1 /* Copyright (c) 2008, 2009, 2010 Nicira Networks
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
7 * http://www.apache.org/licenses/LICENSE-2.0
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
18 #include "byte-order.h"
21 #include <arpa/inet.h>
24 #include <sys/socket.h>
26 #include <openflow/openflow.h>
31 #include <sys/socket.h>
32 #include <sys/types.h>
36 #include "classifier.h"
40 #include "dynamic-string.h"
46 #include "mac-learning.h"
50 #include "ofp-print.h"
52 #include "ofproto/netflow.h"
53 #include "ofproto/ofproto.h"
54 #include "ovsdb-data.h"
56 #include "poll-loop.h"
57 #include "proc-net-compat.h"
61 #include "socket-util.h"
62 #include "stream-ssl.h"
64 #include "system-stats.h"
69 #include "vswitchd/vswitch-idl.h"
70 #include "xenserver.h"
72 #include "sflow_api.h"
74 VLOG_DEFINE_THIS_MODULE(bridge);
76 COVERAGE_DEFINE(bridge_flush);
77 COVERAGE_DEFINE(bridge_process_flow);
78 COVERAGE_DEFINE(bridge_reconfigure);
86 struct dst builtin[32];
91 static void dst_set_init(struct dst_set *);
92 static void dst_set_add(struct dst_set *, const struct dst *);
93 static void dst_set_free(struct dst_set *);
96 /* These members are always valid. */
97 struct port *port; /* Containing port. */
98 size_t port_ifidx; /* Index within containing port. */
99 char *name; /* Host network device name. */
100 tag_type tag; /* Tag associated with this interface. */
101 long long delay_expires; /* Time after which 'enabled' may change. */
103 /* These members are valid only after bridge_reconfigure() causes them to
105 struct hmap_node dp_ifidx_node; /* In struct bridge's "ifaces" hmap. */
106 int dp_ifidx; /* Index within kernel datapath. */
107 struct netdev *netdev; /* Network device. */
108 bool enabled; /* May be chosen for flows? */
109 const char *type; /* Usually same as cfg->type. */
110 struct cfm *cfm; /* Connectivity Fault Management */
111 const struct ovsrec_interface *cfg;
114 #define BOND_MASK 0xff
116 int iface_idx; /* Index of assigned iface, or -1 if none. */
117 uint64_t tx_bytes; /* Count of bytes recently transmitted. */
118 tag_type iface_tag; /* Tag associated with iface_idx. */
121 #define MAX_MIRRORS 32
122 typedef uint32_t mirror_mask_t;
123 #define MIRROR_MASK_C(X) UINT32_C(X)
124 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
126 struct bridge *bridge;
129 struct uuid uuid; /* UUID of this "mirror" record in database. */
131 /* Selection criteria. */
132 struct shash src_ports; /* Name is port name; data is always NULL. */
133 struct shash dst_ports; /* Name is port name; data is always NULL. */
138 struct port *out_port;
142 #define FLOOD_PORT ((struct port *) 1) /* The 'flood' output port. */
144 struct bridge *bridge;
146 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
147 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
148 * NULL if all VLANs are trunked. */
149 const struct ovsrec_port *cfg;
152 /* An ordinary bridge port has 1 interface.
153 * A bridge port for bonding has at least 2 interfaces. */
154 struct iface **ifaces;
155 size_t n_ifaces, allocated_ifaces;
158 struct bond_entry *bond_hash; /* An array of (BOND_MASK + 1) elements. */
159 int active_iface; /* Ifidx on which bcasts accepted, or -1. */
160 tag_type active_iface_tag; /* Tag for bcast flows. */
161 tag_type no_ifaces_tag; /* Tag for flows when all ifaces disabled. */
162 int updelay, downdelay; /* Delay before iface goes up/down, in ms. */
163 bool bond_compat_is_stale; /* Need to call port_update_bond_compat()? */
164 bool bond_fake_iface; /* Fake a bond interface for legacy compat? */
165 long long int bond_next_fake_iface_update; /* Time of next update. */
166 int bond_rebalance_interval; /* Interval between rebalances, in ms. */
167 long long int bond_next_rebalance; /* Next rebalancing time. */
168 struct netdev_monitor *monitor; /* Tracks carrier up/down status. */
170 /* Port mirroring info. */
171 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
172 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
173 bool is_mirror_output_port; /* Does port mirroring send frames here? */
176 #define DP_MAX_PORTS 255
178 struct list node; /* Node in global list of bridges. */
179 char *name; /* User-specified arbitrary name. */
180 struct mac_learning *ml; /* MAC learning table. */
181 uint8_t default_ea[ETH_ADDR_LEN]; /* Default MAC. */
182 const struct ovsrec_bridge *cfg;
184 /* OpenFlow switch processing. */
185 struct ofproto *ofproto; /* OpenFlow switch. */
187 /* Kernel datapath information. */
188 struct dpif *dpif; /* Datapath. */
189 struct hmap ifaces; /* Contains "struct iface"s. */
193 size_t n_ports, allocated_ports;
194 struct shash iface_by_name; /* "struct iface"s indexed by name. */
195 struct shash port_by_name; /* "struct port"s indexed by name. */
198 bool has_bonded_ports;
203 /* Port mirroring. */
204 struct mirror *mirrors[MAX_MIRRORS];
207 /* List of all bridges. */
208 static struct list all_bridges = LIST_INITIALIZER(&all_bridges);
210 /* OVSDB IDL used to obtain configuration. */
211 static struct ovsdb_idl *idl;
213 /* Each time this timer expires, the bridge fetches systems and interface
214 * statistics and pushes them into the database. */
215 #define STATS_INTERVAL (5 * 1000) /* In milliseconds. */
216 static long long int stats_timer = LLONG_MIN;
218 static struct bridge *bridge_create(const struct ovsrec_bridge *br_cfg);
219 static void bridge_destroy(struct bridge *);
220 static struct bridge *bridge_lookup(const char *name);
221 static unixctl_cb_func bridge_unixctl_dump_flows;
222 static unixctl_cb_func bridge_unixctl_reconnect;
223 static int bridge_run_one(struct bridge *);
224 static size_t bridge_get_controllers(const struct bridge *br,
225 struct ovsrec_controller ***controllersp);
226 static void bridge_reconfigure_one(struct bridge *);
227 static void bridge_reconfigure_remotes(struct bridge *,
228 const struct sockaddr_in *managers,
230 static void bridge_get_all_ifaces(const struct bridge *, struct shash *ifaces);
231 static void bridge_fetch_dp_ifaces(struct bridge *);
232 static void bridge_flush(struct bridge *);
233 static void bridge_pick_local_hw_addr(struct bridge *,
234 uint8_t ea[ETH_ADDR_LEN],
235 struct iface **hw_addr_iface);
236 static uint64_t bridge_pick_datapath_id(struct bridge *,
237 const uint8_t bridge_ea[ETH_ADDR_LEN],
238 struct iface *hw_addr_iface);
239 static struct iface *bridge_get_local_iface(struct bridge *);
240 static uint64_t dpid_from_hash(const void *, size_t nbytes);
242 static unixctl_cb_func bridge_unixctl_fdb_show;
244 static void bond_init(void);
245 static void bond_run(struct bridge *);
246 static void bond_wait(struct bridge *);
247 static void bond_rebalance_port(struct port *);
248 static void bond_send_learning_packets(struct port *);
249 static void bond_enable_slave(struct iface *iface, bool enable);
251 static struct port *port_create(struct bridge *, const char *name);
252 static void port_reconfigure(struct port *, const struct ovsrec_port *);
253 static void port_del_ifaces(struct port *, const struct ovsrec_port *);
254 static void port_destroy(struct port *);
255 static struct port *port_lookup(const struct bridge *, const char *name);
256 static struct iface *port_lookup_iface(const struct port *, const char *name);
257 static struct port *port_from_dp_ifidx(const struct bridge *,
259 static void port_update_bond_compat(struct port *);
260 static void port_update_vlan_compat(struct port *);
261 static void port_update_bonding(struct port *);
263 static void mirror_create(struct bridge *, struct ovsrec_mirror *);
264 static void mirror_destroy(struct mirror *);
265 static void mirror_reconfigure(struct bridge *);
266 static void mirror_reconfigure_one(struct mirror *, struct ovsrec_mirror *);
267 static bool vlan_is_mirrored(const struct mirror *, int vlan);
269 static struct iface *iface_create(struct port *port,
270 const struct ovsrec_interface *if_cfg);
271 static void iface_destroy(struct iface *);
272 static struct iface *iface_lookup(const struct bridge *, const char *name);
273 static struct iface *iface_from_dp_ifidx(const struct bridge *,
275 static void iface_set_mac(struct iface *);
276 static void iface_set_ofport(const struct ovsrec_interface *, int64_t ofport);
277 static void iface_update_qos(struct iface *, const struct ovsrec_qos *);
278 static void iface_update_cfm(struct iface *);
279 static void iface_refresh_cfm_stats(struct iface *iface);
280 static void iface_send_packet(struct iface *, struct ofpbuf *packet);
282 static void shash_from_ovs_idl_map(char **keys, char **values, size_t n,
285 /* Hooks into ofproto processing. */
286 static struct ofhooks bridge_ofhooks;
288 /* Public functions. */
290 /* Initializes the bridge module, configuring it to obtain its configuration
291 * from an OVSDB server accessed over 'remote', which should be a string in a
292 * form acceptable to ovsdb_idl_create(). */
294 bridge_init(const char *remote)
296 /* Create connection to database. */
297 idl = ovsdb_idl_create(remote, &ovsrec_idl_class, true);
299 ovsdb_idl_omit_alert(idl, &ovsrec_open_vswitch_col_cur_cfg);
300 ovsdb_idl_omit_alert(idl, &ovsrec_open_vswitch_col_statistics);
301 ovsdb_idl_omit(idl, &ovsrec_open_vswitch_col_external_ids);
303 ovsdb_idl_omit(idl, &ovsrec_bridge_col_external_ids);
305 ovsdb_idl_omit(idl, &ovsrec_port_col_external_ids);
306 ovsdb_idl_omit(idl, &ovsrec_port_col_fake_bridge);
308 ovsdb_idl_omit_alert(idl, &ovsrec_interface_col_ofport);
309 ovsdb_idl_omit_alert(idl, &ovsrec_interface_col_statistics);
310 ovsdb_idl_omit(idl, &ovsrec_interface_col_external_ids);
312 /* Register unixctl commands. */
313 unixctl_command_register("fdb/show", bridge_unixctl_fdb_show, NULL);
314 unixctl_command_register("bridge/dump-flows", bridge_unixctl_dump_flows,
316 unixctl_command_register("bridge/reconnect", bridge_unixctl_reconnect,
321 /* Performs configuration that is only necessary once at ovs-vswitchd startup,
322 * but for which the ovs-vswitchd configuration 'cfg' is required. */
324 bridge_configure_once(const struct ovsrec_open_vswitch *cfg)
326 static bool already_configured_once;
327 struct svec bridge_names;
328 struct svec dpif_names, dpif_types;
331 /* Only do this once per ovs-vswitchd run. */
332 if (already_configured_once) {
335 already_configured_once = true;
337 stats_timer = time_msec() + STATS_INTERVAL;
339 /* Get all the configured bridges' names from 'cfg' into 'bridge_names'. */
340 svec_init(&bridge_names);
341 for (i = 0; i < cfg->n_bridges; i++) {
342 svec_add(&bridge_names, cfg->bridges[i]->name);
344 svec_sort(&bridge_names);
346 /* Iterate over all system dpifs and delete any of them that do not appear
348 svec_init(&dpif_names);
349 svec_init(&dpif_types);
350 dp_enumerate_types(&dpif_types);
351 for (i = 0; i < dpif_types.n; i++) {
356 dp_enumerate_names(dpif_types.names[i], &dpif_names);
358 /* For each dpif... */
359 for (j = 0; j < dpif_names.n; j++) {
360 retval = dpif_open(dpif_names.names[j], dpif_types.names[i], &dpif);
362 struct svec all_names;
365 /* ...check whether any of its names is in 'bridge_names'. */
366 svec_init(&all_names);
367 dpif_get_all_names(dpif, &all_names);
368 for (k = 0; k < all_names.n; k++) {
369 if (svec_contains(&bridge_names, all_names.names[k])) {
374 /* No. Delete the dpif. */
378 svec_destroy(&all_names);
383 svec_destroy(&bridge_names);
384 svec_destroy(&dpif_names);
385 svec_destroy(&dpif_types);
388 /* Initializes 'options' and fills it with the options for 'if_cfg'. Merges
389 * keys from "options" and "other_config", preferring "options" keys over
390 * "other_config" keys. */
392 iface_get_options(const struct ovsrec_interface *if_cfg, struct shash *options)
396 shash_from_ovs_idl_map(if_cfg->key_options, if_cfg->value_options,
397 if_cfg->n_options, options);
399 for (i = 0; i < if_cfg->n_other_config; i++) {
400 char *key = if_cfg->key_other_config[i];
401 char *value = if_cfg->value_other_config[i];
403 if (!shash_find_data(options, key)) {
404 shash_add(options, key, value);
406 VLOG_WARN("%s: ignoring \"other_config\" key %s that conflicts "
407 "with \"options\" key %s", if_cfg->name, key, key);
412 /* Callback for iterate_and_prune_ifaces(). */
414 check_iface(struct bridge *br, struct iface *iface, void *aux OVS_UNUSED)
416 if (!iface->netdev) {
417 /* We already reported a related error, don't bother duplicating it. */
421 if (iface->dp_ifidx < 0) {
422 VLOG_ERR("%s interface not in %s, dropping",
423 iface->name, dpif_name(br->dpif));
427 VLOG_DBG("%s has interface %s on port %d", dpif_name(br->dpif),
428 iface->name, iface->dp_ifidx);
432 /* Callback for iterate_and_prune_ifaces(). */
434 set_iface_properties(struct bridge *br OVS_UNUSED, struct iface *iface,
435 void *aux OVS_UNUSED)
437 /* Set policing attributes. */
438 netdev_set_policing(iface->netdev,
439 iface->cfg->ingress_policing_rate,
440 iface->cfg->ingress_policing_burst);
442 /* Set MAC address of internal interfaces other than the local
444 if (iface->dp_ifidx != ODPP_LOCAL && !strcmp(iface->type, "internal")) {
445 iface_set_mac(iface);
451 /* Calls 'cb' for each interfaces in 'br', passing along the 'aux' argument.
452 * Deletes from 'br' all the interfaces for which 'cb' returns false, and then
453 * deletes from 'br' any ports that no longer have any interfaces. */
455 iterate_and_prune_ifaces(struct bridge *br,
456 bool (*cb)(struct bridge *, struct iface *,
462 for (i = 0; i < br->n_ports; ) {
463 struct port *port = br->ports[i];
464 for (j = 0; j < port->n_ifaces; ) {
465 struct iface *iface = port->ifaces[j];
466 if (cb(br, iface, aux)) {
469 iface_set_ofport(iface->cfg, -1);
470 iface_destroy(iface);
474 if (port->n_ifaces) {
477 VLOG_ERR("%s port has no interfaces, dropping", port->name);
483 /* Looks at the list of managers in 'ovs_cfg' and extracts their remote IP
484 * addresses and ports into '*managersp' and '*n_managersp'. The caller is
485 * responsible for freeing '*managersp' (with free()).
487 * You may be asking yourself "why does ovs-vswitchd care?", because
488 * ovsdb-server is responsible for connecting to the managers, and ovs-vswitchd
489 * should not be and in fact is not directly involved in that. But
490 * ovs-vswitchd needs to make sure that ovsdb-server can reach the managers, so
491 * it has to tell in-band control where the managers are to enable that.
492 * (Thus, only managers connected in-band are collected.)
