1 /* PSPP - linear regression.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Written by Jason H Stover <jason@sakla.net>.
5 This program is free software; you can redistribute it and/or
6 modify it under the terms of the GNU General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 This program is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 #include <gsl/gsl_cdf.h>
23 #include <gsl/gsl_vector.h>
24 #include <gsl/gsl_matrix.h>
29 #include "cat-routines.h"
31 #include "design-matrix.h"
32 #include "dictionary.h"
34 #include "file-handle.h"
37 #include <linreg/pspp_linreg.h>
38 #include "missing-values.h"
39 #include "regression_export.h"
44 #define REG_LARGE_DATA 1000
49 "REGRESSION" (regression_):
74 static struct cmd_regression cmd;
77 Array holding the subscripts of the independent variables.
82 File where the model will be saved if the EXPORT subcommand
85 struct file_handle *model_file;
88 Return value for the procedure.
90 int pspp_reg_rc = CMD_SUCCESS;
92 static void run_regression (const struct casefile *, void *);
94 STATISTICS subcommand output functions.
96 static void reg_stats_r (pspp_linreg_cache *);
97 static void reg_stats_coeff (pspp_linreg_cache *);
98 static void reg_stats_anova (pspp_linreg_cache *);
99 static void reg_stats_outs (pspp_linreg_cache *);
100 static void reg_stats_zpp (pspp_linreg_cache *);
101 static void reg_stats_label (pspp_linreg_cache *);
102 static void reg_stats_sha (pspp_linreg_cache *);
103 static void reg_stats_ci (pspp_linreg_cache *);
104 static void reg_stats_f (pspp_linreg_cache *);
105 static void reg_stats_bcov (pspp_linreg_cache *);
106 static void reg_stats_ses (pspp_linreg_cache *);
107 static void reg_stats_xtx (pspp_linreg_cache *);
108 static void reg_stats_collin (pspp_linreg_cache *);
109 static void reg_stats_tol (pspp_linreg_cache *);
110 static void reg_stats_selection (pspp_linreg_cache *);
111 static void statistics_keyword_output (void (*)(pspp_linreg_cache *),
112 int, pspp_linreg_cache *);
115 reg_stats_r (pspp_linreg_cache * c)
125 rsq = c->ssm / c->sst;
126 adjrsq = 1.0 - (1.0 - rsq) * (c->n_obs - 1.0) / (c->n_obs - c->n_indeps);
127 std_error = sqrt ((c->n_indeps - 1.0) / (c->n_obs - 1.0));
128 t = tab_create (n_cols, n_rows, 0);
129 tab_dim (t, tab_natural_dimensions);
130 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
131 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
132 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
133 tab_vline (t, TAL_0, 1, 0, 0);
135 tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("R"));
136 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("R Square"));
137 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Adjusted R Square"));
138 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Std. Error of the Estimate"));
139 tab_float (t, 1, 1, TAB_RIGHT, sqrt (rsq), 10, 2);
140 tab_float (t, 2, 1, TAB_RIGHT, rsq, 10, 2);
141 tab_float (t, 3, 1, TAB_RIGHT, adjrsq, 10, 2);
142 tab_float (t, 4, 1, TAB_RIGHT, std_error, 10, 2);
143 tab_title (t, 0, _("Model Summary"));
148 Table showing estimated regression coefficients.
151 reg_stats_coeff (pspp_linreg_cache * c)
166 n_rows = c->n_coeffs + 2;
168 t = tab_create (n_cols, n_rows, 0);
169 tab_headers (t, 2, 0, 1, 0);
170 tab_dim (t, tab_natural_dimensions);
171 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
172 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
173 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
174 tab_vline (t, TAL_0, 1, 0, 0);
176 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("B"));
177 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Std. Error"));
178 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Beta"));
179 tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("t"));
180 tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
181 tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("(Constant)"));
182 coeff = c->coeff[0].estimate;
183 tab_float (t, 2, 1, 0, coeff, 10, 2);
184 std_err = sqrt (gsl_matrix_get (c->cov, 0, 0));
185 tab_float (t, 3, 1, 0, std_err, 10, 2);
186 beta = coeff / c->depvar_std;
187 tab_float (t, 4, 1, 0, beta, 10, 2);
188 t_stat = coeff / std_err;
189 tab_float (t, 5, 1, 0, t_stat, 10, 2);
190 pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
191 tab_float (t, 6, 1, 0, pval, 10, 2);
192 for (j = 1; j <= c->n_indeps; j++)
195 label = var_to_string (c->coeff[j].v);
196 tab_text (t, 1, j + 1, TAB_CENTER, label);
