fded9375baf6b6cf9db62e21bc45671370640750
[openvswitch] / datapath / flow.c
1 /*
2  * Distributed under the terms of the GNU GPL version 2.
3  * Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
4  *
5  * Significant portions of this file may be copied from parts of the Linux
6  * kernel, by Linus Torvalds and others.
7  */
8
9 #include "flow.h"
10 #include "datapath.h"
11 #include <linux/uaccess.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/if_ether.h>
15 #include <linux/if_vlan.h>
16 #include <net/llc_pdu.h>
17 #include <linux/kernel.h>
18 #include <linux/jhash.h>
19 #include <linux/jiffies.h>
20 #include <linux/llc.h>
21 #include <linux/module.h>
22 #include <linux/in.h>
23 #include <linux/rcupdate.h>
24 #include <linux/if_arp.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/icmp.h>
31 #include <linux/icmpv6.h>
32 #include <linux/rculist.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36
37 #include "vlan.h"
38
39 static struct kmem_cache *flow_cache;
40 static unsigned int hash_seed __read_mostly;
41
42 static int check_header(struct sk_buff *skb, int len)
43 {
44         if (unlikely(skb->len < len))
45                 return -EINVAL;
46         if (unlikely(!pskb_may_pull(skb, len)))
47                 return -ENOMEM;
48         return 0;
49 }
50
51 static bool arphdr_ok(struct sk_buff *skb)
52 {
53         return pskb_may_pull(skb, skb_network_offset(skb) +
54                                   sizeof(struct arp_eth_header));
55 }
56
57 static int check_iphdr(struct sk_buff *skb)
58 {
59         unsigned int nh_ofs = skb_network_offset(skb);
60         unsigned int ip_len;
61         int err;
62
63         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
64         if (unlikely(err))
65                 return err;
66
67         ip_len = ip_hdrlen(skb);
68         if (unlikely(ip_len < sizeof(struct iphdr) ||
69                      skb->len < nh_ofs + ip_len))
70                 return -EINVAL;
71
72         skb_set_transport_header(skb, nh_ofs + ip_len);
73         return 0;
74 }
75
76 static bool tcphdr_ok(struct sk_buff *skb)
77 {
78         int th_ofs = skb_transport_offset(skb);
79         int tcp_len;
80
81         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
82                 return false;
83
84         tcp_len = tcp_hdrlen(skb);
85         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
86                      skb->len < th_ofs + tcp_len))
87                 return false;
88
89         return true;
90 }
91
92 static bool udphdr_ok(struct sk_buff *skb)
93 {
94         return pskb_may_pull(skb, skb_transport_offset(skb) +
95                                   sizeof(struct udphdr));
96 }
97
98 static bool icmphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct icmphdr));
102 }
103
104 u64 flow_used_time(unsigned long flow_jiffies)
105 {
106         struct timespec cur_ts;
107         u64 cur_ms, idle_ms;
108
109         ktime_get_ts(&cur_ts);
110         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
111         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
112                  cur_ts.tv_nsec / NSEC_PER_MSEC;
113
114         return cur_ms - idle_ms;
115 }
116
117 #define SW_FLOW_KEY_OFFSET(field)               \
118         (offsetof(struct sw_flow_key, field) +  \
119          FIELD_SIZEOF(struct sw_flow_key, field))
120
121 /**
122  * skip_exthdr - skip any IPv6 extension headers
123  * @skb: skbuff to parse
124  * @start: offset of first extension header
125  * @nexthdrp: Initially, points to the type of the extension header at @start.
126  * This function updates it to point to the extension header at the final
127  * offset.
128  * @frag: Points to the @frag member in a &struct sw_flow_key.  This
129  * function sets an appropriate %OVS_FRAG_TYPE_* value.
130  *
131  * This is based on ipv6_skip_exthdr() but adds the updates to *@frag.
132  *
133  * When there is more than one fragment header, this version reports whether
134  * the final fragment header that it examines is a first fragment.
135  *
136  * Returns the final payload offset, or -1 on error.