495 collect_in_band_managers(const struct ovsrec_open_vswitch *ovs_cfg,
496 struct sockaddr_in **managersp, size_t *n_managersp)
498 struct sockaddr_in *managers = NULL;
499 size_t n_managers = 0;
500 struct shash targets;
503 /* Collect all of the potential targets, as the union of the "managers"
504 * column and the "targets" columns of the rows pointed to by
505 * "manager_options", excluding any that are out-of-band. */
506 shash_init(&targets);
507 for (i = 0; i < ovs_cfg->n_managers; i++) {
508 shash_add_once(&targets, ovs_cfg->managers[i], NULL);
510 for (i = 0; i < ovs_cfg->n_manager_options; i++) {
511 struct ovsrec_manager *m = ovs_cfg->manager_options[i];
513 if (m->connection_mode && !strcmp(m->connection_mode, "out-of-band")) {
514 shash_find_and_delete(&targets, m->target);
516 shash_add_once(&targets, m->target, NULL);
520 /* Now extract the targets' IP addresses. */
521 if (!shash_is_empty(&targets)) {
522 struct shash_node *node;
524 managers = xmalloc(shash_count(&targets) * sizeof *managers);
525 SHASH_FOR_EACH (node, &targets) {
526 const char *target = node->name;
527 struct sockaddr_in *sin = &managers[n_managers];
529 if ((!strncmp(target, "tcp:", 4)
530 && inet_parse_active(target + 4, JSONRPC_TCP_PORT, sin)) ||
531 (!strncmp(target, "ssl:", 4)
532 && inet_parse_active(target + 4, JSONRPC_SSL_PORT, sin))) {
537 shash_destroy(&targets);
539 *managersp = managers;
540 *n_managersp = n_managers;
544 bridge_reconfigure(const struct ovsrec_open_vswitch *ovs_cfg)
546 struct shash old_br, new_br;
547 struct shash_node *node;
548 struct bridge *br, *next;
549 struct sockaddr_in *managers;
552 int sflow_bridge_number;
554 COVERAGE_INC(bridge_reconfigure);
556 collect_in_band_managers(ovs_cfg, &managers, &n_managers);
558 /* Collect old and new bridges. */
561 LIST_FOR_EACH (br, node, &all_bridges) {
562 shash_add(&old_br, br->name, br);
564 for (i = 0; i < ovs_cfg->n_bridges; i++) {
565 const struct ovsrec_bridge *br_cfg = ovs_cfg->bridges[i];
566 if (!shash_add_once(&new_br, br_cfg->name, br_cfg)) {
567 VLOG_WARN("more than one bridge named %s", br_cfg->name);
571 /* Get rid of deleted bridges and add new bridges. */
572 LIST_FOR_EACH_SAFE (br, next, node, &all_bridges) {
573 struct ovsrec_bridge *br_cfg = shash_find_data(&new_br, br->name);
580 SHASH_FOR_EACH (node, &new_br) {
581 const char *br_name = node->name;
582 const struct ovsrec_bridge *br_cfg = node->data;
583 br = shash_find_data(&old_br, br_name);
585 /* If the bridge datapath type has changed, we need to tear it
586 * down and recreate. */
587 if (strcmp(br->cfg->datapath_type, br_cfg->datapath_type)) {
589 bridge_create(br_cfg);
592 bridge_create(br_cfg);
595 shash_destroy(&old_br);
596 shash_destroy(&new_br);
598 /* Reconfigure all bridges. */
599 LIST_FOR_EACH (br, node, &all_bridges) {
600 bridge_reconfigure_one(br);
603 /* Add and delete ports on all datapaths.
605 * The kernel will reject any attempt to add a given port to a datapath if
606 * that port already belongs to a different datapath, so we must do all
607 * port deletions before any port additions. */
608 LIST_FOR_EACH (br, node, &all_bridges) {
609 struct odp_port *dpif_ports;
611 struct shash want_ifaces;
613 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
614 bridge_get_all_ifaces(br, &want_ifaces);
615 for (i = 0; i < n_dpif_ports; i++) {
616 const struct odp_port *p = &dpif_ports[i];
617 if (!shash_find(&want_ifaces, p->devname)
618 && strcmp(p->devname, br->name)) {
619 int retval = dpif_port_del(br->dpif, p->port);
621 VLOG_ERR("failed to remove %s interface from %s: %s",
622 p->devname, dpif_name(br->dpif),
627 shash_destroy(&want_ifaces);
630 LIST_FOR_EACH (br, node, &all_bridges) {
631 struct odp_port *dpif_ports;
633 struct shash cur_ifaces, want_ifaces;
635 /* Get the set of interfaces currently in this datapath. */
636 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
637 shash_init(&cur_ifaces);
638 for (i = 0; i < n_dpif_ports; i++) {
639 const char *name = dpif_ports[i].devname;
640 shash_add_once(&cur_ifaces, name, &dpif_ports[i]);
643 /* Get the set of interfaces we want on this datapath. */
644 bridge_get_all_ifaces(br, &want_ifaces);
646 hmap_clear(&br->ifaces);
647 SHASH_FOR_EACH (node, &want_ifaces) {
648 const char *if_name = node->name;
649 struct iface *iface = node->data;
650 struct odp_port *dpif_port = shash_find_data(&cur_ifaces, if_name);
651 const char *type = iface ? iface->type : "internal";
654 /* If we have a port or a netdev already, and it's not the type we
655 * want, then delete the port (if any) and close the netdev (if
657 if ((dpif_port && strcmp(dpif_port->type, type))
658 || (iface && iface->netdev
659 && strcmp(type, netdev_get_type(iface->netdev)))) {
661 error = ofproto_port_del(br->ofproto, dpif_port->port);
668 netdev_close(iface->netdev);
669 iface->netdev = NULL;
673 /* If the port doesn't exist or we don't have the netdev open,
674 * we need to do more work. */
675 if (!dpif_port || (iface && !iface->netdev)) {
676 struct netdev_options options;
677 struct netdev *netdev;
680 /* First open the network device. */
681 options.name = if_name;
683 options.args = &args;
684 options.ethertype = NETDEV_ETH_TYPE_NONE;
688 iface_get_options(iface->cfg, &args);
690 error = netdev_open(&options, &netdev);
691 shash_destroy(&args);
694 VLOG_WARN("could not open network device %s (%s)",
695 if_name, strerror(error));
699 /* Then add the port if we haven't already. */
701 error = dpif_port_add(br->dpif, netdev, NULL);
703 netdev_close(netdev);
704 if (error == EFBIG) {
705 VLOG_ERR("ran out of valid port numbers on %s",
706 dpif_name(br->dpif));
709 VLOG_ERR("failed to add %s interface to %s: %s",
710 if_name, dpif_name(br->dpif),
717 /* Update 'iface'. */
719 iface->netdev = netdev;
720 iface->enabled = netdev_get_carrier(iface->netdev);
722 } else if (iface && iface->netdev) {
726 iface_get_options(iface->cfg, &args);
727 netdev_reconfigure(iface->netdev, &args);
728 shash_destroy(&args);
732 shash_destroy(&cur_ifaces);
733 shash_destroy(&want_ifaces);
735 sflow_bridge_number = 0;
736 LIST_FOR_EACH (br, node, &all_bridges) {
739 struct iface *local_iface;
740 struct iface *hw_addr_iface;
743 bridge_fetch_dp_ifaces(br);
745 iterate_and_prune_ifaces(br, check_iface, NULL);
747 /* Pick local port hardware address, datapath ID. */
748 bridge_pick_local_hw_addr(br, ea, &hw_addr_iface);
749 local_iface = bridge_get_local_iface(br);
751 int error = netdev_set_etheraddr(local_iface->netdev, ea);
753 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
754 VLOG_ERR_RL(&rl, "bridge %s: failed to set bridge "
755 "Ethernet address: %s",
756 br->name, strerror(error));
760 dpid = bridge_pick_datapath_id(br, ea, hw_addr_iface);
761 ofproto_set_datapath_id(br->ofproto, dpid);
763 dpid_string = xasprintf("%016"PRIx64, dpid);
764 ovsrec_bridge_set_datapath_id(br->cfg, dpid_string);
767 /* Set NetFlow configuration on this bridge. */
768 if (br->cfg->netflow) {
769 struct ovsrec_netflow *nf_cfg = br->cfg->netflow;
770 struct netflow_options opts;
772 memset(&opts, 0, sizeof opts);
774 dpif_get_netflow_ids(br->dpif, &opts.engine_type, &opts.engine_id);
775 if (nf_cfg->engine_type) {
776 opts.engine_type = *nf_cfg->engine_type;
778 if (nf_cfg->engine_id) {
779 opts.engine_id = *nf_cfg->engine_id;
782 opts.active_timeout = nf_cfg->active_timeout;
783 if (!opts.active_timeout) {
784 opts.active_timeout = -1;
785 } else if (opts.active_timeout < 0) {
786 VLOG_WARN("bridge %s: active timeout interval set to negative "
787 "value, using default instead (%d seconds)", br->name,
788 NF_ACTIVE_TIMEOUT_DEFAULT);
789 opts.active_timeout = -1;
792 opts.add_id_to_iface = nf_cfg->add_id_to_interface;
793 if (opts.add_id_to_iface) {
794 if (opts.engine_id > 0x7f) {
795 VLOG_WARN("bridge %s: netflow port mangling may conflict "
796 "with another vswitch, choose an engine id less "
797 "than 128", br->name);
799 if (br->n_ports > 508) {
800 VLOG_WARN("bridge %s: netflow port mangling will conflict "
801 "with another port when more than 508 ports are "
806 opts.collectors.n = nf_cfg->n_targets;
807 opts.collectors.names = nf_cfg->targets;
808 if (ofproto_set_netflow(br->ofproto, &opts)) {
809 VLOG_ERR("bridge %s: problem setting netflow collectors",
813 ofproto_set_netflow(br->ofproto, NULL);
816 /* Set sFlow configuration on this bridge. */
817 if (br->cfg->sflow) {
818 const struct ovsrec_sflow *sflow_cfg = br->cfg->sflow;
819 struct ovsrec_controller **controllers;
820 struct ofproto_sflow_options oso;
821 size_t n_controllers;
823 memset(&oso, 0, sizeof oso);
825 oso.targets.n = sflow_cfg->n_targets;
826 oso.targets.names = sflow_cfg->targets;
828 oso.sampling_rate = SFL_DEFAULT_SAMPLING_RATE;
829 if (sflow_cfg->sampling) {
830 oso.sampling_rate = *sflow_cfg->sampling;
833 oso.polling_interval = SFL_DEFAULT_POLLING_INTERVAL;
834 if (sflow_cfg->polling) {
835 oso.polling_interval = *sflow_cfg->polling;
838 oso.header_len = SFL_DEFAULT_HEADER_SIZE;
839 if (sflow_cfg->header) {
840 oso.header_len = *sflow_cfg->header;
843 oso.sub_id = sflow_bridge_number++;
844 oso.agent_device = sflow_cfg->agent;
846 oso.control_ip = NULL;
847 n_controllers = bridge_get_controllers(br, &controllers);
848 for (i = 0; i < n_controllers; i++) {
849 if (controllers[i]->local_ip) {
850 oso.control_ip = controllers[i]->local_ip;
854 ofproto_set_sflow(br->ofproto, &oso);
856 /* Do not destroy oso.targets because it is owned by sflow_cfg. */
858 ofproto_set_sflow(br->ofproto, NULL);
861 /* Update the controller and related settings. It would be more
862 * straightforward to call this from bridge_reconfigure_one(), but we
863 * can't do it there for two reasons. First, and most importantly, at
864 * that point we don't know the dp_ifidx of any interfaces that have
865 * been added to the bridge (because we haven't actually added them to
866 * the datapath). Second, at that point we haven't set the datapath ID
867 * yet; when a controller is configured, resetting the datapath ID will
868 * immediately disconnect from the controller, so it's better to set
869 * the datapath ID before the controller. */
870 bridge_reconfigure_remotes(br, managers, n_managers);
872 LIST_FOR_EACH (br, node, &all_bridges) {
873 for (i = 0; i < br->n_ports; i++) {
874 struct port *port = br->ports[i];
877 port_update_vlan_compat(port);
878 port_update_bonding(port);
880 for (j = 0; j < port->n_ifaces; j++) {
881 iface_update_qos(port->ifaces[j], port->cfg->qos);
885 LIST_FOR_EACH (br, node, &all_bridges) {
886 iterate_and_prune_ifaces(br, set_iface_properties, NULL);
889 LIST_FOR_EACH (br, node, &all_bridges) {
891 HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) {
892 iface_update_cfm(iface);
900 get_ovsrec_key_value(const struct ovsdb_idl_row *row,
901 const struct ovsdb_idl_column *column,
904 const struct ovsdb_datum *datum;
905 union ovsdb_atom atom;
908 datum = ovsdb_idl_get(row, column, OVSDB_TYPE_STRING, OVSDB_TYPE_STRING);
909 atom.string = (char *) key;
910 idx = ovsdb_datum_find_key(datum, &atom, OVSDB_TYPE_STRING);
911 return idx == UINT_MAX ? NULL : datum->values[idx].string;
915 bridge_get_other_config(const struct ovsrec_bridge *br_cfg, const char *key)
917 return get_ovsrec_key_value(&br_cfg->header_,
918 &ovsrec_bridge_col_other_config, key);
922 bridge_pick_local_hw_addr(struct bridge *br, uint8_t ea[ETH_ADDR_LEN],
923 struct iface **hw_addr_iface)
929 *hw_addr_iface = NULL;
931 /* Did the user request a particular MAC? */
932 hwaddr = bridge_get_other_config(br->cfg, "hwaddr");
933 if (hwaddr && eth_addr_from_string(hwaddr, ea)) {
934 if (eth_addr_is_multicast(ea)) {
935 VLOG_ERR("bridge %s: cannot set MAC address to multicast "
936 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
937 } else if (eth_addr_is_zero(ea)) {
938 VLOG_ERR("bridge %s: cannot set MAC address to zero", br->name);
944 /* Otherwise choose the minimum non-local MAC address among all of the
946 memset(ea, 0xff, sizeof ea);
947 for (i = 0; i < br->n_ports; i++) {
948 struct port *port = br->ports[i];
949 uint8_t iface_ea[ETH_ADDR_LEN];
952 /* Mirror output ports don't participate. */
953 if (port->is_mirror_output_port) {
957 /* Choose the MAC address to represent the port. */
958 if (port->cfg->mac && eth_addr_from_string(port->cfg->mac, iface_ea)) {
959 /* Find the interface with this Ethernet address (if any) so that
960 * we can provide the correct devname to the caller. */
962 for (j = 0; j < port->n_ifaces; j++) {
963 struct iface *candidate = port->ifaces[j];
964 uint8_t candidate_ea[ETH_ADDR_LEN];
965 if (!netdev_get_etheraddr(candidate->netdev, candidate_ea)
966 && eth_addr_equals(iface_ea, candidate_ea)) {
971 /* Choose the interface whose MAC address will represent the port.
972 * The Linux kernel bonding code always chooses the MAC address of
973 * the first slave added to a bond, and the Fedora networking
974 * scripts always add slaves to a bond in alphabetical order, so
975 * for compatibility we choose the interface with the name that is
976 * first in alphabetical order. */
977 iface = port->ifaces[0];
978 for (j = 1; j < port->n_ifaces; j++) {
979 struct iface *candidate = port->ifaces[j];
980 if (strcmp(candidate->name, iface->name) < 0) {
985 /* The local port doesn't count (since we're trying to choose its
986 * MAC address anyway). */
987 if (iface->dp_ifidx == ODPP_LOCAL) {
992 error = netdev_get_etheraddr(iface->netdev, iface_ea);
994 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
995 VLOG_ERR_RL(&rl, "failed to obtain Ethernet address of %s: %s",
996 iface->name, strerror(error));
1001 /* Compare against our current choice. */
1002 if (!eth_addr_is_multicast(iface_ea) &&
1003 !eth_addr_is_local(iface_ea) &&
1004 !eth_addr_is_reserved(iface_ea) &&
1005 !eth_addr_is_zero(iface_ea) &&
1006 memcmp(iface_ea, ea, ETH_ADDR_LEN) < 0)
1008 memcpy(ea, iface_ea, ETH_ADDR_LEN);
1009 *hw_addr_iface = iface;
1012 if (eth_addr_is_multicast(ea)) {
1013 memcpy(ea, br->default_ea, ETH_ADDR_LEN);
1014 *hw_addr_iface = NULL;
1015 VLOG_WARN("bridge %s: using default bridge Ethernet "
1016 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
1018 VLOG_DBG("bridge %s: using bridge Ethernet address "ETH_ADDR_FMT,
1019 br->name, ETH_ADDR_ARGS(ea));
1023 /* Choose and returns the datapath ID for bridge 'br' given that the bridge
1024 * Ethernet address is 'bridge_ea'. If 'bridge_ea' is the Ethernet address of
1025 * an interface on 'br', then that interface must be passed in as
1026 * 'hw_addr_iface'; if 'bridge_ea' was derived some other way, then
1027 * 'hw_addr_iface' must be passed in as a null pointer. */
1029 bridge_pick_datapath_id(struct bridge *br,
1030 const uint8_t bridge_ea[ETH_ADDR_LEN],
1031 struct iface *hw_addr_iface)
1034 * The procedure for choosing a bridge MAC address will, in the most
1035 * ordinary case, also choose a unique MAC that we can use as a datapath
1036 * ID. In some special cases, though, multiple bridges will end up with
1037 * the same MAC address. This is OK for the bridges, but it will confuse
1038 * the OpenFlow controller, because each datapath needs a unique datapath
1041 * Datapath IDs must be unique. It is also very desirable that they be
1042 * stable from one run to the next, so that policy set on a datapath
1045 const char *datapath_id;
1048 datapath_id = bridge_get_other_config(br->cfg, "datapath-id");
1049 if (datapath_id && dpid_from_string(datapath_id, &dpid)) {
1053 if (hw_addr_iface) {
1055 if (!netdev_get_vlan_vid(hw_addr_iface->netdev, &vlan)) {
1057 * A bridge whose MAC address is taken from a VLAN network device
1058 * (that is, a network device created with vconfig(8) or similar
1059 * tool) will have the same MAC address as a bridge on the VLAN
1060 * device's physical network device.