198 Regression coefficients.
200 coeff = c->coeff[j].estimate;
201 tab_float (t, 2, j + 1, 0, coeff, 10, 2);
203 Standard error of the coefficients.
205 std_err = sqrt (gsl_matrix_get (c->cov, j, j));
206 tab_float (t, 3, j + 1, 0, std_err, 10, 2);
208 'Standardized' coefficient, i.e., regression coefficient
209 if all variables had unit variance.
211 beta = gsl_vector_get (c->indep_std, j);
212 beta *= coeff / c->depvar_std;
213 tab_float (t, 4, j + 1, 0, beta, 10, 2);
216 Test statistic for H0: coefficient is 0.
218 t_stat = coeff / std_err;
219 tab_float (t, 5, j + 1, 0, t_stat, 10, 2);
221 P values for the test statistic above.
223 pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
224 tab_float (t, 6, j + 1, 0, pval, 10, 2);
226 tab_title (t, 0, _("Coefficients"));
231 Display the ANOVA table.
234 reg_stats_anova (pspp_linreg_cache * c)
238 const double msm = c->ssm / c->dfm;
239 const double mse = c->sse / c->dfe;
240 const double F = msm / mse;
241 const double pval = gsl_cdf_fdist_Q (F, c->dfm, c->dfe);
246 t = tab_create (n_cols, n_rows, 0);
247 tab_headers (t, 2, 0, 1, 0);
248 tab_dim (t, tab_natural_dimensions);
250 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
252 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
253 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
254 tab_vline (t, TAL_0, 1, 0, 0);
256 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Sum of Squares"));
257 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("df"));
258 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Mean Square"));
259 tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("F"));
260 tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
262 tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("Regression"));
263 tab_text (t, 1, 2, TAB_LEFT | TAT_TITLE, _("Residual"));
264 tab_text (t, 1, 3, TAB_LEFT | TAT_TITLE, _("Total"));
266 /* Sums of Squares */
267 tab_float (t, 2, 1, 0, c->ssm, 10, 2);
268 tab_float (t, 2, 3, 0, c->sst, 10, 2);
269 tab_float (t, 2, 2, 0, c->sse, 10, 2);
272 /* Degrees of freedom */
273 tab_float (t, 3, 1, 0, c->dfm, 4, 0);
274 tab_float (t, 3, 2, 0, c->dfe, 4, 0);
275 tab_float (t, 3, 3, 0, c->dft, 4, 0);
279 tab_float (t, 4, 1, TAB_RIGHT, msm, 8, 3);
280 tab_float (t, 4, 2, TAB_RIGHT, mse, 8, 3);
282 tab_float (t, 5, 1, 0, F, 8, 3);
284 tab_float (t, 6, 1, 0, pval, 8, 3);
286 tab_title (t, 0, _("ANOVA"));
290 reg_stats_outs (pspp_linreg_cache * c)
295 reg_stats_zpp (pspp_linreg_cache * c)
300 reg_stats_label (pspp_linreg_cache * c)
305 reg_stats_sha (pspp_linreg_cache * c)
310 reg_stats_ci (pspp_linreg_cache * c)
315 reg_stats_f (pspp_linreg_cache * c)
320 reg_stats_bcov (pspp_linreg_cache * c)
333 n_cols = c->n_indeps + 1 + 2;
334 n_rows = 2 * (c->n_indeps + 1);
335 t = tab_create (n_cols, n_rows, 0);
336 tab_headers (t, 2, 0, 1, 0);
337 tab_dim (t, tab_natural_dimensions);
338 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
339 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
340 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
