the return instruction pointer
(RIP) saved for the interrupt and the “to” address is the address of the first instruction in
the interrupt handler routine. The RIP is the linear address of the next instruction to be
executed upon returning from the interrupt handler.

¢ Exception—If the record is for an exception, the “from” address is the linear address of the
instruction that caused the exception to be generated and the “to” address is the address of
the first instruction in the exception handler routine.

CPUID Family OFH, Models 0H-02H
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
63 32 - 31 0

To Linear Address From Linear Address

CPUID Family OFH, Model 03H
MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

63 32 -31 0

Reserved From Linear Address

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
63 32 - 31 0

Reserved To Linear Address

Figure 15-5. LBR MSR Branch Record Layout for the Pentium 4 and
Intel Xeon Processor Family

Additional information is saved if an exception or interrupt occurs in conjunction with a branch
instruction. If a branch instruction generates a trap type exception, two branch records are stored
in the LBR stack: a branch record for the branch instruction followed by a branch record for the
exception.

If a branch instruction generates a fault type exception, a branch record is stored in the LBR
stack for the exception, but not for the branch instruction itself. Here, the location of the branch
instruction can be determined from the CS and EIP registers in the exception stack frame that is
written by the processor onto the stack.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the
LBR stack for the branch instruction followed by a record for the interrupt.

15-16 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.5.3. Monitoring Branches, Exceptions, and Interrupts
(Pentium 4 and Intel Xeon Processors)

When the LBR flag in the MSR_DEBUGCTLA MSR is set, the processor automatically begins
recording branch records for taken branches, interrupts, and exceptions (except for debug excep-
tions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the LBR flag
before executing the exception handler. This action does not clear previously stored LBR stack
MSRs. The branch record for the last four taken branches, interrupts and/or exceptions are
retained for analysis.

A debugger can use the linear addresses in the LBR stack to reset breakpoints in the break-point
address registers (DRO through DR3). This allows a backward trace from the manifestation of a
articular bug toward its source.

If the LBR flag is cleared and TR flag in the MSR_DEBUGCTLA MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information must be
generated from entries in the LBR stack (see 14.5.5). A #DB does not automatically clear the
TR flag.

15.5.4. Single-Stepping on Branches, Exceptions, and Interrupts

When software sets both the BTF flag in the MSR_DEBUGCTLA MSR and the TF flag in the
EFLAGS register, the processor generates a single-step debug exception the next time it takes a
branch, services an interrupt, or generates an exception. This mechanism allows the debugger to
single-step on control transfers caused by branches, interrupts, and exceptions. This “control-
flow single stepping” helps isolate a bug to a particular block of code before instruction single-
stepping further narrows the search. If the BTF flag is set when the processor generates a debug
exception, the processor clears the BTF flag along with the TF flag. The debugger must reset the
BTF and TF flags before resuming program execution to continue control-flow single stepping.

15.5.5. Branch Trace Messages

Setting The TR flag in the MSR_DEBUGCTLA MSR enables branch trace messages (BTMs).
Thereafter, when the processor detects a branch, exception, or interrupt, it sends a branch record
out on the system bus as a BTM. A debugging device that is monitoring the system bus can read
these messages and synchronize operations with taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are
sent out on the bus, as described in Section 15.5.3., “Monitoring Branches, Exceptions, and
Interrupts (Pentium 4 and Intel Xeon Processors)”.

Setting this flag greatly reduces the performance of the processor.

Unlike the P6 family processors, the Pentium 4 and Intel Xeon processors can collect branch
records in the LBR stack MSRs while at the same time sending BTMs out on the system bus
when both the TR and LBR flags are set in the MSR_DEBUGCTLA MSR.

Vol.3 15-17

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.5.6. Last Exception Records (Pentium 4 and Intel Xeon
Processors)

The Pentium 4 and Intel Xeon processors provide two 32 bit MSRs (the MSR_LER_TO_LIP
and the MSR_LER_FROM_LIP MSRs) that duplicate the functions of the LastExceptionTolP
and LastExceptionFromIP MSRs found in the P6 family processors. The MSR_LER_TO_LIP
and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the processor
took prior to an exception or interrupt being generated.

15.5.7. Branch Trace Store (BTS)

A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing
a method of determining the decision path taken to reach a particular code location. The Pentium
4 and Intel Xeon processors provide a mechanism for capturing records of taken branches, inter-
rupts, and exceptions and saving them in the last branch record (LBR) stack MSRs and/or
sending them out onto the system bus as BTMs. The branch trace store (BTS) mechanism
provides the additional capability of saving the branch records in a memory-resident BTS buffer,
which is part of the DS save area (see Section 15.10.5., “DS Save Area”). The BTS buffer can
be configured to be circular so that the most recent branch records are always available or it can
be configured to generate an interrupt when the buffer is nearly full so that all the branch records
can be saved.

15.5.7.1. DETECTION OF THE BTS FACILITIES

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the avail-
ability of the DS mechanism in the processor, which supports the BTS (and PEBS) facilities.
When this bit is set, the following BTS facilities are available:

¢ The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when
clear) the availability of the BTS facilities, including the ability to set the BTS and BTINT
bits in the MSR_DEBUGCTLA MSR.

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

15.5.7.2. SETTING UP THE DS SAVE AREA

To save branch records with the BTS buffer, the DS save area must first be set up in memory as
described in the following procedure. See Section 15.5.7.3., “Setting Up the BTS Buffer” and
Section 15.10.8.3., “Setting Up the PEBS Buffer” for instructions for setting up a BTS buffer
and/or a PEBS buffer, respectively, in the DS save area:

1. Create the DS buffer management information area in memory (see Section 15.10.5., “DS
Save Area”, for layout information). See additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA
MSR.

15-18 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge
sensitive. See Section 8.5.1., “Local Vector Table”.

4. Establish an interrupt handler in the IDT for the vector associated with the performance
counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt (see Section 15.5.7.4., “Writing
the DS Interrupt Service Routine”).

The following restrictions should be applied to the DS save area.

® The three DS save area sections should be allocated from a non-paged pool, and marked
accessed and dirty. It is the responsibility of the operating system to keep the pages that
contain the buffer present and to mark them accessed and dirty. The implication is that the
operating system cannot do “lazy” page-table entry propagation for these pages.

® The DS save area can be larger than a page, but the pages must be mapped to contiguous
linear addresses. The buffer may share a page, so it need not be aligned on a 4-KByte
boundary. For performance reasons, the base of the buffer must be aligned on a
doubleword boundary and should be aligned on a cache line boundary.

®]t is recommended that the buffer size for the BTS buffer and the PEBS buffer be an
integer multiple of the corresponding record sizes.

® The precise event records buffer should be large enough to hold the number of precise
event records that can occur while waiting for the interrupt to be serviced.

® The DS save area should be in kernel space. It must not be on the same page as code, to
avoid triggering self-modifying code actions.

® There are no memory type restrictions on the buffers, although it is recommended that the
buffers be designated as WB memory type for performance considerations.

¢ Either the system must be prevented from entering A20M mode while DS save area is
active, or bit 20 of all addresses within buffer bounds must be 0.

® Pages that contain buffers must be mapped to the same physical addresses for all
processes, such that any change to control register CR3 will not change the DS addresses.

® The DS save area is expected to used only on systems with an enabled APIC. The LVT
Performance Counter entry in the APCI must be initialized to use an interrupt gate instead
of the trap gate.

15.5.7.3. SETTING UP THE BTS BUFFER

Three flags in the MSR_DEBUGCTLA MSR (see Table 15-1) control the generation of branch
records and storing of them in the BTS buffer: TR, BTS, and BTINT. The TR flag enables the
generation of BTMs. The BTS flag determines whether the BTMs are sent out on the system bus
(clear) or stored in the BTS buffer (set). BTMs cannot be simultaneously sent to the system bus
and logged in the BTS buffer. The BTINT flag enables the generation of an interrupt when the
BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

Vol.3 15-19

DEBUGGING AND PERFORMANCE MONITORING Intel®

Table 15-1. MSR_DEBUGCTLA MSR Flag Encodings

TR BTS BTINT Description
0 X X Branch trace messages (BTMs) off
1 0 X Generate BTMs
1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer
1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the
buffer is nearly full

The following procedure describes how to set up a Pentium 4 or Intel Xeon processor to collect
branch records in the BTS buffer in the DS save area:

1.

Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS
interrupt threshold fields of the DS buffer management area to set up the BTS buffer in
memory.

Set the TR and BTS flags in the MSR_DEBUGCTLA MSR.

Either clear the BTINT flag in the MSR_DEBUGCTLA MSR (to set up a circular BTS
buffer) or set the BTINT flag (to generate an interrupt when the BTS buffer is nearly full).

15.5.7.4. WRITING THE DS INTERRUPT SERVICE ROUTINE

The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector
and interrupt service routine (called the debug store interrupt service routine or DS ISR). To
handle BTS, non-precise event-based sampling, and PEBS interrupts, separate handler routines
must be included in the DS ISR. Use the following guidelines when writing a DS ISR to handle
BTS, non-precise event-based sampling, and/or PEBS interrupts.

The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a
current privilege level of 0 to secure the buffer storage area.

Because the BTS, non-precise event-based sampling, and PEBS facilities share the same
interrupt vector, the DS ISR must check for all the possible causes of interrupts from these
facilities and pass control on to the appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index
matches/exceeds the interrupt threshold specified. Detection of non-precise event-based
sampling as the source of the interrupt is accomplished by checking for counter overflow.

There must be separate save areas, buffers, and state for each processor in an MP system.

Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent
race conditions during access to the DS save area. This is done by clearing TR flag in the
MSR_DEBUGCTLA MSR and by clearing the precise event enable flag in the
[IA32_PEBS_ENABLE MSR. These settings should be restored to their original values
when exiting the ISR.

15-20 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

® The processor will not disable the DS save area when the buffer is full and the circular
mode has not been selected. The current DS setting must be retained and restored by the
ISR on exit.

® After reading the data in the appropriate buffer, up to but not including the current index
into the buffer, the ISR must reset the buffer index to the beginning of the buffer.
Otherwise, everything up to the index will look like new entries upon the next invocation
of the ISR.

® The ISR must clear the mask bit in the performance counter LVT entry.

® The ISR must re-enable the CCCR's ENABLE bit if it is servicing an overflow PMI due to
PEBS.

15.6. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch
interrupt and exception recording. The capability operates almost identically to that found in
Pentium 4 and Intel Xeon processors. There are differences in the shape of the stack and in some
MSR names and locations. Note the following:

¢* MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace
messages enable, performance monitoring breakpoint flags, single stepping on branches,
and last branch. For Pentium M processors, this MSR is located at register address 01D9H.
See Figure 15-6 and the entries below for a description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor
records a running trace of the most recent branches, interrupts, and/or exceptions
taken by the processor (prior to a debug exception being generated) in the last
branch record (LBR) stack. For more information, see the “Last Branch Record
(LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the
TF flag in the EFLAGS register as a “single-step on branches” flag rather than a
“single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 15.5.4.,
“Single-Stepping on Branches, Exceptions, and Interrupts” for more information
about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these
flags are set, the performance monitoring/breakpoint pins on the processor (BPO#,
BP1#, BP2#, and BP3#) report breakpoint matches in the corresponding
breakpoint-address registers (DRO through DR3). The processor asserts then
deasserts the corresponding BPi# pin when a breakpoint match occurs. When a
PBi flag is clear, the performance monitoring/breakpoint pins report performance
events. Processor execution is not affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are
enabled. When the processor detects a taken branch, interrupt, or exception, it

Vol. 3 15-21

DEBUGGING AND PERFORMANCE MONITORING Intel®

sends the branch record out on the system bus as a branch trace message (BTM).
See Section 15.5.5., “Branch Trace Messages” for more information about the TR
flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 15.10.5., “DS Save Area”.

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 15.5.7., “Branch Trace Store
(BTS)” for a description of this mechanism.

31 876543210 Text
Reserved
BTINT — Branch trace interrupt ‘ |_J
BTS — Branch trace store

TR — Trace messages enable
PB3/2/1/0 — Performance monitoring breakpoint flags
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 15-6. MSR_DEBUGCTLB MSR for Pentium M Processors

® Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to be stored
in a memory-resident BTS buffer. See also: Section 15.5.7.

® Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs are located
at register addresses 040H-047H. See Figure 15-7

® Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit
pointer (bits 2-0) to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded. For Pentium M Processors, this MSR is located at register
address 01C9H.

® For compatibility, the Pentium M processor provides two 32 bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionTolIP and LastExceptionFromIP MSRs found in P6 family processors.

15-22 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
63 32 - 31 0

To Linear Address From Linear Address

Figure 15-7. LBR Branch Record Layout for the Pentium M Processor

For more detail on these capabilities, see Section 15.5., “Last Branch, Interrupt, and Exception
Recording (Pentium 4 and Intel Xeon Processors)” and Section B.2., “MSRs In the Pentium M
Processor”.

15.7. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING
(P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or excep-
tion taken by the processor: DebugCtIMSR, LastBranchTolP, LastBranchFromIP, LastExcepti-
onTolP, and LastExceptionFromIP. These registers can be used to collect last branch records, to
set breakpoints on branches, interrupts, and exceptions, and to single-step from one branch to
the next.

See Appendix B, Model-Specific Registers (MSRs), for a detailed description of each of the last
branch recording MSRs described above.

15.7.1. DebugCtIMSR Register (P6 Family Processors)

The version of the DebugCtIMSR register found in the P6 family processors enables last branch,
interrupt, and exception recording; taken branch breakpoints; the breakpoint reporting pins; and
trace messages. This register can be written to using the WRMSR instruction, when operating
at privilege level 0 or when in real-address mode. A protected-mode operating system procedure
is required to provide user access to this register. Figure 15-8 shows the flags in the
DebugCtIMSR register for the P6 family processors. The functions of these flags are as follows:

LBR (last branch/interrupt/exception) flag (bit 0)
When set, the processor records the source and target addresses (in the Last-
BranchTolIP, LastBranchFromIP, LastExceptionTolP, and LastException-
FromIP MSRs) for the last branch and the last exception or interrupt taken by
the processor prior to a debug exception being generated. The processor clears
this flag whenever a debug exception, such as an instruction or data breakpoint
or single-step trap occurs.

Vol.3 15-23

DEBUGGING AND PERFORMANCE MONITORING Intel®

31 76543210

PlPlP|P|B|L
Reserved T|le|B|B|B|T|B
Rigl2[1]|o|F|R

TR — Trace messages enable ‘
PBi — Performance monitoring/breakpoint pins

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 15-8. DebugCtIMSR Register (P6 Family Processors)

BTF (single-step on branches) flag (bit 1)
When set, the processor treats the TF flag in the EFLAGS register as a “single-
step on branches” flag (see Section 15.5.4., “Single-Stepping on Branches,
Exceptions, and Interrupts”).

PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5)

When these flags are set, the performance monitoring/breakpoint pins on the
processor (BPO#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DRO through DR3). The
processor asserts then deasserts the corresponding BPi# pin when a breakpoint
match occurs. When a PBi flag is clear, the performance monitoring/breakpoint
pins report performance events. Processor execution is not affected by
reporting performance events.

TR (trace message enable) flag (bit 6)
When set, trace messages are enabled as described in Section 15.5.5., “Branch
Trace Messages”. Setting this flag greatly reduces the performance of the
processor. When trace messages are enabled, the values stored in the Last-
BranchTolP, LastBranchFromIP, LastExceptionTolP, and LastException-
FromIP MSRs are undefined.

15.7.2. Last Branch and Last Exception MSRs (P6 Family
Processors)

The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the
instruction pointers for the last branch, interrupt, or exception that the processor took prior to a
debug exception being generated. When a branch occurs, the processor loads the address of the
branch instruction into the LastBranchFromIP MSR and loads the target address for the branch
into the LastBranchTolP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruc-
tion that was interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR

15-24 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

and the address of the exception or interrupt handler that is called is loaded into the LastBranch-
ToIP MSR.