1062 * Handle this case by hashing the physical network device MAC
1063 * along with the VLAN identifier.
1065 uint8_t buf[ETH_ADDR_LEN + 2];
1066 memcpy(buf, bridge_ea, ETH_ADDR_LEN);
1067 buf[ETH_ADDR_LEN] = vlan >> 8;
1068 buf[ETH_ADDR_LEN + 1] = vlan;
1069 return dpid_from_hash(buf, sizeof buf);
1072 * Assume that this bridge's MAC address is unique, since it
1073 * doesn't fit any of the cases we handle specially.
1078 * A purely internal bridge, that is, one that has no non-virtual
1079 * network devices on it at all, is more difficult because it has no
1080 * natural unique identifier at all.
1082 * When the host is a XenServer, we handle this case by hashing the
1083 * host's UUID with the name of the bridge. Names of bridges are
1084 * persistent across XenServer reboots, although they can be reused if
1085 * an internal network is destroyed and then a new one is later
1086 * created, so this is fairly effective.
1088 * When the host is not a XenServer, we punt by using a random MAC
1089 * address on each run.
1091 const char *host_uuid = xenserver_get_host_uuid();
1093 char *combined = xasprintf("%s,%s", host_uuid, br->name);
1094 dpid = dpid_from_hash(combined, strlen(combined));
1100 return eth_addr_to_uint64(bridge_ea);
1104 dpid_from_hash(const void *data, size_t n)
1106 uint8_t hash[SHA1_DIGEST_SIZE];
1108 BUILD_ASSERT_DECL(sizeof hash >= ETH_ADDR_LEN);
1109 sha1_bytes(data, n, hash);
1110 eth_addr_mark_random(hash);
1111 return eth_addr_to_uint64(hash);
1115 iface_refresh_cfm_stats(struct iface *iface)
1119 const struct ovsrec_monitor *mon;
1121 mon = iface->cfg->monitor;
1128 for (i = 0; i < mon->n_remote_mps; i++) {
1129 const struct ovsrec_maintenance_point *mp;
1130 const struct remote_mp *rmp;
1132 mp = mon->remote_mps[i];
1133 rmp = cfm_get_remote_mp(cfm, mp->mpid);
1135 ovsrec_maintenance_point_set_fault(mp, &rmp->fault, 1);
1138 if (hmap_is_empty(&cfm->x_remote_mps)) {
1139 ovsrec_monitor_set_unexpected_remote_mpids(mon, NULL, 0);
1142 struct remote_mp *rmp;
1143 int64_t *x_remote_mps;
1145 length = hmap_count(&cfm->x_remote_mps);
1146 x_remote_mps = xzalloc(length * sizeof *x_remote_mps);
1149 HMAP_FOR_EACH (rmp, node, &cfm->x_remote_mps) {
1150 x_remote_mps[i++] = rmp->mpid;
1153 ovsrec_monitor_set_unexpected_remote_mpids(mon, x_remote_mps, length);
1157 if (hmap_is_empty(&cfm->x_remote_maids)) {
1158 ovsrec_monitor_set_unexpected_remote_maids(mon, NULL, 0);
1161 char **x_remote_maids;
1162 struct remote_maid *rmaid;
1164 length = hmap_count(&cfm->x_remote_maids);
1165 x_remote_maids = xzalloc(length * sizeof *x_remote_maids);
1168 HMAP_FOR_EACH (rmaid, node, &cfm->x_remote_maids) {
1171 x_remote_maids[i] = xzalloc(CCM_MAID_LEN * 2 + 1);
1173 for (j = 0; j < CCM_MAID_LEN; j++) {
1174 snprintf(&x_remote_maids[i][j * 2], 3, "%02hhx",
1179 ovsrec_monitor_set_unexpected_remote_maids(mon, x_remote_maids, length);
1181 for (i = 0; i < length; i++) {
1182 free(x_remote_maids[i]);
1184 free(x_remote_maids);
1187 ovsrec_monitor_set_fault(mon, &cfm->fault, 1);
1191 iface_refresh_stats(struct iface *iface)
1197 static const struct iface_stat iface_stats[] = {
1198 { "rx_packets", offsetof(struct netdev_stats, rx_packets) },
1199 { "tx_packets", offsetof(struct netdev_stats, tx_packets) },
1200 { "rx_bytes", offsetof(struct netdev_stats, rx_bytes) },
1201 { "tx_bytes", offsetof(struct netdev_stats, tx_bytes) },
1202 { "rx_dropped", offsetof(struct netdev_stats, rx_dropped) },
1203 { "tx_dropped", offsetof(struct netdev_stats, tx_dropped) },
1204 { "rx_errors", offsetof(struct netdev_stats, rx_errors) },
1205 { "tx_errors", offsetof(struct netdev_stats, tx_errors) },
1206 { "rx_frame_err", offsetof(struct netdev_stats, rx_frame_errors) },
1207 { "rx_over_err", offsetof(struct netdev_stats, rx_over_errors) },
1208 { "rx_crc_err", offsetof(struct netdev_stats, rx_crc_errors) },
1209 { "collisions", offsetof(struct netdev_stats, collisions) },
1211 enum { N_STATS = ARRAY_SIZE(iface_stats) };
1212 const struct iface_stat *s;
1214 char *keys[N_STATS];
1215 int64_t values[N_STATS];
1218 struct netdev_stats stats;
1220 /* Intentionally ignore return value, since errors will set 'stats' to
1221 * all-1s, and we will deal with that correctly below. */
1222 netdev_get_stats(iface->netdev, &stats);
1225 for (s = iface_stats; s < &iface_stats[N_STATS]; s++) {
1226 uint64_t value = *(uint64_t *) (((char *) &stats) + s->offset);
1227 if (value != UINT64_MAX) {
1234 ovsrec_interface_set_statistics(iface->cfg, keys, values, n);
1238 refresh_system_stats(const struct ovsrec_open_vswitch *cfg)
1240 struct ovsdb_datum datum;
1244 get_system_stats(&stats);
1246 ovsdb_datum_from_shash(&datum, &stats);
1247 ovsdb_idl_txn_write(&cfg->header_, &ovsrec_open_vswitch_col_statistics,
1254 const struct ovsrec_open_vswitch *cfg;
1256 bool datapath_destroyed;
1257 bool database_changed;
1260 /* Let each bridge do the work that it needs to do. */
1261 datapath_destroyed = false;
1262 LIST_FOR_EACH (br, node, &all_bridges) {
1263 int error = bridge_run_one(br);
1265 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1266 VLOG_ERR_RL(&rl, "bridge %s: datapath was destroyed externally, "
1267 "forcing reconfiguration", br->name);
1268 datapath_destroyed = true;
1272 /* (Re)configure if necessary. */
1273 database_changed = ovsdb_idl_run(idl);
1274 cfg = ovsrec_open_vswitch_first(idl);
1275 if (database_changed || datapath_destroyed) {
1277 struct ovsdb_idl_txn *txn = ovsdb_idl_txn_create(idl);
1279 bridge_configure_once(cfg);
1280 bridge_reconfigure(cfg);
1282 ovsrec_open_vswitch_set_cur_cfg(cfg, cfg->next_cfg);
1283 ovsdb_idl_txn_commit(txn);
1284 ovsdb_idl_txn_destroy(txn); /* XXX */
1286 /* We still need to reconfigure to avoid dangling pointers to
1287 * now-destroyed ovsrec structures inside bridge data. */
1288 static const struct ovsrec_open_vswitch null_cfg;
1290 bridge_reconfigure(&null_cfg);
1295 /* Re-configure SSL. We do this on every trip through the main loop,
1296 * instead of just when the database changes, because the contents of the
1297 * key and certificate files can change without the database changing. */
1298 if (cfg && cfg->ssl) {
1299 const struct ovsrec_ssl *ssl = cfg->ssl;
1301 stream_ssl_set_key_and_cert(ssl->private_key, ssl->certificate);
1302 stream_ssl_set_ca_cert_file(ssl->ca_cert, ssl->bootstrap_ca_cert);
1306 /* Refresh system and interface stats if necessary. */
1307 if (time_msec() >= stats_timer) {
1309 struct ovsdb_idl_txn *txn;
1311 txn = ovsdb_idl_txn_create(idl);
1312 LIST_FOR_EACH (br, node, &all_bridges) {
1315 for (i = 0; i < br->n_ports; i++) {
1316 struct port *port = br->ports[i];
1319 for (j = 0; j < port->n_ifaces; j++) {
1320 struct iface *iface = port->ifaces[j];
1321 iface_refresh_stats(iface);
1322 iface_refresh_cfm_stats(iface);
1326 refresh_system_stats(cfg);
1327 ovsdb_idl_txn_commit(txn);
1328 ovsdb_idl_txn_destroy(txn); /* XXX */
1331 stats_timer = time_msec() + STATS_INTERVAL;
1339 struct iface *iface;
1341 LIST_FOR_EACH (br, node, &all_bridges) {
1342 ofproto_wait(br->ofproto);
1343 if (ofproto_has_primary_controller(br->ofproto)) {
1347 mac_learning_wait(br->ml);
1350 HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) {
1352 cfm_wait(iface->cfm);
1356 ovsdb_idl_wait(idl);
1357 poll_timer_wait_until(stats_timer);
1360 /* Forces 'br' to revalidate all of its flows. This is appropriate when 'br''s
1361 * configuration changes. */
1363 bridge_flush(struct bridge *br)
1365 COVERAGE_INC(bridge_flush);
1367 mac_learning_flush(br->ml);
1370 /* Returns the 'br' interface for the ODPP_LOCAL port, or null if 'br' has no
1371 * such interface. */
1372 static struct iface *
1373 bridge_get_local_iface(struct bridge *br)
1377 for (i = 0; i < br->n_ports; i++) {
1378 struct port *port = br->ports[i];
1379 for (j = 0; j < port->n_ifaces; j++) {
1380 struct iface *iface = port->ifaces[j];
1381 if (iface->dp_ifidx == ODPP_LOCAL) {
1390 /* Bridge unixctl user interface functions. */
1392 bridge_unixctl_fdb_show(struct unixctl_conn *conn,
1393 const char *args, void *aux OVS_UNUSED)
1395 struct ds ds = DS_EMPTY_INITIALIZER;
1396 const struct bridge *br;
1397 const struct mac_entry *e;
1399 br = bridge_lookup(args);
1401 unixctl_command_reply(conn, 501, "no such bridge");
1405 ds_put_cstr(&ds, " port VLAN MAC Age\n");
1406 LIST_FOR_EACH (e, lru_node, &br->ml->lrus) {
1407 if (e->port < 0 || e->port >= br->n_ports) {
1410 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
1411 br->ports[e->port]->ifaces[0]->dp_ifidx,
1412 e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e));
1414 unixctl_command_reply(conn, 200, ds_cstr(&ds));
1418 /* Bridge reconfiguration functions. */
1419 static struct bridge *
1420 bridge_create(const struct ovsrec_bridge *br_cfg)
1425 assert(!bridge_lookup(br_cfg->name));
1426 br = xzalloc(sizeof *br);
1428 error = dpif_create_and_open(br_cfg->name, br_cfg->datapath_type,
1434 dpif_flow_flush(br->dpif);
1436 error = ofproto_create(br_cfg->name, br_cfg->datapath_type, &bridge_ofhooks,
1439 VLOG_ERR("failed to create switch %s: %s", br_cfg->name,
1441 dpif_delete(br->dpif);
1442 dpif_close(br->dpif);
1447 br->name = xstrdup(br_cfg->name);
1449 br->ml = mac_learning_create();
1450 eth_addr_nicira_random(br->default_ea);
1452 hmap_init(&br->ifaces);
1454 shash_init(&br->port_by_name);
1455 shash_init(&br->iface_by_name);
1459 list_push_back(&all_bridges, &br->node);
1461 VLOG_INFO("created bridge %s on %s", br->name, dpif_name(br->dpif));
1467 bridge_destroy(struct bridge *br)
1472 while (br->n_ports > 0) {
1473 port_destroy(br->ports[br->n_ports - 1]);
1475 list_remove(&br->node);
1476 error = dpif_delete(br->dpif);
1477 if (error && error != ENOENT) {
1478 VLOG_ERR("failed to delete %s: %s",
1479 dpif_name(br->dpif), strerror(error));
1481 dpif_close(br->dpif);
1482 ofproto_destroy(br->ofproto);
1483 mac_learning_destroy(br->ml);
1484 hmap_destroy(&br->ifaces);
1485 shash_destroy(&br->port_by_name);
1486 shash_destroy(&br->iface_by_name);
1493 static struct bridge *
1494 bridge_lookup(const char *name)
1498 LIST_FOR_EACH (br, node, &all_bridges) {
1499 if (!strcmp(br->name, name)) {
1506 /* Handle requests for a listing of all flows known by the OpenFlow
1507 * stack, including those normally hidden. */
1509 bridge_unixctl_dump_flows(struct unixctl_conn *conn,
1510 const char *args, void *aux OVS_UNUSED)
1515 br = bridge_lookup(args);
1517 unixctl_command_reply(conn, 501, "Unknown bridge");
1522 ofproto_get_all_flows(br->ofproto, &results);
1524 unixctl_command_reply(conn, 200, ds_cstr(&results));
1525 ds_destroy(&results);
1528 /* "bridge/reconnect [BRIDGE]": makes BRIDGE drop all of its controller
1529 * connections and reconnect. If BRIDGE is not specified, then all bridges
1530 * drop their controller connections and reconnect. */
1532 bridge_unixctl_reconnect(struct unixctl_conn *conn,
1533 const char *args, void *aux OVS_UNUSED)
1536 if (args[0] != '\0') {
1537 br = bridge_lookup(args);
1539 unixctl_command_reply(conn, 501, "Unknown bridge");
1542 ofproto_reconnect_controllers(br->ofproto);
1544 LIST_FOR_EACH (br, node, &all_bridges) {
1545 ofproto_reconnect_controllers(br->ofproto);
1548 unixctl_command_reply(conn, 200, NULL);
1552 bridge_run_one(struct bridge *br)
1555 struct iface *iface;
1557 error = ofproto_run1(br->ofproto);
1562 mac_learning_run(br->ml, ofproto_get_revalidate_set(br->ofproto));
1565 error = ofproto_run2(br->ofproto, br->flush);
1568 HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) {
1569 struct ofpbuf *packet;
1575 packet = cfm_run(iface->cfm);
1577 iface_send_packet(iface, packet);
1578 ofpbuf_uninit(packet);
1587 bridge_get_controllers(const struct bridge *br,
1588 struct ovsrec_controller ***controllersp)
1590 struct ovsrec_controller **controllers;
1591 size_t n_controllers;
1593 controllers = br->cfg->controller;
1594 n_controllers = br->cfg->n_controller;
1596 if (n_controllers == 1 && !strcmp(controllers[0]->target, "none")) {
1602 *controllersp = controllers;
1604 return n_controllers;
1608 bridge_reconfigure_one(struct bridge *br)
1610 struct shash old_ports, new_ports;
1611 struct svec snoops, old_snoops;
1612 struct shash_node *node;
1613 enum ofproto_fail_mode fail_mode;
1616 /* Collect old ports. */
1617 shash_init(&old_ports);
1618 for (i = 0; i < br->n_ports; i++) {
1619 shash_add(&old_ports, br->ports[i]->name, br->ports[i]);
1622 /* Collect new ports. */
1623 shash_init(&new_ports);
1624 for (i = 0; i < br->cfg->n_ports; i++) {
1625 const char *name = br->cfg->ports[i]->name;
1626 if (!shash_add_once(&new_ports, name, br->cfg->ports[i])) {
1627 VLOG_WARN("bridge %s: %s specified twice as bridge port",
1632 /* If we have a controller, then we need a local port. Complain if the
1633 * user didn't specify one.
1635 * XXX perhaps we should synthesize a port ourselves in this case. */
1636 if (bridge_get_controllers(br, NULL)) {
1637 char local_name[IF_NAMESIZE];
1640 error = dpif_port_get_name(br->dpif, ODPP_LOCAL,
1641 local_name, sizeof local_name);
1642 if (!error && !shash_find(&new_ports, local_name)) {
1643 VLOG_WARN("bridge %s: controller specified but no local port "
1644 "(port named %s) defined",
1645 br->name, local_name);
1649 /* Get rid of deleted ports.
1650 * Get rid of deleted interfaces on ports that still exist. */
1651 SHASH_FOR_EACH (node, &old_ports) {
1652 struct port *port = node->data;
1653 const struct ovsrec_port *port_cfg;
1655 port_cfg = shash_find_data(&new_ports, node->name);
1659 port_del_ifaces(port, port_cfg);
1663 /* Create new ports.
1664 * Add new interfaces to existing ports.
