3 // PSPP - a program for statistical analysis.
4 // Copyright (C) 2005, 2006, 2009, 2010, 2011, 2012, 2015, 2016 Free Software Foundation, Inc.
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
19 operator NEG (x) = -x;
21 operator ADD (a, b) = a + b;
22 operator SUB (a, b) = a - b;
24 absorb_miss operator MUL (a, b)
25 = (a == 0. || b == 0. ? 0.
26 : a == SYSMIS || b == SYSMIS ? SYSMIS
29 absorb_miss operator DIV (a, b)
31 : a == SYSMIS || b == SYSMIS ? SYSMIS
34 absorb_miss operator POW (a, b)
35 = (a == SYSMIS ? (b == 0. ? 1. : a)
36 : b == SYSMIS ? (a == 0. ? 0. : SYSMIS)
37 : a == 0. && b <= 0. ? SYSMIS
40 absorb_miss boolean operator AND (boolean a, boolean b)
43 : b == SYSMIS ? SYSMIS
46 absorb_miss boolean operator OR (boolean a, boolean b)
49 : b == SYSMIS ? SYSMIS
52 boolean operator NOT (boolean a)
57 // Numeric relational operators.
58 boolean operator EQ (a, b) = a == b;
59 boolean operator GE (a, b) = a >= b;
60 boolean operator GT (a, b) = a > b;
61 boolean operator LE (a, b) = a <= b;
62 boolean operator LT (a, b) = a < b;
63 boolean operator NE (a, b) = a != b;
65 // String relational operators.
66 boolean operator EQ_STRING (string a, string b) = compare_string_3way (&a, &b) == 0;
67 boolean operator GE_STRING (string a, string b) = compare_string_3way (&a, &b) >= 0;
68 boolean operator GT_STRING (string a, string b) = compare_string_3way (&a, &b) > 0;
69 boolean operator LE_STRING (string a, string b) = compare_string_3way (&a, &b) <= 0;
70 boolean operator LT_STRING (string a, string b) = compare_string_3way (&a, &b) < 0;
71 boolean operator NE_STRING (string a, string b) = compare_string_3way (&a, &b) != 0;
74 function ABS (x) = fabs (x);
75 extension function ACOS (x >= -1 && x <= 1) = acos (x);
76 function ASIN (x >= -1 && x <= 1) = asin (x);
77 function ATAN (x) = atan (x);
78 extension function ARCOS (x >= -1 && x <= 1) = acos (x);
79 function ARSIN (x >= -1 && x <= 1) = asin (x);
80 function ARTAN (x) = atan (x);
81 function COS (x) = cos (x);
82 function EXP (x) = check_errno (exp (x));
83 function LG10(x) = check_errno (log10 (x));
84 function LN (x) = check_errno (log (x));
85 function LNGAMMA (x >= 0) = gsl_sf_lngamma (x);
86 function MOD10 (x) = fmod (x, 10);
87 function RND (x) = round_nearest (x, 1, 0);
88 function RND (x, mult != 0) = round_nearest (x, mult, 0);
89 function RND (x, mult != 0, fuzzbits >= 0) = round_nearest (x, mult, fuzzbits);
90 function SIN (x) = sin (x);
91 function SQRT (x >= 0) = sqrt (x);
92 function TAN (x) = check_errno (tan (x));
93 function TRUNC (x) = round_zero (x, 1, 0);
94 function TRUNC (x, mult != 0) = round_zero (x, mult, 0);
95 function TRUNC (x, mult != 0, fuzzbits >= 0) = round_zero (x, mult, fuzzbits);
97 absorb_miss function MOD (n, d)
100 return n != SYSMIS ? fmod (n, d) : SYSMIS;
102 return n != 0. ? SYSMIS : 0.;
105 // N-ary numeric functions.