137  */
138 static int skip_exthdr(const struct sk_buff *skb, int start, u8 *nexthdrp,
139                        u8 *frag)
140 {
141         u8 nexthdr = *nexthdrp;
142
143         while (ipv6_ext_hdr(nexthdr)) {
144                 struct ipv6_opt_hdr _hdr, *hp;
145                 int hdrlen;
146
147                 if (nexthdr == NEXTHDR_NONE)
148                         return -1;
149                 hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
150                 if (hp == NULL)
151                         return -1;
152                 if (nexthdr == NEXTHDR_FRAGMENT) {
153                         __be16 _frag_off, *fp;
154                         fp = skb_header_pointer(skb,
155                                                 start+offsetof(struct frag_hdr,
156                                                                frag_off),
157                                                 sizeof(_frag_off),
158                                                 &_frag_off);
159                         if (fp == NULL)
160                                 return -1;
161
162                         if (ntohs(*fp) & ~0x7) {
163                                 *frag = OVS_FRAG_TYPE_LATER;
164                                 break;
165                         }
166                         *frag = OVS_FRAG_TYPE_FIRST;
167                         hdrlen = 8;
168                 } else if (nexthdr == NEXTHDR_AUTH)
169                         hdrlen = (hp->hdrlen+2)<<2;
170                 else
171                         hdrlen = ipv6_optlen(hp);
172
173                 nexthdr = hp->nexthdr;
174                 start += hdrlen;
175         }
176
177         *nexthdrp = nexthdr;
178         return start;
179 }
180
181 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
182                          int *key_lenp)
183 {
184         unsigned int nh_ofs = skb_network_offset(skb);
185         unsigned int nh_len;
186         int payload_ofs;
187         struct ipv6hdr *nh;
188         uint8_t nexthdr;
189         int err;
190
191         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
192
193         err = check_header(skb, nh_ofs + sizeof(*nh));
194         if (unlikely(err))
195                 return err;
196
197         nh = ipv6_hdr(skb);
198         nexthdr = nh->nexthdr;
199         payload_ofs = (u8 *)(nh + 1) - skb->data;
200
201         key->ip.proto = NEXTHDR_NONE;
202         key->ip.tos = ipv6_get_dsfield(nh);
203         key->ip.ttl = nh->hop_limit;
204         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
205         ipv6_addr_copy(&key->ipv6.addr.src, &nh->saddr);
206         ipv6_addr_copy(&key->ipv6.addr.dst, &nh->daddr);
207
208         payload_ofs = skip_exthdr(skb, payload_ofs, &nexthdr, &key->ip.frag);
209         if (unlikely(payload_ofs < 0))
210                 return -EINVAL;
211
212         nh_len = payload_ofs - nh_ofs;
213         skb_set_transport_header(skb, nh_ofs + nh_len);
214         key->ip.proto = nexthdr;
215         return nh_len;
216 }
217
218 static bool icmp6hdr_ok(struct sk_buff *skb)
219 {
220         return pskb_may_pull(skb, skb_transport_offset(skb) +
221                                   sizeof(struct icmp6hdr));
222 }
223
224 #define TCP_FLAGS_OFFSET 13
225 #define TCP_FLAG_MASK 0x3f
226
227 void flow_used(struct sw_flow *flow, struct sk_buff *skb)
228 {
229         u8 tcp_flags = 0;
230
231         if (flow->key.eth.type == htons(ETH_P_IP) &&
232             flow->key.ip.proto == IPPROTO_TCP) {
233                 u8 *tcp = (u8 *)tcp_hdr(skb);
234                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
235         }
236
237         spin_lock(&flow->lock);
238         flow->used = jiffies;
239         flow->packet_count++;
240         flow->byte_count += skb->len;
241         flow->tcp_flags |= tcp_flags;
242         spin_unlock(&flow->lock);
243 }
244
245 struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
246 {
247         int actions_len = nla_len(actions);
248         struct sw_flow_actions *sfa;
249
250         /* At least DP_MAX_PORTS actions are required to be able to flood a
251          * packet to every port.  Factor of 2 allows for setting VLAN tags,
252          * etc. */
253         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
254                 return ERR_PTR(-EINVAL);
255
256         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
257         if (!sfa)
258                 return ERR_PTR(-ENOMEM);
259
260         sfa->actions_len = actions_len;
261         memcpy(sfa->actions, nla_data(actions), actions_len);
262         return sfa;
263 }
264
265 struct sw_flow *flow_alloc(void)
266 {
267         struct sw_flow *flow;
268
269         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
270         if (!flow)
271                 return ERR_PTR(-ENOMEM);
272
273         spin_lock_init(&flow->lock);
274         atomic_set(&flow->refcnt, 1);
275         flow->sf_acts = NULL;
276         flow->dead = false;
277
278         return flow;
279 }
280
281 static struct hlist_head __rcu *find_bucket(struct flow_table * table, u32 hash)
282 {
283         return flex_array_get(table->buckets,
284                                 (hash & (table->n_buckets - 1)));
285 }
286
287 static struct flex_array  __rcu *alloc_buckets(unsigned int n_buckets)
288 {
289         struct flex_array  __rcu *buckets;
290         int i, err;
291
292         buckets = flex_array_alloc(sizeof(struct hlist_head *),
293                                    n_buckets, GFP_KERNEL);
294         if (!buckets)
295                 return NULL;
296
297         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
298         if (err) {
299                 flex_array_free(buckets);
300                 return NULL;
301         }
302
303         for (i = 0; i < n_buckets; i++)
304                 INIT_HLIST_HEAD((struct hlist_head *)
305                                         flex_array_get(buckets, i));
306
307         return buckets;
308 }
309
310 static void free_buckets(struct flex_array *buckets)
311 {
312         flex_array_free(buckets);
313 }
314
315 struct flow_table *flow_tbl_alloc(int new_size)
316 {
317         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
318
319         if (!table)
320                 return NULL;
321
322         table->buckets = alloc_buckets(new_size);
323
324         if (!table->buckets) {
325                 kfree(table);
326                 return NULL;
327         }
328         table->n_buckets = new_size;