341 tab_vline (t, TAL_0, 1, 0, 0);
342 tab_text (t, 0, 0, TAB_CENTER | TAT_TITLE, _("Model"));
343 tab_text (t, 1, 1, TAB_CENTER | TAT_TITLE, _("Covariances"));
344 for (i = 1; i < c->n_indeps + 1; i++)
346 j = indep_vars[(i - 1)];
347 struct variable *v = cmd.v_variables[j];
348 label = var_to_string (v);
349 tab_text (t, 2, i, TAB_CENTER, label);
350 tab_text (t, i + 2, 0, TAB_CENTER, label);
351 for (k = 1; k < c->n_indeps + 1; k++)
353 col = (i <= k) ? k : i;
354 row = (i <= k) ? i : k;
355 tab_float (t, k + 2, i, TAB_CENTER,
356 gsl_matrix_get (c->cov, row, col), 8, 3);
359 tab_title (t, 0, _("Coefficient Correlations"));
363 reg_stats_ses (pspp_linreg_cache * c)
368 reg_stats_xtx (pspp_linreg_cache * c)
373 reg_stats_collin (pspp_linreg_cache * c)
378 reg_stats_tol (pspp_linreg_cache * c)
383 reg_stats_selection (pspp_linreg_cache * c)
389 statistics_keyword_output (void (*function) (pspp_linreg_cache *),
390 int keyword, pspp_linreg_cache * c)
399 subcommand_statistics (int *keywords, pspp_linreg_cache * c)
402 The order here must match the order in which the STATISTICS
403 keywords appear in the specification section above.
430 Set everything but F.
432 for (i = 0; i < f; i++)
439 for (i = 0; i < all; i++)
447 Default output: ANOVA table, parameter estimates,
448 and statistics for variables not entered into model,
451 if (keywords[defaults] | d)
459 statistics_keyword_output (reg_stats_r, keywords[r], c);
460 statistics_keyword_output (reg_stats_anova, keywords[anova], c);
461 statistics_keyword_output (reg_stats_coeff, keywords[coeff], c);
462 statistics_keyword_output (reg_stats_outs, keywords[outs], c);
463 statistics_keyword_output (reg_stats_zpp, keywords[zpp], c);
464 statistics_keyword_output (reg_stats_label, keywords[label], c);
465 statistics_keyword_output (reg_stats_sha, keywords[sha], c);
466 statistics_keyword_output (reg_stats_ci, keywords[ci], c);
467 statistics_keyword_output (reg_stats_f, keywords[f], c);
468 statistics_keyword_output (reg_stats_bcov, keywords[bcov], c);
469 statistics_keyword_output (reg_stats_ses, keywords[ses], c);
470 statistics_keyword_output (reg_stats_xtx, keywords[xtx], c);
471 statistics_keyword_output (reg_stats_collin, keywords[collin], c);
472 statistics_keyword_output (reg_stats_tol, keywords[tol], c);
473 statistics_keyword_output (reg_stats_selection, keywords[selection], c);
476 reg_print_depvars (FILE *fp, pspp_linreg_cache *c)
479 struct pspp_linreg_coeff coeff;
481 fprintf (fp, "char *model_depvars[%d] = {", c->n_indeps);
482 for (i = 1; i < c->n_indeps; i++)
485 fprintf (fp, "\"%s\",\n\t\t", coeff.v->name);
488 fprintf (fp, "\"%s\"};\n\t", coeff.v->name);
491 reg_print_getvar (FILE *fp, pspp_linreg_cache *c)
493 fprintf (fp, "static int\npspp_reg_getvar (char *v_name)\n{\n\t");
494 fprintf (fp, "int i;\n\tint n_vars = %d;\n\t",c->n_indeps);
495 reg_print_depvars (fp, c);
496 fprintf (fp, "for (i = 0; i < n_vars; i++)\n\t{\n\t\t");
497 fprintf (fp, "if (strcmp (v_name, model_depvars[i]) == 0)\n\t\t{\n\t\t\t");