106 absorb_miss boolean function ANY (x != SYSMIS, a[n])
111 for (i = 0; i < n; i++)
114 else if (a[i] == SYSMIS)
117 return sysmis ? SYSMIS : 0.;
120 boolean function ANY (string x, string a[n])
124 for (i = 0; i < n; i++)
125 if (!compare_string_3way (&x, &a[i]))
130 function CFVAR.2 (a[n])
132 double mean, variance;
134 moments_of_doubles (a, n, NULL, &mean, &variance, NULL, NULL);
136 if (mean == SYSMIS || mean == 0 || variance == SYSMIS)
139 return sqrt (variance) / mean;
142 function MAX.1 (a[n])
148 for (i = 0; i < n; i++)
149 if (a[i] != SYSMIS && a[i] > max)
154 string function MAX (string a[n])
156 struct substring *max;
160 for (i = 1; i < n; i++)
161 if (compare_string_3way (&a[i], max) > 0)
166 function MEAN.1 (a[n])
169 moments_of_doubles (a, n, NULL, &mean, NULL, NULL, NULL);
173 function MEDIAN.1 (a[n])
175 return median (a, n);
178 function MIN.1 (a[n])
184 for (i = 0; i < n; i++)
185 if (a[i] != SYSMIS && a[i] < min)
190 string function MIN (string a[n])
192 struct substring *min;
196 for (i = 1; i < n; i++)
197 if (compare_string_3way (&a[i], min) < 0)
202 absorb_miss function NMISS (a[n])
205 size_t missing_cnt = 0;
207 for (i = 0; i < n; i++)
208 missing_cnt += a[i] == SYSMIS;
212 absorb_miss function NVALID (a[n])
215 size_t valid_cnt = 0;
217 for (i = 0; i < n; i++)
218 valid_cnt += a[i] != SYSMIS;
222 absorb_miss boolean function RANGE (x != SYSMIS, a[n*2])
227 for (i = 0; i < n; i++)
230 double y = a[2 * i + 1];
231 if (w != SYSMIS && y != SYSMIS)
233 if (w <= x && x <= y)
239 return sysmis ? SYSMIS : 0.;
242 boolean function RANGE (string x, string a[n*2])
246 for (i = 0; i < n; i++)
248 struct substring *w = &a[2 * i];
249 struct substring *y = &a[2 * i + 1];
250 if (compare_string_3way (w, &x) <= 0 && compare_string_3way (&x, y) <= 0)
259 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
260 return sqrt (variance);
263 function SUM.1 (a[n])
269 for (i = 0; i < n; i++)
275 function VARIANCE.2 (a[n])
278 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
282 // Time construction & extraction functions.
283 function TIME.HMS (h, m, s)
285 if ((h > 0. || m > 0. || s > 0.) && (h < 0. || m < 0. || s < 0.))
287 msg (SW, _("TIME.HMS cannot mix positive and negative arguments."));
291 return H_S * h + MIN_S * m + s;
293 function TIME.DAYS (days) = days * DAY_S;
294 function CTIME.DAYS (time) = time / DAY_S;
295 function CTIME.HOURS (time) = time / H_S;
296 function CTIME.MINUTES (time) = time / MIN_S;
297 function CTIME.SECONDS (time) = time;
299 // Date construction functions.
300 function DATE.DMY (d, m, y) = expr_ymd_to_date (y, m, d);
301 function DATE.MDY (m, d, y) = expr_ymd_to_date (y, m, d);
302 function DATE.MOYR (m, y) = expr_ymd_to_date (y, m, 1);
303 function DATE.QYR (q, y)
305 if (q < 1.0 || q > 4.0 || q != (int) q)
307 msg (SW, _("The first argument to DATE.QYR must be 1, 2, 3, or 4."));
310 return expr_ymd_to_date (y, q * 3 - 2, 1);
312 function DATE.WKYR (w, y) = expr_wkyr_to_date (w, y);
313 function DATE.YRDAY (y, yday) = expr_yrday_to_date (y, yday);
314 function YRMODA (y, m, d) = expr_yrmoda (y, m, d);
316 // Date extraction functions.
317 function XDATE.TDAY (date) = floor (date / DAY_S);
318 function XDATE.HOUR (date) = fmod (floor (date / H_S), DAY_H);
319 function XDATE.MINUTE (date) = fmod (floor (date / H_MIN), H_MIN);
320 function XDATE.SECOND (date) = fmod (date, MIN_S);
321 function XDATE.DATE (date) = floor (date / DAY_S) * DAY_S;
322 function XDATE.TIME (date) = fmod (date, DAY_S);
324 function XDATE.JDAY (date >= DAY_S) = calendar_offset_to_yday (date / DAY_S);
325 function XDATE.MDAY (date >= DAY_S) = calendar_offset_to_mday (date / DAY_S);
326 function XDATE.MONTH (date >= DAY_S)
327 = calendar_offset_to_month (date / DAY_S);
328 function XDATE.QUARTER (date >= DAY_S)
329 = (calendar_offset_to_month (date / DAY_S) - 1) / 3 + 1;
330 function XDATE.WEEK (date >= DAY_S)
331 = (calendar_offset_to_yday (date / DAY_S) - 1) / 7 + 1;
332 function XDATE.WKDAY (date >= DAY_S) = calendar_offset_to_wday (date / DAY_S);
333 function XDATE.YEAR (date >= DAY_S) = calendar_offset_to_year (date / DAY_S);
335 // Date arithmetic functions.