1665 * Reconfigure existing ports. */
1666 SHASH_FOR_EACH (node, &new_ports) {
1667 struct port *port = shash_find_data(&old_ports, node->name);
1669 port = port_create(br, node->name);
1672 port_reconfigure(port, node->data);
1673 if (!port->n_ifaces) {
1674 VLOG_WARN("bridge %s: port %s has no interfaces, dropping",
1675 br->name, port->name);
1679 shash_destroy(&old_ports);
1680 shash_destroy(&new_ports);
1682 /* Set the fail-mode */
1683 fail_mode = !br->cfg->fail_mode
1684 || !strcmp(br->cfg->fail_mode, "standalone")
1685 ? OFPROTO_FAIL_STANDALONE
1686 : OFPROTO_FAIL_SECURE;
1687 if (ofproto_get_fail_mode(br->ofproto) != fail_mode
1688 && !ofproto_has_primary_controller(br->ofproto)) {
1689 ofproto_flush_flows(br->ofproto);
1691 ofproto_set_fail_mode(br->ofproto, fail_mode);
1693 /* Delete all flows if we're switching from connected to standalone or vice
1694 * versa. (XXX Should we delete all flows if we are switching from one
1695 * controller to another?) */
1697 /* Configure OpenFlow controller connection snooping. */
1699 svec_add_nocopy(&snoops, xasprintf("punix:%s/%s.snoop",
1700 ovs_rundir(), br->name));
1701 svec_init(&old_snoops);
1702 ofproto_get_snoops(br->ofproto, &old_snoops);
1703 if (!svec_equal(&snoops, &old_snoops)) {
1704 ofproto_set_snoops(br->ofproto, &snoops);
1706 svec_destroy(&snoops);
1707 svec_destroy(&old_snoops);
1709 mirror_reconfigure(br);
1712 /* Initializes 'oc' appropriately as a management service controller for
1715 * The caller must free oc->target when it is no longer needed. */
1717 bridge_ofproto_controller_for_mgmt(const struct bridge *br,
1718 struct ofproto_controller *oc)
1720 oc->target = xasprintf("punix:%s/%s.mgmt", ovs_rundir(), br->name);
1721 oc->max_backoff = 0;
1722 oc->probe_interval = 60;
1723 oc->band = OFPROTO_OUT_OF_BAND;
1724 oc->accept_re = NULL;
1725 oc->update_resolv_conf = false;
1727 oc->burst_limit = 0;
1730 /* Converts ovsrec_controller 'c' into an ofproto_controller in 'oc'. */
1732 bridge_ofproto_controller_from_ovsrec(const struct ovsrec_controller *c,
1733 struct ofproto_controller *oc)
1735 oc->target = c->target;
1736 oc->max_backoff = c->max_backoff ? *c->max_backoff / 1000 : 8;
1737 oc->probe_interval = c->inactivity_probe ? *c->inactivity_probe / 1000 : 5;
1738 oc->band = (!c->connection_mode || !strcmp(c->connection_mode, "in-band")
1739 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
1740 oc->accept_re = c->discover_accept_regex;
1741 oc->update_resolv_conf = c->discover_update_resolv_conf;
1742 oc->rate_limit = c->controller_rate_limit ? *c->controller_rate_limit : 0;
1743 oc->burst_limit = (c->controller_burst_limit
1744 ? *c->controller_burst_limit : 0);
1747 /* Configures the IP stack for 'br''s local interface properly according to the
1748 * configuration in 'c'. */
1750 bridge_configure_local_iface_netdev(struct bridge *br,
1751 struct ovsrec_controller *c)
1753 struct netdev *netdev;
1754 struct in_addr mask, gateway;
1756 struct iface *local_iface;
1759 /* Controller discovery does its own TCP/IP configuration later. */
1760 if (strcmp(c->target, "discover")) {
1764 /* If there's no local interface or no IP address, give up. */
1765 local_iface = bridge_get_local_iface(br);
1766 if (!local_iface || !c->local_ip || !inet_aton(c->local_ip, &ip)) {
1770 /* Bring up the local interface. */
1771 netdev = local_iface->netdev;
1772 netdev_turn_flags_on(netdev, NETDEV_UP, true);
1774 /* Configure the IP address and netmask. */
1775 if (!c->local_netmask
1776 || !inet_aton(c->local_netmask, &mask)
1778 mask.s_addr = guess_netmask(ip.s_addr);
1780 if (!netdev_set_in4(netdev, ip, mask)) {
1781 VLOG_INFO("bridge %s: configured IP address "IP_FMT", netmask "IP_FMT,
1782 br->name, IP_ARGS(&ip.s_addr), IP_ARGS(&mask.s_addr));
1785 /* Configure the default gateway. */
1786 if (c->local_gateway
1787 && inet_aton(c->local_gateway, &gateway)
1788 && gateway.s_addr) {
1789 if (!netdev_add_router(netdev, gateway)) {
1790 VLOG_INFO("bridge %s: configured gateway "IP_FMT,
1791 br->name, IP_ARGS(&gateway.s_addr));
1797 bridge_reconfigure_remotes(struct bridge *br,
1798 const struct sockaddr_in *managers,
1801 const char *disable_ib_str, *queue_id_str;
1802 bool disable_in_band = false;
1805 struct ovsrec_controller **controllers;
1806 size_t n_controllers;
1809 struct ofproto_controller *ocs;
1813 /* Check if we should disable in-band control on this bridge. */
1814 disable_ib_str = bridge_get_other_config(br->cfg, "disable-in-band");
1815 if (disable_ib_str && !strcmp(disable_ib_str, "true")) {
1816 disable_in_band = true;
1819 /* Set OpenFlow queue ID for in-band control. */
1820 queue_id_str = bridge_get_other_config(br->cfg, "in-band-queue");
1821 queue_id = queue_id_str ? strtol(queue_id_str, NULL, 10) : -1;
1822 ofproto_set_in_band_queue(br->ofproto, queue_id);
1824 if (disable_in_band) {
1825 ofproto_set_extra_in_band_remotes(br->ofproto, NULL, 0);
1827 ofproto_set_extra_in_band_remotes(br->ofproto, managers, n_managers);
1829 had_primary = ofproto_has_primary_controller(br->ofproto);
1831 n_controllers = bridge_get_controllers(br, &controllers);
1833 ocs = xmalloc((n_controllers + 1) * sizeof *ocs);
1836 bridge_ofproto_controller_for_mgmt(br, &ocs[n_ocs++]);
1837 for (i = 0; i < n_controllers; i++) {
1838 struct ovsrec_controller *c = controllers[i];
1840 if (!strncmp(c->target, "punix:", 6)
1841 || !strncmp(c->target, "unix:", 5)) {
1842 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1844 /* Prevent remote ovsdb-server users from accessing arbitrary Unix
1845 * domain sockets and overwriting arbitrary local files. */
1846 VLOG_ERR_RL(&rl, "%s: not adding Unix domain socket controller "
1847 "\"%s\" due to possibility for remote exploit",
1848 dpif_name(br->dpif), c->target);
1852 bridge_configure_local_iface_netdev(br, c);
1853 bridge_ofproto_controller_from_ovsrec(c, &ocs[n_ocs]);
1854 if (disable_in_band) {
1855 ocs[n_ocs].band = OFPROTO_OUT_OF_BAND;
1860 ofproto_set_controllers(br->ofproto, ocs, n_ocs);
1861 free(ocs[0].target); /* From bridge_ofproto_controller_for_mgmt(). */
1864 if (had_primary != ofproto_has_primary_controller(br->ofproto)) {
1865 ofproto_flush_flows(br->ofproto);
1868 /* If there are no controllers and the bridge is in standalone
1869 * mode, set up a flow that matches every packet and directs
1870 * them to OFPP_NORMAL (which goes to us). Otherwise, the
1871 * switch is in secure mode and we won't pass any traffic until
1872 * a controller has been defined and it tells us to do so. */
1874 && ofproto_get_fail_mode(br->ofproto) == OFPROTO_FAIL_STANDALONE) {
1875 union ofp_action action;
1876 struct cls_rule rule;
1878 memset(&action, 0, sizeof action);
1879 action.type = htons(OFPAT_OUTPUT);
1880 action.output.len = htons(sizeof action);
1881 action.output.port = htons(OFPP_NORMAL);
1882 cls_rule_init_catchall(&rule, 0);
1883 ofproto_add_flow(br->ofproto, &rule, &action, 1);
1888 bridge_get_all_ifaces(const struct bridge *br, struct shash *ifaces)
1893 for (i = 0; i < br->n_ports; i++) {
1894 struct port *port = br->ports[i];
1895 for (j = 0; j < port->n_ifaces; j++) {
1896 struct iface *iface = port->ifaces[j];
1897 shash_add_once(ifaces, iface->name, iface);
1899 if (port->n_ifaces > 1 && port->cfg->bond_fake_iface) {
1900 shash_add_once(ifaces, port->name, NULL);
1905 /* For robustness, in case the administrator moves around datapath ports behind
1906 * our back, we re-check all the datapath port numbers here.
1908 * This function will set the 'dp_ifidx' members of interfaces that have
1909 * disappeared to -1, so only call this function from a context where those
1910 * 'struct iface's will be removed from the bridge. Otherwise, the -1
1911 * 'dp_ifidx'es will cause trouble later when we try to send them to the
1912 * datapath, which doesn't support UINT16_MAX+1 ports. */
1914 bridge_fetch_dp_ifaces(struct bridge *br)
1916 struct odp_port *dpif_ports;
1917 size_t n_dpif_ports;
1920 /* Reset all interface numbers. */
1921 for (i = 0; i < br->n_ports; i++) {
1922 struct port *port = br->ports[i];
1923 for (j = 0; j < port->n_ifaces; j++) {
1924 struct iface *iface = port->ifaces[j];
1925 iface->dp_ifidx = -1;
1928 hmap_clear(&br->ifaces);
1930 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
1931 for (i = 0; i < n_dpif_ports; i++) {
1932 struct odp_port *p = &dpif_ports[i];
1933 struct iface *iface = iface_lookup(br, p->devname);
1935 if (iface->dp_ifidx >= 0) {
1936 VLOG_WARN("%s reported interface %s twice",
1937 dpif_name(br->dpif), p->devname);
1938 } else if (iface_from_dp_ifidx(br, p->port)) {
1939 VLOG_WARN("%s reported interface %"PRIu16" twice",
1940 dpif_name(br->dpif), p->port);
1942 iface->dp_ifidx = p->port;
1943 hmap_insert(&br->ifaces, &iface->dp_ifidx_node,
1944 hash_int(iface->dp_ifidx, 0));
1947 iface_set_ofport(iface->cfg,
1948 (iface->dp_ifidx >= 0
1949 ? odp_port_to_ofp_port(iface->dp_ifidx)
1956 /* Bridge packet processing functions. */
1959 bond_hash(const uint8_t mac[ETH_ADDR_LEN], uint16_t vlan)
1961 return hash_bytes(mac, ETH_ADDR_LEN, vlan) & BOND_MASK;
1964 static struct bond_entry *
1965 lookup_bond_entry(const struct port *port, const uint8_t mac[ETH_ADDR_LEN],
1968 return &port->bond_hash[bond_hash(mac, vlan)];
1972 bond_choose_iface(const struct port *port)
1974 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1975 size_t i, best_down_slave = -1;
1976 long long next_delay_expiration = LLONG_MAX;
1978 for (i = 0; i < port->n_ifaces; i++) {
1979 struct iface *iface = port->ifaces[i];
1981 if (iface->enabled) {
1983 } else if (iface->delay_expires < next_delay_expiration) {
1984 best_down_slave = i;
1985 next_delay_expiration = iface->delay_expires;
1989 if (best_down_slave != -1) {
1990 struct iface *iface = port->ifaces[best_down_slave];
1992 VLOG_INFO_RL(&rl, "interface %s: skipping remaining %lli ms updelay "
1993 "since no other interface is up", iface->name,
1994 iface->delay_expires - time_msec());
1995 bond_enable_slave(iface, true);
1998 return best_down_slave;
2002 choose_output_iface(const struct port *port, const uint8_t *dl_src,
2003 uint16_t vlan, uint16_t *dp_ifidx, tag_type *tags)
2005 struct iface *iface;
2007 assert(port->n_ifaces);
2008 if (port->n_ifaces == 1) {
2009 iface = port->ifaces[0];
2011 struct bond_entry *e = lookup_bond_entry(port, dl_src, vlan);
2012 if (e->iface_idx < 0 || e->iface_idx >= port->n_ifaces
2013 || !port->ifaces[e->iface_idx]->enabled) {
2014 /* XXX select interface properly. The current interface selection
2015 * is only good for testing the rebalancing code. */
2016 e->iface_idx = bond_choose_iface(port);
2017 if (e->iface_idx < 0) {
2018 *tags |= port->no_ifaces_tag;
2021 e->iface_tag = tag_create_random();
2022 ((struct port *) port)->bond_compat_is_stale = true;
2024 *tags |= e->iface_tag;
2025 iface = port->ifaces[e->iface_idx];
2027 *dp_ifidx = iface->dp_ifidx;
2028 *tags |= iface->tag; /* Currently only used for bonding. */
2033 bond_link_status_update(struct iface *iface, bool carrier)
2035 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
2036 struct port *port = iface->port;
2038 if ((carrier == iface->enabled) == (iface->delay_expires == LLONG_MAX)) {
2039 /* Nothing to do. */
2042 VLOG_INFO_RL(&rl, "interface %s: carrier %s",
2043 iface->name, carrier ? "detected" : "dropped");
2044 if (carrier == iface->enabled) {
2045 iface->delay_expires = LLONG_MAX;
2046 VLOG_INFO_RL(&rl, "interface %s: will not be %s",
2047 iface->name, carrier ? "disabled" : "enabled");
2048 } else if (carrier && port->active_iface < 0) {
2049 bond_enable_slave(iface, true);
2050 if (port->updelay) {
2051 VLOG_INFO_RL(&rl, "interface %s: skipping %d ms updelay since no "
2052 "other interface is up", iface->name, port->updelay);
2055 int delay = carrier ? port->updelay : port->downdelay;
2056 iface->delay_expires = time_msec() + delay;
2059 "interface %s: will be %s if it stays %s for %d ms",
2061 carrier ? "enabled" : "disabled",
2062 carrier ? "up" : "down",
2069 bond_choose_active_iface(struct port *port)
2071 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
2073 port->active_iface = bond_choose_iface(port);
2074 port->active_iface_tag = tag_create_random();
2075 if (port->active_iface >= 0) {
2076 VLOG_INFO_RL(&rl, "port %s: active interface is now %s",
2077 port->name, port->ifaces[port->active_iface]->name);
2079 VLOG_WARN_RL(&rl, "port %s: all ports disabled, no active interface",
2085 bond_enable_slave(struct iface *iface, bool enable)
2087 struct port *port = iface->port;
2088 struct bridge *br = port->bridge;
2090 /* This acts as a recursion check. If the act of disabling a slave
2091 * causes a different slave to be enabled, the flag will allow us to
2092 * skip redundant work when we reenter this function. It must be
2093 * cleared on exit to keep things safe with multiple bonds. */
2094 static bool moving_active_iface = false;
2096 iface->delay_expires = LLONG_MAX;
2097 if (enable == iface->enabled) {
2101 iface->enabled = enable;
2102 if (!iface->enabled) {
2103 VLOG_WARN("interface %s: disabled", iface->name);
2104 ofproto_revalidate(br->ofproto, iface->tag);
2105 if (iface->port_ifidx == port->active_iface) {
2106 ofproto_revalidate(br->ofproto,
2107 port->active_iface_tag);
2109 /* Disabling a slave can lead to another slave being immediately
2110 * enabled if there will be no active slaves but one is waiting
2111 * on an updelay. In this case we do not need to run most of the
2112 * code for the newly enabled slave since there was no period
2113 * without an active slave and it is redundant with the disabling
2115 moving_active_iface = true;
2116 bond_choose_active_iface(port);
2118 bond_send_learning_packets(port);
2120 VLOG_WARN("interface %s: enabled", iface->name);
2121 if (port->active_iface < 0 && !moving_active_iface) {
2122 ofproto_revalidate(br->ofproto, port->no_ifaces_tag);
2123 bond_choose_active_iface(port);
2124 bond_send_learning_packets(port);
2126 iface->tag = tag_create_random();
2129 moving_active_iface = false;
2130 port->bond_compat_is_stale = true;
2133 /* Attempts to make the sum of the bond slaves' statistics appear on the fake
2134 * bond interface. */
2136 bond_update_fake_iface_stats(struct port *port)
2138 struct netdev_stats bond_stats;
2139 struct netdev *bond_dev;
2142 memset(&bond_stats, 0, sizeof bond_stats);
2144 for (i = 0; i < port->n_ifaces; i++) {
2145 struct netdev_stats slave_stats;
2147 if (!netdev_get_stats(port->ifaces[i]->netdev, &slave_stats)) {
2148 /* XXX: We swap the stats here because they are swapped back when
2149 * reported by the internal device. The reason for this is
2150 * internal devices normally represent packets going into the system
2151 * but when used as fake bond device they represent packets leaving
2152 * the system. We really should do this in the internal device
2153 * itself because changing it here reverses the counts from the
2154 * perspective of the switch. However, the internal device doesn't
2155 * know what type of device it represents so we have to do it here
2157 bond_stats.tx_packets += slave_stats.rx_packets;
2158 bond_stats.tx_bytes += slave_stats.rx_bytes;
2159 bond_stats.rx_packets += slave_stats.tx_packets;
2160 bond_stats.rx_bytes += slave_stats.tx_bytes;
2164 if (!netdev_open_default(port->name, &bond_dev)) {
2165 netdev_set_stats(bond_dev, &bond_stats);
2166 netdev_close(bond_dev);
2171 bond_run(struct bridge *br)
2175 for (i = 0; i < br->n_ports; i++) {
2176 struct port *port = br->ports[i];
2178 if (port->n_ifaces >= 2) {
2181 /* Track carrier going up and down on interfaces. */
2182 while (!netdev_monitor_poll(port->monitor, &devname)) {
2183 struct iface *iface;
2185 iface = port_lookup_iface(port, devname);
2187 bool carrier = netdev_get_carrier(iface->netdev);
2189 bond_link_status_update(iface, carrier);
2190 port_update_bond_compat(port);
2195 for (j = 0; j < port->n_ifaces; j++) {
2196 struct iface *iface = port->ifaces[j];
2197 if (time_msec() >= iface->delay_expires) {
2198 bond_enable_slave(iface, !iface->enabled);
2202 if (port->bond_fake_iface
2203 && time_msec() >= port->bond_next_fake_iface_update) {
2204 bond_update_fake_iface_stats(port);
2205 port->bond_next_fake_iface_update = time_msec() + 1000;
2209 if (port->bond_compat_is_stale) {
2210 port->bond_compat_is_stale = false;
2211 port_update_bond_compat(port);
2217 bond_wait(struct bridge *br)
2221 for (i = 0; i < br->n_ports; i++) {
2222 struct port *port = br->ports[i];
2223 if (port->n_ifaces < 2) {
2226 netdev_monitor_poll_wait(port->monitor);
2227 for (j = 0; j < port->n_ifaces; j++) {
2228 struct iface *iface = port->ifaces[j];
2229 if (iface->delay_expires != LLONG_MAX) {
2230 poll_timer_wait_until(iface->delay_expires);
2233 if (port->bond_fake_iface) {
2234 poll_timer_wait_until(port->bond_next_fake_iface_update);
2240 set_dst(struct dst *dst, const struct flow *flow,
2241 const struct port *in_port, const struct port *out_port,
2244 dst->vlan = (out_port->vlan >= 0 ? OFP_VLAN_NONE
2245 : in_port->vlan >= 0 ? in_port->vlan
2246 : flow->vlan_tci == 0 ? OFP_VLAN_NONE
2247 : vlan_tci_to_vid(flow->vlan_tci));
2248 return choose_output_iface(out_port, flow->dl_src, dst->vlan,
2249 &dst->dp_ifidx, tags);
2253 swap_dst(struct dst *p, struct dst *q)
2255 struct dst tmp = *p;
2260 /* Moves all the dsts with vlan == 'vlan' to the front of the 'n_dsts' in
2261 * 'dsts'. (This may help performance by reducing the number of VLAN changes
2262 * that we push to the datapath. We could in fact fully sort the array by
2263 * vlan, but in most cases there are at most two different vlan tags so that's
2264 * possibly overkill.) */
2266 partition_dsts(struct dst_set *set, int vlan)
2268 struct dst *first = set->dsts;
2269 struct dst *last = set->dsts + set->n;
2271 while (first != last) {
2273 * - All dsts < first have vlan == 'vlan'.