329         table->count = 0;
330
331         return table;
332 }
333
334 static void flow_free(struct sw_flow *flow)
335 {
336         flow->dead = true;
337         flow_put(flow);
338 }
339
340 void flow_tbl_destroy(struct flow_table *table)
341 {
342         int i;
343
344         if (!table)
345                 return;
346
347         for (i = 0; i < table->n_buckets; i++) {
348                 struct sw_flow *flow;
349                 struct hlist_head *head = flex_array_get(table->buckets, i);
350                 struct hlist_node *node, *n;
351
352                 hlist_for_each_entry_safe(flow, node, n, head, hash_node) {
353                         hlist_del_init_rcu(&flow->hash_node);
354                         flow_free(flow);
355                 }
356         }
357
358         free_buckets(table->buckets);
359         kfree(table);
360 }
361
362 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
363 {
364         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
365
366         flow_tbl_destroy(table);
367 }
368
369 void flow_tbl_deferred_destroy(struct flow_table *table)
370 {
371         if (!table)
372                 return;
373
374         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
375 }
376
377 struct sw_flow *flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
378 {
379         struct sw_flow *flow;
380         struct hlist_head *head;
381         struct hlist_node *n;
382         int i;
383
384         while (*bucket < table->n_buckets) {
385                 i = 0;
386                 head = flex_array_get(table->buckets, *bucket);
387                 hlist_for_each_entry_rcu(flow, n, head, hash_node) {
388                         if (i < *last) {
389                                 i++;
390                                 continue;
391                         }
392                         *last = i + 1;
393                         return flow;
394                 }
395                 (*bucket)++;
396                 *last = 0;
397         }
398
399         return NULL;
400 }
401
402 struct flow_table *flow_tbl_expand(struct flow_table *table)
403 {
404         struct flow_table *new_table;
405         int n_buckets = table->n_buckets * 2;
406         int i;
407
408         new_table = flow_tbl_alloc(n_buckets);
409         if (!new_table)
410                 return ERR_PTR(-ENOMEM);
411
412         for (i = 0; i < table->n_buckets; i++) {
413                 struct sw_flow *flow;
414                 struct hlist_head *head;
415                 struct hlist_node *n, *pos;
416
417                 head = flex_array_get(table->buckets, i);
418
419                 hlist_for_each_entry_safe(flow, n, pos, head, hash_node) {
420                         hlist_del_init_rcu(&flow->hash_node);
421                         flow_tbl_insert(new_table, flow);
422                 }
423         }
424
425         return new_table;
426 }
427
428 /* RCU callback used by flow_deferred_free. */
429 static void rcu_free_flow_callback(struct rcu_head *rcu)
430 {
431         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
432
433         flow->dead = true;
434         flow_put(flow);
435 }
436
437 /* Schedules 'flow' to be freed after the next RCU grace period.
438  * The caller must hold rcu_read_lock for this to be sensible. */
439 void flow_deferred_free(struct sw_flow *flow)
440 {
441         call_rcu(&flow->rcu, rcu_free_flow_callback);
442 }
443
444 void flow_hold(struct sw_flow *flow)
445 {
446         atomic_inc(&flow->refcnt);
447 }
448
449 void flow_put(struct sw_flow *flow)
450 {
451         if (unlikely(!flow))
452                 return;
453
454         if (atomic_dec_and_test(&flow->refcnt)) {
455                 kfree((struct sf_flow_acts __force *)flow->sf_acts);
456                 kmem_cache_free(flow_cache, flow);
457         }
458 }
459
460 /* RCU callback used by flow_deferred_free_acts. */
461 static void rcu_free_acts_callback(struct rcu_head *rcu)
462 {
463         struct sw_flow_actions *sf_acts = container_of(rcu,
464                         struct sw_flow_actions, rcu);
465         kfree(sf_acts);
466 }
467
468 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
469  * The caller must hold rcu_read_lock for this to be sensible. */
470 void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
471 {
472         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
473 }
474
475 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
476 {
477         struct qtag_prefix {
478                 __be16 eth_type; /* ETH_P_8021Q */
479                 __be16 tci;
480         };
481         struct qtag_prefix *qp;
482
483         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
484                                          sizeof(__be16))))
485                 return -ENOMEM;
486
487         qp = (struct qtag_prefix *) skb->data;
488         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
489         __skb_pull(skb, sizeof(struct qtag_prefix));
490
491         return 0;
492 }
493
494 static __be16 parse_ethertype(struct sk_buff *skb)
495 {
496         struct llc_snap_hdr {
497                 u8  dsap;  /* Always 0xAA */
498                 u8  ssap;  /* Always 0xAA */
499                 u8  ctrl;
500                 u8  oui[3];
501                 __be16 ethertype;
502         };
503         struct llc_snap_hdr *llc;
504         __be16 proto;
505
506         proto = *(__be16 *) skb->data;
507         __skb_pull(skb, sizeof(__be16));
508
509         if (ntohs(proto) >= 1536)
510                 return proto;
511
512         if (skb->len < sizeof(struct llc_snap_hdr))
513                 return htons(ETH_P_802_2);
514
515         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
516                 return htons(0);
517
518         llc = (struct llc_snap_hdr *) skb->data;
519         if (llc->dsap != LLC_SAP_SNAP ||
520             llc->ssap != LLC_SAP_SNAP ||
521             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
522                 return htons(ETH_P_802_2);
523
524         __skb_pull(skb, sizeof(struct llc_snap_hdr));
525         return llc->ethertype;
526 }
527
528 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
529                         int *key_lenp, int nh_len)
530 {
531         struct icmp6hdr *icmp = icmp6_hdr(skb);
532         int error = 0;
533         int key_len;
534
535         /* The ICMPv6 type and code fields use the 16-bit transport port
536          * fields, so we need to store them in 16-bit network byte order.