336 no_abbrev function DATEDIFF (date2 >= DAY_S, date1 >= DAY_S, string unit)
337 = expr_date_difference (date1, date2, unit);
338 no_abbrev function DATESUM (date, quantity, string unit)
339 = expr_date_sum (date, quantity, unit, ss_cstr ("closest"));
340 no_abbrev function DATESUM (date, quantity, string unit, string method)
341 = expr_date_sum (date, quantity, unit, method);
345 string function CONCAT (string a[n])
348 struct substring dst;
351 dst = alloc_string (e, MAX_STRING);
353 for (i = 0; i < n; i++)
355 struct substring *src = &a[i];
358 copy_len = src->length;
359 if (dst.length + copy_len > MAX_STRING)
360 copy_len = MAX_STRING - dst.length;
361 memcpy (&dst.string[dst.length], src->string, copy_len);
362 dst.length += copy_len;
368 function INDEX (string haystack, string needle)
370 if (needle.length == 0)
374 int limit = haystack.length - needle.length + 1;
376 for (i = 1; i <= limit; i++)
377 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
383 function INDEX (string haystack, string needles, needle_len_d)
385 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
386 || (int) needle_len_d != needle_len_d
387 || needles.length == 0)
391 int needle_len = needle_len_d;
392 if (needle_len < 0 || needle_len > needles.length
393 || needles.length % needle_len != 0)
397 int limit = haystack.length - needle_len + 1;
399 for (i = 1; i <= limit; i++)
400 for (j = 0; j < needles.length; j += needle_len)
401 if (!memcmp (&haystack.string[i - 1], &needles.string[j],
409 function RINDEX (string haystack, string needle)
411 if (needle.length == 0)
415 int limit = haystack.length - needle.length + 1;
417 for (i = limit; i >= 1; i--)
418 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
424 function RINDEX (string haystack, string needles, needle_len_d)
426 if (needle_len_d <= 0 || needle_len_d >= INT_MAX
427 || (int) needle_len_d != needle_len_d
428 || needles.length == 0)
432 int needle_len = needle_len_d;
433 if (needle_len < 0 || needle_len > needles.length
434 || needles.length % needle_len != 0)
438 int limit = haystack.length - needle_len + 1;
440 for (i = limit; i >= 1; i--)
441 for (j = 0; j < needles.length; j += needle_len)
442 if (!memcmp (&haystack.string[i - 1],
443 &needles.string[j], needle_len))
450 function LENGTH (string s)
455 string function LOWER (string s)
459 for (i = 0; i < s.length; i++)
460 s.string[i] = tolower ((unsigned char) s.string[i]);
464 function MBLEN.BYTE (string s, idx)
466 if (idx < 0 || idx >= s.length || (int) idx != idx)
472 string function UPCASE (string s)
476 for (i = 0; i < s.length; i++)
477 s.string[i] = toupper ((unsigned char) s.string[i]);
481 absorb_miss string function LPAD (string s, n)
484 if (n < 0 || n > MAX_STRING || (int) n != n)
486 else if (s.length >= n)
490 struct substring t = alloc_string (e, n);
491 memset (t.string, ' ', n - s.length);
492 memcpy (&t.string[(int) n - s.length], s.string, s.length);
497 absorb_miss string function LPAD (string s, n, string c)
500 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
502 else if (s.length >= n)
506 struct substring t = alloc_string (e, n);
507 memset (t.string, c.string[0], n - s.length);
508 memcpy (&t.string[(int) n - s.length], s.string, s.length);
513 string function REPLACE (string haystack, string needle, string replacement)
515 = replace_string (e, haystack, needle, replacement, DBL_MAX);
517 absorb_miss string function REPLACE (string haystack, string needle,
518 string replacement, n)
520 = replace_string (e, haystack, needle, replacement, n);
522 absorb_miss string function RPAD (string s, n)
525 if (n < 0 || n > MAX_STRING || (int) n != n)
527 else if (s.length >= n)
531 struct substring t = alloc_string (e, n);
532 memcpy (t.string, s.string, s.length);
533 memset (&t.string[s.length], ' ', n - s.length);