498 fprintf (fp, "return i;\n\t\t}\n\t}\n}\n");
501 subcommand_export (int export, pspp_linreg_cache *c)
506 int n_quantiles = 100;
509 struct pspp_linreg_coeff coeff;
514 assert (model_file != NULL);
516 fp = fopen (handle_get_filename (model_file), "w");
517 fprintf (fp, "%s", reg_preamble);
518 fprintf (fp, "#include <string.h>\n#include <math.h>\n\n");
519 reg_print_getvar (fp, c);
520 fprintf (fp, "%s", reg_export_t_quantiles_1);
521 increment = 0.5 / (double) increment;
522 for (i = 0; i < n_quantiles - 1; i++)
524 tmp = 0.5 + 0.005 * (double) i;
525 fprintf (fp, "%.15e,\n\t\t", gsl_cdf_tdist_Pinv (tmp, c->n_obs - c->n_indeps));
527 fprintf (fp, "%.15e};\n\t", gsl_cdf_tdist_Pinv (.9995, c->n_obs - c->n_indeps));
528 fprintf (fp, "%s", reg_export_t_quantiles_2);
529 fprintf (fp, "%s", reg_mean_cmt);
530 fprintf (fp, "double\npspp_reg_estimate (const double *var_vals,");
531 fprintf (fp, "const char *var_names[])\n{\n\t");
532 fprintf (fp, "double model_coeffs[%d] = {", c->n_indeps);
533 for (i = 1; i < c->n_indeps; i++)
536 fprintf (fp, "%.15e,\n\t\t", coeff.estimate);
539 fprintf (fp, "%.15e};\n\t", coeff.estimate);
541 fprintf (fp, "double estimate = %.15e;\n\t", coeff.estimate);
542 fprintf (fp, "int i;\n\tint j;\n\n\t");
543 fprintf (fp, "for (i = 0; i < %d; i++)\n\t", c->n_indeps);
544 fprintf (fp, "%s", reg_getvar);
545 fprintf (fp, "const double cov[%d][%d] = {\n\t", c->n_coeffs, c->n_coeffs);
546 for (i = 0; i < c->cov->size1 - 1; i++)
549 for (j = 0; j < c->cov->size2 - 1; j++)
551 fprintf (fp, "%.15e, ", gsl_matrix_get (c->cov, i, j));
553 fprintf (fp, "%.15e},\n\t", gsl_matrix_get (c->cov, i, j));
556 for (j = 0; j < c->cov->size2 - 1; j++)
558 fprintf (fp, "%.15e, ", gsl_matrix_get (c->cov, c->cov->size1 - 1, j));
560 fprintf (fp, "%.15e}\n\t", gsl_matrix_get (c->cov, c->cov->size1 - 1, c->cov->size2 - 1));
561 fprintf (fp, "};\n\tint n_vars = %d;\n\tint i;\n\tint j;\n\t", c->n_indeps);
562 fprintf (fp, "double unshuffled_vals[%d];\n\t",c->n_indeps);
563 fprintf (fp, "%s", reg_variance);
564 fprintf (fp, "%s", reg_export_confidence_interval);
565 tmp = c->mse * c->mse;
566 fprintf (fp, "%s %.15e", reg_export_prediction_interval_1, tmp);
567 fprintf (fp, "%s %.15e", reg_export_prediction_interval_2, tmp);
568 fprintf (fp, "%s", reg_export_prediction_interval_3);
570 fp = fopen ("pspp_model_reg.h", "w");
571 fprintf (fp, "%s", reg_header);
576 regression_custom_export (struct cmd_regression *cmd)
578 /* 0 on failure, 1 on success, 2 on failure that should result in syntax error */
579 if (!lex_force_match ('('))
586 model_file = fh_parse ();
587 if (model_file == NULL)
591 if (!lex_force_match (')'))
598 cmd_regression (void)
600 if (!parse_regression (&cmd))
604 multipass_procedure_with_splits (run_regression, &cmd);
610 Is variable k one of the dependent variables?
616 for (j = 0; j < cmd.n_dependent; j++)
619 compare_var_names returns 0 if the variable
622 if (!compare_var_names (cmd.v_dependent[j], cmd.v_variables[k], NULL))
629 run_regression (const struct casefile *cf, void *cmd_ UNUSED)