The LastExceptionTolP and LastExceptionFromIP MSRs (also 32-bit registers) record the
instruction pointers for the last branch that the processor took prior to an exception or interrupt
being generated. When an exception or interrupt occurs, the contents of the LastBranchToIP and
LastBranchFromIP MSRs are copied into these registers before the to and from addresses of the
exception or interrupt are recorded in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchTolP, LastBranchFromIP, LastExceptionTolP, and
LastExceptionFromIP MSRs are offsets into the current code segment, as opposed to linear
addresses, which are saved in last branch records for the Pentium 4 and Intel Xeon processors.

15.7.3. Monitoring Branches, Exceptions, and Interrupts (P6
Family Processors)

When the LBR flag in the DebugCtIMSR register is set, the processor automatically begins
recording branches that it takes, exceptions that are generated (except for debug exceptions), and
interrupts that are serviced. Each time a branch, exception, or interrupt occurs, the processor
records the to and from instruction pointers in the LastBranchTolP and LastBranchFromIP
MSRs. In addition, for interrupts and exceptions, the processor copies the contents of the Last-
BranchTolIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastException-
FromIP MSRs prior to recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag
before executing the exception handler, but does not touch the last branch and last exception
MSRs. The addresses for the last branch, interrupt, or exception taken are thus retained in the
LastBranchToIP and LastBranchFromIP MSRs and the addresses of the last branch prior to an
interrupt or exception are retained in the LastExceptionTolP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with
code-segment selectors retrieved from the stack to reset breakpoints in the breakpoint-address
registers (DRO through DR3), allowing a backward trace from the manifestation of a particular
bug toward its source. Because the instruction pointers recorded in the LastBranchTolP, Last-
BranchFromlIP, LastExceptionTolP, and LastExceptionFromIP MSRs are offsets into a code
segment, software must determine the segment base address of the code segment associated with
the control transfer to calculate the linear address to be placed in the breakpoint-address regis-
ters. The segment base address can be determined by reading the segment selector for the code
segment from the stack and using it to locate the segment descriptor for the segment in the GDT
or LDT. The segment base address can then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the
LBR flag again to re-enable last branch and last exception/interrupt recording.

Vol.3 15-25

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.8. TIME-STAMP COUNTER

The TA-32 architecture (beginning with the Pentium processor) defines a time-stamp counter
mechanism that can be used to monitor and identify the relative time of occurrence of processor
events. The time-stamp counter architecture includes the time-stamp counter
(IA32_TIME_STAMP_COUNTER MSR [called the TSC MSR in the P6 family and Pentium
processors]), an instruction for reading the time-stamp counter (RDTSC), a feature bit (TCS
flag) that can be read with the CPUID instruction, and a time-stamp counter disable bit (TSD
flag) in control register CR4.

Following execution of the CPUID instruction, the TSC flag in register EDX (bit 4) indicates
(when set) that the time-stamp counter is present in a particular IA-32 processor implementa-
tion. (See “CPUID—CPU Identification” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2.)

The time-stamp counter (as implemented in the Pentium 4, Intel Xeon, P6 family, and Pentium
processors) is a 64-bit counter that is set to 0 following the hardware reset of the processor.
Following reset, the counter is incremented every processor clock cycle, even when the
processor is halted by the HLT instruction or the external STPCLK# pin. However, the assertion
of the external DPSLP# pin may cause the time-stamp counter to stop and Inte]® SpeedStep®
technology transitions may cause the frequency at which the time-stamp counter increments to
change in accordance with the processor's internal clock frequency.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotoni-
cally increasing unique value whenever executed, except for 64-bit counter wraparound. Intel
guarantees, architecturally, that the time-stamp counter frequency and configuration will be such
that it will not wraparound within 10 years after being reset to 0. The period for counter wrap is
several thousands of years in the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any
privilege level and in virtual-8086 mode. The TSD flag in control register CR4 (bit 2) allows
use of this instruction to be restricted to only programs and procedures running at privilege level
0. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time-
stamp counter should emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDTSC instruction operation
is performed.

15-26 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The RDMSR and WRMSR instructions can read and write the time-stamp counter, respectively,
as an MSR (at MSR address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all
64-bits of the time-stamp counter can be read with the RDMSR instruction (just as with the
RDTSC instruction). However, when the WRMSR instruction is used to write to the time-stamp
counter, only the low order 32-bits of the time-stamp counter can be written to, and the high-
order 32 bits cleared to all Os.

15.9. PERFORMANCE MONITORING OVERVIEW

Performance monitoring was introduced to the IA-32 architecture in the Pentium processor with
a set of model-specific performance-monitoring counter MSRs. These counters permit a selec-
tion of processor performance parameters to be monitored and measured. The information
obtained from these counters can then be used for tuning system and compiler performance.

In the Intel P6 family of processors, the performance monitoring mechanism was modified and
enhanced to permit a wider selection of events to be monitored and to allow greater control over
the choice of the events to be monitored.

The Pentium 4 and Intel Xeon processors introduced a new performance monitoring mechanism
and new set of performance events that can be counted.

The performance monitoring mechanisms and performance events defined for the Pentium, P6
family, Pentium 4, and Intel Xeon processors are not architectural. They are all model specific
and are not compatible among the three IA-32 processor families.

The following sections describe the performance monitoring mechanisms for the Pentium 4,
Intel Xeon, P6 family, and Pentium processors, respectively:

® Section 15.10., “Performance Monitoring (Pentium 4 and Intel Xeon Processors)”
® Section 15.12., “Performance Monitoring (P6 Family Processor)”

® Section 15.13., “Performance Monitoring (Pentium Processors)”

15.10. PERFORMANCE MONITORING (PENTIUM 4 AND INTEL
XEON PROCESSORS)

The performance monitoring mechanism provided in the Pentium 4 and Intel Xeon processors
is considerably different from that provided in the P6 family and Pentium processors. While the
general concept of selecting, filtering, counting, and reading performance events through the
WRMSR, RDMSR, and RDPMC instructions is unchanged, the setup mechanism and MSR
layouts are different and incompatible with the P6 family and Pentium processor mechanisms.
Also, the RDPMC instruction has been enhanced to read the additional performance counters
provided in the Pentium 4 and Intel Xeon processors and to allow faster reading of the counters.

Vol. 3 15-27

DEBUGGING AND PERFORMANCE MONITORING Intel®

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon processors
consists of the following facilities:

The IA32_MISC_ENABLE MSR, which indicates the availability in an IA-32 processor
of the performance monitoring and precise event-based sampling (PEBS) facilities.

Event selection control (ESCR) MSRs for selecting events to be monitored with specific
performance counters. The number available of these differs by family and model (43 to
45).

18 performance counter MSRs for counting events.

18 counter configuration control (CCCR) MSRs, with one CCCR associated with each
performance counter. Each CCCR sets up its associated performance counter for a specific
method or style of counting.

A debug store (DS) save area in memory for storing PEBS records.
The IA32_DS_AREA MSR, which establishes the location of the DS save area.

The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which
indicates the availability in an IA-32 processor of the DS mechanism.

The TA32 PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging
used in at-retirement event counting.

A set of predefined events and event metrics that simplify the setting up of the
performance counters to count specific events.

Table 15-2 lists the performance counters and their associated CCCRs, along with the ESCRs
that select events to be counted for each performance counter. The predefined event metrics and
events are listed in Table in Appendix A, Performance-Monitoring Events.

Table 15-2. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. | Addr Name Addr Name No. Addr
MSR_BPU_COUNTERO 0 | 300H MSR_BPU_CCCRO 360H | MSR_BSU_ESCRO 7 3A0H
MSR_FSB_ESCRO 6 3A2H

MSR_MOB_ESCRO 2 3AAH

MSR_PMH_ESCRO 4 3ACH

MSR_BPU_ESCRO 0 3B2H

MSR_IS_ESCRO 1 3B4H

MSR_ITLB_ESCRO 3 3B6H

MSR_IX_ESCRO 5 3C8H

MSR_BPU_COUNTERH1 1 301H MSR_BPU_CCCR1 361H | MSR_BSU_ESCRO 7 3A0H
MSR_FSB_ESCRO 6 3A2H

MSR_MOB_ESCRO 2 3AAH

MSR_PMH_ESCRO 4 3ACH

MSR_BPU_ESCRO 0 3B2H

MSR_IS_ESCRO 1 3B4H

MSR_ITLB_ESCRO 3 3B6H

MSR_IX_ESCRO 5 3C8H

15-28 Vol. 3

intgl.

DEBUGGING AND PERFORMANCE MONITORING

Table 15-2. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. | Addr Name Addr Name No. Addr
MSR_BPU_COUNTER2 2 | 302H MSR_BPU_CCCR2 362H | MSR_BSU_ESCR1 7 3A1H
MSR_FSB_ESCRH1 6 3A3H

MSR_MOB_ESCR1 2 3ABH

MSR_PMH_ESCR1 4 3ADH

MSR_BPU_ESCRH1 0 3B3H

MSR_IS_ESCR1 1 3B5H

MSR_ITLB_ESCR1 3 3B7H

MSR_IX_ESCR1 5 3C9H

MSR_BPU_COUNTER3 3 | 303H MSR_BPU_CCCR3 363H | MSR_BSU_ESCR1 7 3A1H
MSR_FSB_ESCR1 6 3A3H

MSR_MOB_ESCR1 2 3ABH

MSR_PMH_ESCR1 4 3ADH

MSR_BPU_ESCRH1 0 3B3H

MSR_IS_ESCR1 1 3B5H

MSR_ITLB_ESCR1 3 3B7H

MSR_IX_ESCR1 5 3C9H

MSR_MS_COUNTERO 4 | 304H MSR_MS_CCCRO 364H | MSR_MS_ESCRO 0 3COH
MSR_TBPU_ESCRO 2 3C2H

MSR_TC_ESCRO 1 3C4H

MSR_MS_COUNTER1 5 | 305H MSR_MS_CCCR1 365H | MSR_MS_ESCRO 0 3COH
MSR_TBPU_ESCRO 2 3C2H

MSR_TC_ESCRO 1 3C4H

MSR_MS_COUNTER2 6 | 306H MSR_MS_CCCR2 366H | MSR_MS_ESCR1 0 3C1H
MSR_TBPU_ESCRH1 2 3C3H

MSR_TC_ESCR1 1 3C5H

MSR_MS_COUNTER3 7 | 307H MSR_MS_CCCR3 367H | MSR_MS_ESCR1 0 3C1H
MSR_TBPU_ESCRH1 2 3C3H

MSR_TC_ESCR1 1 3C5H

MSR_FLAME_ 8 | 308H MSR_FLAME_CCCRO | 368H | MSR_FIRM_ESCRO 1 3A4H
COUNTERO MSR_FLAME_ESCRO 0 3A6H
MSR_DAC_ESCRO 5 3A8H

MSR_SAAT_ESCRO 2 3AEH

MSR_U2L_ESCRO 3 3BOH

MSR_FLAME_ 9 | 309H MSR_FLAME_CCCR1 | 369H | MSR_FIRM_ESCRO 1 3A4H
COUNTER1 MSR_FLAME_ESCRO 0 3A6H
MSR_DAC_ESCRO 5 3A8H

MSR_SAAT_ESCRO 2 3AEH

MSR_U2L_ESCRO 3 3BOH

MSR_FLAME_ 10 | 30AH | MSR_FLAME_CCCR2 | 36AH | MSR_FIRM_ESCR1 1 3A5H
COUNTER2 MSR_FLAME_ESCR1 0 3A7H
MSR_DAC_ESCR1 5 3A9H

MSR_SAAT_ESCR1 2 3AFH

MSR_U2L_ESCR1 3 3B1H

MSR_FLAME_ 11 | 30BH | MSR_FLAME_CCCR3 | 36BH | MSR_FIRM_ESCR1 1 3A5H
COUNTER3 MSR_FLAME_ESCR1 0 3A7H
MSR_DAC_ESCR1 5 3A9H

MSR_SAAT_ESCR1 2 3AFH

MSR_U2L_ESCR1 3 3B1H

MSR_IQ_COUNTERO 12 | 30CH | MSR_IQ_CCCRO 36CH | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 3CCH

MSR_CRU_ESCR4 6 3EOH

MSR_IQ_ESCR0' 0 | 8BAH

MSR_RAT_ESCRO 2 3BCH

MSR_SSU_ESCRO 3 3BEH

MSR_ALF_ESCRO 1 3CAH

Vol.3 15-29

DEBUGGING AND PERFORMANCE MONITORING

Table 15-2. Performance Counter MSRs and Associated CCCR and

ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

tel.

Counter CCCR ESCR

Name No. | Addr Name Addr Name No. Addr
MSR_IQ_COUNTERT 13 | 30DH | MSR_IQ_CCCR1 36DH | MSR_CRU_ESCRO 4 | 3B8H
MSR_CRU_ESCR2 5 | 3CCH

MSR_CRU_ESCR4 6 | 3EOH

MSR_IQ_ESCROQ' 0 | 3BAH

MSR_RAT_ESCRO 2 | 3BCH

MSR_SSU_ESCRO 3 | 3BEH

MSR_ALF_ESCRO 1 | 3CAH

MSR_IQ_COUNTER2 14 | 30EH | MSR_IQ_CCCR2 36EH | MSR_CRU_ESCR1 4 | 3B9H
MSR_CRU_ESCR3 5 | 3CDH

MSR_CRU_ESCR5 6 | 3ETH

MSR_IQ_ESCR1’ 0 | 3BBH

MSR_RAT_ESCRH1 2 | 3BDH

MSR_ALF_ESCRH1 1 | 3CBH

MSR_IQ_COUNTER3 15 | 30FH | MSR_IQ_CCCR3 36FH | MSR_CRU_ESCR1 4 | 3B9H
MSR_CRU_ESCR3 5 | 3CDH

MSR_CRU_ESCR5 6 | 3ETH

MSR_IQ_ESCR1' 0 | 3BBH

MSR_RAT_ESCRH1 2 | 3BDH

MSR_ALF_ESCR1 1 | 3CBH

MSR_IQ_COUNTER4 16 | 310H | MSR_IQ_CCCR4 370H | MSR_CRU_ESCRO 4 | 3B8H
MSR_CRU_ESCR2 5 | 3CCH

MSR_CRU_ESCR4 6 | 3EOH

MSR_IQ_ESCR0' 0 | 3BAH

MSR_RAT_ESCRO 2 | 3BCH

MSR_SSU_ESCRO 3 | 3BEH

MSR_ALF_ESCRO 1 | 3CAH

MSR_IQ_COUNTER5 17 | 311H | MSR_IQ_CCCR5 371H | MSR_CRU_ESCRH1 4 | 3B9H
MSR_CRU_ESCR3 5 | 3CDH

MSR_CRU_ESCR5 6 | 3ETH

MSR_IQ_ESCR1’ 0 | 3BBH

MSR_RAT_ESCRH1 2 | 3BDH

MSR_ALF_ESCRH1 1 | 3CBH

NOTES

1. MSR_IQ_ESCRO0 and MSR_IQ_ESCR1 are available only on early processor builds (family OFH, models

01H-02H). These MSRs are not available on later versions.

The types of events that can be counted with these performance monitoring facilities are divided
into two classes: non-retirement events and at-retirement events.

® Non-retirement events (see Table A-1) are events that occur any time during instruction

execution (such as bus transactions or cache transactions).

¢ At-retirement events (see Table A-2) are events that are counted at the retirement stage of
instruction execution, which allows finer granularity in counting events and capturing
machine state. The at-retirement counting mechanism includes facilities for tagging pops
that have encountered a particular performance event during instruction execution.
Tagging allows events to be sorted between those that occurred on an execution path that
resulted in architectural state being committed at retirement as well as events that occurred
on an execution path where the results were eventually cancelled and never committed to
architectural state (such as, the execution of a mispredicted branch).

15-30 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The Pentium 4 and Intel Xeon processors’ performance monitoring facilities support the three
usage models described below. The first two models can be used to count both non-retirement
and at-retirement events, the third model can be used only to count a subset of at-retirement
events:

¢ Event counting. A performance counter is configured to count one or more types of
events. While the counter is counting, software reads the counter at selected intervals to
determine the number of events that have been counted between the intervals.

