1 /* PSPP - linear regression.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Written by Jason H Stover <jason@sakla.net>.
5 This program is free software; you can redistribute it and/or
6 modify it under the terms of the GNU General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 This program is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 #include <gsl/gsl_cdf.h>
23 #include <gsl/gsl_vector.h>
24 #include <gsl/gsl_matrix.h>
27 #include "dictionary.h"
28 #include "file-handle.h"
35 #include <linreg/pspp_linreg.h>
41 "REGRESSION" (regression_):
65 static struct cmd_regression cmd;
68 Array holding the subscripts of the independent variables.
72 static void run_regression (const struct casefile *, void *);
74 STATISTICS subcommand output functions.
76 static void reg_stats_r (pspp_linreg_cache *);
77 static void reg_stats_coeff (pspp_linreg_cache *);
78 static void reg_stats_anova (pspp_linreg_cache *);
79 static void reg_stats_outs (pspp_linreg_cache *);
80 static void reg_stats_zpp (pspp_linreg_cache *);
81 static void reg_stats_label (pspp_linreg_cache *);
82 static void reg_stats_sha (pspp_linreg_cache *);
83 static void reg_stats_ci (pspp_linreg_cache *);
84 static void reg_stats_f (pspp_linreg_cache *);
85 static void reg_stats_bcov (pspp_linreg_cache *);
86 static void reg_stats_ses (pspp_linreg_cache *);
87 static void reg_stats_xtx (pspp_linreg_cache *);
88 static void reg_stats_collin (pspp_linreg_cache *);
89 static void reg_stats_tol (pspp_linreg_cache *);
90 static void reg_stats_selection (pspp_linreg_cache *);
91 static void statistics_keyword_output (void (*)(pspp_linreg_cache *),
92 int, pspp_linreg_cache *);
95 reg_stats_r (pspp_linreg_cache * c)
105 rsq = c->ssm / c->sst;
106 adjrsq = 1.0 - (1.0 - rsq) * (c->n_obs - 1.0) / (c->n_obs - c->n_indeps);
107 std_error = sqrt ((c->n_indeps - 1.0) / (c->n_obs - 1.0));
108 t = tab_create (n_cols, n_rows, 0);
109 tab_dim (t, tab_natural_dimensions);
110 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
111 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
112 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
113 tab_vline (t, TAL_0, 1, 0, 0);
115 tab_text (t, 1, 0, TAB_CENTER | TAT_TITLE, _("R"));
116 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("R Square"));
117 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Adjusted R Square"));
118 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Std. Error of the Estimate"));
119 tab_float (t, 1, 1, TAB_RIGHT, sqrt (rsq), 10, 2);
120 tab_float (t, 2, 1, TAB_RIGHT, rsq, 10, 2);
121 tab_float (t, 3, 1, TAB_RIGHT, adjrsq, 10, 2);
122 tab_float (t, 4, 1, TAB_RIGHT, std_error, 10, 2);
123 tab_title (t, 0, _("Model Summary"));
128 Table showing estimated regression coefficients.
131 reg_stats_coeff (pspp_linreg_cache * c)
146 n_rows = 2 + c->param_estimates->size;
147 t = tab_create (n_cols, n_rows, 0);
148 tab_headers (t, 2, 0, 1, 0);
149 tab_dim (t, tab_natural_dimensions);
150 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
151 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
152 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
153 tab_vline (t, TAL_0, 1, 0, 0);
155 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("B"));
156 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Std. Error"));
157 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Beta"));
158 tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("t"));
159 tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
160 tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("(Constant)"));
161 coeff = gsl_vector_get (c->param_estimates, 0);
162 tab_float (t, 2, 1, 0, coeff, 10, 2);
163 std_err = sqrt (gsl_matrix_get (c->cov, 0, 0));
164 tab_float (t, 3, 1, 0, std_err, 10, 2);
165 beta = coeff / c->depvar_std;
166 tab_float (t, 4, 1, 0, beta, 10, 2);
167 t_stat = coeff / std_err;
168 tab_float (t, 5, 1, 0, t_stat, 10, 2);
169 pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
170 tab_float (t, 6, 1, 0, pval, 10, 2);
171 for (j = 0; j < c->n_indeps; j++)
174 struct variable *v = cmd.v_variables[i];
175 label = var_to_string (v);
176 tab_text (t, 1, j + 2, TAB_CENTER, label);
178 Regression coefficients.
180 coeff = gsl_vector_get (c->param_estimates, j + 1);
181 tab_float (t, 2, j + 2, 0, coeff, 10, 2);
183 Standard error of the coefficients.
185 std_err = sqrt (gsl_matrix_get (c->cov, j + 1, j + 1));
186 tab_float (t, 3, j + 2, 0, std_err, 10, 2);
188 'Standardized' coefficient, i.e., regression coefficient
189 if all variables had unit variance.