537          */
538         key->ipv6.tp.src = htons(icmp->icmp6_type);
539         key->ipv6.tp.dst = htons(icmp->icmp6_code);
540         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
541
542         if (icmp->icmp6_code == 0 &&
543             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
544              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
545                 int icmp_len = skb->len - skb_transport_offset(skb);
546                 struct nd_msg *nd;
547                 int offset;
548
549                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
550
551                 /* In order to process neighbor discovery options, we need the
552                  * entire packet.
553                  */
554                 if (unlikely(icmp_len < sizeof(*nd)))
555                         goto out;
556                 if (unlikely(skb_linearize(skb))) {
557                         error = -ENOMEM;
558                         goto out;
559                 }
560
561                 nd = (struct nd_msg *)skb_transport_header(skb);
562                 ipv6_addr_copy(&key->ipv6.nd.target, &nd->target);
563                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
564
565                 icmp_len -= sizeof(*nd);
566                 offset = 0;
567                 while (icmp_len >= 8) {
568                         struct nd_opt_hdr *nd_opt =
569                                  (struct nd_opt_hdr *)(nd->opt + offset);
570                         int opt_len = nd_opt->nd_opt_len * 8;
571
572                         if (unlikely(!opt_len || opt_len > icmp_len))
573                                 goto invalid;
574
575                         /* Store the link layer address if the appropriate
576                          * option is provided.  It is considered an error if
577                          * the same link layer option is specified twice.
578                          */
579                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
580                             && opt_len == 8) {
581                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
582                                         goto invalid;
583                                 memcpy(key->ipv6.nd.sll,
584                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
585                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
586                                    && opt_len == 8) {
587                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
588                                         goto invalid;
589                                 memcpy(key->ipv6.nd.tll,
590                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
591                         }
592
593                         icmp_len -= opt_len;
594                         offset += opt_len;
595                 }
596         }
597
598         goto out;
599
600 invalid:
601         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
602         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
603         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
604
605 out:
606         *key_lenp = key_len;
607         return error;
608 }
609
610 /**
611  * flow_extract - extracts a flow key from an Ethernet frame.
612  * @skb: sk_buff that contains the frame, with skb->data pointing to the
613  * Ethernet header
614  * @in_port: port number on which @skb was received.
615  * @key: output flow key
616  * @key_lenp: length of output flow key
617  *
618  * The caller must ensure that skb->len >= ETH_HLEN.
619  *
620  * Returns 0 if successful, otherwise a negative errno value.
621  *
622  * Initializes @skb header pointers as follows:
623  *
624  *    - skb->mac_header: the Ethernet header.
625  *
626  *    - skb->network_header: just past the Ethernet header, or just past the
627  *      VLAN header, to the first byte of the Ethernet payload.
628  *
629  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
630  *      on output, then just past the IP header, if one is present and
631  *      of a correct length, otherwise the same as skb->network_header.
632  *      For other key->dl_type values it is left untouched.
633  */
634 int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
635                  int *key_lenp)
636 {
637         int error = 0;
638         int key_len = SW_FLOW_KEY_OFFSET(eth);
639         struct ethhdr *eth;
640
641         memset(key, 0, sizeof(*key));
642
643         key->phy.priority = skb->priority;
644         key->phy.tun_id = OVS_CB(skb)->tun_id;
645         key->phy.in_port = in_port;
646
647         skb_reset_mac_header(skb);
648
649         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
650          * header in the linear data area.
