/* PSPP - a program for statistical analysis. Copyright (C) 1997-9, 2000, 2007, 2009, 2010 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include "data/case.h" #include "data/casegrouper.h" #include "data/casereader.h" #include "data/dictionary.h" #include "data/format.h" #include "data/procedure.h" #include "data/settings.h" #include "data/value-labels.h" #include "data/variable.h" #include "language/command.h" #include "language/dictionary/split-file.h" #include "language/lexer/lexer.h" #include "language/stats/freq.h" #include "libpspp/array.h" #include "libpspp/bit-vector.h" #include "libpspp/compiler.h" #include "libpspp/hmap.h" #include "libpspp/message.h" #include "libpspp/misc.h" #include "libpspp/pool.h" #include "libpspp/str.h" #include "math/histogram.h" #include "math/moments.h" #include "output/chart-item.h" #include "output/charts/piechart.h" #include "output/charts/plot-hist.h" #include "output/tab.h" #include "gl/minmax.h" #include "gl/xalloc.h" #include "gettext.h" #define _(msgid) gettext (msgid) #define N_(msgid) msgid /* (headers) */ /* (specification) FREQUENCIES (frq_): *+variables=custom; +format=table:limit(n:limit,"%s>0")/notable/!table, sort:!avalue/dvalue/afreq/dfreq; missing=miss:include/!exclude; barchart(ba_)=:minimum(d:min), :maximum(d:max), scale:freq(*n:freq,"%s>0")/percent(*n:pcnt,"%s>0"); piechart(pie_)=:minimum(d:min), :maximum(d:max), missing:missing/!nomissing, scale:!freq/percent; histogram(hi_)=:minimum(d:min), :maximum(d:max), scale:freq(*n:freq,"%s>0")/percent(*n:pcnt,"%s>0"), norm:!nonormal/normal; +grouped=custom; +ntiles=integer; +percentiles = double list; +statistics[st_]=mean,semean,median,mode,stddev,variance, kurtosis,skewness,range,minimum,maximum,sum, default,seskewness,sekurtosis,all,none. */ /* (declarations) */ /* (functions) */ /* Statistics. */ enum { FRQ_MEAN, FRQ_SEMEAN, FRQ_MEDIAN, FRQ_MODE, FRQ_STDDEV, FRQ_VARIANCE, FRQ_KURT, FRQ_SEKURT, FRQ_SKEW, FRQ_SESKEW, FRQ_RANGE, FRQ_MIN, FRQ_MAX, FRQ_SUM, FRQ_N_STATS }; /* Description of a statistic. */ struct frq_info { int st_indx; /* Index into a_statistics[]. */ const char *s10; /* Identifying string. */ }; /* Table of statistics, indexed by dsc_*. */ static const struct frq_info st_name[FRQ_N_STATS + 1] = { {FRQ_ST_MEAN, N_("Mean")}, {FRQ_ST_SEMEAN, N_("S.E. Mean")}, {FRQ_ST_MEDIAN, N_("Median")}, {FRQ_ST_MODE, N_("Mode")}, {FRQ_ST_STDDEV, N_("Std Dev")}, {FRQ_ST_VARIANCE, N_("Variance")}, {FRQ_ST_KURTOSIS, N_("Kurtosis")}, {FRQ_ST_SEKURTOSIS, N_("S.E. Kurt")}, {FRQ_ST_SKEWNESS, N_("Skewness")}, {FRQ_ST_SESKEWNESS, N_("S.E. Skew")}, {FRQ_ST_RANGE, N_("Range")}, {FRQ_ST_MINIMUM, N_("Minimum")}, {FRQ_ST_MAXIMUM, N_("Maximum")}, {FRQ_ST_SUM, N_("Sum")}, {-1, 0}, }; /* Percentiles to calculate. */ struct percentile { double p; /* the %ile to be calculated */ double value; /* the %ile's value */ double x1; /* The datum value <= the percentile */ double x2; /* The datum value >= the percentile */ int flag; int flag2; /* Set to 1 if this percentile value has been found */ bool show; /* True to show this percentile in the statistics box. */ }; static void add_percentile (double x, bool show); static struct percentile *percentiles; static int n_percentiles, n_show_percentiles; /* Groups of statistics. */ #define BI BIT_INDEX #define FRQ_DEFAULT \ (BI (FRQ_MEAN) | BI (FRQ_STDDEV) | BI (FRQ_MIN) | BI (FRQ_MAX)) #define FRQ_ALL \ (BI (FRQ_SUM) | BI(FRQ_MIN) | BI(FRQ_MAX) \ | BI(FRQ_MEAN) | BI(FRQ_SEMEAN) | BI(FRQ_STDDEV) \ | BI(FRQ_VARIANCE) | BI(FRQ_KURT) | BI(FRQ_SEKURT) \ | BI(FRQ_SKEW) | BI(FRQ_SESKEW) | BI(FRQ_RANGE) \ | BI(FRQ_RANGE) | BI(FRQ_MODE) | BI(FRQ_MEDIAN)) /* Statistics; number of statistics. */ static unsigned long stats; static int n_stats; struct frq_chart { double x_min; /* X axis minimum value. */ double x_max; /* X axis maximum value. */ int y_scale; /* Y axis scale: FRQ_FREQ or FRQ_PERCENT. */ /* Histograms only. */ double y_max; /* Y axis maximum value. */ bool draw_normal; /* Whether to draw normal