191 beta = gsl_vector_get (c->indep_std, j + 1);
192 beta *= coeff / c->depvar_std;
193 tab_float (t, 4, j + 2, 0, beta, 10, 2);
196 Test statistic for H0: coefficient is 0.
198 t_stat = coeff / std_err;
199 tab_float (t, 5, j + 2, 0, t_stat, 10, 2);
201 P values for the test statistic above.
203 pval = 2 * gsl_cdf_tdist_Q (fabs (t_stat), 1.0);
204 tab_float (t, 6, j + 2, 0, pval, 10, 2);
206 tab_title (t, 0, _("Coefficients"));
211 Display the ANOVA table.
214 reg_stats_anova (pspp_linreg_cache * c)
218 const double msm = c->ssm / c->dfm;
219 const double mse = c->sse / c->dfe;
220 const double F = msm / mse;
221 const double pval = gsl_cdf_fdist_Q (F, c->dfm, c->dfe);
226 t = tab_create (n_cols, n_rows, 0);
227 tab_headers (t, 2, 0, 1, 0);
228 tab_dim (t, tab_natural_dimensions);
230 tab_box (t, TAL_2, TAL_2, -1, TAL_1, 0, 0, n_cols - 1, n_rows - 1);
232 tab_hline (t, TAL_2, 0, n_cols - 1, 1);
233 tab_vline (t, TAL_2, 2, 0, n_rows - 1);
234 tab_vline (t, TAL_0, 1, 0, 0);
236 tab_text (t, 2, 0, TAB_CENTER | TAT_TITLE, _("Sum of Squares"));
237 tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("df"));
238 tab_text (t, 4, 0, TAB_CENTER | TAT_TITLE, _("Mean Square"));
239 tab_text (t, 5, 0, TAB_CENTER | TAT_TITLE, _("F"));
240 tab_text (t, 6, 0, TAB_CENTER | TAT_TITLE, _("Significance"));
242 tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("Regression"));
243 tab_text (t, 1, 2, TAB_LEFT | TAT_TITLE, _("Residual"));
244 tab_text (t, 1, 3, TAB_LEFT | TAT_TITLE, _("Total"));
246 /* Sums of Squares */
247 tab_float (t, 2, 1, 0, c->ssm, 10, 2);
248 tab_float (t, 2, 3, 0, c->sst, 10, 2);
249 tab_float (t, 2, 2, 0, c->sse, 10, 2);
252 /* Degrees of freedom */
253 tab_float (t, 3, 1, 0, c->dfm, 4, 0);
254 tab_float (t, 3, 2, 0, c->dfe, 4, 0);
255 tab_float (t, 3, 3, 0, c->dft, 4, 0);
259 tab_float (t, 4, 1, TAB_RIGHT, msm, 8, 3);
260 tab_float (t, 4, 2, TAB_RIGHT, mse, 8, 3);
262 tab_float (t, 5, 1, 0, F, 8, 3);
264 tab_float (t, 6, 1, 0, pval, 8, 3);
266 tab_title (t, 0, _("ANOVA"));
270 reg_stats_outs (pspp_linreg_cache * c)
275 reg_stats_zpp (pspp_linreg_cache * c)
280 reg_stats_label (pspp_linreg_cache * c)
285 reg_stats_sha (pspp_linreg_cache * c)
290 reg_stats_ci (pspp_linreg_cache * c)
295 reg_stats_f (pspp_linreg_cache * c)
300 reg_stats_bcov (pspp_linreg_cache * c)
305 reg_stats_ses (pspp_linreg_cache * c)
310 reg_stats_xtx (pspp_linreg_cache * c)
315 reg_stats_collin (pspp_linreg_cache * c)
320 reg_stats_tol (pspp_linreg_cache * c)
325 reg_stats_selection (pspp_linreg_cache * c)
331 statistics_keyword_output (void (*function) (pspp_linreg_cache *),
332 int keyword, pspp_linreg_cache * c)
341 subcommand_statistics (int *keywords, pspp_linreg_cache * c)
344 The order here must match the order in which the STATISTICS
345 keywords appear in the specification section above.