¢ Non-precise event-based sampling. A performance counter is configured to count one or
more types of events and to generate an interrupt when it overflows. To trigger an
overflow, the counter is preset to a modulus value that will cause the counter to overflow
after a specific number of events have been counted. When the counter overflows, the
processor generates a performance monitoring interrupt (PMI). The interrupt service
routine for the PMI then records the return instruction pointer (RIP), resets the modulus,
and restarts the counter. Code performance can be analyzed by examining the distribution
of RIPs with a tool like the VTune™ Performance Analyzer.

® Precise event-based sampling (PEBS). This type of performance monitoring is similar to
non-precise event-based sampling, except that a memory buffer is used to save a record of
the architectural state of the processor whenever the counter overflows. The records of
architectural state provide additional information for use in performance tuning. Precise
event-based sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance monitoring
in the Pentium 4 and Intel Xeon processors, then describes how these facilities are used with the
three usage models described above.

15.10.1. ESCR MSRs

The 45 ESCR MSRs (see Table 15-2) allow software to select specific events to be countered.
Each ESCR is usually associated with a pair of performance counters (see Table 15-2), and each
performance counter has several ESCRs associated with it (allowing the events to be counted to
be selected from a variety of events).

Figure 15-9 shows the layout of an ESCR MSR. The functions of the flags and fields are as
follows:

USR flag, bit 2
When set, events are counted when the processor is operating at a current priv-
ilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by
application code and unprotected operating system code.

OS flag, bit 3

When set, events are counted when the processor is operating at CPL of 0. This
privilege level is generally reserved for protected operating system code.
(When both the OS and USR flags are set, events are counted at all privilege
levels.)

Vol. 3 15-31

DEBUGGING AND PERFORMANCE MONITORING Intel®

3130 25 24 9 8 543210
R
s Event Tag
\c/i Select Event Mask Value Revd
Tag Enable4
oS
USR
63 32
Reserved

Figure 15-9. Event Selection Control Register (ESCR) for Pentium 4 and Intel Xeon
Processors without HT Technology Support

Tag Enable, bit 4
When set, enables tagging of Llops to assist in at-retirement event counting;
when clear, disables tagging. See Section 15.10.7., “At-Retirement Counting”.

Tag Value field, bits 5 through 8
Selects a tag value to associate with a flop to assist in at-retirement event
counting.

Event Mask field, bits 9 through 24
Selects events to be counted from the event class selected with the event select
field.

Event Select field, bits 25 through 30)
Selects a class of events to be counted. The events within this class that are
counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to
count, such as retired branches. The event mask field is then used to select one or more of the
specific events within the class to be counted. For example, when counting retired branches, four
different events can be counted: branch not taken predicted, branch not taken mispredicted,
branch taken predicted, and branch taken mispredicted. The OS and USR flags allow counts to
be enabled for events that occur when operating system code and/or application code are being
executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all Os on reset. The flags and fields of an ESCR are configured by
writing to the ESCR using the WRMSR instruction. Table 15-2 gives the addresses of the ESCR
MSRs.

15-32 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

NOTE

Writing to an ESCR MSR does not enable counting with its associated
performance counter; it only selects the event or events to be counted. The
CCCR for the selected performance counter must also be configured. Config-
uration of the CCCR includes selecting the ESCR and enabling the counter.

15.10.2. Performance Counters

The performance counters in conjunction with the counter configuration control registers
(CCCRs) are used for filtering and counting the events selected by the ESCRs. The Pentium 4
and Intel Xeon processors provide 18 performance counters organized into 9 pairs. A pair of
performance counters is associated with a particular subset of events and ESCR’s (see Table
15-2). The counter pairs are partitioned into four groups:

¢ The BPU group, includes two performance counter pairs:
— MSR_BPU_COUNTERO and MSR_BPU_COUNTERI1
— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
® The MS group, includes two performance counter pairs:
— MSR_MS_COUNTERO and MSR_MS_COUNTERI.
— MSR_MS_COUNTER?2 and MSR_MS_COUNTER3.
¢ The FLAME group, includes two performance counter pairs:
— MSR_FLAME_COUNTERO and MSR_FLAME_COUNTERI.
— MSR_FLAME_COUNTER?2 and MSR_FLAME_COUNTER3.
® The IQ group, includes three performance counter pairs:
— MSR_IQ_COUNTERO and MSR_IQ_COUNTERI.
— MSR_IQ_COUNTER?2 and MSR_IQ_COUNTER3.
— MSR_IQ_COUNTER4 and MSR_IQ_COUNTERS.
The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can start the first
counter in the second pair and vice versa. A similar cascading is possible for the second counters
in each pair. For example, within the BPU group of counters, MSR_BPU_COUNTERO can start
MSR_BPU_COUNTER2 and vice versa, and MSR_BPU_COUNTER1 can start
MSR_BPU_COUNTER3 and vice versa (see Section 15.10.6.6., “Cascading Counters”). The
cascade flag in the CCCR register for the performance counter enables the cascading of
counters.

Vol.3 15-33

DEBUGGING AND PERFORMANCE MONITORING Intel®

Each performance counter is 40-bits wide (see Figure 15-10). The RDPMC instruction has been
enhanced in the Pentium 4 and Intel Xeon processors to allow reading of either the full counter-
width (40-bits) or the low 32-bits of the counter. Reading the low 32-bits is faster than reading
the full counter width and is appropriate in situations where the count is small enough to be
contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privilege level
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8)
allows the use of this instruction to be restricted to only programs and procedures running at
privilege level 0.

31 0

Counter

63 39 32

Reserved Counter

Figure 15-10. Performance Counter (Pentium 4 and Intel Xeon Processors)

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera-
tion is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the perfor-
mance counters, using the RDMSR and WRMSR instructions. A secure operating system would
clear the PCE flag during system initialization to disable direct user access to the performance-
monitoring counters, but provide a user-accessible programming interface that emulates the
RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins
(that is, before the counter is enabled). This can be accomplished by writing to the counter using
the WRMSR instruction. To set a counter to a specified number of counts before overflow, enter
a 2s complement negative integer in the counter. The counter will then count from the preset
value up to -1 and overflow. Writing to a performance counter in a Pentium 4 or Intel Xeon
processor with the WRMSR instruction causes all 40 bits of the counter to be written.

15-34 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.10.3. CCCR MSRs

Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one CCCR
MSR associated with it (see Table 15-2). The CCCRs control the filtering and counting of events
as well as interrupt generation. Figure 15-11 shows the layout of an CCCR MSR. The functions
of the flags and fields are as follows:

Enable flag, bit 12
When set, enables counting; when clear, the counter is disabled. This flag is
cleared on reset.

ESCR Select field, bits 13 through 15
Identifies the ESCR to be used to select events to be counted with the counter
associated with the CCCR.

Compare flag, bit 18
When set, enables filtering of the event count; when clear, disables filtering.
The filtering method is selected with the threshold, complement, and edge
flags.

Complement flag, bit 19
Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result
in a single count being delivered to the performance counter; when clear,
counts greater than the threshold value result in a count being delivered to the
performance counter (see Section 15.10.6.2., “Filtering Events”). The comple-
ment flag is not active unless the compare flag is set.

Threshold field, bits 20 through 23
Selects the threshold value to be used for comparisons. The processor exam-
ines this field only when the compare flag is set, and uses the complement flag
setting to determine the type of threshold comparison to be made. The useful
range of values that can be entered in this field depend on the type of event
being counted (see Section 15.10.6.2., “Filtering Events”).

Edge flag, bit 24
When set, enables rising edge (false-to-true) edge detection of the threshold
comparison output for filtering event counts; when clear, rising edge detection
is disabled. This flag is active only when the compare flag is set.

Vol.3 15-35

DEBUGGING AND PERFORMANCE MONITORING Intel®

313029 2726252423 201918 1716 15 1312 11 0

Rsvd Threshold Rsvd| ESCR Reserved
Select

Enable
Reserved: Must be set to 11B
Compare
Complement
Edge
FORCE_OVF
OVF_PMI
Cascade
OVF

32

63

Reserved

Figure 15-11. Counter Configuration Control Register (CCCR)

FORCE_OYVF flag, bit 25
When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

OVF_PMI flag, bit 26
When set, causes a performance monitor interrupt (PMI) to be generated when
the counter overflows occurs; when clear, disables PMI generation. Note that
the PMI is generated on the next event count after the counter has overflowed.

Cascade flag, bit 30
When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see
Section 15.10.2., “Performance Counters” for further details); when clear,
disables cascading of counters.

OVF flag, bit 31
Indicates that the counter has overflowed when set. This flag is a sticky flag
that must be explicitly cleared by software.

The CCCRs are initialized to all Os on reset.

The events that an enabled performance counter actually counts are selected and filtered by the
following flags and fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted
and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be
counted.

15-36 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several
ESCRs associated with it, one ESCR must be chosen to select the classes of events that
may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional
threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the
input for the next. For instance, events filtered using the privilege level flags can be further qual-
ified by the compare and complement flags and the threshold field, and an event that matched
the threshold criteria, can be further qualified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 15.10.6.,
“Programming the Performance Counters for Non-Retirement Events”.

15.10.4. Debug Store (DS) Mechanism

The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon processors to
allow various types of information to be collected in memory-resident buffers for use in debug-
ging and tuning programs. For the Pentium 4 and Intel Xeon processors, the DS mechanism is
used to collect two types of information: branch records and precise event-based sampling
(PEBS) records (see Section 15.5.7., “Branch Trace Store (BTS)” and Section 15.10.8., “Precise
Event-Based Sampling (PEBS)” for a description of these facilities.) The availability of the DS
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by the CPUID
instruction.

Records collected with the DS mechanism are saved in the DS save area (see Section 15.10.5.,
“DS Save Area”).

15.10.5. DS Save Area

The debug store (DS) save area is a software-designated area of memory that is used to collect
the following two types of information:

¢ Branch Records. When the BTS flag in the MSR_DEBUGCTLA MSR is set, a branch
record is stored in the BTS buffer in the DS save area whenever a taken branch, interrupt,
or exception is detected.

¢ PEBS Records. When a performance counter is configured for PEBS, a PEBS record is
stored in the PEBS buffer in the DS save area whenever a counter overflow occurs. This
record contains the architectural state of the processor (state of the 8 general purpose
registers, EIP register, and EFLAGS register) at the time of the event that caused the
counter to overflow. When the state information has been logged, the counter is automati-
cally reset to a preselected value, and event counting begins again. This feature is available
only for a subset of the Pentium 4 and Intel Xeon processors’ performance events.

Vol.3 15-37

DEBUGGING AND PERFORMANCE MONITORING Intel®

NOTE

DS save area and recording mechanism is not available in the SMM. The
feature is disabled on transition to the SMM mode. Similarly DS recording is
disabled on the generation of a machine check exception and is cleared on
processor RESET and INIT. DS recording is available in real address mode.

The BTS and PEBS facilities may not be available on all IA-32 processors.
The availability of these facilities is indicated with the
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in
the IA32_MISC_ENABLE MSR (see Table B-1).

The DS save area is divided into three parts (see Figure 15-12): buffer management area, branch
trace store (BTS) buffer, and PEBS buffer. The buffer management area is used to define the
location and size of the BTS and PEBS buffers. The processor then uses the buffer management
area to keep track of the branch and/or PEBS records in their respective buffers and to record
the performance counter reset value. The linear address of the first byte of the DS buffer
management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:

BTS buffer base
Linear address of the first byte of the BTS buffer. This address should point to
a natural doubleword boundary.

BTS Index Linear address of the first byte of the next BTS record to be written to. Initially,
this address should be the same as the address in the BTS buffer base field.

BTS absolute maximum
Linear address of the next byte past the end of the BTS buffer. This address
should be a multiple of the BTS record size (12 bytes) plus 1.

BTS interrupt threshold
Linear address of the BTS record on which an interrupt is to be generated. This
address must point to an offset from the BTS buffer base that is a multiple of
the BTS record size. Also, it must be several records short of the BTS absolute
maximum address to allow a pending interrupt to be handled prior to processor
writing the BTS absolute maximum record.

PEBS buffer base
Linear address of the first byte of the PEBS buffer. This address should point
to a natural doubleword boundary.

PEBS index
Linear address of the first byte of the next PEBS record to be written to.
Initially, this address should be the same as the address in the PEBS buffer base
field.

15-38 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

IA32_DS_AREA MSR

DS Buffer Management Area BTS Buffer

BTS Buffer Base | OH——————>
Branch Record 0

BTS Index 4H

BTS Absolute 8H
Maximum

BTS Interrupt Branch Record 1
Threshold CH

PEBS Buffer Base| 10H $
PEBS Index 14H —
e 1o
Branch Record n
PEBS Interrupt [{cH
Threshold L3
20H
PEBS 0
Counter Reset 24H PEBS Buffer
L
Reserved 30H PEBS Record 0
PEBS Record 1
PEBS Record n
B

Figure 15-12. DS Save Area

PEBS absolute maximum
Linear address of the next byte past the end of the PEBS buffer. This address
should be a multiple of the PEBS record size (40 bytes) plus 1.

PEBS interrupt threshold
Linear address of the PEBS record on which an interrupt is to be generated.
This address must point to an offset from the PEBS buffer base that is a
multiple of the PEBS record size. Also, it must be several records short of the
PEBS absolute maximum address to allow a pending interrupt to be handled
prior to processor writing the PEBS absolute maximum record.

Vol.3 15-39

DEBUGGING AND PERFORMANCE MONITORING Intel®

PEBS counter reset value
A 40-bit value that the counter is to be reset to after state information has
collected following counter overflow. This value allows state information to be
collected after a preset number of events have been counted.

Figures 15-13 shows the structure of a 12-byte branch record in the BTS buffer. The fields in
each record are as follows:

Last Branch From
Linear address of the instruction from which the branch, interrupt, or exception
was taken.

Last Branch To Linear address of the branch target or the first instruction in the interrupt or
exception service routine.

Branch Predicted
Bit 4 of field indicates whether the branch that was taken was predicted (set) or
not predicted (clear).

31 4 0
Last Branch From OH

Last Branch To 4H

8H

Branch Predicted 4*

Figure 15-13. Branch Trace Record Format

Figures 15-14 shows the structure of the 40-byte PEBS records. Nominally the register values
are those at the beginning of the instruction that caused the event. However, there are cases
where the registers may be logged in a partially modified state. The linear IP field shows the
value in the EIP register translated from an offset into the current code segment to a linear
address.

15.10.6. Programming the Performance Counters for Non-
Retirement Events

To program a performance counter and begin counting events, software must perform the
following operations.

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR
Restrictions row in Table A-1.

15-40 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

3. Match the CCCR Select value and ESCR name in Table A-1 to the values listed ESCR
Name and ESCR No. columns in Table 15-4, to select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels they
are to be counted at.

5. Set up the CCCR for the performance counter to be used to count the events, by selecting
the chosen the ESCR and selecting the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter
overflows its alternate counter starts counting.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the
counter overflows. (If PMI generation is enabled, the local APIC must be set up to deliver
the interrupt to the processor and a handler for the interrupt must be in place.)

8. Enable the counter to begin counting.

31 0
EFLAGS OH
Linear IP 4H

EAX 8H
EBX CH
ECX 10H
EDX 14H
ESI 18H
EDI 1CH
EBP 20H
ESP 24H

Figure 15-14. PEBS Record Format

15.10.6.1. SELECTING EVENTS TO COUNT

Table A-1 lists a set of non-retirement events for the Pentium 4 and Intel Xeon processors. For
each event listed in Table A-1, specific setup information is provided. Figure 15-15 gives an
example of one of the non-retirement events from Table A-1.

In Tables A-1 and A-2, the name of the event is listed in the Event Name column and various
parameters that define the event and other information are listed in the Event Parameters
column. The Parameter Value and Description columns give specific parameters for the event
and additional description information. The entries in the Event Parameters column are
described below.

Vol.3 15-41

intgl.

DEBUGGING AND PERFORMANCE MONITORING

ESCR Restrictions
Lists the ESCRs that can be used to program the event. Typically only one

ESCR is needed to count an event.

Event Name

Event Parameters

Parameter Value

Description

Branch_retired

Counts the retirement of a branch.
Specify one or more mask bits to
select any combination of branch
taken, not-taken, predicted and
mispredicted.