538 absorb_miss string function RPAD (string s, n, string c)
541 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
543 else if (s.length >= n)
547 struct substring t = alloc_string (e, n);
548 memcpy (t.string, s.string, s.length);
549 memset (&t.string[s.length], c.string[0], n - s.length);
554 string function LTRIM (string s)
556 while (s.length > 0 && s.string[0] == ' ')
564 string function LTRIM (string s, string c)
568 while (s.length > 0 && s.string[0] == c.string[0])
579 string function RTRIM (string s)
581 while (s.length > 0 && s.string[s.length - 1] == ' ')
586 string function RTRIM (string s, string c)
590 while (s.length > 0 && s.string[s.length - 1] == c.string[0])
598 function NUMBER (string s, ni_format f)
605 error = data_in (s, C_ENCODING, f->type, &out, 0, NULL);
607 data_in_imply_decimals (s, C_ENCODING, f->type, f->d, &out);
610 msg (SE, "Cannot parse `%.*s' as format %s: %s",
611 (int) s.length, s.string, fmt_name (f->type), error);
617 absorb_miss string function STRING (x, no_format f)
621 struct substring dst;
626 assert (!fmt_is_string (f->type));
627 s = data_out (&v, C_ENCODING, f);
628 dst = alloc_string (e, strlen (s));
629 strcpy (dst.string, s);
634 absorb_miss string function STRUNC (string s, n)
636 if (n < 1 || n == SYSMIS)
641 while (s.length > 0 && s.string[s.length - 1] == ' ')
646 absorb_miss string function SUBSTR (string s, ofs)
649 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs)
650 return copy_string (e, &s.string[(int) ofs - 1], s.length - ofs + 1);
655 absorb_miss string function SUBSTR (string s, ofs, cnt)
658 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs
659 && cnt >= 1 && cnt <= INT_MAX && (int) cnt == cnt)
661 int cnt_max = s.length - (int) ofs + 1;
662 return copy_string (e, &s.string[(int) ofs - 1],
663 cnt <= cnt_max ? cnt : cnt_max);
669 absorb_miss no_opt no_abbrev string function VALUELABEL (var v)
673 const char *label = var_lookup_value_label (v, case_data (c, v));
675 return copy_string (e, label, strlen (label));
681 operator SQUARE (x) = x * x;
682 boolean operator NUM_TO_BOOLEAN (x, string op_name)
684 if (x == 0. || x == 1. || x == SYSMIS)
687 if (!ss_is_empty (op_name))
688 msg (SE, _("An operand of the %.*s operator was found to have a value "
689 "other than 0 (false), 1 (true), or the system-missing "
690 "value. The result was forced to 0."),
691 (int) op_name.length, op_name.string);
693 msg (SE, _("A logical expression was found to have a value other than 0 "
694 "(false), 1 (true), or the system-missing value. The result "
695 "was forced to 0."));
699 operator BOOLEAN_TO_NUM (boolean x) = x;
701 // Beta distribution.
702 function PDF.BETA (x >= 0 && x <= 1, a > 0, b > 0)
703 = gsl_ran_beta_pdf (x, a, b);
704 function CDF.BETA (x >= 0 && x <= 1, a > 0, b > 0) = gsl_cdf_beta_P (x, a, b);
705 function IDF.BETA (P >= 0 && P <= 1, a > 0, b > 0)
706 = gsl_cdf_beta_Pinv (P, a, b);
707 no_opt function RV.BETA (a > 0, b > 0) = gsl_ran_beta (get_rng (), a, b);
708 function NCDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
709 = ncdf_beta (x, a, b, lambda);
710 function NPDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
711 = npdf_beta (x, a, b, lambda);
713 // Bivariate normal distribution.
714 function CDF.BVNOR (x0, x1, r >= -1 && r <= 1) = cdf_bvnor (x0, x1, r);
715 function PDF.BVNOR (x0, x1, r >= -1 && r <= 1)
716 = gsl_ran_bivariate_gaussian_pdf (x0, x1, 1, 1, r);
718 // Cauchy distribution.
719 function CDF.CAUCHY (x, a, b > 0) = gsl_cdf_cauchy_P ((x - a) / b, 1);
720 function IDF.CAUCHY (P > 0 && P < 1, a, b > 0)
721 = a + b * gsl_cdf_cauchy_Pinv (P, 1);
722 function PDF.CAUCHY (x, a, b > 0) = gsl_ran_cauchy_pdf ((x - a) / b, 1) / b;
723 no_opt function RV.CAUCHY (a, b > 0) = a + b * gsl_ran_cauchy (get_rng (), 1);
725 // Chi-square distribution.