651          */
652         eth = eth_hdr(skb);
653         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
654         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
655
656         __skb_pull(skb, 2 * ETH_ALEN);
657
658         if (vlan_tx_tag_present(skb))
659                 key->eth.tci = htons(vlan_get_tci(skb));
660         else if (eth->h_proto == htons(ETH_P_8021Q))
661                 if (unlikely(parse_vlan(skb, key)))
662                         return -ENOMEM;
663
664         key->eth.type = parse_ethertype(skb);
665         if (unlikely(key->eth.type == htons(0)))
666                 return -ENOMEM;
667
668         skb_reset_network_header(skb);
669         __skb_push(skb, skb->data - skb_mac_header(skb));
670
671         /* Network layer. */
672         if (key->eth.type == htons(ETH_P_IP)) {
673                 struct iphdr *nh;
674                 __be16 offset;
675
676                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
677
678                 error = check_iphdr(skb);
679                 if (unlikely(error)) {
680                         if (error == -EINVAL) {
681                                 skb->transport_header = skb->network_header;
682                                 error = 0;
683                         }
684                         goto out;
685                 }
686
687                 nh = ip_hdr(skb);
688                 key->ipv4.addr.src = nh->saddr;
689                 key->ipv4.addr.dst = nh->daddr;
690
691                 key->ip.proto = nh->protocol;
692                 key->ip.tos = nh->tos;
693                 key->ip.ttl = nh->ttl;
694
695                 offset = nh->frag_off & htons(IP_OFFSET);
696                 if (offset) {
697                         key->ip.frag = OVS_FRAG_TYPE_LATER;
698                         goto out;
699                 }
700                 if (nh->frag_off & htons(IP_MF) ||
701                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
702                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
703
704                 /* Transport layer. */
705                 if (key->ip.proto == IPPROTO_TCP) {
706                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
707                         if (tcphdr_ok(skb)) {
708                                 struct tcphdr *tcp = tcp_hdr(skb);
709                                 key->ipv4.tp.src = tcp->source;
710                                 key->ipv4.tp.dst = tcp->dest;
711                         }
712                 } else if (key->ip.proto == IPPROTO_UDP) {
713                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
714                         if (udphdr_ok(skb)) {
715                                 struct udphdr *udp = udp_hdr(skb);
716                                 key->ipv4.tp.src = udp->source;
717                                 key->ipv4.tp.dst = udp->dest;
718                         }
719                 } else if (key->ip.proto == IPPROTO_ICMP) {
720                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
721                         if (icmphdr_ok(skb)) {
722                                 struct icmphdr *icmp = icmp_hdr(skb);
723                                 /* The ICMP type and code fields use the 16-bit
724                                  * transport port fields, so we need to store
725                                  * them in 16-bit network byte order. */
726                                 key->ipv4.tp.src = htons(icmp->type);
727                                 key->ipv4.tp.dst = htons(icmp->code);
728                         }
729                 }
730
731         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
732                 struct arp_eth_header *arp;
733
734                 arp = (struct arp_eth_header *)skb_network_header(skb);
735
736                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
737                                 && arp->ar_pro == htons(ETH_P_IP)
738                                 && arp->ar_hln == ETH_ALEN
739                                 && arp->ar_pln == 4) {
740
741                         /* We only match on the lower 8 bits of the opcode. */
742                         if (ntohs(arp->ar_op) <= 0xff)
743                                 key->ip.proto = ntohs(arp->ar_op);
744
745                         if (key->ip.proto == ARPOP_REQUEST
746                                         || key->ip.proto == ARPOP_REPLY) {
747                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
748                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
749                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
750                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
751                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
752                         }
753                 }
754         } else if (key->eth.type == htons(ETH_P_IPV6)) {
755                 int nh_len;             /* IPv6 Header + Extensions */
756
757                 nh_len = parse_ipv6hdr(skb, key, &key_len);
758                 if (unlikely(nh_len < 0)) {
759                         if (nh_len == -EINVAL)
760                                 skb->transport_header = skb->network_header;
761                         else
762                                 error = nh_len;
763                         goto out;
764                 }
765
766                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
767                         goto out;
768                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
769                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
770
771                 /* Transport layer. */
772                 if (key->ip.proto == NEXTHDR_TCP) {
773                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
774                         if (tcphdr_ok(skb)) {
775                                 struct tcphdr *tcp = tcp_hdr(skb);
776                                 key->ipv6.tp.src = tcp->source;
777                                 key->ipv6.tp.dst = tcp->dest;
778                         }
779                 } else if (key->ip.proto == NEXTHDR_UDP) {
780                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
781                         if (udphdr_ok(skb)) {
782                                 struct udphdr *udp = udp_hdr(skb);
783                                 key->ipv6.tp.src = udp->source;
784                                 key->ipv6.tp.dst = udp->dest;
785                         }
786                 } else if (key->ip.proto == NEXTHDR_ICMP) {
787                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
788                         if (icmp6hdr_ok(skb)) {
789                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
790                                 if (error < 0)
791                                         goto out;
792                         }
793                 }
794         }
795
796 out:
797         *key_lenp = key_len;
798         return error;
799 }
800
801 u32 flow_hash(const struct sw_flow_key *key, int key_len)
802 {
803         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), hash_seed);
804 }
805
806 struct sw_flow *flow_tbl_lookup(struct flow_table *table,
807                                 struct sw_flow_key *key, int key_len)
808 {
809         struct sw_flow *flow;
810         struct hlist_node *n;
811         struct hlist_head *head;
812         u32 hash;
813
814         hash = flow_hash(key, key_len);
815
816         head = find_bucket(table, hash);
817         hlist_for_each_entry_rcu(flow, n, head, hash_node) {
818