ESCR restrictions

MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of
the ESCR MSRs

Counter numbers per
ESCR

ESCR2: 12, 13, 16
ESCRS3: 14, 15,17

The counter numbers associated
with each ESCR are provided. The

performance counters and
corresponding CCCRs can be
obtained from Table 15-3.

ESCR Event Select 06H ESCR[31:25]
ESCR Event Mask ESCR[24:9],
Bit 0: MMNP Branch Not-taken Predicted,
1: MMNM Branch Not-taken Mispredicted,
2: MMTP Branch Taken Predicted,
3: MMTM Branch Taken Mispredicted.
CCCR Select 05H CCCR[15:13]

Event Specific Notes
Can Support PEBS No

P6: EMON_BR_INST_RETIRED

Requires Additional No
MSRs for Tagging

Figure 15-15. Event Example

Counter numbers per ESCR
Lists which performance counters are associated with each ESCR. Table 15-2
gives the name of the counter and CCCR for each counter number. Typically
only one counter is needed to count the event.

ESCR Event Select
Gives the value to be placed in the event select field of the ESCR to select the
event.

ESCR Event Mask
Gives the value to be placed in the Event Mask field of the ESCR to select sub-
events to be counted. The parameter value column defines the documented bits
with relative bit position offset starting from O (where the absolute bit position
of relative offset O is bit 9 of the ESCR. All undocumented bits are reserved
and should be set to 0.

15-42 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

CCCR Select Gives the value to be placed in the ESCR select field of the CCCR associated
with the counter to select the ESCR to be used to define the event. (Note that
this value is not the address of the ESCR; instead, it is the number of the ESCR
from the Number column in Table 15-2.)

Event Specific Notes
Gives additional information about the event, such as the name of the same or
a similar event defined for the P6 family processors.

Can Support PEBS
Indicates if PEBS is supported for the event. (This information is only supplied
for at-retirement events listed in Table A-2.)

Requires Additional MSR for Tagging
Indicates which if any additional MSRs must be programmed to count the
events. (This information is only supplied for the at-retirement events listed in
Table A-2.)

NOTE

The performance-monitoring events listed in Appendix A, Performance-
Monitoring Events are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and
should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is,
the counter is set up to count a specified event indefinitely, wrapping around whenever it reaches
its maximum count. This procedure is continued through the following four sections.

Using the information given in Table A-1, an event to be counted can be selected as follows:
1. Select the event to be counted.
2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers
Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and
determine the MSR addresses of the counter, CCCR, and ESCR from Table 15-2.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask
values from Table A-1 into the appropriate fields in the ESCR. At the same time set or
clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value from Table A-1 into the
appropriate field in the CCCR.

Vol.3 15-43

DEBUGGING AND PERFORMANCE MONITORING Intel®

NOTE

Typically all the fields and flags of the CCCR will be written with one
WRMSR instruction; however, in this procedure, several WRMSR writes are
used to more clearly demonstrate the uses of the various CCCR fields and
flags.

This setup procedure is continued in the next section, Section 15.10.6.2., “Filtering Events”.

15.10.6.2. FILTERING EVENTS

Each counter receives up to 4 input lines from the processor hardware from which it is counting
events. The counter treats these inputs as binary inputs (input O has a value of 1, input 1 has a
value of 2, input 3 has a value of 4, and input 3 has a value of 8). When a counter is enabled, it
adds this binary input value to the counter value on each clock cycle. For each clock cycle, the
value added to the counter can then range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the clock
cycles during which the 0 input is asserted. However, for some events two or more input lines
are used. Here, the counters threshold setting can be used to filter events. The compare, comple-
ment, threshold, and edge fields control the filtering of counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the
input value vs. a threshold value can be made. The complement flag selects “less than or equal
to” (flag set) or “greater than” (flag clear). The threshold field selects a threshold value of from
0 to 15. For example, if the complement flag is cleared and the threshold field is set to 6, than
any input value of 7 or greater on the 4 inputs to the counter will cause the counter to be incre-
mented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the
counter. Conversely, if the complement flag is set, any value from O to 6 will increment the
counter and any value from 7 to 15 will not increment the counter. Note that when a threshold
condition has been satisfied, the input to the counter is always 1, not the input value that is
presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold comparison is
being made. The edge flag is only active when the compare flag is set. When the edge flag is set,
the resulting output from the threshold filter (a value of O or 1) is used as an input to the edge
filter. Each clock cycle, the edge filter examines the last and current input values and sends a
count to the counter only when it detects a “rising edge” event; that is, a false-to-true transition.
Figure 15-16 illustrates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the threshold
filter and the edge filter. This procedure is a continuation of the setup procedure introduced in
Section 15.10.6.1., “Selecting Events to Count”.

15-44 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to
write values in the CCCR compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons,
respectively.

— Enter a value from 0 to 15 in the threshold field.
8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 15.10.6.3., “Starting Event
Counting”.

Output from
Threshold Filter

Counter Increments
On Rising Edge —‘ —‘
(False-to-True)

Figure 15-16. Effects of Edge Filtering

15.10.6.3. STARTING EVENT COUNTING

Event counting by a performance counter can be initiated in either of two ways. The typical way
is to set the enable flag in the counter’s CCCR. Following the instruction to set the enable flag,
event counting begins and continues until it is stopped (see Section 15.10.6.5., “Halting Event
Counting”).

The following procedural step shows how to start event counting. This step is a continuation of
the setup procedure introduced in Section 15.10.6.2., “Filtering Events”.

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the
performance counter.

This setup procedure is continued in the next section, Section 15.10.6.4., “Reading a Perfor-
mance Counter’s Count”.

The second way that a counter can be started by using the cascade feature. Here, the overflow
of one counter automatically starts its alternate counter (see Section 15.10.6.6., “Cascading
Counters”).

Vol.3 15-45

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.10.6.4. READING A PERFORMANCE COUNTER’S COUNT

The Pentium 4 and Intel Xeon processors’ performance counters can be read using either the
RDPMC or RDMSR instructions. The enhanced functions of the RDPMC instruction (including
fast read) are described in Section 15.10.2., “Performance Counters”. These instructions can be
used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation
of the setup procedure introduced in Section 15.10.6.3., “Starting Event Counting”.

10. To read a performance counters current event count, execute the RDPMC instruction with
the counter number obtained from Table 15-2 used as an operand.

This setup procedure is continued in the next section, Section 15.10.6.5., “Halting Event
Counting”.

15.10.6.5. HALTING EVENT COUNTING

After a performance counter has been started (enabled), it continues counting indefinitely. If the
counter overflows (goes one count past its maximum count), it wraps around and continues
counting. When the counter wraps around, it sets its OVF flag to indicate that the counter has
overflowed. The OVF flag is a sticky flag that indicates that the counter has overflowed at least
once since the OVF bit was last cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of
the setup procedure introduced in Section 15.10.6.4., “Reading a Performance Counter’s
Count”.

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for
the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed),
either clear the Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the
alternate counter’s CCCR MSR.

15.10.6.6. CASCADING COUNTERS

As described in Section 15.10.2., “Performance Counters”, eighteen performance counters are
implemented in pairs. Nine pairs of counters and associated CCCRs are further organized as four
blocks: BPU, MS, FLAME, and IQ (see Table 15-2). The first three blocks contain two pairs
each. The IQ block contains three pairs of counters (12 through 17) with associated CCCRs
(MSR_IQ_CCCRO through MSR_IQ_CCCRY).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance
monitoring events. Pairs of ESCRs in each of the four blocks allow many different types of
events to be counted. The cascade flag in the CCCR MSR allows nested monitoring of events
to be performed by cascading one counter to a second counter located in another pair in the same
block (see Figure 15-11 for the location of the flag).

15-46 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

Counters 0 and 1 form the first pair in the BPU block. Either counter O or 1 can be programmed
to detect an event via MSR_MO B_ESCRO. Counters 0 and 2 can be cascaded in any order, as
can counters 1 and 3. It’s possible to set up 4 counters in the same block to cascade on two pairs
of independent events. The pairing described also applies to subsequent blocks. Since the IQ
PUB has two extra counters, cascading operates somewhat differently if 16 and 17 are involved.
In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14
cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.

Example Scenario

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter
Y is set up to count 400 occurrences of event B. Each counter is set up to count a specific event
and overflow to the next counter. In the above example, counter X is preset for a count of -200
and counter Y for a count of -400; this setup causes the counters to overflow on the 200th and
400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow
(as described in the basic performance counter setup procedure that begins in Section 15.10.6.1.,
“Selecting Events to Count”). Counter Y is set up with the cascade flag in its associated CCCR
MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X
counts until it overflows. At this point, counter Y is automatically enabled and begins counting.
Thus counter X overflows after 200 occurrences of event A. Counter Y then starts, counting 400
occurrences of event B before overflowing. When performance counters are cascaded, the
counter Y would typically be set up to generate an interrupt on overflow, as described in Section
15.10.6.9., “Generating an Interrupt on Overflow”.

The cascading counters mechanism can be used to count a single event. The counting begins on
one counter then continues on the second counter after the first counter overflows. This tech-
nique doubles the number of event counts that can be recorded, since the contents of the two
counters can be added together.

15.10.6.7. EXTENDED CASCADING

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture. The
feature is available to Pentium 4 and Xeon processor family with family encoding of 15 and
model encoding greater than or equal to 2. This feature uses bit 11 in CCCRs associated with
the IQ block. See the table below.

Vol. 3 15-47

DEBUGGING AND PERFORMANCE MONITORING Intel®

Table 15-3. CCR Names and Bit Positions

CCCR Name:Bit Position | Bit Name Description

MSR_IQ_CCCR1I2:11 Reserved

MSR_IQ_CCCRO:11 CASCNTA4INTOO Allow counter 4 to cascade into
counter 0

MSR_IQ_CCCRS3:11 CASCNTS5INTO3 Allow counter 5 to cascade into
counter 3

MSR_IQ_CCCR4:11 CASCNTSINTO4 Allow counter 5 to cascade into
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into
counter 5

The extended cascading feature can be adapted to the sampling usage model for performance
monitoring. However, it is known that performance counters do not generate PMI in cascade
mode or extended cascade mode due to an erratum. This erratum applies to Pentium 4 and Intel
Xeon processors with model encoding of 2. For Pentium 4 and Intel Xeon processors with model
encoding of 0 and 1, the erratum applies to processors with stepping encoding greater than 09H.

15.10.6.8. EXTENDED CASCADING

Counters 16 and 17 in the IQ block are frequently used in precise event-based sampling or at-
retirement counting of events indicating a stalled condition in the pipeline. Neither counter 16
or 17 can initiate the cascading of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate
cascading of two counters in the IQ block. Extended cascading from counter 16 and 17 is
conceptually similar to cascading other counters, but instead of using CASCADE bit of a
CCCR, one of the four CASCNTXINTOy bits is used.

Example Scenario

A usage scenario for extended cascading is to sample instructions retired on logical processor 1
after the first 4096 instructions retired on logical processor 0. A procedure to program extended
cascading in this scenario is outlined below:

1. Write the value O to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCRO (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 1.).

3. Write the value 04038800H to MSR_IQ_CCCRO to enable CASCNT4INTOO, and
OVF_PMI. An ISR can sample on instruction addresses in this case. (Do not set ENABLE,
nor CASCADE).

4. Write the value FFFFFOOOH into counter 16.

15-48 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume
MOB replays in thread B cause thread A to stall. Getting a sample of the stalled execution in
this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the
appropriate CASCNTXINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the
stalled thread.

15.10.6.9. GENERATING AN INTERRUPT ON OVERFLOW

Any of the performance counters can be configured to generate a performance monitor interrupt
(PMI) if the counter overflows. The PMI interrupt service routine can then collect information
about the state of the processor or program when overflow occurred. This information can then
be used with a tool like the VTune™ Performance Analyzer to analyze and tune program perfor-
mance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated
CCCR MSR must be set. When overflow occurs, the PMI is generated through the local APIC.
(Here, the performance counter entry in the local vector table [LVT] is set up to deliver the inter-
rupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when
multiple counters have been configured generate PMIs.

When generating interrupts on overflow, the performance counter being used should be preset
to value that will cause an overflow after a specified number of events are counted plus 1. The
simplest way to select the preset value is to write a negative number into the counter, as
described in Section 15.10.6.6., “Cascading Counters”. Here, however, if an interrupt is to be
generated after 100 event counts, the counter should be preset to minus 100 plus 1 (-100 + 1),
or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the
next (100th) event counted. The difference of 1 for this count enables the interrupt to be gener-
ated immediately after the selected event count has been reached, instead of waiting for the over-
flow to be propagation through the counter.

Because of latency in the micro-architecture between the generation of events and the generation
of interrupts on overflow, it is sometimes difficult to generate an interrupt close to an event that
caused it. In these situations, the FORCE_OVF flag in the CCCR can be used to improve
reporting. Setting this flag causes the counter to overflow on every counter increment, which in
turn triggers an interrupt after every counter increment.

Vol.3 15-49

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.10.6.10. COUNTER USAGE GUIDELINE

There are some instances where the user must take care to configure counting logic properly, so
that it is not powered down. To use any ESCR, even when it is being used just for tagging, (any)
one of the counters that the particular ESCR (or its paired ESCR) can be connected to should be
enabled. If this is not done, O counts may result. Likewise, to use any counter, there must be
some event selected in a corresponding ESCR (other than no_event, which generally has a select
value of 0).

15.10.7. At-Retirement Counting

At-retirement counting provides a means counting only events that represent work committed
to architectural state and ignoring work that was performed speculatively and later discarded.

The Intel NetBurst micro-architecture used in the Pentium 4 and Intel Xeon processors performs
many speculative activities in an attempt to increase effective processing speeds. One example
of this speculative activity is branch prediction. The Pentium 4 and Intel Xeon processors typi-
cally predict the direction of branches and then decode and execute instructions down the
predicted path in anticipation of the actual branch decision. When a branch misprediction
occurs, the results of instructions that were decoded and executed down the mispredicted path
are canceled. If a performance counter was set up to count all executed instructions, the count
would include instructions whose results were canceled as well as those whose results
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring
facilities provided in the Pentium 4 and Intel Xeon processors provide a mechanism for tagging
events and then counting only those tagged events that represent committed results. This mech-
anism is called “at-retirement counting.”

Tables A-2 through A-6 list predefined at-retirement events and event metrics that can be used
to for tagging events when using at retirement counting. The following terminology is used in
describing at-retirement counting.

Bogus, Non-Bogus, Retire

In at-retirement event descriptions, the term “bogus” refers to instructions or
pops that must be canceled because they are on a path taken from a mispre-
dicted branch. The terms ‘“retired” and “non-bogus” refer to instructions or
pops along the path that results in committed architectural state changes as
required by the program being executed. Thus instructions and pops are either
bogus or non-bogus, but not both. Several of the Pentium 4 and Intel Xeon
processors’ performance monitoring events (such as, Instruction_Retired and
Uops_Retired in Table A-2) can count instructions or pops that are retired
based on the characterization of bogus” versus non-bogus.

Tagging Tagging is a means of marking pops that have encountered a particular perfor-
mance event so they can be counted at retirement. During the course of execu-
tion, the same event can happen more than once per pop and a direct count of
the event would not provide an indication of how many Lops encountered that
event.

15-50 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The tagging mechanisms allow a pop to be tagged once during its lifetime and
thus counted once at retirement. The retired suffix is used for performance
metrics that increment a count once per [op, rather than once per event. For
example, a [)Lop may encounter a cache miss more than once during its life time,
but a “Miss Retired” metric (that counts the number of retired pLops that encoun-
tered a cache miss) will increment only once for that pop. A “Miss Retired”
metric would be useful for characterizing the performance of the cache hier-
archy for a particular instruction sequence. Details of various performance
metrics and how these can be constructed using the Pentium 4 and Intel Xeon
processors performance events are provided in the Intel Pentium 4 Processor
Optimization Reference Manual (see Section 1.4., “Related Literature”).

Replay To maximize performance for the common case, the Intel NetBurst micro-

architecture aggressively schedules pops for execution before all the condi-
tions for correct execution are guaranteed to be satisfied. In the event that all
of these conditions are not satisfied, pops must be reissued. The mechanism
that the Pentium 4 and Intel Xeon processors use for this reissuing of [ops is
called replay. Some examples of replay causes are cache misses, dependence
violations, and unforeseen resource constraints. In normal operation, some
number of replays is common and unavoidable. An excessive number of
replays is an indication of a performance problem.