2274 * - All dsts >= last have vlan != 'vlan'.
2275 * - first < last. */
2276 while (first->vlan == vlan) {
2277 if (++first == last) {
2282 /* Same invariants, plus one additional:
2283 * - first->vlan != vlan.
2285 while (last[-1].vlan != vlan) {
2286 if (--last == first) {
2291 /* Same invariants, plus one additional:
2292 * - last[-1].vlan == vlan.*/
2293 swap_dst(first++, --last);
2298 mirror_mask_ffs(mirror_mask_t mask)
2300 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
2305 dst_set_init(struct dst_set *set)
2307 set->dsts = set->builtin;
2309 set->allocated = ARRAY_SIZE(set->builtin);
2313 dst_set_add(struct dst_set *set, const struct dst *dst)
2315 if (set->n >= set->allocated) {
2316 size_t new_allocated;
2317 struct dst *new_dsts;
2319 new_allocated = set->allocated * 2;
2320 new_dsts = xmalloc(new_allocated * sizeof *new_dsts);
2321 memcpy(new_dsts, set->dsts, set->n * sizeof *new_dsts);
2325 set->dsts = new_dsts;
2326 set->allocated = new_allocated;
2328 set->dsts[set->n++] = *dst;
2332 dst_set_free(struct dst_set *set)
2334 if (set->dsts != set->builtin) {
2340 dst_is_duplicate(const struct dst_set *set, const struct dst *test)
2343 for (i = 0; i < set->n; i++) {
2344 if (set->dsts[i].vlan == test->vlan
2345 && set->dsts[i].dp_ifidx == test->dp_ifidx) {
2353 port_trunks_vlan(const struct port *port, uint16_t vlan)
2355 return (port->vlan < 0
2356 && (!port->trunks || bitmap_is_set(port->trunks, vlan)));
2360 port_includes_vlan(const struct port *port, uint16_t vlan)
2362 return vlan == port->vlan || port_trunks_vlan(port, vlan);
2366 port_is_floodable(const struct port *port)
2370 for (i = 0; i < port->n_ifaces; i++) {
2371 if (!ofproto_port_is_floodable(port->bridge->ofproto,
2372 port->ifaces[i]->dp_ifidx)) {
2380 compose_dsts(const struct bridge *br, const struct flow *flow, uint16_t vlan,
2381 const struct port *in_port, const struct port *out_port,
2382 struct dst_set *set, tag_type *tags, uint16_t *nf_output_iface)
2384 mirror_mask_t mirrors = in_port->src_mirrors;
2389 flow_vlan = vlan_tci_to_vid(flow->vlan_tci);
2390 if (flow_vlan == 0) {
2391 flow_vlan = OFP_VLAN_NONE;
2394 if (out_port == FLOOD_PORT) {
2395 for (i = 0; i < br->n_ports; i++) {
2396 struct port *port = br->ports[i];
2398 && port_is_floodable(port)
2399 && port_includes_vlan(port, vlan)
2400 && !port->is_mirror_output_port
2401 && set_dst(&dst, flow, in_port, port, tags)) {
2402 mirrors |= port->dst_mirrors;
2403 dst_set_add(set, &dst);
2406 *nf_output_iface = NF_OUT_FLOOD;
2407 } else if (out_port && set_dst(&dst, flow, in_port, out_port, tags)) {
2408 dst_set_add(set, &dst);
2409 *nf_output_iface = dst.dp_ifidx;
2410 mirrors |= out_port->dst_mirrors;
2414 struct mirror *m = br->mirrors[mirror_mask_ffs(mirrors) - 1];
2415 if (!m->n_vlans || vlan_is_mirrored(m, vlan)) {
2417 if (set_dst(&dst, flow, in_port, m->out_port, tags)
2418 && !dst_is_duplicate(set, &dst)) {
2419 dst_set_add(set, &dst);
2422 for (i = 0; i < br->n_ports; i++) {
2423 struct port *port = br->ports[i];
2424 if (port_includes_vlan(port, m->out_vlan)
2425 && set_dst(&dst, flow, in_port, port, tags))
2427 if (port->vlan < 0) {
2428 dst.vlan = m->out_vlan;
2430 if (dst_is_duplicate(set, &dst)) {
2434 /* Use the vlan tag on the original flow instead of
2435 * the one passed in the vlan parameter. This ensures
2436 * that we compare the vlan from before any implicit
2437 * tagging tags place. This is necessary because
2438 * dst->vlan is the final vlan, after removing implicit
2440 if (port == in_port && dst.vlan == flow_vlan) {
2441 /* Don't send out input port on same VLAN. */
2444 dst_set_add(set, &dst);
2449 mirrors &= mirrors - 1;
2452 partition_dsts(set, flow_vlan);
2455 static void OVS_UNUSED
2456 print_dsts(const struct dst_set *set)
2460 for (i = 0; i < set->n; i++) {
2461 const struct dst *dst = &set->dsts[i];
2463 printf(">p%"PRIu16, dst->dp_ifidx);
2464 if (dst->vlan != OFP_VLAN_NONE) {
2465 printf("v%"PRIu16, dst->vlan);
2471 compose_actions(struct bridge *br, const struct flow *flow, uint16_t vlan,
2472 const struct port *in_port, const struct port *out_port,
2473 tag_type *tags, struct ofpbuf *actions,
2474 uint16_t *nf_output_iface)
2481 compose_dsts(br, flow, vlan, in_port, out_port, &set, tags,
2484 cur_vlan = vlan_tci_to_vid(flow->vlan_tci);
2485 if (cur_vlan == 0) {
2486 cur_vlan = OFP_VLAN_NONE;
2488 for (i = 0; i < set.n; i++) {
2489 const struct dst *dst = &set.dsts[i];
2490 if (dst->vlan != cur_vlan) {
2491 if (dst->vlan == OFP_VLAN_NONE) {
2492 nl_msg_put_flag(actions, ODPAT_STRIP_VLAN);
2495 tci = htons(dst->vlan & VLAN_VID_MASK);
2496 tci |= flow->vlan_tci & htons(VLAN_PCP_MASK);
2497 nl_msg_put_be16(actions, ODPAT_SET_DL_TCI, tci);
2499 cur_vlan = dst->vlan;
2501 nl_msg_put_u32(actions, ODPAT_OUTPUT, dst->dp_ifidx);
2506 /* Returns the effective vlan of a packet, taking into account both the
2507 * 802.1Q header and implicitly tagged ports. A value of 0 indicates that
2508 * the packet is untagged and -1 indicates it has an invalid header and
2509 * should be dropped. */
2510 static int flow_get_vlan(struct bridge *br, const struct flow *flow,
2511 struct port *in_port, bool have_packet)
2513 int vlan = vlan_tci_to_vid(flow->vlan_tci);
2514 if (in_port->vlan >= 0) {
2516 /* XXX support double tagging? */
2518 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2519 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
2520 "packet received on port %s configured with "
2521 "implicit VLAN %"PRIu16,
2522 br->name, vlan, in_port->name, in_port->vlan);
2526 vlan = in_port->vlan;
2528 if (!port_includes_vlan(in_port, vlan)) {
2530 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2531 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
2532 "packet received on port %s not configured for "
2534 br->name, vlan, in_port->name, vlan);
2543 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
2544 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
2545 * indicate this; newer upstream kernels use gratuitous ARP requests. */
2547 is_gratuitous_arp(const struct flow *flow)
2549 return (flow->dl_type == htons(ETH_TYPE_ARP)
2550 && eth_addr_is_broadcast(flow->dl_dst)
2551 && (flow->nw_proto == ARP_OP_REPLY
2552 || (flow->nw_proto == ARP_OP_REQUEST
2553 && flow->nw_src == flow->nw_dst)));
2557 update_learning_table(struct bridge *br, const struct flow *flow, int vlan,
2558 struct port *in_port)
2560 enum grat_arp_lock_type lock_type;
2563 /* We don't want to learn from gratuitous ARP packets that are reflected
2564 * back over bond slaves so we lock the learning table. */
2565 lock_type = !is_gratuitous_arp(flow) ? GRAT_ARP_LOCK_NONE :
2566 (in_port->n_ifaces == 1) ? GRAT_ARP_LOCK_SET :
2567 GRAT_ARP_LOCK_CHECK;
2569 rev_tag = mac_learning_learn(br->ml, flow->dl_src, vlan, in_port->port_idx,
2572 /* The log messages here could actually be useful in debugging,
2573 * so keep the rate limit relatively high. */
2574 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30,
2576 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
2577 "on port %s in VLAN %d",
2578 br->name, ETH_ADDR_ARGS(flow->dl_src),
2579 in_port->name, vlan);
2580 ofproto_revalidate(br->ofproto, rev_tag);
2584 /* Determines whether packets in 'flow' within 'br' should be forwarded or
2585 * dropped. Returns true if they may be forwarded, false if they should be
2588 * If 'have_packet' is true, it indicates that the caller is processing a
2589 * received packet. If 'have_packet' is false, then the caller is just
2590 * revalidating an existing flow because configuration has changed. Either
2591 * way, 'have_packet' only affects logging (there is no point in logging errors
2592 * during revalidation).
2594 * Sets '*in_portp' to the input port. This will be a null pointer if
2595 * flow->in_port does not designate a known input port (in which case
2596 * is_admissible() returns false).
2598 * When returning true, sets '*vlanp' to the effective VLAN of the input
2599 * packet, as returned by flow_get_vlan().
2601 * May also add tags to '*tags', although the current implementation only does
2602 * so in one special case.
2605 is_admissible(struct bridge *br, const struct flow *flow, bool have_packet,
2606 tag_type *tags, int *vlanp, struct port **in_portp)
2608 struct iface *in_iface;
2609 struct port *in_port;
2612 /* Find the interface and port structure for the received packet. */
2613 in_iface = iface_from_dp_ifidx(br, flow->in_port);
2615 /* No interface? Something fishy... */
2617 /* Odd. A few possible reasons here:
2619 * - We deleted an interface but there are still a few packets
2620 * queued up from it.
2622 * - Someone externally added an interface (e.g. with "ovs-dpctl
2623 * add-if") that we don't know about.
2625 * - Packet arrived on the local port but the local port is not
2626 * one of our bridge ports.
2628 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2630 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
2631 "interface %"PRIu16, br->name, flow->in_port);
2637 *in_portp = in_port = in_iface->port;
2638 *vlanp = vlan = flow_get_vlan(br, flow, in_port, have_packet);
2643 /* Drop frames for reserved multicast addresses. */
2644 if (eth_addr_is_reserved(flow->dl_dst)) {
2648 /* Drop frames on ports reserved for mirroring. */
2649 if (in_port->is_mirror_output_port) {
2651 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2652 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
2653 "%s, which is reserved exclusively for mirroring",
2654 br->name, in_port->name);
2659 /* Packets received on bonds need special attention to avoid duplicates. */
2660 if (in_port->n_ifaces > 1) {
2662 bool is_grat_arp_locked;
2664 if (eth_addr_is_multicast(flow->dl_dst)) {
2665 *tags |= in_port->active_iface_tag;
2666 if (in_port->active_iface != in_iface->port_ifidx) {
2667 /* Drop all multicast packets on inactive slaves. */
2672 /* Drop all packets for which we have learned a different input
2673 * port, because we probably sent the packet on one slave and got
2674 * it back on the other. Gratuitous ARP packets are an exception
2675 * to this rule: the host has moved to another switch. The exception
2676 * to the exception is if we locked the learning table to avoid
2677 * reflections on bond slaves. If this is the case, just drop the
2679 src_idx = mac_learning_lookup(br->ml, flow->dl_src, vlan,
2680 &is_grat_arp_locked);
2681 if (src_idx != -1 && src_idx != in_port->port_idx &&
2682 (!is_gratuitous_arp(flow) || is_grat_arp_locked)) {
2690 /* If the composed actions may be applied to any packet in the given 'flow',
2691 * returns true. Otherwise, the actions should only be applied to 'packet', or
2692 * not at all, if 'packet' was NULL. */
2694 process_flow(struct bridge *br, const struct flow *flow,
2695 const struct ofpbuf *packet, struct ofpbuf *actions,
2696 tag_type *tags, uint16_t *nf_output_iface)
2698 struct port *in_port;
2699 struct port *out_port;
2703 /* Check whether we should drop packets in this flow. */
2704 if (!is_admissible(br, flow, packet != NULL, tags, &vlan, &in_port)) {
2709 /* Learn source MAC (but don't try to learn from revalidation). */
2711 update_learning_table(br, flow, vlan, in_port);
2714 /* Determine output port. */
2715 out_port_idx = mac_learning_lookup_tag(br->ml, flow->dl_dst, vlan, tags,
2717 if (out_port_idx >= 0 && out_port_idx < br->n_ports) {
2718 out_port = br->ports[out_port_idx];
2719 } else if (!packet && !eth_addr_is_multicast(flow->dl_dst)) {
2720 /* If we are revalidating but don't have a learning entry then
2721 * eject the flow. Installing a flow that floods packets opens
2722 * up a window of time where we could learn from a packet reflected
2723 * on a bond and blackhole packets before the learning table is
2724 * updated to reflect the correct port. */
2727 out_port = FLOOD_PORT;
2730 /* Don't send packets out their input ports. */
2731 if (in_port == out_port) {
2737 compose_actions(br, flow, vlan, in_port, out_port, tags, actions,
2745 bridge_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
2746 struct ofpbuf *actions, tag_type *tags,
2747 uint16_t *nf_output_iface, void *br_)
2749 struct iface *iface;
2750 struct bridge *br = br_;
2752 COVERAGE_INC(bridge_process_flow);
2754 iface = iface_from_dp_ifidx(br, flow->in_port);
2756 if (cfm_should_process_flow(flow)) {
2757 if (packet && iface->cfm) {
2758 cfm_process_heartbeat(iface->cfm, packet);
2763 return process_flow(br, flow, packet, actions, tags, nf_output_iface);
2767 bridge_account_flow_ofhook_cb(const struct flow *flow, tag_type tags,
2768 const struct nlattr *actions,
2770 unsigned long long int n_bytes, void *br_)
2772 struct bridge *br = br_;
2773 const struct nlattr *a;
2774 struct port *in_port;
2779 /* Feed information from the active flows back into the learning table to
2780 * ensure that table is always in sync with what is actually flowing
2781 * through the datapath.