726 function CDF.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_P (x, df);
727 function IDF.CHISQ (P >= 0 && P < 1, df > 0) = gsl_cdf_chisq_Pinv (P, df);
728 function PDF.CHISQ (x >= 0, df > 0) = gsl_ran_chisq_pdf (x, df);
729 no_opt function RV.CHISQ (df > 0) = gsl_ran_chisq (get_rng (), df);
730 function NCDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
731 function NPDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
732 function SIG.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_Q (x, df);
734 // Exponential distribution.
735 function CDF.EXP (x >= 0, a > 0) = gsl_cdf_exponential_P (x, 1. / a);
736 function IDF.EXP (P >= 0 && P < 1, a > 0)
737 = gsl_cdf_exponential_Pinv (P, 1. / a);
738 function PDF.EXP (x >= 0, a > 0) = gsl_ran_exponential_pdf (x, 1. / a);
739 no_opt function RV.EXP (a > 0) = gsl_ran_exponential (get_rng (), 1. / a);
741 // Exponential power distribution.
742 extension function PDF.XPOWER (x, a > 0, b >= 0)
743 = gsl_ran_exppow_pdf (x, a, b);
744 no_opt extension function RV.XPOWER (a > 0, b >= 0)
745 = gsl_ran_exppow (get_rng (), a, b);
748 function CDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_P (x, df1, df2);
749 function IDF.F (P >= 0 && P < 1, df1 > 0, df2 > 0) = idf_fdist (P, df1, df2);
750 function PDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_ran_fdist_pdf (x, df1, df2);
751 no_opt function RV.F (df1 > 0, df2 > 0) = gsl_ran_fdist (get_rng (), df1, df2);
752 function NCDF.F (x >= 0, df1 > 0, df2 > 0, lambda >= 0) = unimplemented;
753 function NPDF.F (x >= 0, df1 > 0, df2 > 0, lmabda >= 0) = unimplemented;
754 function SIG.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_Q (x, df1, df2);
756 // Gamma distribution.
757 function CDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_cdf_gamma_P (x, a, 1. / b);
758 function IDF.GAMMA (P >= 0 && P <= 1, a > 0, b > 0)
759 = gsl_cdf_gamma_Pinv (P, a, 1. / b);
760 function PDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_ran_gamma_pdf (x, a, 1. / b);
761 no_opt function RV.GAMMA (a > 0, b > 0)
762 = gsl_ran_gamma (get_rng (), a, 1. / b);
764 // Half-normal distribution.
765 function CDF.HALFNRM (x, a, b > 0) = unimplemented;
766 function IDF.HALFNRM (P > 0 && P < 1, a, b > 0) = unimplemented;
767 function PDF.HALFNRM (x, a, b > 0) = unimplemented;
768 no_opt function RV.HALFNRM (a, b > 0) = unimplemented;
770 // Inverse Gaussian distribution.
771 function CDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
772 function IDF.IGAUSS (P >= 0 && P < 1, a > 0, b > 0) = unimplemented;
773 function PDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
774 no_opt function RV.IGAUSS (a > 0, b > 0) = unimplemented;
776 // Landau distribution.
777 extension function PDF.LANDAU (x) = gsl_ran_landau_pdf (x);
778 no_opt extension function RV.LANDAU () = gsl_ran_landau (get_rng ());
780 // Laplace distribution.
781 function CDF.LAPLACE (x, a, b > 0) = gsl_cdf_laplace_P ((x - a) / b, 1);
782 function IDF.LAPLACE (P > 0 && P < 1, a, b > 0)
783 = a + b * gsl_cdf_laplace_Pinv (P, 1);
784 function PDF.LAPLACE (x, a, b > 0) = gsl_ran_laplace_pdf ((x - a) / b, 1) / b;
785 no_opt function RV.LAPLACE (a, b > 0)
786 = a + b * gsl_ran_laplace (get_rng (), 1);
788 // Levy alpha-stable distribution.
789 no_opt extension function RV.LEVY (c, alpha > 0 && alpha <= 2)
790 = gsl_ran_levy (get_rng (), c, alpha);
792 // Levy skew alpha-stable distribution.