Assist When the hardware needs the assistance of microcode to deal with some event,

the machine takes an assist. One example of this is an underflow condition in
the input operands of a floating-point operation. The hardware must internally
modify the format of the operands in order to perform the computation. Assists
clear the entire machine of pops before they begin and are costly.

15.10.7.1. USING AT-RETIREMENT COUNTING

The Pentium 4 and Intel Xeon processors allow counting both events and pops that encountered
a specified event. For a subset of the at-retirement events listed in Table A-2, a plop may be
tagged when it encounters that event. The tagging mechanisms can be used in non-precise event-
based sampling, and a subset of these mechanisms can be used in PEBS. There are four inde-
pendent tagging mechanisms, and each mechanism uses a different event to count (ops tagged
with that mechanism:

Front-end tagging. This mechanism pertains to the tagging of pops that encountered
front-end events (for example, trace cache and instruction counts) and are counted with the
Front_end_event event

Execution tagging. This mechanism pertains to the tagging of [ops that encountered
execution events (for example, instruction types) and are counted with the
Execution_Event event.

Replay tagging. This mechanism pertains to tagging of pops whose retirement is replayed
(for example, a cache miss) and are counted with the Replay_event event. Branch mispre-
dictions are also tagged with this mechanism.

Vol. 3 15-51

DEBUGGING AND PERFORMANCE MONITORING Intel®

® No tags. This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired
events.

Each tagging mechanism is independent from all others; that is, a pop that has been tagged using
one mechanism will not be detected with another mechanism’s tagged-pop detector. For
example, if pops are tagged using the front-end tagging mechanisms, the Replay_event will not
count those as tagged Lops unless they are also tagged using the replay tagging mechanism.
However, execution tags allow up to four different types of Lops to be counted at retirement
through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS,
only one tagging mechanism should be used at a time.

Certain kinds of pops that cannot be tagged, including I/O, uncacheable and locked accesses,
returns, and far transfers.

Table A-2 lists the performance monitoring events that support at-retirement counting: specifi-
cally the Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired
events. The following sections describe the tagging mechanisms for using these events to tag
Lop and count tagged [Lops.

15.10.7.2. TAGGING MECHANISM FOR FRONT_END_EVENT

The Front_end_event counts [ops that have been tagged as encountering any of the following
events:

® uop decode events. Tagging pops for pop decode events requires specifying bits in the
ESCR associated with the performance-monitoring event, Uop_type.

® Trace cache events. Tagging Lops for trace cache events may require specifying certain
bits in the MSR_TC_PRECISE_EVENT MSR (see Table A-4).

Table A-2 describes the Front_end_event and Table A-4 describes metrics that are used to set up
a Front_end_event count.

The MSRs specified in the Table A-2 that are supported by the front-end tagging mechanism
must be set and one or both of the NBOGUS and BOGUS bits in the Front_end_event event
mask must be set to count events. None of the events currently supported requires the use of the
MSR_TC_PRECISE_EVENT MSR.

15.10.7.3. TAGGING MECHANISM FOR EXECUTION_EVENT

Table A-2 describes the Execution_event and Table A-5 describes metrics that are used to set up
an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes
tagging. One upstream ESCR is used to specify an event to detect and to specify a tag value (bits
5 through 8) to identify that event. A second downstream ESCR is used to detect pops that have
been tagged with that tag value identifier using Execution_event for the event selection.

15-52 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have
an appropriate tag value mask entered in its tag value field. The 4-bit tag value mask specifies
which of tag bits should be set for a particular pop. The value selected for the tag value should
coincide with the event mask selected in the downstream ESCR. For example, if a tag value of
1 is set, then the event mask of NBOGUSO should be enabled, correspondingly in the down-
stream ESCR. The downstream ESCR detects and counts tagged pops. The normal (not tag
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag
bits selected by the mask is set, the related counter is incremented by one. This mechanism is
summarized in the Table A-5 metrics that are supported by the execution tagging mechanism.
The tag enable and tag value bits are irrelevant for the downstream ESCR used to select the
Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execu-
tion events at retirement (This applies for non-precise event-based sampling. There are addi-
tional restrictions for PEBS as noted in Section 15.10.8.3., “Setting Up the PEBS Buffer”). It is
also possible to detect or count combinations of events by setting multiple tag value bits in the
upstream ESCR or multiple mask bits in the downstream ESCR. For example, use a tag value
of 3H in the upstream ESCR and use NBOGUSO/NBOGUSI in the downstream ESCR event
mask.

15.10.7.4. TAGGING MECHANISM FOR REPLAY_EVENT

Table A-2 describes the Replay_event and Table A-6 describes metrics that are used to set up an
Replay_event count.

The replay mechanism enables tagging of Llops for a subset of all replays before retirement. Use
of the replay mechanism requires selecting the type of pLop that may experience the replay in the
MSR_PEBS_MATRIX_VERT MSR and selecting the type of event in the
IA32_PEBS_ENABLE MSR. Replay tagging must also be enabled with the UOP_Tag flag (bit
24) in the IA32_PEBS_ENABLE MSR.

The Table A-6 lists the metrics that are support the replay tagging mechanism and the at-retire-
ment events that use the replay tagging mechanism, and specifies how the appropriate MSRs
need to be configured. The replay tags defined in Table A-5 also enable Precise Event-Based
Sampling (PEBS, see Section 15.9.8). Each of these replay tags can also be used in normal
sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_ENABLE_MSR. Each of these
metrics requires that the Replay_Event (see Table A-2) be used to count the tagged [Lops.

15.10.8. Precise Event-Based Sampling (PEBS)

The debug store (DS) mechanism in the Pentium 4 and Intel Xeon processors allow two types
of information to be collected for use in debugging and tuning programs: PEBS records and BTS
records. (See Section 15.5.7., “Branch Trace Store (BTS)” for a description of the BTS mecha-
nism.)

Vol.3 15-53

DEBUGGING AND PERFORMANCE MONITORING Intel®

PEBS permits the saving of precise architectural information associated with one or more
performance events in the precise event records buffer, which is part of the DS save area (see
Section 15.10.5., “DS Save Area”). To use this mechanism, a counter is configured to overflow
after it has counted a preset number of events. When the counter overflows, the processor copies
the current state of the general-purpose and EFLAGS registers and instruction pointer into a
record in the precise event records buffer. The processor then resets the count in the performance
counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt
is generated, allowing the precise event records to be saved. A circular buffer is not supported
for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can only carried out using the one perfor-
mance counter, the MSR_IQ_COUNTER4 MSR.

15.10.8.1. DETECTION OF THE AVAILABILITY OF THE PEBS FACILITIES

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the avail-
ability of the DS mechanism in the processor, which supports the PEBS (and BTS) facilities.
When this bit is set, the following PEBS facilities are available:

¢ The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when
clear) the availability of the PEBS facilities, including the IA32_PEBS_ENABLE MSR.

® The enable PEBS flag (bit 24) in the IA32_PEBS_ENABLE MSR allows PEBS to be
enabled (set) or disabled (clear).

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

15.10.8.2. SETTING UP THE DS SAVE AREA

Section 15.5.7.2., “Setting Up the DS Save Area” describes how to set up and enable the DS
save area. This procedure is common for PEBS and BTS.

15.10.8.3. SETTING UP THE PEBS BUFFER

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following
procedure to set up the processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base,
precise event index, precise event absolute maximum, and precise event interrupt
threshold, and precise event counter reset fields of the DS buffer management area (see
Figure 15-12) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in IA32_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one
or more ESCRs for PEBS as described in Tables A-2 through A-6.

15-54 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.10.8.4. WRITING A PEBS INTERRUPT SERVICE ROUTINE

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS
ISR) with the non-precise event-based sampling and BTS facilities. To handle PEBS interrupts,
PEBS handler code must be included in the DS ISR. See Section 15.5.7.4., “Writing the DS
Interrupt Service Routine” for guidelines for writing the DS ISR.

15.10.8.5. OTHER DS MECHANISM IMPLICATIONS

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode.
Similarly the DS mechanism is disabled on the generation of a machine check exception and is
cleared on processor RESET and INIT. The DS mechanism is available in real address mode.

15.10.9. Counting Clocks

The count of cycles, also known as clockticks, forms a the basis for measuring how long a
program takes to execute. Clockticks are also used as part of efficiency ratios like cycles per
instruction (CPI). Processor clocks may stop ticking under circumstances like the following:

® The processor is halted when there is nothing for the CPU to do. For example, the
processor may halt to save power while the computer is servicing an I/O request. When
Hyper-Threading Technology is enabled, both logical processors must be halted for
performance-monitoring counters to be powered down.

® The processor is asleep as a result of being halted or because of a power-management
scheme. There are different levels of sleep. In the some deep sleep levels, the Time Stamp
Counter stops counting.

There are three ways to count processor clock cycles to monitor performance. These are:

® Non-Halted Clockticks — Measures clock cycles in which the specified logical processor is
not halted and is not in any power-saving state. When Hyper-Threading Technology is
enabled, this these ticks can be measured on a per-logical-processor basis.

® Non-Sleep Clockticks — Measures clock cycles in which the specified physical processor is
not in a sleep mode or in a power-saving state. These ticks cannot be measured on a
logical-processor basis.

® Time Stamp Counter — Measures clock cycles in which the physical processor is not in
deep sleep. These ticks cannot be measured on a logical-processor basis.

The first two methods use performance counters and can be set up to cause an interrupt upon
overflow (for sampling). They may also be useful where it is easier for a tool to read a perfor-
mance counter than to use a time stamp counter (the timestamp counter is accessed via an
instruction, RDTSC).

Vol. 3 15-55

DEBUGGING AND PERFORMANCE MONITORING Intel®

For applications with a significant amount of 1/O, there are two ratios of interest:

® Non-Halted CPI: Non-halted clockticks/instructions retired measures the CPI for phases
where the CPU was being used. This ratio can be measured on a logical-processor basis
when Hyper-Threading Technology is enabled.

® Nominal CPI: Time stamp counter ticks/instructions retired measures the CPI over the
duration of a program, including those periods when the machine halts while waiting for
I/0.

Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted clock ticks:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask
and the desired TO_OS/TO_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.
3. Enable counting in the CCCR for that counter by setting the enable bit.
Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the perfor-
mance monitoring hardware is not powered-down. To count Non-sleep Clockticks with a perfor-
mance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select
to anything other than no_event. This may not seem necessary, but the counter may be
disabled if this is not done.

Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can exceed
this threshold, the threshold condition is met every cycle and the counter counts every
cycle. Note that this overrides any qualification (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the
physical package supports one logical processor and is not placed in a power-saving state. Oper-
ating systems may execute an HLT instruction and place a physical processor in a power-saving
state.

On processors that support Hyper-Threading Technology (HT), each physical package can
support two or more logical processors. Current implementation of HT provides two logical
processors for each physical processor. While both logical processors can execute two threads
simultaneously, one logical processor may halt to allow the other logical processor to execute
without sharing execution resources between two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for each
logical processor whenever the logical processor is not halted (the count may include some
portion of the clock cycles for that logical processor to complete a transition to a halted state).
Physical processors that support HT enter into a power-saving state if all logical processors halt.

15-56 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism
will continue to increment as long as one logical processor is not halted or in a power-saving
state. Applications may cause a processor to enter into a power-saving state by using an OS
service that transfers control to an OS’s idle loop. The idle loop then may place the processor
into a power-saving state after an implementation-dependent period if there is no work for the
processor.

Time Stamp Counter

The Time Stamp Counter increments whenever the sleep pin is not asserted or when the clock
signal on the system bus is active. The counter can be read with the RDTSC instruction.
Computing the difference in values between two reads (modulo 2%4) gives the number of
processor clocks between reads.

The Time Stamp Counter and the Non-sleep Clockticks count should agree in practically all
cases. However, it is possible to have both logical processors in a physical package halted,
resulting in most of the chip (including the performance monitoring hardware) being powered
down. When this happens, it is possible for the time stamp counter to continue incrementing
because the clock signal on the system bus is still active. Non-sleep Clockticks will no longer
increment because the performance monitoring hardware is powered down in a power-saving
state.

15.10.10.0Operating System Implications

The DS mechanism can be used by the operating system as a debugging extension to facilitate
failure analysis. When using this facility, a 25 to 30 times slowdown can be expected due to the
effects of the trace store occurring on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch records or
the PEBS records need to have an association with the corresponding process. One solution
requires the ability for the DS specific operating system module to be chained to the context
switch. A separate buffer can then be maintained for each process of interest and the MSR
pointing to the configuration area saved and setup appropriately on each context switch.

If the BTS facility has been enabled, then it must be disabled and state stored on transition of
the system to a sleep state in which processor context is lost. The state must be restored on return
from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to
prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all
processes/logical processors, such that any change to CR3 will not change DS addresses. If this
requirement cannot be satisfied (that is, the feature is enabled on a per thread/process basis), then
the operating system must ensure that the feature is enabled/disabled appropriately in the context
switch code.

Vol. 3 15-57

DEBUGGING AND PERFORMANCE MONITORING Intel®

15.11. PERFORMANCE MONITORING AND HYPER-THREADING
TECHNOLOGY

The performance monitoring capability of IA-32 processors supporting Hyper-Threading Tech-
nology is similar to that on the Pentium 4 and Intel Xeon processors. However, the performance
monitoring capability is extended so that:

® The performance counters can be programmed to select events that are qualified by logical
processor IDs.

¢ Performance monitoring interrupts can be directed to a specific logical processor within
the physical processor.

This section describes the programming interfaces with respect to using performance counters,
qualifying events by logical processor IDs, additional programmable bits in ESCRs, and
CCCRes, as well as the special purpose IA32_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT,
and MSR_TC_PRECISE_EVENT MSRs.

In Intel IA-32 processors supporting Hyper-Threading Technology, these registers are shared
between the two logical processors in the physical processor. To allow these shared registers to
be used to monitor performance events on either logical processor or both, additional flags have
been added to the ESCR and CCCR MSRs and to the IA32_PEBS_ENABLE MSR. These addi-
tional flags and the effect of these flags on event monitoring in while Hyper-Threading Tech-
nology is active are described in the following sections.

15.11.1. ESCR MSRs

Figure 15-17 shows the layout of an ESCR MSR in the Intel IA-32 processors supporting Hyper
Threading Technology.

The functions of the flags and fields are as follows:

T1_USR flag, bit 0
When set, events are counted when thread 1 (logical processor 1) is executing
at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are gener-
ally used by application code and unprotected operating system code.

15-58 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

3130 2524 9 8 543210
R
s Event Tag
\c/i Select Event Mask Value
Tag Enabl(—z4
T0_OS
TO_USR
T1_0S
T1_USR
63 32
Reserved

Figure 15-17. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel
Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading Technology

T1_OS flag, bit 1
When set, events are counted when thread 1 (logical processor 1) is executing
at CPL of 0. This privilege level is generally reserved for protected operating
system code. (When both the T1_OS and T1_USR flags are set, thread 1 events
are counted at all privilege levels.)

TO_USR flag, bit 2
When set, events are counted when thread 0 (logical processor 0) is executing
ataCPL of 1, 2, or 3.

TO0_OS flag, bit 3
When set, events are counted when thread O (logical processor 0) is executing
at CPL of 0. (When both the TO_OS and TO_USR flags are set, thread 0 events
are counted at all privilege levels.)

Tag Enable, bit 4
When set, enables tagging of [Lops to assist in at-retirement event counting;
when clear, disables tagging. See Section 15.10.7., “At-Retirement Counting”.

Tag Value field, bits 5 through 8
Selects a tag value to associate with a pop to assist in at-retirement event
counting.

Event Mask field, bits 9 through 24

Selects events to be counted from the event class selected with the event select
field.

Event Select field, bits 25 through 30)
Selects a class of events to be counted. The events within this class that are
counted are selected with the event mask field.