372 Set everything but F.
374 for (i = 0; i < f; i++)
381 for (i = 0; i < all; i++)
389 Default output: ANOVA table, parameter estimates,
390 and statistics for variables not entered into model,
393 if (keywords[defaults] | d)
395 *(keywords + anova) = 1;
396 *(keywords + outs) = 1;
397 *(keywords + coeff) = 1;
401 statistics_keyword_output (reg_stats_r, keywords[r], c);
402 statistics_keyword_output (reg_stats_anova, keywords[anova], c);
403 statistics_keyword_output (reg_stats_coeff, keywords[coeff], c);
404 statistics_keyword_output (reg_stats_outs, keywords[outs], c);
405 statistics_keyword_output (reg_stats_zpp, keywords[zpp], c);
406 statistics_keyword_output (reg_stats_label, keywords[label], c);
407 statistics_keyword_output (reg_stats_sha, keywords[sha], c);
408 statistics_keyword_output (reg_stats_ci, keywords[ci], c);
409 statistics_keyword_output (reg_stats_f, keywords[f], c);
410 statistics_keyword_output (reg_stats_bcov, keywords[bcov], c);
411 statistics_keyword_output (reg_stats_ses, keywords[ses], c);
412 statistics_keyword_output (reg_stats_xtx, keywords[xtx], c);
413 statistics_keyword_output (reg_stats_collin, keywords[collin], c);
414 statistics_keyword_output (reg_stats_tol, keywords[tol], c);
415 statistics_keyword_output (reg_stats_selection, keywords[selection], c);
419 cmd_regression (void)
421 if (!parse_regression (&cmd))
425 multipass_procedure_with_splits (run_regression, &cmd);
431 Is variable k one of the dependent variables?
437 for (j = 0; j < cmd.n_dependent; j++)
440 compare_var_names returns 0 if the variable
443 if (!compare_var_names (cmd.v_dependent[j], cmd.v_variables[k], NULL))
450 run_regression (const struct casefile *cf, void *cmd_)
457 const union value *val;
458 struct casereader *r;
459 struct casereader *r2;
461 const struct variable *v;
462 struct recoded_categorical_array *ca;
463 struct recoded_categorical *rc;
464 struct design_matrix *X;
466 pspp_linreg_cache *lcache;
467 pspp_linreg_opts lopts;
469 n_data = casefile_get_case_cnt (cf);
470 n_indep = cmd.n_variables - cmd.n_dependent;
471 indep_vars = (size_t *) malloc (n_indep * sizeof (*indep_vars));
473 Y = gsl_vector_alloc (n_data);
474 lopts.get_depvar_mean_std = 1;
475 lopts.get_indep_mean_std = (int *) malloc (n_indep * sizeof (int));
477 lcache = pspp_linreg_cache_alloc (n_data, n_indep);
478 lcache->indep_means = gsl_vector_alloc (n_indep);
479 lcache->indep_std = gsl_vector_alloc (n_indep);
482 Read from the active file. The first pass encodes categorical
485 ca = cr_recoded_cat_ar_create (cmd.n_variables, cmd.v_variables);
486 for (r = casefile_get_reader (cf);
487 casereader_read (r, &c); case_destroy (&c))
489 for (i = 0; i < ca->n_vars; i++)
491 v = (*(ca->a + i))->v;
492 val = case_data (&c, v->fv);
493 cr_value_update (*(ca->a + i), val);
496 cr_create_value_matrices (ca);
498 design_matrix_create (n_indep, (const struct variable **) cmd.v_variables,
502 The second pass creates the design matrix.
504 for (r2 = casefile_get_reader (cf); casereader_read (r2, &c);
506 /* Iterate over the cases. */
509 row = casereader_cnum (r2) - 1;
510 for (i = 0; i < cmd.n_variables; ++i) /* Iterate over the variables
511 for the current case.
514 v = cmd.v_variables[i];
515 val = case_data (&c, v->fv);
517 Independent/dependent variable separation. The
518 'variables' subcommand specifies a varlist which contains
519 both dependent and independent variables. The dependent
520 variables are specified with the 'dependent'
521 subcommand. We need to separate the two.
525 assert (v->type == NUMERIC);
526 gsl_vector_set (Y, row, val->f);
530 if (v->type == ALPHA)
532 rc = cr_var_to_recoded_categorical (v, ca);
533 design_matrix_set_categorical (X, row, v, val, rc);
535 else if (v->type == NUMERIC)
537 design_matrix_set_numeric (X, row, v, val);
542 lopts.get_indep_mean_std[i] = 1;
547 Find the least-squares estimates and other statistics.
549 pspp_linreg ((const gsl_vector *) Y, X->m, &lopts, lcache);
550 subcommand_statistics (cmd.a_statistics, lcache);
552 design_matrix_destroy (X);
553 pspp_linreg_cache_free (lcache);
554 free (lopts.get_indep_mean_std);
556 casereader_destroy (r);