819                 if (flow->hash == hash &&
820                     !memcmp(&flow->key, key, key_len)) {
821                         return flow;
822                 }
823         }
824         return NULL;
825 }
826
827 void flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
828 {
829         struct hlist_head *head;
830
831         head = find_bucket(table, flow->hash);
832         hlist_add_head_rcu(&flow->hash_node, head);
833         table->count++;
834 }
835
836 void flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
837 {
838         if (!hlist_unhashed(&flow->hash_node)) {
839                 hlist_del_init_rcu(&flow->hash_node);
840                 table->count--;
841                 BUG_ON(table->count < 0);
842         }
843 }
844
845 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
846 const u32 ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
847         [OVS_KEY_ATTR_ENCAP] = 0,
848         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
849         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
850         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
851         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
852         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
853         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
854         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
855         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
856         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
857         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
858         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
859         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
860         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
861
862         /* Not upstream. */
863         [OVS_KEY_ATTR_TUN_ID] = sizeof(__be64),
864 };
865
866 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
867                                   const struct nlattr *a[], u64 *attrs)
868 {
869         const struct ovs_key_icmp *icmp_key;
870         const struct ovs_key_tcp *tcp_key;
871         const struct ovs_key_udp *udp_key;
872
873         switch (swkey->ip.proto) {
874         case IPPROTO_TCP:
875                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
876                         return -EINVAL;
877                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
878
879                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
880                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
881                 swkey->ipv4.tp.src = tcp_key->tcp_src;
882                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
883                 break;
884
885         case IPPROTO_UDP:
886                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
887                         return -EINVAL;
888                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
889
890                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
891                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
892                 swkey->ipv4.tp.src = udp_key->udp_src;
893                 swkey->ipv4.tp.dst = udp_key->udp_dst;
894                 break;
895
896         case IPPROTO_ICMP:
897                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
898                         return -EINVAL;
899                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
900
901                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
902                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
903                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
904                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
905                 break;
906         }
907
908         return 0;
909 }
910
911 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
912                                   const struct nlattr *a[], u64 *attrs)
913 {
914         const struct ovs_key_icmpv6 *icmpv6_key;
915         const struct ovs_key_tcp *tcp_key;
916         const struct ovs_key_udp *udp_key;
917
918         switch (swkey->ip.proto) {
919         case IPPROTO_TCP:
920                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
921                         return -EINVAL;
922                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
923
924                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
925                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
926                 swkey->ipv6.tp.src = tcp_key->tcp_src;
927                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
928                 break;
929
930         case IPPROTO_UDP:
931                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
932                         return -EINVAL;
933                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
934
935                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
936                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
937                 swkey->ipv6.tp.src = udp_key->udp_src;
938                 swkey->ipv6.tp.dst = udp_key->udp_dst;
939                 break;
940
941         case IPPROTO_ICMPV6:
942                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
943                         return -EINVAL;
944                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
945
946                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
947                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
948                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
949                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
950
951                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
952                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
953                         const struct ovs_key_nd *nd_key;
954
955                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
956                                 return -EINVAL;
957                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
958
959                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
960                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
961                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
962                                sizeof(swkey->ipv6.nd.target));
963                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
964                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
965                 }
966                 break;
967         }
968
969         return 0;
970 }
971
972 static int parse_flow_nlattrs(const struct nlattr *attr,
973                               const struct nlattr *a[], u64 *attrsp)
974 {
975         const struct nlattr *nla;
976         u64 attrs;
977         int rem;
978
979         attrs = 0;
980         nla_for_each_nested(nla, attr, rem) {
981                 u16 type = nla_type(nla);
982
983                 if (type > OVS_KEY_ATTR_MAX || attrs & (1ULL << type) ||
984                     nla_len(nla) != ovs_key_lens[type])
985                         return -EINVAL;
986                 attrs |= 1ULL << type;
987                 a[type] = nla;
988         }
989         if (rem)
990                 return -EINVAL;
991
992         *attrsp = attrs;
993         return 0;
994 }
995
996 /**
997  * flow_from_nlattrs - parses Netlink attributes into a flow key.
998  * @swkey: receives the extracted flow key.
999  * @key_lenp: number of bytes used in @swkey.
1000  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1001  * sequence.