Vol.3 15-59

DEBUGGING AND PERFORMANCE MONITORING Intel®

The TO_OS and TO_USR flags and the T1_OS and T1_USR flags allow event counting and
sampling to be specified for a specific logical processor (0 or 1) within an Intel Xeon processor
MP. (See Section 7.7.5., “Identifying Logical Processors in an MP System” for information on
identifying logical processor in an Xeon processor MP.)

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a
per logical processor basis (see Section 15.11.4., “Performance Monitoring Events’’). Some sub-
events (specified by an event mask bits) are counted or sampled without regard to which logical
processor is associated with the detected event.

15.11.2. CCCR MSRs

Figure 15-18 shows the layout of a CCCR MSR in Intel IA-32 processors supporting Hyper-
Threading Technology. The functions of the flags and fields are as follows:

Enable flag, bit 12
When set, enables counting; when clear, the counter is disabled. This flag is
cleared on reset

ESCR Select field, bits 13 through 15
Identifies the ESCR to be used to select events to be counted with the counter
associated with the CCCR.

Active Thread field, bits 16 and 17
Enables counting depending on which logical processors are active (executing
a thread). This field enables filtering of events based on the state (active or
inactive) of the logical processors. The encodings of this field are as follows:

00—None. Count only when neither logical processor is active.

01—Single. Count only when one logical processor is active (either O or 1).
10—Both. Count only when both logical processors are active.

11—Any. Count when either logical processor is active.

Note that a halted logical processor or a logical processor in the “wait for SIPT”

state is considered inactive.

Compare flag, bit 18
When set, enables filtering of the event count; when clear, disables filtering.
The filtering method is selected with the threshold, complement, and edge
flags.

15-60 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

313029 2726252423 2019181716 15 131211 0

Rsvd Threshold ESCR Reserved
Select

Enable
Active Thread
Compare
Complement
Edge
FORCE_OVF
OVF_PMI_TO
OVF_PMI_T1
Cascade
OVF

63 32

Reserved

Figure 15-18. Counter Configuration Control Register (CCCR)

Complement flag, bit 19
Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result
in a single count being delivered to the performance counter; when clear,
counts greater than the threshold value result in a count being delivered to the
performance counter (see Section 15.10.6.2., “Filtering Events”). The compare
flag is not active unless the compare flag is set.

Threshold field, bits 20 through 23
Selects the threshold value to be used for comparisons. The processor exam-
ines this field only when the compare flag is set, and uses the complement flag
setting to determine the type of threshold comparison to be made. The useful
range of values that can be entered in this field depend on the type of event
being counted (see Section 15.10.6.2., “Filtering Events”).

Edge flag, bit 24
When set, enables rising edge (false-to-true) edge detection of the threshold
comparison output for filtering event counts; when clear, rising edge detection
is disabled. This flag is active only when the compare flag is set.

FORCE_OVF flag, bit 25
When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

OVF_PMI_TO0 flag, bit 26
When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor O when the counter overflows occurs; when clear, disables PMI

Vol. 3 15-61

DEBUGGING AND PERFORMANCE MONITORING Intel®

generation for logical processor 0. Note that the PMI is generate on the next
event count after the counter has overflowed.

OVF_PMI_T1 flag, bit 27
When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 1 when the counter overflows occurs; when clear, disables PMI
generation for logical processor 1. Note that the PMI is generate on the next
event count after the counter has overflowed.

Cascade flag, bit 30
When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see
Section 15.10.2., “Performance Counters” for further details); when clear,
disables cascading of counters.

OVF flag, bit 31
Indicates that the counter has overflowed when set. This flag is a sticky flag
that must be explicitly cleared by software.

15.11.3. 1A32_PEBS_ENABLE MSR

In an IA-32 processor supporting Hyper-Threading Technology, PEBS is enabled and qualified
with two bits in the IA32_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific
logical processor by logic processor ID(TO or T1); instead, they allow a software agent to enable
PEBS for subsequent threads of execution on the same logical processor on which the agent is
running (“my thread”) or for the other logical processor in the physical package on which the
agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two performance
counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0 and MSR_IQ_CCCRS
(MSR address 371H) for logical processor 1.

NOTE

Performance monitoring tools should use a processor affinity mask to bind
the kernel mode components that need to modify the
ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the
IA32_PEBS_ENABLE MSR to a specific logical processor to prevent these
kernel mode components from migrating between different logical processors
due to OS scheduling.

15-62 Vol. 3

intgl.

15.11.4. Performance Monitoring Events

DEBUGGING AND PERFORMANCE MONITORING

All of the events listed in Table A-1 and A-2 are available in an Intel Xeon processor MP. When
Hyper-Threading Technology is active, many performance monitoring events can be can be
qualified by the logical processor ID, which corresponds to bit O of the initial APIC ID. This
allows for counting an event in any or all of the logical processors. However, not all the events
have this logic processor specificity, or thread specificity.

Here, each event falls into one of two categories:

® Thread specific (TS). The event can be qualified as occurring on a specific logical
processor.

® Thread independent (TI). The event cannot be qualified as being associated with a specific
logical processor.

Table A-7 gives logical processor specific information (TS or TI) for each of the events
described in Tables A-1 and A-2.

If for example, a TS event occurred in logical processor T0, the counting of the event (as shown
in Table 15-4) depends only on the setting of the TO_USR and TO_OS flags in the ESCR being
used to set up the event counter. The T1_USR and T1_OS flags have no effect on the count.

Table 15-4. Effect of Logical Processor and CPL Qualification for Logical-Processor-
Specific (TS) Events

T1_OS/T1_USR=00

T1_OS/T1_USR=01

T1_OS/T1_USR=11

T1_OS/T1_USR=10

T0_OS/T0_USR=00

Zero count

Counts while T1 in
USR

Counts while T1 in
OS or USR

Counts while T1 in
(o]

T0_OS/TO_USR=01

Counts while TO in
USR

Counts while TO in
USRor T1in USR

Counts while (a) TO in
USR or (b) T1in OS
or(c) T1in USR

Counts while (a) TOin
OSor(b) T1in OS

T0_OS/T0_USR=11

Counts while TO in
OS or USR

Counts while (a) TOin
OS or (b) TO in USR
or(c) T1in USR

Counts irrespective of
CPL, TO, T1

Counts while (a) TOin
OS or (b) or TO in
USRor (c) T1in OS

T0_OS/TO_USR=10

Counts TO in OS

Counts TO in OS or
T1in USR

Counts while (a)T0 in
Os or (b) T1in OS or
(c) T1in USR

Counts while (a) TOin
OS or (b) T1in OS

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR
are described in Table 15-6. For events that are marked as T in Appendix A, the effect of selec-
tively specifying TO_USR, TO_OS, T1_USR, T1_OS bits is shown in Table 15-6.

Vol.3 15-63

DEBUGGING AND PERFORMANCE MONITORING

intgl.

Table 15-5. Effect of Logical Processor and CPL Qualification for Non-logical-processor-
specific (Tl) Events

T1_OS/T1_USR=00

T1_OS/T1_USR=01

T1_OS/T1_USR=11

T1_OS/T1_USR=10

T0_OS/T0_USR=00

Zero count

Counts while (a) TOin
USRor (b) T1in USR

Counts irrespective of
CPL, TO, T1

Counts while (a) TO in
OSor(b) T1in OS

T0_OS/T0_USR=01

Counts while (a) TOin
USRor (b) T1in USR

Counts while (a) TOin
USRor (b) T1in USR

Counts irrespective of
CPL, TO, T1

Counts irrespective of
CPL, TO, T1

TO_OS/T0_USR=11

Counts irrespective of
CPL, TO, T1

Counts irrespective of
CPL, TO, T1

Counts irrespective of
CPL, TO, T1

Counts irrespective of
CPL, TO, T1

TO_OS/T0_USR=10

Counts while (a) TOin

Counts irrespective of

Counts irrespective of

Counts while (a) TO in

OS or (b) T1in OS CPL,TO, T1 CPL,TO, T1 OSor(b) T1inOS

15.12. PERFORMANCE MONITORING (P6 FAMILY PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two types of
events to be monitored simultaneously. These counters can either count events or measure dura-
tion. When counting events, a counter is incremented each time a specified event takes place or
a specified number of events takes place. When measuring duration, a counter counts the
number of processor clocks that occur while a specified condition is true. The counters can count
events or measure durations that occur at any privilege level. Table A-10 in Appendix A, Perfor-
mance-Monitoring Events, lists the events that can be counted with the P6 family performance
monitoring counters.

NOTE

The performance-monitoring event listed in Appendix A, Performance-
Monitoring Events are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and
should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event
select MSRs (PerfEvtSelO and PerfEvtSell) and the performance counter MSRs (PerfCtr0Q and
PerfCtrl). These registers can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at
privilege level 0. The PerfCtrO and PerfCtr1 MSRs can be read from any privilege level using
the RDPMC (read performance-monitoring counters) instruction.

NOTE

The PerfEvtSelO, PerfEvtSell, PerfCtrO, and PerfCtrl MSRs and the events
listed in Table A-10 are model-specific for P6 family processors. They are not
guaranteed to be available in future IA-32 processors.

15-64 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

15.12.1. PerfEvtSel0 and PerfEviSel1 MSRs

The PerfEvtSelO and PerfEvtSell MSRs control the operation of the performance-monitoring
counters, with one register used to set up each counter. They specify the events to be counted,
how they should be counted, and the privilege levels at which counting should take place. Figure
15-19 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSell MSRs are as follows:

Event select field (bits 0 through 7)
Selects the event to be monitored (see Table A-10, for a list of events and their

8-bit codes).

Unit mask (UMASK) field (bits 8 through 15)
Further qualifies the event selected in the event select field. For example, for
some cache events, the mask is used as a MESI-protocol qualifier of cache
states (see Table A-10).

31 24232221201918171615 87 0

Counter Mask
(CMASK)

<zZz-

0]
ES

DTwnwC

E g Unit Mask (UMASK) Event Select
q

INV—Invert counter maskJ
EN—Enable counters*

INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSelO.

E Reserved

Figure 15-19. PerfEvtSel0 and PerfEvtSel1 MSRs

USR (user mode) flag (bit 16)
Specifies that events are counted only when the processor is operating at priv-
ilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

OS (operating system mode) flag (bit 17)
Specifies that events are counted only when the processor is operating at priv-
ilege level 0. This flag can be used in conjunction with the USR flag.

E (edge detect) flag (bit 18)
Enables (when set) edge detection of events. The processor counts the number
of deasserted to asserted transitions of any condition that can be expressed by
the other fields. The mechanism is limited in that it does not permit back-to-

Vol.3 15-65

DEBUGGING AND PERFORMANCE MONITORING Intel®

back assertions to be distinguished. This mechanism allows software to
measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting
for an interrupt to be serviced).

PC (pin control) flag (bit 19)
When set, the processor toggles the PMi pins and increments the counter when
performance-monitoring events occur; when clear, the processor toggles the
PM: pins when the counter overflows. The toggling of a pin is defined as asser-
tion of the pin for a single bus clock followed by deassertion.

INT (APIC interrupt enable) flag (bit 20)
When set, the processor generates an exception through its local APIC on
counter overflow.

EN (Enable Counters) Flag (bit 22)
This flag is only present in the PerfEvtSel0 MSR. When set, performance
counting is enabled in both performance-monitoring counters; when clear, both
counters are disabled.

INV (invert) flag (bit 23)
Inverts the result of the counter-mask comparison when set, so that both greater
than and less than comparisons can be made.

Counter mask (CMASK) field (bits 24 through 31)

When nonzero, the processor compares this mask to the number of events
counted during a single cycle. If the event count is greater than or equal to this
mask, the counter is incremented by one. Otherwise the counter is not incre-
mented. This mask can be used to count events only if multiple occurrences
happen per clock (for example, two or more instructions retired per clock). If
the counter-mask field is O, then the counter is incremented each cycle by the
number of events that occurred that cycle.

15.12.2. PerfCtr0 and PerfCir1 MSRs

The performance-counter MSRs (PerfCtrO and PerfCtrl) contain the event or duration counts
for the selected events being counted. The RDPMC instruction can be used by programs or
procedures running at any privilege level and in virtual-8086 mode to read these counters. The
PCE flag in control register CR4 (bit 8) allows the use of this instruction to be restricted to only
programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera-
tion is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the perfor-
mance counters, using the RDMSR and WRMSR instructions. A secure operating system would
clear the PCE flag during system initialization to disable direct user access to the performance-

15-66 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

monitoring counters, but provide a user-accessible programming interface that emulates the
RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs
(PerfCtr0 and PerfCtrl). Instead, the lower-order 32 bits of each MSR may be written with any
value, and the high-order 8 bits are sign-extended according to the value of bit 31. This operation
allows writing both positive and negative values to the performance counters.

15.12.3. Starting and Stopping the Performance-Monitoring
Counters

The performance-monitoring counters are started by writing valid setup information in the
PerfEvtSelO and/or PerfEvtSell MSRs and setting the enable counters flag in the PerfEvtSel0
MSR. If the setup is valid, the counters begin counting following the execution of a WRMSR
instruction that sets the enable counter flag. The counters can be stopped by clearing the enable
counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSell MSRs. Counter 1
alone can be stopped by clearing the PerfEvtSell MSR.

15.12.4. Event and Time-Stamp Monitoring Software

To use the performance-monitoring counters and time-stamp counter, the operating system
needs to provide an event-monitoring device driver. This driver should include procedures for
handling the following operations:

® Feature checking.

® Initialize and start counters.
¢ Stop counters.

® Read the event counters.

® Read the time-stamp counter.

The event monitor feature determination procedure must determine whether the current
processor supports the performance-monitoring counters and time-stamp counter. This proce-
dure compares the family and model of the processor returned by the CPUID instruction with
those of processors known to support performance monitoring. (The Pentium and P6 family
processors support performance counters.) The procedure also checks the MSR and TSC flags
returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC
instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSell MSRs for
the events to be counted and the method used to count them and initializes the counter MSRs
(PerfCtr0O and PerfCtrl) to starting counts. The stop counters procedure stops the performance
counters. (See Section 15.12.3., “Starting and Stopping the Performance-Monitoring Counters”,
for more information about starting and stopping the counters.)

Vol.3 15-67

DEBUGGING AND PERFORMANCE MONITORING Intel®

The read counters procedure reads the values in the PerfCtrO and PerfCtrl MSRs, and a read
time-stamp counter procedure reads the time-stamp counter. These procedures would be
provided in lieu of enabling the RDTSC and RDPMC instructions that allow application code
to read the counters.

15.12.5. Monitoring Counter Overflow

The P6 family processors provide the option of generating a local APIC interrupt when a perfor-
mance-monitoring counter overflows. This mechanism is enabled by setting the interrupt enable
flag in either the PerfEvtSelO or the PerfEvtSell MSR. The primary use of this option is for
statistical performance sampling.

To use this option, the operating system should do the following things on the processor for
which performance events are required to be monitored:

® Provide an interrupt vector for handling the counter-overflow interrupt.

® [Initialize the APIC PERF local vector entry to enable handling of performance-monitor
counter overflow events.

® Provide an entry in the IDT that points to a stub exception handler that returns without
executing any instructions.

® Provide an event monitor driver that provides the actual interrupt handler and modifies the
reserved IDT entry to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following
actions:

® Save the instruction pointer (EIP register), code-segment selector, TSS segment selector,
counter values and other relevant information at the time of the interrupt.

® Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information
collected for analysis of the performance of the profiled application.

15.13. PERFORMANCE MONITORING (PENTIUM PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used either to
count events or measure duration. The performance-monitoring counters are supported by three
MSRs: the control and event select MSR (CESR) and the performance counter MSRs (CTRO
and CTR1). These registers can be read from and written to using the RDMSR and WRMSR
instructions, respectively.

They can be accessed using these instructions only when operating at privilege level 0. Each
counter has an associated external pin (PMO/BP0O and PM1/BP1), which can be used to indicate
the state of the counter to external hardware.

15-68 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

NOTES

The CESR, CTRO, and CTR1 MSRs and the events listed in Table A-10 are
model-specific for the Pentium processor.

The performance-monitoring event listed in Appendix B, Model-Specific
Registers (MSRs) are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and
should be used as a relative guide for tuning. Known discrepancies are
documented where applicable.