2783 * We test that 'tags' is nonzero to ensure that only flows that include an
2784 * OFPP_NORMAL action are used for learning. This works because
2785 * bridge_normal_ofhook_cb() always sets a nonzero tag value. */
2786 if (tags && is_admissible(br, flow, false, &dummy, &vlan, &in_port)) {
2787 update_learning_table(br, flow, vlan, in_port);
2790 /* Account for bond slave utilization. */
2791 if (!br->has_bonded_ports) {
2794 NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) {
2795 if (nl_attr_type(a) == ODPAT_OUTPUT) {
2796 struct port *out_port = port_from_dp_ifidx(br, nl_attr_get_u32(a));
2797 if (out_port && out_port->n_ifaces >= 2) {
2798 uint16_t vlan = (flow->vlan_tci
2799 ? vlan_tci_to_vid(flow->vlan_tci)
2801 struct bond_entry *e = lookup_bond_entry(out_port,
2802 flow->dl_src, vlan);
2803 e->tx_bytes += n_bytes;
2810 bridge_account_checkpoint_ofhook_cb(void *br_)
2812 struct bridge *br = br_;
2816 if (!br->has_bonded_ports) {
2821 for (i = 0; i < br->n_ports; i++) {
2822 struct port *port = br->ports[i];
2823 if (port->n_ifaces > 1 && now >= port->bond_next_rebalance) {
2824 port->bond_next_rebalance = now + port->bond_rebalance_interval;
2825 bond_rebalance_port(port);
2830 static struct ofhooks bridge_ofhooks = {
2831 bridge_normal_ofhook_cb,
2832 bridge_account_flow_ofhook_cb,
2833 bridge_account_checkpoint_ofhook_cb,
2836 /* Bonding functions. */
2838 /* Statistics for a single interface on a bonded port, used for load-based
2839 * bond rebalancing. */
2840 struct slave_balance {
2841 struct iface *iface; /* The interface. */
2842 uint64_t tx_bytes; /* Sum of hashes[*]->tx_bytes. */
2844 /* All the "bond_entry"s that are assigned to this interface, in order of
2845 * increasing tx_bytes. */
2846 struct bond_entry **hashes;
2850 /* Sorts pointers to pointers to bond_entries in ascending order by the
2851 * interface to which they are assigned, and within a single interface in
2852 * ascending order of bytes transmitted. */
2854 compare_bond_entries(const void *a_, const void *b_)
2856 const struct bond_entry *const *ap = a_;
2857 const struct bond_entry *const *bp = b_;
2858 const struct bond_entry *a = *ap;
2859 const struct bond_entry *b = *bp;
2860 if (a->iface_idx != b->iface_idx) {
2861 return a->iface_idx > b->iface_idx ? 1 : -1;
2862 } else if (a->tx_bytes != b->tx_bytes) {
2863 return a->tx_bytes > b->tx_bytes ? 1 : -1;
2869 /* Sorts slave_balances so that enabled ports come first, and otherwise in
2870 * *descending* order by number of bytes transmitted. */
2872 compare_slave_balance(const void *a_, const void *b_)
2874 const struct slave_balance *a = a_;
2875 const struct slave_balance *b = b_;
2876 if (a->iface->enabled != b->iface->enabled) {
2877 return a->iface->enabled ? -1 : 1;
2878 } else if (a->tx_bytes != b->tx_bytes) {
2879 return a->tx_bytes > b->tx_bytes ? -1 : 1;
2886 swap_bals(struct slave_balance *a, struct slave_balance *b)
2888 struct slave_balance tmp = *a;
2893 /* Restores the 'n_bals' slave_balance structures in 'bals' to sorted order
2894 * given that 'p' (and only 'p') might be in the wrong location.
2896 * This function invalidates 'p', since it might now be in a different memory
2899 resort_bals(struct slave_balance *p,
2900 struct slave_balance bals[], size_t n_bals)
2903 for (; p > bals && p->tx_bytes > p[-1].tx_bytes; p--) {
2904 swap_bals(p, p - 1);
2906 for (; p < &bals[n_bals - 1] && p->tx_bytes < p[1].tx_bytes; p++) {
2907 swap_bals(p, p + 1);
2913 log_bals(const struct slave_balance *bals, size_t n_bals, struct port *port)
2915 if (VLOG_IS_DBG_ENABLED()) {
2916 struct ds ds = DS_EMPTY_INITIALIZER;
2917 const struct slave_balance *b;
2919 for (b = bals; b < bals + n_bals; b++) {
2923 ds_put_char(&ds, ',');
2925 ds_put_format(&ds, " %s %"PRIu64"kB",
2926 b->iface->name, b->tx_bytes / 1024);
2928 if (!b->iface->enabled) {
2929 ds_put_cstr(&ds, " (disabled)");
2931 if (b->n_hashes > 0) {
2932 ds_put_cstr(&ds, " (");
2933 for (i = 0; i < b->n_hashes; i++) {
2934 const struct bond_entry *e = b->hashes[i];
2936 ds_put_cstr(&ds, " + ");
2938 ds_put_format(&ds, "h%td: %"PRIu64"kB",
2939 e - port->bond_hash, e->tx_bytes / 1024);
2941 ds_put_cstr(&ds, ")");
2944 VLOG_DBG("bond %s:%s", port->name, ds_cstr(&ds));
2949 /* Shifts 'hash' from 'from' to 'to' within 'port'. */
2951 bond_shift_load(struct slave_balance *from, struct slave_balance *to,
2954 struct bond_entry *hash = from->hashes[hash_idx];
2955 struct port *port = from->iface->port;
2956 uint64_t delta = hash->tx_bytes;
2958 VLOG_INFO("bond %s: shift %"PRIu64"kB of load (with hash %td) "
2959 "from %s to %s (now carrying %"PRIu64"kB and "
2960 "%"PRIu64"kB load, respectively)",
2961 port->name, delta / 1024, hash - port->bond_hash,
2962 from->iface->name, to->iface->name,
2963 (from->tx_bytes - delta) / 1024,
2964 (to->tx_bytes + delta) / 1024);
2966 /* Delete element from from->hashes.
2968 * We don't bother to add the element to to->hashes because not only would
2969 * it require more work, the only purpose it would be to allow that hash to
2970 * be migrated to another slave in this rebalancing run, and there is no
2971 * point in doing that. */
2972 if (hash_idx == 0) {
2975 memmove(from->hashes + hash_idx, from->hashes + hash_idx + 1,
2976 (from->n_hashes - (hash_idx + 1)) * sizeof *from->hashes);
2980 /* Shift load away from 'from' to 'to'. */
2981 from->tx_bytes -= delta;
2982 to->tx_bytes += delta;
2984 /* Arrange for flows to be revalidated. */
2985 ofproto_revalidate(port->bridge->ofproto, hash->iface_tag);
2986 hash->iface_idx = to->iface->port_ifidx;
2987 hash->iface_tag = tag_create_random();
2991 bond_rebalance_port(struct port *port)
2993 struct slave_balance *bals;
2995 struct bond_entry *hashes[BOND_MASK + 1];
2996 struct slave_balance *b, *from, *to;
2997 struct bond_entry *e;
3000 /* Sets up 'bals' to describe each of the port's interfaces, sorted in
3001 * descending order of tx_bytes, so that bals[0] represents the most
3002 * heavily loaded slave and bals[n_bals - 1] represents the least heavily
3005 * The code is a bit tricky: to avoid dynamically allocating a 'hashes'
3006 * array for each slave_balance structure, we sort our local array of
3007 * hashes in order by slave, so that all of the hashes for a given slave
3008 * become contiguous in memory, and then we point each 'hashes' members of
3009 * a slave_balance structure to the start of a contiguous group. */
3010 n_bals = port->n_ifaces;
3011 bals = xmalloc(n_bals * sizeof *bals);
3012 for (b = bals; b < &bals[n_bals]; b++) {
3013 b->iface = port->ifaces[b - bals];
3018 for (i = 0; i <= BOND_MASK; i++) {
3019 hashes[i] = &port->bond_hash[i];
3021 qsort(hashes, BOND_MASK + 1, sizeof *hashes, compare_bond_entries);
3022 for (i = 0; i <= BOND_MASK; i++) {
3024 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
3025 b = &bals[e->iface_idx];
3026 b->tx_bytes += e->tx_bytes;
3028 b->hashes = &hashes[i];
3033 qsort(bals, n_bals, sizeof *bals, compare_slave_balance);
3034 log_bals(bals, n_bals, port);
3036 /* Discard slaves that aren't enabled (which were sorted to the back of the
3037 * array earlier). */
3038 while (!bals[n_bals - 1].iface->enabled) {
3045 /* Shift load from the most-loaded slaves to the least-loaded slaves. */
3046 to = &bals[n_bals - 1];
3047 for (from = bals; from < to; ) {
3048 uint64_t overload = from->tx_bytes - to->tx_bytes;
3049 if (overload < to->tx_bytes >> 5 || overload < 100000) {
3050 /* The extra load on 'from' (and all less-loaded slaves), compared
3051 * to that of 'to' (the least-loaded slave), is less than ~3%, or
3052 * it is less than ~1Mbps. No point in rebalancing. */
3054 } else if (from->n_hashes == 1) {
3055 /* 'from' only carries a single MAC hash, so we can't shift any
3056 * load away from it, even though we want to. */
3059 /* 'from' is carrying significantly more load than 'to', and that
3060 * load is split across at least two different hashes. Pick a hash
3061 * to migrate to 'to' (the least-loaded slave), given that doing so
3062 * must decrease the ratio of the load on the two slaves by at
3065 * The sort order we use means that we prefer to shift away the
3066 * smallest hashes instead of the biggest ones. There is little
3067 * reason behind this decision; we could use the opposite sort
3068 * order to shift away big hashes ahead of small ones. */
3071 for (i = 0; i < from->n_hashes; i++) {
3072 double old_ratio, new_ratio;
3073 uint64_t delta = from->hashes[i]->tx_bytes;
3075 if (delta == 0 || from->tx_bytes - delta == 0) {
3076 /* Pointless move. */
3080 order_swapped = from->tx_bytes - delta < to->tx_bytes + delta;
3082 if (to->tx_bytes == 0) {
3083 /* Nothing on the new slave, move it. */
3087 old_ratio = (double)from->tx_bytes / to->tx_bytes;
3088 new_ratio = (double)(from->tx_bytes - delta) /
3089 (to->tx_bytes + delta);
3091 if (new_ratio == 0) {
3092 /* Should already be covered but check to prevent division
3097 if (new_ratio < 1) {
3098 new_ratio = 1 / new_ratio;
3101 if (old_ratio - new_ratio > 0.1) {
3102 /* Would decrease the ratio, move it. */
3106 if (i < from->n_hashes) {
3107 bond_shift_load(from, to, i);
3108 port->bond_compat_is_stale = true;
3110 /* If the result of the migration changed the relative order of
3111 * 'from' and 'to' swap them back to maintain invariants. */
3112 if (order_swapped) {
3113 swap_bals(from, to);
3116 /* Re-sort 'bals'. Note that this may make 'from' and 'to'
3117 * point to different slave_balance structures. It is only
3118 * valid to do these two operations in a row at all because we
3119 * know that 'from' will not move past 'to' and vice versa. */
3120 resort_bals(from, bals, n_bals);
3121 resort_bals(to, bals, n_bals);
3128 /* Implement exponentially weighted moving average. A weight of 1/2 causes
3129 * historical data to decay to <1% in 7 rebalancing runs. */
3130 for (e = &port->bond_hash[0]; e <= &port->bond_hash[BOND_MASK]; e++) {
3139 bond_send_learning_packets(struct port *port)
3141 struct bridge *br = port->bridge;
3142 struct mac_entry *e;
3143 struct ofpbuf packet;
3144 int error, n_packets, n_errors;
3146 if (!port->n_ifaces || port->active_iface < 0) {
3150 ofpbuf_init(&packet, 128);
3151 error = n_packets = n_errors = 0;
3152 LIST_FOR_EACH (e, lru_node, &br->ml->lrus) {
3153 union ofp_action actions[2], *a;
3159 if (e->port == port->port_idx
3160 || !choose_output_iface(port, e->mac, e->vlan, &dp_ifidx, &tags)) {
3164 /* Compose actions. */
3165 memset(actions, 0, sizeof actions);
3168 a->vlan_vid.type = htons(OFPAT_SET_VLAN_VID);
3169 a->vlan_vid.len = htons(sizeof *a);
3170 a->vlan_vid.vlan_vid = htons(e->vlan);
3173 a->output.type = htons(OFPAT_OUTPUT);
3174 a->output.len = htons(sizeof *a);
3175 a->output.port = htons(odp_port_to_ofp_port(dp_ifidx));
3180 compose_benign_packet(&packet, "Open vSwitch Bond Failover", 0xf177,
3182 flow_extract(&packet, 0, ODPP_NONE, &flow);
3183 retval = ofproto_send_packet(br->ofproto, &flow, actions, a - actions,
3190 ofpbuf_uninit(&packet);
3193 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3194 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
3195 "packets, last error was: %s",
3196 port->name, n_errors, n_packets, strerror(error));
3198 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
3199 port->name, n_packets);
3203 /* Bonding unixctl user interface functions. */
3206 bond_unixctl_list(struct unixctl_conn *conn,
3207 const char *args OVS_UNUSED, void *aux OVS_UNUSED)
3209 struct ds ds = DS_EMPTY_INITIALIZER;
3210 const struct bridge *br;
3212 ds_put_cstr(&ds, "bridge\tbond\tslaves\n");
3214 LIST_FOR_EACH (br, node, &all_bridges) {
3217 for (i = 0; i < br->n_ports; i++) {
3218 const struct port *port = br->ports[i];
3219 if (port->n_ifaces > 1) {
3222 ds_put_format(&ds, "%s\t%s\t", br->name, port->name);
3223 for (j = 0; j < port->n_ifaces; j++) {
3224 const struct iface *iface = port->ifaces[j];
3226 ds_put_cstr(&ds, ", ");
3228 ds_put_cstr(&ds, iface->name);
3230 ds_put_char(&ds, '\n');
3234 unixctl_command_reply(conn, 200, ds_cstr(&ds));
3238 static struct port *
3239 bond_find(const char *name)
3241 const struct bridge *br;
3243 LIST_FOR_EACH (br, node, &all_bridges) {
3246 for (i = 0; i < br->n_ports; i++) {
3247 struct port *port = br->ports[i];
3248 if (!strcmp(port->name, name) && port->n_ifaces > 1) {
3257 bond_unixctl_show(struct unixctl_conn *conn,
3258 const char *args, void *aux OVS_UNUSED)
3260 struct ds ds = DS_EMPTY_INITIALIZER;
3261 const struct port *port;
3264 port = bond_find(args);
3266 unixctl_command_reply(conn, 501, "no such bond");
3270 ds_put_format(&ds, "updelay: %d ms\n", port->updelay);
3271 ds_put_format(&ds, "downdelay: %d ms\n", port->downdelay);
3272 ds_put_format(&ds, "next rebalance: %lld ms\n",
3273 port->bond_next_rebalance - time_msec());
3274 for (j = 0; j < port->n_ifaces; j++) {
3275 const struct iface *iface = port->ifaces[j];
3276 struct bond_entry *be;
3279 ds_put_format(&ds, "slave %s: %s\n",
3280 iface->name, iface->enabled ? "enabled" : "disabled");
3281 if (j == port->active_iface) {
3282 ds_put_cstr(&ds, "\tactive slave\n");
3284 if (iface->delay_expires != LLONG_MAX) {
3285 ds_put_format(&ds, "\t%s expires in %lld ms\n",
3286 iface->enabled ? "downdelay" : "updelay",
3287 iface->delay_expires - time_msec());
3291 for (be = port->bond_hash; be <= &port->bond_hash[BOND_MASK]; be++) {
3292 int hash = be - port->bond_hash;
3293 struct mac_entry *me;
3295 if (be->iface_idx != j) {
3299 ds_put_format(&ds, "\thash %d: %"PRIu64" kB load\n",
3300 hash, be->tx_bytes / 1024);
3303 LIST_FOR_EACH (me, lru_node, &port->bridge->ml->lrus) {
3306 if (bond_hash(me->mac, me->vlan) == hash
3307 && me->port != port->port_idx
3308 && choose_output_iface(port, me->mac, me->vlan,
3310 && dp_ifidx == iface->dp_ifidx)