1002  */
1003 int flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
1004                       const struct nlattr *attr)
1005 {
1006         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1007         const struct ovs_key_ethernet *eth_key;
1008         int key_len;
1009         u64 attrs;
1010         int err;
1011
1012         memset(swkey, 0, sizeof(struct sw_flow_key));
1013         key_len = SW_FLOW_KEY_OFFSET(eth);
1014
1015         err = parse_flow_nlattrs(attr, a, &attrs);
1016         if (err)
1017                 return err;
1018
1019         /* Metadata attributes. */
1020         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1021                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
1022                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1023         }
1024         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1025                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1026                 if (in_port >= DP_MAX_PORTS)
1027                         return -EINVAL;
1028                 swkey->phy.in_port = in_port;
1029                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1030         } else {
1031                 swkey->phy.in_port = USHRT_MAX;
1032         }
1033
1034         if (attrs & (1ULL << OVS_KEY_ATTR_TUN_ID)) {
1035                 swkey->phy.tun_id = nla_get_be64(a[OVS_KEY_ATTR_TUN_ID]);
1036                 attrs &= ~(1ULL << OVS_KEY_ATTR_TUN_ID);
1037         }
1038
1039         /* Data attributes. */
1040         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1041                 return -EINVAL;
1042         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1043
1044         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1045         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1046         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1047
1048         if (attrs == ((1 << OVS_KEY_ATTR_VLAN) |
1049                       (1 << OVS_KEY_ATTR_ETHERTYPE) |
1050                       (1 << OVS_KEY_ATTR_ENCAP)) &&
1051             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1052                 swkey->eth.tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1053                 if (swkey->eth.tci & htons(VLAN_TAG_PRESENT))
1054                         return -EINVAL;
1055                 swkey->eth.tci |= htons(VLAN_TAG_PRESENT);
1056
1057                 err = parse_flow_nlattrs(a[OVS_KEY_ATTR_ENCAP], a, &attrs);
1058                 if (err)
1059                         return err;
1060         }
1061
1062         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1063                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1064                 if (ntohs(swkey->eth.type) < 1536)
1065                         return -EINVAL;
1066                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1067         } else {
1068                 swkey->eth.type = htons(ETH_P_802_2);
1069         }
1070
1071         if (swkey->eth.type == htons(ETH_P_IP)) {
1072                 const struct ovs_key_ipv4 *ipv4_key;
1073
1074                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1075                         return -EINVAL;
1076                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1077
1078                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1079                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1080                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1081                         return -EINVAL;
1082                 swkey->ip.proto = ipv4_key->ipv4_proto;
1083                 swkey->ip.tos = ipv4_key->ipv4_tos;
1084                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1085                 swkey->ip.frag = ipv4_key->ipv4_frag;
1086                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1087                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1088
1089                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1090                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1091                         if (err)
1092                                 return err;
1093                 }
1094         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1095                 const struct ovs_key_ipv6 *ipv6_key;
1096
1097                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1098                         return -EINVAL;
1099                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1100
1101                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1102                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1103                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1104                         return -EINVAL;
1105                 swkey->ipv6.label = ipv6_key->ipv6_label;
1106                 swkey->ip.proto = ipv6_key->ipv6_proto;
1107                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1108                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1109                 swkey->ip.frag = ipv6_key->ipv6_frag;
1110                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1111                        sizeof(swkey->ipv6.addr.src));
1112                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1113                        sizeof(swkey->ipv6.addr.dst));
1114
1115                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1116                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1117                         if (err)
1118                                 return err;
1119                 }
1120         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1121                 const struct ovs_key_arp *arp_key;
1122
1123                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1124                         return -EINVAL;
1125                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1126
1127                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1128                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1129                 swkey->ipv4.addr.src = arp_key->arp_sip;
1130                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1131                 if (arp_key->arp_op & htons(0xff00))
1132                         return -EINVAL;
1133                 swkey->ip.proto = ntohs(arp_key->arp_op);
1134                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1135                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1136         }
1137
1138         if (attrs)
1139                 return -EINVAL;
1140         *key_lenp = key_len;
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1147  * @in_port: receives the extracted input port.
1148  * @tun_id: receives the extracted tunnel ID.
1149  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1150  * sequence.
1151  *
1152  * This parses a series of Netlink attributes that form a flow key, which must
1153  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1154  * get the metadata, that is, the parts of the flow key that cannot be
1155  * extracted from the packet itself.