638 Keep track of the missing cases.
640 int *is_missing_case;
641 const union value *val;
642 struct casereader *r;
643 struct casereader *r2;
646 struct variable **indep_vars;
647 struct design_matrix *X;
649 pspp_linreg_cache *lcache;
650 pspp_linreg_opts lopts;
652 n_data = casefile_get_case_cnt (cf);
654 is_missing_case = xnmalloc (n_data, sizeof (*is_missing_case));
655 for (i = 0; i < n_data; i++)
656 is_missing_case[i] = 0;
658 n_indep = cmd.n_variables - cmd.n_dependent;
659 indep_vars = xnmalloc (n_indep, sizeof *indep_vars);
661 lopts.get_depvar_mean_std = 1;
662 lopts.get_indep_mean_std = xnmalloc (n_indep, sizeof (int));
666 Read from the active file. The first pass encodes categorical
667 variables and drops cases with missing values.
670 for (i = 0; i < cmd.n_variables; i++)
674 v = cmd.v_variables[i];
677 if (v->type == ALPHA)
679 /* Make a place to hold the binary vectors
680 corresponding to this variable's values. */
681 cat_stored_values_create (v);
683 for (r = casefile_get_reader (cf);
684 casereader_read (r, &c); case_destroy (&c))
686 row = casereader_cnum (r) - 1;
688 val = case_data (&c, v->fv);
689 cat_value_update (v, val);
690 if (mv_is_value_missing (&v->miss, val))
692 if (!is_missing_case[row])
694 /* Now it is missing. */
696 is_missing_case[row] = 1;
703 Y = gsl_vector_alloc (n_data);
705 design_matrix_create (n_indep, (const struct variable **) indep_vars,
707 lcache = pspp_linreg_cache_alloc (X->m->size1, X->m->size2);
708 lcache->indep_means = gsl_vector_alloc (X->m->size2);
709 lcache->indep_std = gsl_vector_alloc (X->m->size2);
712 The second pass creates the design matrix.
715 for (r2 = casefile_get_reader (cf); casereader_read (r2, &c);
717 /* Iterate over the cases. */
719 case_num = casereader_cnum (r2) - 1;
720 if (!is_missing_case[case_num])
722 for (i = 0; i < cmd.n_variables; ++i) /* Iterate over the variables
723 for the current case.
726 v = cmd.v_variables[i];
727 val = case_data (&c, v->fv);
729 Independent/dependent variable separation. The
730 'variables' subcommand specifies a varlist which contains
731 both dependent and independent variables. The dependent
732 variables are specified with the 'dependent'
733 subcommand. We need to separate the two.
737 if (v->type != NUMERIC)
740 gettext ("Dependent variable must be numeric."));
741 pspp_reg_rc = CMD_FAILURE;
744 lcache->depvar = (const struct variable *) v;
745 gsl_vector_set (Y, row, val->f);
749 if (v->type == ALPHA)
751 design_matrix_set_categorical (X, row, v, val);
753 else if (v->type == NUMERIC)
755 design_matrix_set_numeric (X, row, v, val);
758 lopts.get_indep_mean_std[i] = 1;
765 Now that we know the number of coefficients, allocate space
766 and store pointers to the variables that correspond to the
769 lcache->coeff = xnmalloc (X->m->size2 + 1, sizeof (*lcache->coeff));
770 for (i = 0; i < X->m->size2; i++)
772 j = i + 1; /* The first coeff is the intercept. */
774 (const struct variable *) design_matrix_col_to_var (X, i);
775 assert (lcache->coeff[j].v != NULL);
778 For large data sets, use QR decomposition.
780 if (n_data > sqrt (n_indep) && n_data > REG_LARGE_DATA)
782 lcache->method = PSPP_LINREG_SVD;
785 Find the least-squares estimates and other statistics.
787 pspp_linreg ((const gsl_vector *) Y, X->m, &lopts, lcache);
788 subcommand_statistics (cmd.a_statistics, lcache);
789 subcommand_export (cmd.sbc_export, lcache);
791 design_matrix_destroy (X);
792 pspp_linreg_cache_free (lcache);
793 free (lopts.get_indep_mean_std);
795 free (is_missing_case);
796 casereader_destroy (r);