15.13.1. Control and Event Select Register (CESR)

The 32-bit control and event select MSR (CESR) is used to control the operation of perfor-
mance-monitoring counters CTR0O and CTR1 and their associated pins (see Figure 15-20). To
control each counter, the CESR register contains a 6-bit event select field (ESO and ES1), a pin
control flag (PCO and PC1), and a 3-bit counter control field (CCO and CC1). The functions of
these fields are as follows:

ES0 and ES1 (event select) fields (bits 0 through 5, bits 16 through 21)
Selects (by entering an event code in the field) up to two events to be moni-
tored. See Table A-10 for a list of available event codes.

31 262524 2221 1615 1098 65 0
P P
c| cct EST c| cco ESO
1 0

PC1—Pin control 1 J

CC1—Counter control 1
ES1—Event select 1
PCO0—Pin control 0
CCO0—Counter control 0
ESO—Event select 0

D Reserved

Figure 15-20. CESR MSR (Pentium Processor Only)

CCO0 and CC1 (counter control) fields (bits 6 through 8, bits 22 through 24)
Controls the operation of the counter. The possible control codes are as

follows:

CCn Meaning

000 Count nothing (counter disabled)

001 Count the selected event while CPL is O, 1, or 2
010 Count the selected event while CPL is 3

Vol.3 15-69

DEBUGGING AND PERFORMANCE MONITORING Intel®

011 Count the selected event regardless of CPL
100 Count nothing (counter disabled)

101 Count clocks (duration) while CPL is 0, 1, or 2
110 Count clocks (duration) while CPL is 3

111 Count clocks (duration) regardless of CPL

Note that the highest order bit selects between counting events and counting
clocks (duration); the middle bit enables counting when the CPL is 3; and the
low-order bit enables counting when the CPL is 0, 1, or 2.

PCO0 and PC1 (pin control) flags (bit 9, bits 25)
Selects the function of the external performance-monitoring counter pin
(PMO0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor
to assert its associated pin when the counter has overflowed; setting the flag to
0 causes the pin to be asserted when the counter has been incremented. These
flags permit the pins to be individually programmed to indicate the overflow or
incremented condition. Note that the external signalling of the event on the pins
will lag the internal event by a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or
preset before switching to a new event. It is not possible to set one counter separately. If only
one event needs to be changed, the CESR register must be read, the appropriate bits modified,
and all bits must then be written back to CESR. At reset, all bits in the CESR register are cleared.

15.13.2. Use of the Performance-Monitoring Pins

When the performance-monitor pins PMO/BPO and/or PM1/BP1 are configured to indicate
when the performance-monitor counter has incremented and an “occurrence event” is being
counted, the associated pin is asserted (high) each time the event occurs. When a “duration
event” is being counted the associated PM pin is asserted for the entire duration of the event.
When the performance-monitor pins are configured to indicate when the counter has over-
flowed, the associated PM pin is not asserted until the counter has overflowed.

When the PMO/BPO and/or PM1/BP1 pins are configured to signal that a counter has incre-
mented, it should be noted that although the counters may increment by 1 or 2 in a single clock,
the pins can only indicate that the event occurred. Moreover, since the internal clock frequency
may be higher than the external clock frequency, a single external clock may correspond to
multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an over-
flow of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an overflow.
A counter may be preset to a specific value less then 240 _ 1. After the counter has been enabled
and the prescribed number of events has transpired, the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such
as signaling an interrupt, may then be taken.

15-70 Vol. 3

Intel® DEBUGGING AND PERFORMANCE MONITORING

The PM0/BP0O and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit
emulation, during which time the counter increment or overflow function of these pins is not
available. After RESET, the PMO/BP0 and PM1/BP1 pins are configured for performance moni-
toring, however a hardware debugger may reconfigure these pins to indicate breakpoint
matches.

15.13.3. Events Counted

The events that the performance-monitoring counters can set to count and record in the CTRO
and CTR1 MSRs are divided into two categories: occurrences and duration. Occurrences events
are counted each time the event takes place. If the PMO/BPO or PM1/BP1 pins are configured to
indicate when a counter increments, they ar asserted each clock the counter increments. Note
that if an event can happen twice in one clock, the counter increments by 2, however, the pins
are asserted only once.

For duration events, the counter counts the total number of clocks that the condition is true.
When configured to indicate when a counter increments, the PMO/BPO and/or PM1/BP1 pins
are asserted for the duration of the event.

Table A-10 lists the events that can be counted with the Pentium processor performance-moni-
toring counters.

Vol. 3 15-71

DEBUGGING AND PERFORMANCE MONITORING

15-72 Vol. 3

16

8086 Emulation

CHAPTER 16
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to execute new or
legacy programs that are assembled and/or compiled to run on an Intel 8086 processor:

® Real-address mode.
® Virtual-8086 mode.

Figure 2-2 shows the relationship of these operating modes to protected mode and system
management mode (SMM).

When the processor is powered up or reset, it is placed in the real-address mode. This operating
mode almost exactly duplicates the execution environment of the Intel 8086 processor, with
some extensions. Virtually any program assembled and/or compiled to run on an Intel 8086
processor will run on an IA-32 processor in this mode.

When running in protected mode, the processor can be switched to virtual-8086 mode to run
8086 programs. This mode also duplicates the execution environment of the Intel 8086
processor, with extensions. In virtual-8086 mode, an 8086 program runs as a separate protected-
mode task. Legacy 8086 programs are thus able to run under an operating system (such as
Microsoft Windows*) that takes advantage of protected mode and to use protected-mode facil-
ities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode
multitasking permits multiple virtual-8086 mode tasks (with each task running a separate 8086
program) to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-
8086-mode execution environment, available on the IA-32 processors beginning with the
Intel386 processor.

16.1. REAL-ADDRESS MODE

The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, Intel 8088,
Intel 80186, and Intel 80188 processors, or for the real-address mode of the Intel 286, Intel386,
Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon processors.

The execution environment of the processor in real-address mode is designed to duplicate the
execution environment of the Intel 8086 processor. To an 8086 program, a processor operating
in real-address mode behaves like a high-speed 8086 processor. The principal features of this
architecture are defined in Chapter 3, Basic Execution Environment, of the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1.

Vol. 3 16-1

8086 EMULATION |nte| o

The following is a summary of the core features of the real-address mode execution environment
as would be seen by a program written for the 8086:

The processor supports a nominal 1-MByte physical address space (see Section 16.1.1.,
“Address Translation in Real-Address Mode”, for specific details). This address space is
divided into segments, each of which can be up to 64 KBytes in length. The base of a
segment is specified with a 16-bit segment selector, which is zero extended to form a
20-bit offset from address O in the address space. An operand within a segment is
addressed with a 16-bit offset from the base of the segment. A physical address is thus
formed by adding the offset to the 20-bit segment base (see Section 16.1.1., “Address
Translation in Real-Address Mode”).

All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size override
prefixes can be used to access 32-bit operands.)

Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI.
The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) are
accessible to programs that explicitly perform a size override operation.

Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS registers are
accessible to programs that explicitly access them.) The CS register contains the segment
selector for the code segment; the DS and ES registers contain segment selectors for data
segments; and the SS register contains the segment selector for the stack segment.

The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP register.
Note this register is a 32-bit register and unintentional address wrapping may occur.

The 16-bit FLAGS register contains status and control flags. (This register is mapped to
the 16 least significant bits of the 32-bit EFLAGS register.)

All of the Intel 8086 instructions are supported (see Section 16.1.3., “Instructions
Supported in Real-Address Mode”).

A single, 16-bit-wide stack is provided for handling procedure calls and invocations of
interrupt and exception handlers. This stack is contained in the stack segment identified
with the SS register. The SP (stack pointer) register contains an offset into the stack
segment. The stack grows down (toward lower segment offsets) from the stack pointer.
The BP (base pointer) register also contains an offset into the stack segment that can be
used as a pointer to a parameter list. When a CALL instruction is executed, the processor
pushes the current instruction pointer (the 16 least-significant bits of the EIP register and,
on far calls, the current value of the CS register) onto the stack. On a return, initiated with
a RET instruction, the processor pops the saved instruction pointer from the stack into the
EIP register (and CS register on far returns). When an implicit call to an interrupt or
exception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order
16-bits only) registers onto the stack. On a return from an interrupt or exception handler,
initiated with an IRET instruction, the processor pops the saved instruction pointer and
EFLAGS image from the stack into the EIP, CS, and EFLAGS registers.

A single interrupt table, called the “interrupt vector table” or “interrupt table,” is provided
for handling interrupts and exceptions (see Figure 16-2). The interrupt table (which has 4-
byte entries) takes the place of the interrupt descriptor table (IDT, with 8-byte entries) used

16-2 Vol. 3

Intel® 8086 EMULATION

when handling protected-mode interrupts and exceptions. Interrupt and exception vector
numbers provide an index to entries in the interrupt table. Each entry provides a pointer
(called a “vector”) to an interrupt- or exception-handling procedure.

See Section 16.1.4., “Interrupt and Exception Handling”, for more details. It is possible for
software to relocate the IDT by means of the LIDT instruction on IA-32 processors
beginning with the Intel386 processor.

® The x87 FPU is active and available to execute x87 FPU instructions in real-address mode.
Programs written to run on the Intel 8087 and Intel 287 math coprocessors can be run in
real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the IA-32
architecture’s real-address mode. If backwards compatibility to Intel 286 and Intel 8086 proces-
sors is required, these features should not be used in new programs written to run in real-address
mode.

® Two additional segment registers (FS and GS) are available.

® Many of the integer and system instructions that have been added to later IA-32 processors
can be executed in real-address mode (see Section 16.1.3., “Instructions Supported in
Real-Address Mode”).

® The 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit
forms of instructions. This prefix also allows real-address mode programs to use the
processor’s 32-bit general-purpose registers.

® The 32-bit address prefix can be used in real-address mode programs, allowing 32-bit
offsets.

The following sections describe address formation, registers, available instructions, and inter-
rupt and exception handling in real-address mode. For information on I/O in real-address mode,
see Chapter 12, Input/Output, in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1.

16.1.1. Address Translation in Real-Address Mode

In real-address mode, the processor does not interpret segment selectors as indexes into a
descriptor table; instead, it uses them directly to form linear addresses as the 8086 processor
does. It shifts the segment selector left by 4 bits to form a 20-bit base address (see Figure 16-1).
The offset into a segment is added to the base address to create a linear address that maps directly
to the physical address space.

When using 8086-style address translation, it is possible to specify addresses larger than 1
MByte. For example, with a segment selector value of FFFFH and an offset of FFFFH, the linear
(and physical) address would be 10FFEFH (1 megabyte plus 64 KBytes). The 8086 processor,
which can form addresses only up to 20 bits long, truncates the high-order bit, thereby “wrap-
ping” this address to FFEFH. When operating in real-address mode, however, the processor does
not truncate such an address and uses it as a physical address. (Note, however, that for IA-32
processors beginning with the Intel486 processor, the A20M# signal can be used in real-address
mode to mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 8086

Vol. 3 16-3

8086 EMULATION |nte| o

processor.) Care should be take to ensure that A20M# based address wrapping is handled
correctly in multiprocessor based system.

19 4 3 0
Base 16-bit Segment Selector 0000
+ 19 16 15 0
Offset | 0000 16-bit Effective Address
= 19 0
A;&?::Sr 20-bit Linear Address

Figure 16-1. Real-Address Mode Address Translation

The IA-32 processors beginning with the Intel386 processor can generate 32-bit offsets using an
address override prefix; however, in real-address mode, the value of a 32-bit offset may not
exceed FFFFH without causing an exception.

For full compatibility with Intel 286 real-address mode, pseudo-protection faults (interrupt 12
or 13) occur if a 32-bit offset is generated outside the range 0 through FFFFH.

16.1.2. Registers Supported in Real-Address Mode

The register set available in real-address mode includes all the registers defined for the 8086
processor plus the new registers introduced in later IA-32 processors, such as the FS and GS
segment registers, the debug registers, the control registers, and the floating-point unit registers.
The 32-bit operand prefix allows a real-address mode program to use the 32-bit general-purpose
registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

16.1.3. Instructions Supported in Real-Address Mode

The following instructions make up the core instruction set for the 8086 processor. If backwards
compatibility to the Intel 286 and Intel 8086 processors is required, only these instructions
should be used in a new program written to run in real-address mode.

® Move (MOV) instructions that move operands between general-purpose registers, segment
registers, and between memory and general-purpose registers.

® The exchange (XCHG) instruction.
® Load segment register instructions LDS and LES.

® Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC,
CMP, and NEG.

16-4 Vol. 3

Intel® 8086 EMULATION

Logical instructions AND, OR, XOR, and NOT.

Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.

Stack instructions PUSH and POP (to general-purpose registers and segment registers).
Type conversion instructions CWD, CDQ, CBW, and CWDE.

Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
TEST instruction.

Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.

Interrupt instructions INT n, INTO, and IRET.

EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and
POPE.

1/0 instructions IN, INS, OUT, and OUTS.

Load effective address (LEA) instruction, and translate (XLATB) instruction.
LOCK prefix.

Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.

Processor halt (HLT) instruction.

No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 processor and
the remainder in the Intel386 processor), can be executed in real-address mode, if backwards
compatibility to the Intel 8086 processor is not required.

Move (MOV) instructions that operate on the control and debug registers.

Load segment register instructions LSS, LFS, and LGS.

Generalized multiply instructions and multiply immediate data.

Shift and rotate by immediate counts.

Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate data.
Move with sign extension instructions MOVSX and MOVZX.

Long-displacement Jcc instructions.

Exchange instructions CMPXCHG, CMPXCHGS8B, and XADD.

String instructions MOVS, CMPS, SCAS, LODS, and STOS.

Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on
condition instruction SETcc; and the byte swap (BSWAP) instruction.

Double shift instructions SHLD and SHRD.
EFLAGS control instructions PUSHF and POPF.

Vol. 3 16-5

8086 EMULATION |nte| o

® ENTER and LEAVE control instructions.
® BOUND instruction.
® CPU identification (CPUID) instruction.

® System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT,
LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the previous two lists)
in real-address mode result in an invalid-opcode exception (#UD) being generated.

16.1.4. Interrupt and Exception Handling

When operating in real-address mode, software must provide interrupt and exception-handling
facilities that are separate from those provided in protected mode. Even during the early stages
of processor initialization when the processor is still in real-address mode, elementary real-
address mode interrupt and exception-handling facilities must be provided to insure reliable
operation of the processor, or the initialization code must insure that no interrupts or exceptions
will occur.

The TA-32 processors handle interrupts and exceptions in real-address mode similar to the way
they handle them in protected mode. When a processor receives an interrupt or generates an
exception, it uses the vector number of the interrupt or exception as an index into the interrupt
table. (In protected mode, the interrupt table is called the interrupt descriptor table (IDT), but
in real-address mode, the table is usually called the interrupt vector table, or simply the inter-
rupt table.) The entry in the interrupt vector table provides a pointer to an interrupt- or excep-
tion-handler procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an implicit
call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-
significant bits of the EIP register are pushed.)

Pushes the low-order 16 bits of the EFLAGS register onto the stack.
Clears the IF flag in the EFLAGS register to disable interrupts.
Clears the TF, RC, and AC flags, in the EFLAGS register.

wooA »N

Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program
control to the interrupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 16-2). Each entry consists of
a far pointer to a handler procedure, made up of a segment selector and an offset. The processor
scales the interrupt or exception vector by 4 to obtain an offset into the interrupt table. Following
reset, the base of the interrupt vector table is located at physical address 0 and its limit is set to
3FFH. In the Intel 8086 processor, the base address and limit of the interrupt vector table cannot
be changed. In the later IA-32 processors, the base address and limit of the interrupt vector table
are contained in the IDTR register and can be changed using the LIDT instruction.

16-6 Vol. 3

Inte|® 8086 EMULATION

(For backward compatibility to Intel 8086 processors, the default base address and limit of the
interrupt vector table should not be changed.)

A Up to Entry 255 A
Entry 3
12
Entry 2
8
Entry 1
4
Segment Selector 2
Interrupt Vector 0*—
Offset 0
15 0
* Interrupt vector number 0 selects entry 0
(called “interrupt vector 0”) in the interrupt IDTR
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.