3312 ds_put_format(&ds, "\t\t"ETH_ADDR_FMT"\n",
3313 ETH_ADDR_ARGS(me->mac));
3318 unixctl_command_reply(conn, 200, ds_cstr(&ds));
3323 bond_unixctl_migrate(struct unixctl_conn *conn, const char *args_,
3324 void *aux OVS_UNUSED)
3326 char *args = (char *) args_;
3327 char *save_ptr = NULL;
3328 char *bond_s, *hash_s, *slave_s;
3330 struct iface *iface;
3331 struct bond_entry *entry;
3334 bond_s = strtok_r(args, " ", &save_ptr);
3335 hash_s = strtok_r(NULL, " ", &save_ptr);
3336 slave_s = strtok_r(NULL, " ", &save_ptr);
3338 unixctl_command_reply(conn, 501,
3339 "usage: bond/migrate BOND HASH SLAVE");
3343 port = bond_find(bond_s);
3345 unixctl_command_reply(conn, 501, "no such bond");
3349 if (strspn(hash_s, "0123456789") == strlen(hash_s)) {
3350 hash = atoi(hash_s) & BOND_MASK;
3352 unixctl_command_reply(conn, 501, "bad hash");
3356 iface = port_lookup_iface(port, slave_s);
3358 unixctl_command_reply(conn, 501, "no such slave");
3362 if (!iface->enabled) {
3363 unixctl_command_reply(conn, 501, "cannot migrate to disabled slave");
3367 entry = &port->bond_hash[hash];
3368 ofproto_revalidate(port->bridge->ofproto, entry->iface_tag);
3369 entry->iface_idx = iface->port_ifidx;
3370 entry->iface_tag = tag_create_random();
3371 port->bond_compat_is_stale = true;
3372 unixctl_command_reply(conn, 200, "migrated");
3376 bond_unixctl_set_active_slave(struct unixctl_conn *conn, const char *args_,
3377 void *aux OVS_UNUSED)
3379 char *args = (char *) args_;
3380 char *save_ptr = NULL;
3381 char *bond_s, *slave_s;
3383 struct iface *iface;
3385 bond_s = strtok_r(args, " ", &save_ptr);
3386 slave_s = strtok_r(NULL, " ", &save_ptr);
3388 unixctl_command_reply(conn, 501,
3389 "usage: bond/set-active-slave BOND SLAVE");
3393 port = bond_find(bond_s);
3395 unixctl_command_reply(conn, 501, "no such bond");
3399 iface = port_lookup_iface(port, slave_s);
3401 unixctl_command_reply(conn, 501, "no such slave");
3405 if (!iface->enabled) {
3406 unixctl_command_reply(conn, 501, "cannot make disabled slave active");
3410 if (port->active_iface != iface->port_ifidx) {
3411 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
3412 port->active_iface = iface->port_ifidx;
3413 port->active_iface_tag = tag_create_random();
3414 VLOG_INFO("port %s: active interface is now %s",
3415 port->name, iface->name);
3416 bond_send_learning_packets(port);
3417 unixctl_command_reply(conn, 200, "done");
3419 unixctl_command_reply(conn, 200, "no change");
3424 enable_slave(struct unixctl_conn *conn, const char *args_, bool enable)
3426 char *args = (char *) args_;
3427 char *save_ptr = NULL;
3428 char *bond_s, *slave_s;
3430 struct iface *iface;
3432 bond_s = strtok_r(args, " ", &save_ptr);
3433 slave_s = strtok_r(NULL, " ", &save_ptr);
3435 unixctl_command_reply(conn, 501,
3436 "usage: bond/enable/disable-slave BOND SLAVE");
3440 port = bond_find(bond_s);
3442 unixctl_command_reply(conn, 501, "no such bond");
3446 iface = port_lookup_iface(port, slave_s);
3448 unixctl_command_reply(conn, 501, "no such slave");
3452 bond_enable_slave(iface, enable);
3453 unixctl_command_reply(conn, 501, enable ? "enabled" : "disabled");
3457 bond_unixctl_enable_slave(struct unixctl_conn *conn, const char *args,
3458 void *aux OVS_UNUSED)
3460 enable_slave(conn, args, true);
3464 bond_unixctl_disable_slave(struct unixctl_conn *conn, const char *args,
3465 void *aux OVS_UNUSED)
3467 enable_slave(conn, args, false);
3471 bond_unixctl_hash(struct unixctl_conn *conn, const char *args_,
3472 void *aux OVS_UNUSED)
3474 char *args = (char *) args_;
3475 uint8_t mac[ETH_ADDR_LEN];
3479 char *mac_s, *vlan_s;
3480 char *save_ptr = NULL;
3482 mac_s = strtok_r(args, " ", &save_ptr);
3483 vlan_s = strtok_r(NULL, " ", &save_ptr);
3486 if (sscanf(vlan_s, "%u", &vlan) != 1) {
3487 unixctl_command_reply(conn, 501, "invalid vlan");
3491 vlan = OFP_VLAN_NONE;
3494 if (sscanf(mac_s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(mac))
3495 == ETH_ADDR_SCAN_COUNT) {
3496 hash = bond_hash(mac, vlan);
3498 hash_cstr = xasprintf("%u", hash);
3499 unixctl_command_reply(conn, 200, hash_cstr);
3502 unixctl_command_reply(conn, 501, "invalid mac");
3509 unixctl_command_register("bond/list", bond_unixctl_list, NULL);
3510 unixctl_command_register("bond/show", bond_unixctl_show, NULL);
3511 unixctl_command_register("bond/migrate", bond_unixctl_migrate, NULL);
3512 unixctl_command_register("bond/set-active-slave",
3513 bond_unixctl_set_active_slave, NULL);
3514 unixctl_command_register("bond/enable-slave", bond_unixctl_enable_slave,
3516 unixctl_command_register("bond/disable-slave", bond_unixctl_disable_slave,
3518 unixctl_command_register("bond/hash", bond_unixctl_hash, NULL);
3521 /* Port functions. */
3523 static struct port *
3524 port_create(struct bridge *br, const char *name)
3528 port = xzalloc(sizeof *port);
3530 port->port_idx = br->n_ports;
3532 port->trunks = NULL;
3533 port->name = xstrdup(name);
3534 port->active_iface = -1;
3536 if (br->n_ports >= br->allocated_ports) {
3537 br->ports = x2nrealloc(br->ports, &br->allocated_ports,
3540 br->ports[br->n_ports++] = port;
3541 shash_add_assert(&br->port_by_name, port->name, port);
3543 VLOG_INFO("created port %s on bridge %s", port->name, br->name);
3550 get_port_other_config(const struct ovsrec_port *port, const char *key,
3551 const char *default_value)
3555 value = get_ovsrec_key_value(&port->header_, &ovsrec_port_col_other_config,
3557 return value ? value : default_value;
3561 port_del_ifaces(struct port *port, const struct ovsrec_port *cfg)
3563 struct shash new_ifaces;
3566 /* Collect list of new interfaces. */
3567 shash_init(&new_ifaces);
3568 for (i = 0; i < cfg->n_interfaces; i++) {
3569 const char *name = cfg->interfaces[i]->name;
3570 shash_add_once(&new_ifaces, name, NULL);
3573 /* Get rid of deleted interfaces. */
3574 for (i = 0; i < port->n_ifaces; ) {
3575 if (!shash_find(&new_ifaces, cfg->interfaces[i]->name)) {
3576 iface_destroy(port->ifaces[i]);
3582 shash_destroy(&new_ifaces);
3586 port_reconfigure(struct port *port, const struct ovsrec_port *cfg)
3588 struct shash new_ifaces;
3589 long long int next_rebalance;
3590 unsigned long *trunks;
3596 /* Update settings. */
3597 port->updelay = cfg->bond_updelay;
3598 if (port->updelay < 0) {
3601 port->downdelay = cfg->bond_downdelay;
3602 if (port->downdelay < 0) {
3603 port->downdelay = 0;
3605 port->bond_rebalance_interval = atoi(
3606 get_port_other_config(cfg, "bond-rebalance-interval", "10000"));
3607 if (port->bond_rebalance_interval < 1000) {
3608 port->bond_rebalance_interval = 1000;
3610 next_rebalance = time_msec() + port->bond_rebalance_interval;
3611 if (port->bond_next_rebalance > next_rebalance) {
3612 port->bond_next_rebalance = next_rebalance;
3615 /* Add new interfaces and update 'cfg' member of existing ones. */
3616 shash_init(&new_ifaces);
3617 for (i = 0; i < cfg->n_interfaces; i++) {
3618 const struct ovsrec_interface *if_cfg = cfg->interfaces[i];
3619 struct iface *iface;
3621 if (!shash_add_once(&new_ifaces, if_cfg->name, NULL)) {
3622 VLOG_WARN("port %s: %s specified twice as port interface",
3623 port->name, if_cfg->name);
3624 iface_set_ofport(if_cfg, -1);
3628 iface = iface_lookup(port->bridge, if_cfg->name);
3630 if (iface->port != port) {
3631 VLOG_ERR("bridge %s: %s interface is on multiple ports, "
3633 port->bridge->name, if_cfg->name, iface->port->name);
3636 iface->cfg = if_cfg;
3638 iface = iface_create(port, if_cfg);
3641 /* Determine interface type. The local port always has type
3642 * "internal". Other ports take their type from the database and
3643 * default to "system" if none is specified. */
3644 iface->type = (!strcmp(if_cfg->name, port->bridge->name) ? "internal"
3645 : if_cfg->type[0] ? if_cfg->type
3648 shash_destroy(&new_ifaces);
3653 if (port->n_ifaces < 2) {
3655 if (vlan >= 0 && vlan <= 4095) {
3656 VLOG_DBG("port %s: assigning VLAN tag %d", port->name, vlan);
3661 /* It's possible that bonded, VLAN-tagged ports make sense. Maybe
3662 * they even work as-is. But they have not been tested. */
3663 VLOG_WARN("port %s: VLAN tags not supported on bonded ports",
3667 if (port->vlan != vlan) {
3669 bridge_flush(port->bridge);
3672 /* Get trunked VLANs. */
3674 if (vlan < 0 && cfg->n_trunks) {
3677 trunks = bitmap_allocate(4096);
3679 for (i = 0; i < cfg->n_trunks; i++) {
3680 int trunk = cfg->trunks[i];
3682 bitmap_set1(trunks, trunk);
3688 VLOG_ERR("port %s: invalid values for %zu trunk VLANs",
3689 port->name, cfg->n_trunks);
3691 if (n_errors == cfg->n_trunks) {
3692 VLOG_ERR("port %s: no valid trunks, trunking all VLANs",
3694 bitmap_free(trunks);
3697 } else if (vlan >= 0 && cfg->n_trunks) {
3698 VLOG_ERR("port %s: ignoring trunks in favor of implicit vlan",
3702 ? port->trunks != NULL
3703 : port->trunks == NULL || !bitmap_equal(trunks, port->trunks, 4096)) {
3704 bridge_flush(port->bridge);
3706 bitmap_free(port->trunks);
3707 port->trunks = trunks;
3711 port_destroy(struct port *port)
3714 struct bridge *br = port->bridge;
3718 proc_net_compat_update_vlan(port->name, NULL, 0);
3719 proc_net_compat_update_bond(port->name, NULL);
3721 for (i = 0; i < MAX_MIRRORS; i++) {
3722 struct mirror *m = br->mirrors[i];
3723 if (m && m->out_port == port) {
3728 while (port->n_ifaces > 0) {
3729 iface_destroy(port->ifaces[port->n_ifaces - 1]);
3732 shash_find_and_delete_assert(&br->port_by_name, port->name);
3734 del = br->ports[port->port_idx] = br->ports[--br->n_ports];
3735 del->port_idx = port->port_idx;
3737 VLOG_INFO("destroyed port %s on bridge %s", port->name, br->name);
3739 netdev_monitor_destroy(port->monitor);
3741 bitmap_free(port->trunks);
3748 static struct port *
3749 port_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
3751 struct iface *iface = iface_from_dp_ifidx(br, dp_ifidx);
3752 return iface ? iface->port : NULL;
3755 static struct port *
3756 port_lookup(const struct bridge *br, const char *name)
3758 return shash_find_data(&br->port_by_name, name);
3761 static struct iface *
3762 port_lookup_iface(const struct port *port, const char *name)
3764 struct iface *iface = iface_lookup(port->bridge, name);
3765 return iface && iface->port == port ? iface : NULL;
3769 port_update_bonding(struct port *port)
3771 if (port->monitor) {
3772 netdev_monitor_destroy(port->monitor);
3773 port->monitor = NULL;
3775 if (port->n_ifaces < 2) {
3776 /* Not a bonded port. */
3777 if (port->bond_hash) {
3778 free(port->bond_hash);
3779 port->bond_hash = NULL;
3780 port->bond_compat_is_stale = true;
3781 port->bond_fake_iface = false;
3786 if (!port->bond_hash) {
3787 port->bond_hash = xcalloc(BOND_MASK + 1, sizeof *port->bond_hash);
3788 for (i = 0; i <= BOND_MASK; i++) {
3789 struct bond_entry *e = &port->bond_hash[i];
3793 port->no_ifaces_tag = tag_create_random();
3794 bond_choose_active_iface(port);
3795 port->bond_next_rebalance
3796 = time_msec() + port->bond_rebalance_interval;
3798 if (port->cfg->bond_fake_iface) {
3799 port->bond_next_fake_iface_update = time_msec();
3802 port->bond_compat_is_stale = true;
3803 port->bond_fake_iface = port->cfg->bond_fake_iface;
3805 port->monitor = netdev_monitor_create();
3806 for (i = 0; i < port->n_ifaces; i++) {
3807 netdev_monitor_add(port->monitor, port->ifaces[i]->netdev);
3813 port_update_bond_compat(struct port *port)
3815 struct compat_bond_hash compat_hashes[BOND_MASK + 1];
3816 struct compat_bond bond;
3819 if (port->n_ifaces < 2) {
3820 proc_net_compat_update_bond(port->name, NULL);
3825 bond.updelay = port->updelay;
3826 bond.downdelay = port->downdelay;
3829 bond.hashes = compat_hashes;
3830 if (port->bond_hash) {
3831 const struct bond_entry *e;
3832 for (e = port->bond_hash; e <= &port->bond_hash[BOND_MASK]; e++) {
3833 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
3834 struct compat_bond_hash *cbh = &bond.hashes[bond.n_hashes++];
3835 cbh->hash = e - port->bond_hash;
3836 cbh->netdev_name = port->ifaces[e->iface_idx]->name;
3841 bond.n_slaves = port->n_ifaces;
3842 bond.slaves = xmalloc(port->n_ifaces * sizeof *bond.slaves);
3843 for (i = 0; i < port->n_ifaces; i++) {
3844 struct iface *iface = port->ifaces[i];
3845 struct compat_bond_slave *slave = &bond.slaves[i];
3846 slave->name = iface->name;
3848 /* We need to make the same determination as the Linux bonding
3849 * code to determine whether a slave should be consider "up".
3850 * The Linux function bond_miimon_inspect() supports four
3851 * BOND_LINK_* states:
3853 * - BOND_LINK_UP: carrier detected, updelay has passed.
3854 * - BOND_LINK_FAIL: carrier lost, downdelay in progress.
3855 * - BOND_LINK_DOWN: carrier lost, downdelay has passed.
3856 * - BOND_LINK_BACK: carrier detected, updelay in progress.
3858 * The function bond_info_show_slave() only considers BOND_LINK_UP
3859 * to be "up" and anything else to be "down".
3861 slave->up = iface->enabled && iface->delay_expires == LLONG_MAX;
3865 netdev_get_etheraddr(iface->netdev, slave->mac);
3868 if (port->bond_fake_iface) {
3869 struct netdev *bond_netdev;
3871 if (!netdev_open_default(port->name, &bond_netdev)) {
3873 netdev_turn_flags_on(bond_netdev, NETDEV_UP, true);
3875 netdev_turn_flags_off(bond_netdev, NETDEV_UP, true);
3877 netdev_close(bond_netdev);
3881 proc_net_compat_update_bond(port->name, &bond);
3886 port_update_vlan_compat(struct port *port)
3888 struct bridge *br = port->bridge;
3889 char *vlandev_name = NULL;
3891 if (port->vlan > 0) {
3892 /* Figure out the name that the VLAN device should actually have, if it
3893 * existed. This takes some work because the VLAN device would not
3894 * have port->name in its name; rather, it would have the trunk port's
3895 * name, and 'port' would be attached to a bridge that also had the
3896 * VLAN device one of its ports. So we need to find a trunk port that
3897 * includes port->vlan.