1156  */
1157 int flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, __be64 *tun_id,
1158                                const struct nlattr *attr)
1159 {
1160         const struct nlattr *nla;
1161         int rem;
1162
1163         *in_port = USHRT_MAX;
1164         *tun_id = 0;
1165         *priority = 0;
1166
1167         nla_for_each_nested(nla, attr, rem) {
1168                 int type = nla_type(nla);
1169
1170                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] != 0) {
1171                         if (nla_len(nla) != ovs_key_lens[type])
1172                                 return -EINVAL;
1173
1174                         switch (type) {
1175                         case OVS_KEY_ATTR_PRIORITY:
1176                                 *priority = nla_get_u32(nla);
1177                                 break;
1178
1179                         case OVS_KEY_ATTR_TUN_ID:
1180                                 *tun_id = nla_get_be64(nla);
1181                                 break;
1182
1183                         case OVS_KEY_ATTR_IN_PORT:
1184                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1185                                         return -EINVAL;
1186                                 *in_port = nla_get_u32(nla);
1187                                 break;
1188                         }
1189                 }
1190         }
1191         if (rem)
1192                 return -EINVAL;
1193         return 0;
1194 }
1195
1196 int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1197 {
1198         struct ovs_key_ethernet *eth_key;
1199         struct nlattr *nla, *encap;
1200
1201         if (swkey->phy.priority)
1202                 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1203
1204         if (swkey->phy.tun_id != cpu_to_be64(0))
1205                 NLA_PUT_BE64(skb, OVS_KEY_ATTR_TUN_ID, swkey->phy.tun_id);
1206
1207         if (swkey->phy.in_port != USHRT_MAX)
1208                 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1209
1210         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1211         if (!nla)
1212                 goto nla_put_failure;
1213         eth_key = nla_data(nla);
1214         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1215         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1216
1217         if (swkey->eth.tci != htons(0)) {
1218                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1219                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN,
1220                              swkey->eth.tci & ~htons(VLAN_TAG_PRESENT));
1221                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1222         } else {
1223                 encap = NULL;
1224         }
1225
1226         if (swkey->eth.type == htons(ETH_P_802_2))
1227                 goto unencap;
1228
1229         NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1230
1231         if (swkey->eth.type == htons(ETH_P_IP)) {
1232                 struct ovs_key_ipv4 *ipv4_key;
1233
1234                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1235                 if (!nla)
1236                         goto nla_put_failure;
1237                 ipv4_key = nla_data(nla);
1238                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1239                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1240                 ipv4_key->ipv4_proto = swkey->ip.proto;
1241                 ipv4_key->ipv4_tos = swkey->ip.tos;
1242                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1243                 ipv4_key->ipv4_frag = swkey->ip.frag;
1244         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1245                 struct ovs_key_ipv6 *ipv6_key;
1246
1247                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1248                 if (!nla)
1249                         goto nla_put_failure;
1250                 ipv6_key = nla_data(nla);
1251                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1252                                 sizeof(ipv6_key->ipv6_src));
1253                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1254                                 sizeof(ipv6_key->ipv6_dst));
1255                 ipv6_key->ipv6_label = swkey->ipv6.label;
1256                 ipv6_key->ipv6_proto = swkey->ip.proto;
1257                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1258                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1259                 ipv6_key->ipv6_frag = swkey->ip.frag;
1260         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1261                 struct ovs_key_arp *arp_key;
1262
1263                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1264                 if (!nla)
1265                         goto nla_put_failure;
1266                 arp_key = nla_data(nla);
1267                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1268                 arp_key->arp_sip = swkey->ipv4.addr.src;
1269                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1270                 arp_key->arp_op = htons(swkey->ip.proto);
1271                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1272                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1273         }
1274
1275         if ((swkey->eth.type == htons(ETH_P_IP) ||
1276              swkey->eth.type == htons(ETH_P_IPV6)) &&
1277              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1278
1279                 if (swkey->ip.proto == IPPROTO_TCP) {
1280                         struct ovs_key_tcp *tcp_key;
1281
1282                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1283                         if (!nla)
1284                                 goto nla_put_failure;
1285                         tcp_key = nla_data(nla);
1286                         if (swkey->eth.type == htons(ETH_P_IP)) {
1287                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1288                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1289                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1290                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1291                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1292                         }
1293                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1294                         struct ovs_key_udp *udp_key;
1295
1296                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1297                         if (!nla)
1298                                 goto nla_put_failure;
1299                         udp_key = nla_data(nla);
1300                         if (swkey->eth.type == htons(ETH_P_IP)) {
1301                                 udp_key->udp_src = swkey->ipv4.tp.src;
1302                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1303                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1304                                 udp_key->udp_src = swkey->ipv6.tp.src;
1305                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1306                         }
1307                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1308                            swkey->ip.proto == IPPROTO_ICMP) {
1309                         struct ovs_key_icmp *icmp_key;
1310
1311                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1312                         if (!nla)
1313                                 goto nla_put_failure;
1314                         icmp_key = nla_data(nla);
1315                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1316                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1317                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1318                            swkey->ip.proto == IPPROTO_ICMPV6) {
1319                         struct ovs_key_icmpv6 *icmpv6_key;
1320
1321                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1322                                                 sizeof(*icmpv6_key));
1323                         if (!nla)
1324                                 goto nla_put_failure;
1325                         icmpv6_key = nla_data(nla);
1326                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1327                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1328
1329                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1330                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1331                                 struct ovs_key_nd *nd_key;
1332
1333                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1334                                 if (!nla)
1335                                         goto nla_put_failure;
1336                                 nd_key = nla_data(nla);
1337                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1338                                                         sizeof(nd_key->nd_target));
1339                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1340                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1341                         }
1342                 }
1343         }
1344
1345 unencap:
1346         if (encap)
1347                 nla_nest_end(skb, encap);
1348
1349         return 0;
1350
1351 nla_put_failure:
1352         return -EMSGSIZE;
1353 }
1354
1355 /* Initializes the flow module.
1356  * Returns zero if successful or a negative error code. */
1357 int flow_init(void)
1358 {
1359         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1360                                         0, NULL);
1361         if (flow_cache == NULL)
1362                 return -ENOMEM;
1363
1364         get_random_bytes(&hash_seed, sizeof(hash_seed));
1365
1366         return 0;
1367 }
1368
1369 /* Uninitializes the flow module. */
1370 void flow_exit(void)
1371 {
1372         kmem_cache_destroy(flow_cache);
1373 }