793 no_opt extension function RV.LVSKEW (c, alpha > 0 && alpha <= 2,
794 beta >= -1 && beta <= 1)
795 = gsl_ran_levy_skew (get_rng (), c, alpha, beta);
797 // Logistic distribution.
798 function CDF.LOGISTIC (x, a, b > 0) = gsl_cdf_logistic_P ((x - a) / b, 1);
799 function IDF.LOGISTIC (P > 0 && P < 1, a, b > 0)
800 = a + b * gsl_cdf_logistic_Pinv (P, 1);
801 function PDF.LOGISTIC (x, a, b > 0)
802 = gsl_ran_logistic_pdf ((x - a) / b, 1) / b;
803 no_opt function RV.LOGISTIC (a, b > 0)
804 = a + b * gsl_ran_logistic (get_rng (), 1);
806 // Lognormal distribution.
807 function CDF.LNORMAL (x >= 0, m > 0, s > 0)
808 = gsl_cdf_lognormal_P (x, log (m), s);
809 function IDF.LNORMAL (P >= 0 && P < 1, m > 0, s > 0)
810 = gsl_cdf_lognormal_Pinv (P, log (m), s);
811 function PDF.LNORMAL (x >= 0, m > 0, s > 0)
812 = gsl_ran_lognormal_pdf (x, log (m), s);
813 no_opt function RV.LNORMAL (m > 0, s > 0)
814 = gsl_ran_lognormal (get_rng (), log (m), s);
816 // Normal distribution.
817 function CDF.NORMAL (x, u, s > 0) = gsl_cdf_gaussian_P (x - u, s);
818 function IDF.NORMAL (P > 0 && P < 1, u, s > 0)
819 = u + gsl_cdf_gaussian_Pinv (P, s);
820 function PDF.NORMAL (x, u, s > 0) = gsl_ran_gaussian_pdf ((x - u) / s, 1) / s;
821 no_opt function RV.NORMAL (u, s > 0) = u + gsl_ran_gaussian (get_rng (), s);
822 function CDFNORM (x) = gsl_cdf_ugaussian_P (x);
823 function PROBIT (P > 0 && P < 1) = gsl_cdf_ugaussian_Pinv (P);
824 no_opt function NORMAL (s > 0) = gsl_ran_gaussian (get_rng (), s);
826 // Normal tail distribution.
827 function PDF.NTAIL (x, a > 0, sigma > 0)
828 = gsl_ran_gaussian_tail_pdf (x, a, sigma);
829 no_opt function RV.NTAIL (a > 0, sigma > 0)
830 = gsl_ran_gaussian_tail (get_rng (), a, sigma);
832 // Pareto distribution.
833 function CDF.PARETO (x >= a, a > 0, b > 0) = gsl_cdf_pareto_P (x, b, a);
834 function IDF.PARETO (P >= 0 && P < 1, a > 0, b > 0)
835 = gsl_cdf_pareto_Pinv (P, b, a);
836 function PDF.PARETO (x >= a, a > 0, b > 0) = gsl_ran_pareto_pdf (x, b, a);
837 no_opt function RV.PARETO (a > 0, b > 0) = gsl_ran_pareto (get_rng (), b, a);
839 // Rayleigh distribution.
840 extension function CDF.RAYLEIGH (x, sigma > 0) = gsl_cdf_rayleigh_P (x, sigma);
841 extension function IDF.RAYLEIGH (P >= 0 && P <= 1, sigma > 0)
842 = gsl_cdf_rayleigh_Pinv (P, sigma);
843 extension function PDF.RAYLEIGH (x, sigma > 0)
844 = gsl_ran_rayleigh_pdf (x, sigma);
845 no_opt extension function RV.RAYLEIGH (sigma > 0)
846 = gsl_ran_rayleigh (get_rng (), sigma);
848 // Rayleigh tail distribution.
849 extension function PDF.RTAIL (x, a, sigma)
850 = gsl_ran_rayleigh_tail_pdf (x, a, sigma);
851 no_opt extension function RV.RTAIL (a, sigma)
852 = gsl_ran_rayleigh_tail (get_rng (), a, sigma);
854 // Studentized maximum modulus distribution.
855 function CDF.SMOD (x > 0, a >= 1, b >= 1) = unimplemented;
856 function IDF.SMOD (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
858 // Studentized range distribution.
859 function CDF.SRANGE (x > 0, a >= 1, b >= 1) = unimplemented;
860 function IDF.SRANGE (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
862 // Student t distribution.