3899 * There might be more than one candidate. This doesn't happen on
3900 * XenServer, so if it happens we just pick the first choice in
3901 * alphabetical order instead of creating multiple VLAN devices. */
3903 for (i = 0; i < br->n_ports; i++) {
3904 struct port *p = br->ports[i];
3905 if (port_trunks_vlan(p, port->vlan)
3907 && (!vlandev_name || strcmp(p->name, vlandev_name) <= 0))
3909 uint8_t ea[ETH_ADDR_LEN];
3910 netdev_get_etheraddr(p->ifaces[0]->netdev, ea);
3911 if (!eth_addr_is_multicast(ea) &&
3912 !eth_addr_is_reserved(ea) &&
3913 !eth_addr_is_zero(ea)) {
3914 vlandev_name = p->name;
3919 proc_net_compat_update_vlan(port->name, vlandev_name, port->vlan);
3922 /* Interface functions. */
3925 iface_send_packet(struct iface *iface, struct ofpbuf *packet)
3928 union ofp_action action;
3930 memset(&action, 0, sizeof action);
3931 action.output.type = htons(OFPAT_OUTPUT);
3932 action.output.len = htons(sizeof action);
3933 action.output.port = htons(odp_port_to_ofp_port(iface->dp_ifidx));
3935 flow_extract(packet, 0, ODPP_NONE, &flow);
3937 if (ofproto_send_packet(iface->port->bridge->ofproto, &flow, &action, 1,
3939 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3940 VLOG_WARN_RL(&rl, "interface %s: Failed to send packet.", iface->name);
3944 static struct iface *
3945 iface_create(struct port *port, const struct ovsrec_interface *if_cfg)
3947 struct bridge *br = port->bridge;
3948 struct iface *iface;
3949 char *name = if_cfg->name;
3951 iface = xzalloc(sizeof *iface);
3953 iface->port_ifidx = port->n_ifaces;
3954 iface->name = xstrdup(name);
3955 iface->dp_ifidx = -1;
3956 iface->tag = tag_create_random();
3957 iface->delay_expires = LLONG_MAX;
3958 iface->netdev = NULL;
3959 iface->cfg = if_cfg;
3961 shash_add_assert(&br->iface_by_name, iface->name, iface);
3963 if (port->n_ifaces >= port->allocated_ifaces) {
3964 port->ifaces = x2nrealloc(port->ifaces, &port->allocated_ifaces,
3965 sizeof *port->ifaces);
3967 port->ifaces[port->n_ifaces++] = iface;
3968 if (port->n_ifaces > 1) {
3969 br->has_bonded_ports = true;
3972 VLOG_DBG("attached network device %s to port %s", iface->name, port->name);
3980 iface_destroy(struct iface *iface)
3983 struct port *port = iface->port;
3984 struct bridge *br = port->bridge;
3985 bool del_active = port->active_iface == iface->port_ifidx;
3988 shash_find_and_delete_assert(&br->iface_by_name, iface->name);
3990 if (iface->dp_ifidx >= 0) {
3991 hmap_remove(&br->ifaces, &iface->dp_ifidx_node);
3994 del = port->ifaces[iface->port_ifidx] = port->ifaces[--port->n_ifaces];
3995 del->port_ifidx = iface->port_ifidx;
3997 netdev_close(iface->netdev);
4000 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
4001 bond_choose_active_iface(port);
4002 bond_send_learning_packets(port);
4005 cfm_destroy(iface->cfm);
4010 bridge_flush(port->bridge);
4014 static struct iface *
4015 iface_lookup(const struct bridge *br, const char *name)
4017 return shash_find_data(&br->iface_by_name, name);
4020 static struct iface *
4021 iface_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
4023 struct iface *iface;
4025 HMAP_FOR_EACH_IN_BUCKET (iface, dp_ifidx_node,
4026 hash_int(dp_ifidx, 0), &br->ifaces) {
4027 if (iface->dp_ifidx == dp_ifidx) {
4034 /* Set Ethernet address of 'iface', if one is specified in the configuration
4037 iface_set_mac(struct iface *iface)
4039 uint8_t ea[ETH_ADDR_LEN];
4041 if (iface->cfg->mac && eth_addr_from_string(iface->cfg->mac, ea)) {
4042 if (eth_addr_is_multicast(ea)) {
4043 VLOG_ERR("interface %s: cannot set MAC to multicast address",
4045 } else if (iface->dp_ifidx == ODPP_LOCAL) {
4046 VLOG_ERR("ignoring iface.%s.mac; use bridge.%s.mac instead",
4047 iface->name, iface->name);
4049 int error = netdev_set_etheraddr(iface->netdev, ea);
4051 VLOG_ERR("interface %s: setting MAC failed (%s)",
4052 iface->name, strerror(error));
4058 /* Sets the ofport column of 'if_cfg' to 'ofport'. */
4060 iface_set_ofport(const struct ovsrec_interface *if_cfg, int64_t ofport)
4063 ovsrec_interface_set_ofport(if_cfg, &ofport, 1);
4067 /* Adds the 'n' key-value pairs in 'keys' in 'values' to 'shash'.
4069 * The value strings in '*shash' are taken directly from values[], not copied,
4070 * so the caller should not modify or free them. */
4072 shash_from_ovs_idl_map(char **keys, char **values, size_t n,
4073 struct shash *shash)
4078 for (i = 0; i < n; i++) {
4079 shash_add(shash, keys[i], values[i]);
4083 struct iface_delete_queues_cbdata {
4084 struct netdev *netdev;
4085 const struct ovsdb_datum *queues;
4089 queue_ids_include(const struct ovsdb_datum *queues, int64_t target)
4091 union ovsdb_atom atom;
4093 atom.integer = target;
4094 return ovsdb_datum_find_key(queues, &atom, OVSDB_TYPE_INTEGER) != UINT_MAX;
4098 iface_delete_queues(unsigned int queue_id,
4099 const struct shash *details OVS_UNUSED, void *cbdata_)
4101 struct iface_delete_queues_cbdata *cbdata = cbdata_;
4103 if (!queue_ids_include(cbdata->queues, queue_id)) {
4104 netdev_delete_queue(cbdata->netdev, queue_id);
4109 iface_update_qos(struct iface *iface, const struct ovsrec_qos *qos)
4111 if (!qos || qos->type[0] == '\0') {
4112 netdev_set_qos(iface->netdev, NULL, NULL);
4114 struct iface_delete_queues_cbdata cbdata;
4115 struct shash details;
4118 /* Configure top-level Qos for 'iface'. */
4119 shash_from_ovs_idl_map(qos->key_other_config, qos->value_other_config,
4120 qos->n_other_config, &details);
4121 netdev_set_qos(iface->netdev, qos->type, &details);
4122 shash_destroy(&details);
4124 /* Deconfigure queues that were deleted. */
4125 cbdata.netdev = iface->netdev;
4126 cbdata.queues = ovsrec_qos_get_queues(qos, OVSDB_TYPE_INTEGER,
4128 netdev_dump_queues(iface->netdev, iface_delete_queues, &cbdata);
4130 /* Configure queues for 'iface'. */
4131 for (i = 0; i < qos->n_queues; i++) {
4132 const struct ovsrec_queue *queue = qos->value_queues[i];
4133 unsigned int queue_id = qos->key_queues[i];
4135 shash_from_ovs_idl_map(queue->key_other_config,
4136 queue->value_other_config,
4137 queue->n_other_config, &details);
4138 netdev_set_queue(iface->netdev, queue_id, &details);
4139 shash_destroy(&details);
4145 iface_update_cfm(struct iface *iface)
4149 uint16_t *remote_mps;
4150 struct ovsrec_monitor *mon;
4151 uint8_t ea[ETH_ADDR_LEN], maid[CCM_MAID_LEN];
4153 mon = iface->cfg->monitor;
4159 if (netdev_get_etheraddr(iface->netdev, ea)) {
4160 VLOG_WARN("interface %s: Failed to get ethernet address. "
4161 "Skipping Monitor.", iface->name);
4165 if (!cfm_generate_maid(mon->md_name, mon->ma_name, maid)) {
4166 VLOG_WARN("interface %s: Failed to generate MAID.", iface->name);
4171 iface->cfm = cfm_create();
4175 cfm->mpid = mon->mpid;
4176 cfm->interval = mon->interval ? *mon->interval : 1000;
4178 memcpy(cfm->eth_src, ea, sizeof cfm->eth_src);
4179 memcpy(cfm->maid, maid, sizeof cfm->maid);
4181 remote_mps = xzalloc(mon->n_remote_mps * sizeof *remote_mps);
4182 for(i = 0; i < mon->n_remote_mps; i++) {
4183 remote_mps[i] = mon->remote_mps[i]->mpid;
4185 cfm_update_remote_mps(cfm, remote_mps, mon->n_remote_mps);
4188 if (!cfm_configure(iface->cfm)) {
4189 cfm_destroy(iface->cfm);
4194 /* Port mirroring. */
4196 static struct mirror *
4197 mirror_find_by_uuid(struct bridge *br, const struct uuid *uuid)
4201 for (i = 0; i < MAX_MIRRORS; i++) {
4202 struct mirror *m = br->mirrors[i];
4203 if (m && uuid_equals(uuid, &m->uuid)) {
4211 mirror_reconfigure(struct bridge *br)
4213 unsigned long *rspan_vlans;
4216 /* Get rid of deleted mirrors. */
4217 for (i = 0; i < MAX_MIRRORS; i++) {
4218 struct mirror *m = br->mirrors[i];
4220 const struct ovsdb_datum *mc;
4221 union ovsdb_atom atom;
4223 mc = ovsrec_bridge_get_mirrors(br->cfg, OVSDB_TYPE_UUID);
4224 atom.uuid = br->mirrors[i]->uuid;
4225 if (ovsdb_datum_find_key(mc, &atom, OVSDB_TYPE_UUID) == UINT_MAX) {
4231 /* Add new mirrors and reconfigure existing ones. */
4232 for (i = 0; i < br->cfg->n_mirrors; i++) {
4233 struct ovsrec_mirror *cfg = br->cfg->mirrors[i];
4234 struct mirror *m = mirror_find_by_uuid(br, &cfg->header_.uuid);
4236 mirror_reconfigure_one(m, cfg);
4238 mirror_create(br, cfg);
4242 /* Update port reserved status. */
4243 for (i = 0; i < br->n_ports; i++) {
4244 br->ports[i]->is_mirror_output_port = false;
4246 for (i = 0; i < MAX_MIRRORS; i++) {
4247 struct mirror *m = br->mirrors[i];
4248 if (m && m->out_port) {
4249 m->out_port->is_mirror_output_port = true;
4253 /* Update flooded vlans (for RSPAN). */
4255 if (br->cfg->n_flood_vlans) {
4256 rspan_vlans = bitmap_allocate(4096);
4258 for (i = 0; i < br->cfg->n_flood_vlans; i++) {
4259 int64_t vlan = br->cfg->flood_vlans[i];
4260 if (vlan >= 0 && vlan < 4096) {
4261 bitmap_set1(rspan_vlans, vlan);
4262 VLOG_INFO("bridge %s: disabling learning on vlan %"PRId64,
4265 VLOG_ERR("bridge %s: invalid value %"PRId64 "for flood VLAN",
4270 if (mac_learning_set_flood_vlans(br->ml, rspan_vlans)) {
4276 mirror_create(struct bridge *br, struct ovsrec_mirror *cfg)
4281 for (i = 0; ; i++) {
4282 if (i >= MAX_MIRRORS) {
4283 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
4284 "cannot create %s", br->name, MAX_MIRRORS, cfg->name);
4287 if (!br->mirrors[i]) {
4292 VLOG_INFO("created port mirror %s on bridge %s", cfg->name, br->name);
4295 br->mirrors[i] = m = xzalloc(sizeof *m);
4298 m->name = xstrdup(cfg->name);
4299 shash_init(&m->src_ports);
4300 shash_init(&m->dst_ports);
4306 mirror_reconfigure_one(m, cfg);
4310 mirror_destroy(struct mirror *m)
4313 struct bridge *br = m->bridge;
4316 for (i = 0; i < br->n_ports; i++) {
4317 br->ports[i]->src_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
4318 br->ports[i]->dst_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
4321 shash_destroy(&m->src_ports);
4322 shash_destroy(&m->dst_ports);
4325 m->bridge->mirrors[m->idx] = NULL;
4334 mirror_collect_ports(struct mirror *m, struct ovsrec_port **ports, int n_ports,
4335 struct shash *names)
4339 for (i = 0; i < n_ports; i++) {
4340 const char *name = ports[i]->name;
4341 if (port_lookup(m->bridge, name)) {
4342 shash_add_once(names, name, NULL);
4344 VLOG_WARN("bridge %s: mirror %s cannot match on nonexistent "
4345 "port %s", m->bridge->name, m->name, name);
4351 mirror_collect_vlans(struct mirror *m, const struct ovsrec_mirror *cfg,
4357 *vlans = xmalloc(sizeof **vlans * cfg->n_select_vlan);
4359 for (i = 0; i < cfg->n_select_vlan; i++) {
4360 int64_t vlan = cfg->select_vlan[i];
4361 if (vlan < 0 || vlan > 4095) {
4362 VLOG_WARN("bridge %s: mirror %s selects invalid VLAN %"PRId64,
4363 m->bridge->name, m->name, vlan);
4365 (*vlans)[n_vlans++] = vlan;
4372 vlan_is_mirrored(const struct mirror *m, int vlan)
4376 for (i = 0; i < m->n_vlans; i++) {
4377 if (m->vlans[i] == vlan) {
4385 port_trunks_any_mirrored_vlan(const struct mirror *m, const struct port *p)
4389 for (i = 0; i < m->n_vlans; i++) {
4390 if (port_trunks_vlan(p, m->vlans[i])) {
4398 mirror_reconfigure_one(struct mirror *m, struct ovsrec_mirror *cfg)
4400 struct shash src_ports, dst_ports;
4401 mirror_mask_t mirror_bit;
4402 struct port *out_port;
4409 if (strcmp(cfg->name, m->name)) {
4411 m->name = xstrdup(cfg->name);
4414 /* Get output port. */
4415 if (cfg->output_port) {
4416 out_port = port_lookup(m->bridge, cfg->output_port->name);
4418 VLOG_ERR("bridge %s: mirror %s outputs to port not on bridge",
4419 m->bridge->name, m->name);
4425 if (cfg->output_vlan) {
4426 VLOG_ERR("bridge %s: mirror %s specifies both output port and "
4427 "output vlan; ignoring output vlan",
4428 m->bridge->name, m->name);
4430 } else if (cfg->output_vlan) {
4432 out_vlan = *cfg->output_vlan;
4434 VLOG_ERR("bridge %s: mirror %s does not specify output; ignoring",
4435 m->bridge->name, m->name);
4440 shash_init(&src_ports);
4441 shash_init(&dst_ports);
4442 if (cfg->select_all) {
4443 for (i = 0; i < m->bridge->n_ports; i++) {
4444 const char *name = m->bridge->ports[i]->name;
4445 shash_add_once(&src_ports, name, NULL);
4446 shash_add_once(&dst_ports, name, NULL);
4451 /* Get ports, and drop duplicates and ports that don't exist. */
4452 mirror_collect_ports(m, cfg->select_src_port, cfg->n_select_src_port,
4454 mirror_collect_ports(m, cfg->select_dst_port, cfg->n_select_dst_port,
4457 /* Get all the vlans, and drop duplicate and invalid vlans. */
4458 n_vlans = mirror_collect_vlans(m, cfg, &vlans);
4461 /* Update mirror data. */
4462 if (!shash_equal_keys(&m->src_ports, &src_ports)
4463 || !shash_equal_keys(&m->dst_ports, &dst_ports)
4464 || m->n_vlans != n_vlans
4465 || memcmp(m->vlans, vlans, sizeof *vlans * n_vlans)
4466 || m->out_port != out_port
4467 || m->out_vlan != out_vlan) {
4468 bridge_flush(m->bridge);
4470 shash_swap(&m->src_ports, &src_ports);
4471 shash_swap(&m->dst_ports, &dst_ports);
4474 m->n_vlans = n_vlans;
4475 m->out_port = out_port;
4476 m->out_vlan = out_vlan;
4479 mirror_bit = MIRROR_MASK_C(1) << m->idx;
4480 for (i = 0; i < m->bridge->n_ports; i++) {
4481 struct port *port = m->bridge->ports[i];
4483 if (shash_find(&m->src_ports, port->name)
4486 ? port_trunks_any_mirrored_vlan(m, port)
4487 : vlan_is_mirrored(m, port->vlan)))) {
4488 port->src_mirrors |= mirror_bit;
4490 port->src_mirrors &= ~mirror_bit;
4493 if (shash_find(&m->dst_ports, port->name)) {
4494 port->dst_mirrors |= mirror_bit;
4496 port->dst_mirrors &= ~mirror_bit;
4501 shash_destroy(&src_ports);
4502 shash_destroy(&dst_ports);