Figure 16-2. Interrupt Vector Table in Real-Address Mode

Table 16-1 shows the interrupt and exception vectors that can be generated in real-address mode
and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 5, Interrupt and Exception
Handling, for a description of the exception conditions.

16.2. VIRTUAL-8086 MODE

Virtual-8086 mode is actually a special type of a task that runs in protected mode. When the
operating-system or executive switches to a virtual-8086-mode task, the processor emulates an
Intel 8086 processor. The execution environment of the processor while in the 8086-emulation
state is the same as is described in Section 16.1., “Real-Address Mode” for real-address mode,
including the extensions. The major difference between the two modes is that in virtual-8086
mode the 8086 emulator uses some protected-mode services (such as the protected-mode inter-
rupt and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled and/or compiled
to run on an Intel 8086 processor will run in a virtual-8086-mode task. And several 8086
programs can be run as virtual-8086-mode tasks concurrently with normal protected-mode
tasks, using the processor’s multitasking facilities.

Vol. 3 16-7

8086 EMULATION

Table 16-1. Real-Address Mode Exceptions and Interrupts

intgl.

Vector Real-Address Virtual-8086 Intel 8086
No. Description Mode Mode Processor
0 Divide Error (#DE) Yes Yes Yes
1 Debug Exception (#DB) Yes Yes No
2 NMI Interrupt Yes Yes Yes
3 Breakpoint (#BP) Yes Yes Yes
4 Overflow (#OF) Yes Yes Yes
5 BOUND Range Exceeded (#BR) Yes Yes Reserved
6 Invalid Opcode (#UD) Yes Yes Reserved
7 Device Not Available (#NM) Yes Yes Reserved
8 Double Fault (#DF) Yes Yes Reserved
9 (Intel reserved. Do not use.) Reserved Reserved Reserved
10 Invalid TSS (#TS) Reserved Yes Reserved
11 Segment Not Present (#NP) Reserved Yes Reserved
12 Stack Fault (#SS) Yes Yes Reserved
13 General Protection (#GP)* Yes Yes Reserved
14 Page Fault (#PF) Reserved Yes Reserved
15 (Intel reserved. Do not use.) Reserved Reserved Reserved
16 Floating-Point Error (#MF) Yes Yes Reserved
17 Alignment Check (#AC) Reserved Yes Reserved
18 Machine Check (#MC) Yes Yes Reserved
19-31 | (Intel reserved. Do not use.) Reserved Reserved Reserved
32-255 | User Defined Interrupts Yes Yes Yes
NOTE:

*

In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086

modes, this exception covers all general-protection error conditions, including traps to the virtual-8086
monitor from virtual-8086 mode.

16-8 Vol. 3

Inte|® 8086 EMULATION

16.2.1. Enabling Virtual-8086 Mode

The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS
register is set. This flag can only be set when the processor switches to a new protected-mode
task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS register (for
example, by using the POPFD instruction). Instead it changes the flag in the image of the
EFLAGS register stored in the TSS or on the stack following a call to an interrupt- or exception-
handler procedure. For example, software sets the VM flag in the EFLAGS image in the TSS
when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:

® When loading segment registers, to determine whether to use 8086-style address
translation.

® When decoding instructions, to determine which instructions are not supported in virtual-
8086 mode and which instructions are sensitive to IOPL.

® When checking privileged instructions, on page accesses, or when performing other
permission checks. (Virtual-8086 mode always executes at CPL 3.)

16.2.2. Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
® A 32-bit TSS for the task.

® The 8086 program.

® A virtual-8086 monitor.

® 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does
not load the most-significant word of the EFLAGS register, which contains the VM flag. All
TSS’s, stacks, data, and code used to handle exceptions when in virtual-8086 mode must also be
32-bit segments.

The processor enters virtual-8086 mode to run the 8086 program and returns to protected mode
to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL of 0. The
monitor consists of initialization, interrupt- and exception-handling, and I/O emulation proce-
dures that emulate a personal computer or other 8086-based platform. Typically, the monitor is
either part of or closely associated with the protected-mode general-protection (#GP) exception
handler, which also runs at a CPL of 0. As with any protected-mode code module, code-segment
descriptors for the virtual-8086 monitor must exist in the GDT or in the task’s LDT. The virtual-
8086 monitor also may need data-segment descriptors so it can examine the IDT or other parts
of the 8086 program in the first 1 MByte of the address space. The linear addresses above
10FFEFH are available for the monitor, the operating system, and other system software.

Vol. 3 16-9

8086 EMULATION |nte| o

The 8086 operating-system services consists of a kernel and/or operating-system procedures
that the 8086 program makes calls to. These services can be implemented in either of the
following two ways:

® They can be included in the 8086 program. This approach is desirable for either of the
following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-system services
into main operating system or executive.

® They can be implemented or emulated in the virtual-8086 monitor. This approach is
desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated among several
virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure code for
several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the main
operating system or executive.

The approach chosen for implementing the 8086 operating-system services may result in
different virtual-8086-mode tasks using different 8086 operating-system services.

16.2.3. Paging of Virtual-8086 Tasks

Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the
processor converts these addresses into 32-bit linear addresses before mapping them to the phys-
ical address space. If paging is being used, the 8086 address space for a program running in
virtual-8086 mode can be paged and located in a set of pages in physical address space. If paging
is used, it is transparent to the program running in virtual-8086 mode just as it is for any task
running on the processor.

Paging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in
the following situations:

® When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 MByte
of the linear address space for each virtual-8086-mode task to be mapped to a different
physical address location.

® When emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-
style address translation, it is possible to specify addresses larger than 1 MByte. These
addresses automatically wraparound in the Intel 8086 processor (see Section 16.1.1.,
“Address Translation in Real-Address Mode”). If any 8086 programs depend on address
wraparound, the same effect can be achieved in a virtual-8086-mode task by mapping the
linear addresses between 100000H and 110000H and linear addresses between O and
10000H to the same physical addresses.

16-10 Vol. 3

Inte|® 8086 EMULATION

® When sharing the 8086 operating-system services or ROM code that is common to several
8086 programs running as different 8086-mode tasks.

® When redirecting or trapping references to memory-mapped I/O devices.

16.2.4. Protection within a Virtual-8086 Task

Protection is not enforced between the segments of an 8086 program. Either of the following
techniques can be used to protect the system software running in a virtual-8086-mode task from
the 8086 program:

® Reserve the first 1| MByte plus 64 KBytes of each task’s linear address space for the 8086
program. An 8086 processor task cannot generate addresses outside this range.

® Use the U/S flag of page-table entries to protect the virtual-8086 monitor and other system
software in the virtual-8086 mode task space. When the processor is in virtual-8086 mode,
the CPL is 3. Therefore, an 8086 processor program has only user privileges. If the pages
of the virtual-8086 monitor have supervisor privilege, they cannot be accessed by the 8086
program.

16.2.5. Entering Virtual-8086 Mode

Figure 16-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor
switches to virtual-8086 mode in either of the following situations:

® Task switch when the VM flag is set to 1 in the EFLAGS register image stored in the TSS
for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.
— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.

® Return from a protected-mode interrupt or exception handler when the VM flag is set to 1
in the EFLAGS register image on the stack.

When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task
must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register
is not in the TSS, causing the processor to clear the VM flag when it loads the EFLAGS register.)
The processor updates the VM flag prior to loading the segment registers from their images in
the new TSS. The new setting of the VM flag determines whether the processor interprets the
contents of the segment registers as 8086-style segment selectors or protected-mode segment
selectors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses.

See Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode”, for information
on entering virtual-8086 mode on a return from an interrupt or exception handler.

Vol. 3 16-11

8086 EMULATION |nte| o

| Real Mode

Code
Real-Address y
Mode \ PE=0 or
PE=1 RESET
Y
Task Switch [protected- CALL _
Protected Protected- | _VM=0 Mode Interrupt ™ Virtual-8086
Mode Mode Tasks | and Exception | Monitor
Handlers = RET
A A
Task Switch'
o | W0 _ _ _ _] I] _
VM=1
Y Interrupt or
Virtual-8086 Exception
Mode Virtual-8086 #GP Exception®
RESET | Mode Tasks "
(8086 < IRET
Programs) IRET®

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler

NOTES:

1. Task switch carried out in either of two ways:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

4. Normal return from protected-mode interrupt or exception handler.

5. A return from the 8086 monitor to redirect an interrupt or exception back
to an interrupt or exception handler in the 8086 program running in virtual-
8086 mode.

6. Internal redirection of a software interrupt (INT n) when VME is 1,

IOPL is <3, and the redirection bit is 1.

Figure 16-3. Entering and Leaving Virtual-8086 Mode

16-12 Vol. 3

Intel® 8086 EMULATION

16.2.6. Leaving Virtual-8086 Mode

The processor can leave the virtual-8086 mode only through an interrupt or exception. The
following are situations where an interrupt or exception will lead to the processor leaving
virtual-8086 mode (see Figure 16-3):

The processor services a hardware interrupt generated to signal the suspension of
execution of the virtual-8086 application. This hardware interrupt may be generated by a
timer or other external mechanism. Upon receiving the hardware interrupt, the processor
enters protected mode and switches to a protected-mode (or another virtual-8086 mode)
task either through a task gate in the protected-mode IDT or through a trap or interrupt gate
that points to a handler that initiates a task switch. A task switch from a virtual-8086 task
to another task loads the EFLAGS register from the TSS of the new task. The value of the
VM flag in the new EFLAGS determines if the new task executes in virtual-8086 mode or
not.

The processor services an exception caused by code executing the virtual-8086 task or
services a hardware interrupt that “belongs to” the virtual-8086 task. Here, the processor
enters protected mode and services the exception or hardware interrupt through the
protected-mode IDT (normally through an interrupt or trap gate) and the protected-mode
exception- and interrupt-handlers. The processor may handle the exception or interrupt
within the context of the virtual 8086 task and return to virtual-8086 mode on a return from
the handler procedure. The processor may also execute a task switch and handle the
exception or interrupt in the context of another task.

The processor services a software interrupt generated by code executing in the virtual-
8086 task (such as a software interrupt to call a MS-DOS* operating system routine). The
processor provides several methods of handling these software interrupts, which are
discussed in detail in Section 16.3.3., “Class 3—Software Interrupt Handling in Virtual-
8086 Mode”. Most of them involve the processor entering protected mode, often by means
of a general-protection (#GP) exception. In protected mode, the processor can send the
interrupt to the virtual-8086 monitor for handling and/or redirect the interrupt back to the
application program running in virtual-8086 mode task for handling.

IA-32 processors that incorporate the virtual mode extension (enabled with the VME flag
in control register CR4) are capable of redirecting software-generated interrupts back to
the program’s interrupt handlers without leaving virtual-8086 mode. See Section 16.3.3.4.,
“Method 5: Software Interrupt Handling”, for more information on this mechanism.

A hardware reset initiated by asserting the RESET or INIT pin is a special kind of
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 mode,
the processor leaves virtual-8086 mode and enters real-address mode.

Execution of the HLT instruction in virtual-8086 mode will cause a general-protection
(GP#) fault, which the protected-mode handler generally sends to the virtual-8086 monitor.
The virtual-8086 monitor then determines the correct execution sequence after verifying
that it was entered as a result of a HLT execution.

Vol.3 16-13

8086 EMULATION |nte| o

See Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode”, for information
on leaving virtual-8086 mode to handle an interrupt or exception generated in virtual-8086
mode.

16.2.7. Sensitive Instructions

When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, INT n,
and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions, which
are sensitive to IOPL in protected mode, are not sensitive in virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt
to use the IOPL-sensitive instructions listed above triggers a general-protection exception
(#GP). These instructions are sensitive to IOPL to give the virtual-8086 monitor a chance to
emulate the facilities they affect.

16.2.8. Virtual-8086 Mode I/O

Many 8086 programs written for non-multitasking systems directly access I/O ports. This prac-
tice may cause problems in a multitasking environment. If more than one program accesses the
same port, they may interfere with each other. Most multitasking systems require application
programs to access I/O ports through the operating system. This results in simplified, centralized
control.

The processor provides I/O protection for creating I/0 that is compatible with the environment
and transparent to 8086 programs. Designers may take any of several possible approaches to
protecting I/O ports:

® Protect the I/O address space and generate exceptions for all attempts to perform 1/O
directly.

® Let the 8086 program perform I/O directly.
® Generate exceptions on attempts to access specific I/O ports.
® Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-port mapped
or memory mapped.

16.2.8.1. I/O-PORT-MAPPED I/O

The I/0 permission bit map in the TSS can be used to generate exceptions on attempts to access
specific I/O port addresses. The I/O permission bit map of each virtual-8086-mode task deter-
mines which I/O addresses generate exceptions for that task. Because each task may have a
different I/O permission bit map, the addresses that generate exceptions for one task may be
different from the addresses for another task. This differs from protected mode in which, if the
CPL is less than or equal to the IOPL, I/O access is allowed without checking the I/O permission

16-14 Vol. 3

Inte|® 8086 EMULATION

bit map. See Chapter 12, Input/Output, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for more information about the I/O permission bit map.

16.2.8.2. MEMORY-MAPPED I/O

In systems which use memory-mapped I/O, the paging facilities of the processor can be used to
generate exceptions for attempts to access I/O ports. The virtual-8086 monitor may use paging
to control memory-mapped I/O in these ways:

® Map part of the linear address space of each task that needs to perform I/O to the physical
address space where /O ports are placed. By putting the I/O ports at different addresses (in
different pages), the paging mechanism can enforce isolation between tasks.

® Map part of the linear address space to pages that are not-present. This generates an
exception whenever a task attempts to perform I/O to those pages. System software then
can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system intervention under
some conditions. In these cases, it may be possible to generate an exception for only the first
attempt to access I/0O. The system software then may determine whether a program can be given
exclusive control of I/O temporarily, the protection of the I/O space may be lifted, and the
program allowed to run at full speed.

16.2.8.3. SPECIAL I/O BUFFERS

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated
using page mapping. The linear space for the buffer can be mapped to a different physical space
for each virtual-8086-mode task. The virtual-8086 monitor then can control which virtual buffer
to copy onto the real buffer in the physical address space.

16.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086
MODE

When the processor receives an interrupt or detects an exception condition while in virtual-8086
mode, it invokes an interrupt or exception handler, just as it does in protected or real-address
mode. The interrupt or exception handler that is invoked and the mechanism used to invoke it
depends on the class of interrupt or exception that has been detected or generated and the state
of various system flags and fields.

In virtual-8086 mode, the interrupts and exceptions are divided into three classes for the
purposes of handling:

® C(Class 1—All processor-generated exceptions and all hardware interrupts, including the
NMI interrupt and the hardware interrupts sent to the processor’s external interrupt
delivery pins. All class 1 exceptions and interrupts are handled by the protected-mode
exception and interrupt handlers.

Vol.3 16-15

8086 EMULATION |nte| o

Class 2—Special case for maskable hardware interrupts (Section 5.3.2., “Maskable
Hardware Interrupts”) when the virtual mode extensions are enabled.

Class 3—All software-generated interrupts, that is interrupts generated with the INT n
instruction',

The method the processor uses to handle class 2 and 3 interrupts depends on the setting of the
following flags and fields:

IOPL field (bits 12 and 13 in the EFLAGS register)—Controls how class 3 software
interrupts are handled when the processor is in virtual-8086 mode (see Section 2.3.,
“System Flags and Fields in the EFLAGS Register”). This field also controls the enabling
of the VIF and VIP flags in the EFLAGS register when the VME flag is set. The VIF and
VIP flags are provided to assist in the handling of class 2 maskable hardware interrupts.

VME flag (bit O in control register CR4)—Enables the virtual mode extension for the
processor when set (see Section 2.5., “Control Registers”).

Software interrupt redirection bit map (32 bytes in the TSS, see Figure 16-5)—Contains
256 flags that indicates how class 3 software interrupts should be handled when they occur
in virtual-8086 mode. A software interrupt can be directed either to the interrupt and
exception handlers in the currently running 8086 program or to the protected-mode
interrupt and exception handlers.

The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) in the EFLAGS
register—Provides virtual interrupt support for the handling of class 2 maskable
hardware interrupts (see Section 16.3.2.,