863 function CDF.T (x, df > 0) = gsl_cdf_tdist_P (x, df);
864 function IDF.T (P > 0 && P < 1, df > 0) = gsl_cdf_tdist_Pinv (P, df);
865 function PDF.T (x, df > 0) = gsl_ran_tdist_pdf (x, df);
866 no_opt function RV.T (df > 0) = gsl_ran_tdist (get_rng (), df);
867 function NCDF.T (x, df > 0, nc) = unimplemented;
868 function NPDF.T (x, df > 0, nc) = unimplemented;
870 // Type-1 Gumbel distribution.
871 extension function CDF.T1G (x, a, b) = gsl_cdf_gumbel1_P (x, a, b);
872 extension function IDF.T1G (P >= 0 && P <= 1, a, b)
873 = gsl_cdf_gumbel1_P (P, a, b);
874 extension function PDF.T1G (x, a, b) = gsl_ran_gumbel1_pdf (x, a, b);
875 no_opt extension function RV.T1G (a, b) = gsl_ran_gumbel1 (get_rng (), a, b);
877 // Type-2 Gumbel distribution.
878 extension function CDF.T2G (x, a, b) = gsl_cdf_gumbel2_P (x, a, b);
879 extension function IDF.T2G (P >= 0 && P <= 1, a, b)
880 = gsl_cdf_gumbel2_P (P, a, b);
881 extension function PDF.T2G (x, a, b) = gsl_ran_gumbel2_pdf (x, a, b);
882 no_opt extension function RV.T2G (a, b) = gsl_ran_gumbel2 (get_rng (), a, b);
884 // Uniform distribution.
885 function CDF.UNIFORM (x <= b, a <= x, b) = gsl_cdf_flat_P (x, a, b);
886 function IDF.UNIFORM (P >= 0 && P <= 1, a <= b, b)
887 = gsl_cdf_flat_Pinv (P, a, b);
888 function PDF.UNIFORM (x <= b, a <= x, b) = gsl_ran_flat_pdf (x, a, b);
889 no_opt function RV.UNIFORM (a <= b, b) = gsl_ran_flat (get_rng (), a, b);
890 no_opt function UNIFORM (b >= 0) = gsl_ran_flat (get_rng (), 0, b);
892 // Weibull distribution.
893 function CDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_cdf_weibull_P (x, a, b);
894 function IDF.WEIBULL (P >= 0 && P < 1, a > 0, b > 0)
895 = gsl_cdf_weibull_Pinv (P, a, b);
896 function PDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_ran_weibull_pdf (x, a, b);
897 no_opt function RV.WEIBULL (a > 0, b > 0) = gsl_ran_weibull (get_rng (), a, b);
899 // Bernoulli distribution.
900 function CDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
902 function PDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
903 = gsl_ran_bernoulli_pdf (k, p);
904 no_opt function RV.BERNOULLI (p >= 0 && p <= 1)
905 = gsl_ran_bernoulli (get_rng (), p);
907 // Binomial distribution.
908 function CDF.BINOM (k, n > 0 && n == floor (n), p >= 0 && p <= 1)
909 = gsl_cdf_binomial_P (k, p, n);
910 function PDF.BINOM (k >= 0 && k == floor (k) && k <= n,
911 n > 0 && n == floor (n),
913 = gsl_ran_binomial_pdf (k, p, n);
914 no_opt function RV.BINOM (p > 0 && p == floor (p), n >= 0 && n <= 1)
915 = gsl_ran_binomial (get_rng (), p, n);
917 // Geometric distribution.
918 function CDF.GEOM (k >= 1 && k == floor (k), p >= 0 && p <= 1)
919 = gsl_cdf_geometric_P (k, p);
920 function PDF.GEOM (k >= 1 && k == floor (k),
922 = gsl_ran_geometric_pdf (k, p);
923 no_opt function RV.GEOM (p >= 0 && p <= 1) = gsl_ran_geometric (get_rng (), p);
925 // Hypergeometric distribution.
926 function CDF.HYPER (k >= 0 && k == floor (k) && k <= c,
927 a > 0 && a == floor (a),
928 b > 0 && b == floor (b) && b <= a,
929 c > 0 && c == floor (c) && c <= a)
930 = gsl_cdf_hypergeometric_P (k, c, a - c, b);
931 function PDF.HYPER (k >= 0 && k == floor (k) && k <= c,
932 a > 0 && a == floor (a),
933 b > 0 && b == floor (b) && b <= a,
934 c > 0 && c == floor (c) && c <= a)
935 = gsl_ran_hypergeometric_pdf (k, c, a - c, b);
936 no_opt function RV.HYPER (a > 0 && a == floor (a),
937 b > 0 && b == floor (b) && b <= a,
938 c > 0 && c == floor (c) && c <= a)
939 = gsl_ran_hypergeometric (get_rng (), c, a - c, b);
941 // Logarithmic distribution.
942 extension function PDF.LOG (k >= 1, p > 0 && p <= 1)
943 = gsl_ran_logarithmic_pdf (k, p);
944 no_opt extension function RV.LOG (p > 0 && p <= 1)
945 = gsl_ran_logarithmic (get_rng (), p);
947 // Negative binomial distribution.
948 function CDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
949 = gsl_cdf_negative_binomial_P (k, p, n);
950 function PDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
951 = gsl_ran_negative_binomial_pdf (k, p, n);
952 no_opt function RV.NEGBIN (n == floor (n), p > 0 && p <= 1)
953 = gsl_ran_negative_binomial (get_rng (), p, n);
955 // Poisson distribution.
956 function CDF.POISSON (k >= 0 && k == floor (k), mu > 0)
957 = gsl_cdf_poisson_P (k, mu);
958 function PDF.POISSON (k >= 0 && k == floor (k), mu > 0)
959 = gsl_ran_poisson_pdf (k, mu);
960 no_opt function RV.POISSON (mu > 0) = gsl_ran_poisson (get_rng (), mu);
963 absorb_miss boolean function MISSING (x) = x == SYSMIS || !isfinite (x);
964 absorb_miss boolean function SYSMIS (x) = x == SYSMIS || !isfinite (x);
965 no_opt boolean function SYSMIS (num_var v)
968 return case_num (c, v) == SYSMIS;
970 no_opt boolean function VALUE (num_var v)
973 return case_num (c, v);
976 no_opt operator VEC_ELEM_NUM (idx)
980 if (idx >= 1 && idx <= vector_get_var_cnt (v))
982 const struct variable *var = vector_get_var (v, (size_t) idx - 1);
983 double value = case_num (c, var);
984 return !var_is_num_missing (var, value, MV_USER) ? value : SYSMIS;
989 msg (SE, _("SYSMIS is not a valid index value for vector "
990 "%s. The result will be set to SYSMIS."),
991 vector_get_name (v));
993 msg (SE, _("%g is not a valid index value for vector %s. "
994 "The result will be set to SYSMIS."),
995 idx, vector_get_name (v));
1000 absorb_miss no_opt string operator VEC_ELEM_STR (idx)
1005 if (idx >= 1 && idx <= vector_get_var_cnt (v))
1007 struct variable *var = vector_get_var (v, (size_t) idx - 1);
1008 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, var)),
1009 var_get_width (var));
1014 msg (SE, _("SYSMIS is not a valid index value for vector "
1015 "%s. The result will be set to the empty string."),
1016 vector_get_name (v));
1018 msg (SE, _("%g is not a valid index value for vector %s. "
1019 "The result will be set to the empty string."),
1020 idx, vector_get_name (v));
1021 return empty_string;
1027 no_opt operator NUM_VAR ()
1031 double d = case_num (c, v);
1032 return !var_is_num_missing (v, d, MV_USER) ? d : SYSMIS;
1035 no_opt string operator STR_VAR ()
1040 struct substring s = alloc_string (e, var_get_width (v));
1041 memcpy (s.string, case_str (c, v), var_get_width (v));
1045 no_opt perm_only function LAG (num_var v, pos_int n_before)
1048 const struct ccase *c = lagged_case (ds, n_before);
1051 double x = case_num (c, v);
1052 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1058 no_opt perm_only function LAG (num_var v)
1061 const struct ccase *c = lagged_case (ds, 1);
1064 double x = case_num (c, v);
1065 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1071 no_opt perm_only string function LAG (str_var v, pos_int n_before)
1075 const struct ccase *c = lagged_case (ds, n_before);
1077 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, v)),
1080 return empty_string;
1083 no_opt perm_only string function LAG (str_var v)
1087 const struct ccase *c = lagged_case (ds, 1);
1089 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, v)),
1092 return empty_string;
1095 no_opt operator NUM_SYS ()
1099 return case_num (c, v) == SYSMIS;
1102 no_opt operator NUM_VAL ()
1106 return case_num (c, v);
1109 no_opt operator CASENUM ()