curve. */ /* Pie charts only. */ bool include_missing; /* Whether to include missing values. */ }; /* Histogram and pie chart settings. */ static struct frq_chart hist, pie; /* Parsed command. */ static struct cmd_frequencies cmd; /* Pools. */ static struct pool *syntax_pool; /* For syntax-related data. */ /* Frequency tables. */ /* Entire frequency table. */ struct freq_tab { struct hmap data; /* Hash table for accumulating counts. */ struct freq *valid; /* Valid freqs. */ int n_valid; /* Number of total freqs. */ const struct dictionary *dict; /* Source of entries in the table. */ struct freq *missing; /* Missing freqs. */ int n_missing; /* Number of missing freqs. */ /* Statistics. */ double total_cases; /* Sum of weights of all cases. */ double valid_cases; /* Sum of weights of valid cases. */ }; /* Per-variable frequency data. */ struct var_freqs { struct variable *var; /* Freqency table. */ struct freq_tab tab; /* Frequencies table to use. */ /* Percentiles. */ int n_groups; /* Number of groups. */ double *groups; /* Groups. */ /* Statistics. */ double stat[FRQ_N_STATS]; /* Variable attributes. */ int width; struct fmt_spec print; }; struct frq_proc { struct var_freqs *vars; size_t n_vars; }; static void determine_charts (void); static void calc_stats (const struct var_freqs *v, double d[FRQ_N_STATS]); static void precalc (struct frq_proc *, struct casereader *, struct dataset *); static void calc (struct frq_proc *, const struct ccase *, const struct dataset *); static void postcalc (struct frq_proc *, const struct dataset *); static void postprocess_freq_tab (struct var_freqs *); static void dump_freq_table (const struct var_freqs *, const struct variable *weight_var); static void dump_statistics (const struct var_freqs *, const struct variable *weight_var); static void cleanup_freq_tab (struct var_freqs *); static algo_compare_func compare_value_numeric_a, compare_value_alpha_a; static algo_compare_func compare_value_numeric_d, compare_value_alpha_d; static algo_compare_func compare_freq_numeric_a, compare_freq_alpha_a; static algo_compare_func compare_freq_numeric_d, compare_freq_alpha_d; static void do_piechart(const struct variable *var, const struct freq_tab *frq_tab); struct histogram * freq_tab_to_hist(const struct freq_tab *ft, const struct variable *var); /* Parser and outline. */ static int internal_cmd_frequencies (struct lexer *lexer, struct dataset *ds); int cmd_frequencies (struct lexer *lexer, struct dataset *ds) { int result; syntax_pool = pool_create (); result = internal_cmd_frequencies (lexer, ds); pool_destroy (syntax_pool); syntax_pool=0; return result; } static int internal_cmd_frequencies (struct lexer *lexer, struct dataset *ds) { struct frq_proc frq; struct casegrouper *grouper; struct casereader *input, *group; bool ok; int i; n_percentiles = 0; n_show_percentiles = 0; percentiles = NULL; frq.vars = NULL; frq.n_vars = 0; if (!parse_frequencies (lexer, ds, &cmd, &frq)) return CMD_FAILURE; /* Figure out statistics to calculate. */ stats = 0; if (cmd.a_statistics[FRQ_ST_DEFAULT] || !cmd.sbc_statistics) stats |= FRQ_DEFAULT; if (cmd.a_statistics[FRQ_ST_ALL]) stats |= FRQ_ALL; if (cmd.sort != FRQ_AVALUE && cmd.sort != FRQ_DVALUE) stats &= ~BIT_INDEX (FRQ_MEDIAN); for (i = 0; i < FRQ_N_STATS; i++) if (cmd.a_statistics[st_name[i].st_indx]) stats |= BIT_INDEX (i); if (stats & FRQ_KURT) stats |= BIT_INDEX (FRQ_SEKURT); if (stats & FRQ_SKEW) stats |= BIT_INDEX (FRQ_SESKEW); /* Calculate n_stats. */ n_stats = 0; for (i = 0; i < FRQ_N_STATS; i++) if ((stats & BIT_INDEX (i))) n_stats++; /* Charting. */ determine_charts (); if (cmd.sbc_histogram || cmd.sbc_piechart || cmd.sbc_ntiles) cmd.sort = FRQ_AVALUE; /* Work out what percentiles need to be calculated */ if ( cmd.sbc_percentiles ) { for ( i = 0 ; i < MAXLISTS ; ++i ) { int pl; subc_list_double *ptl_list = &cmd.dl_percentiles[i]; for ( pl = 0 ; pl < subc_list_double_count(ptl_list); ++pl) add_percentile (subc_list_double_at(ptl_list, pl) / 100.0, true); } } if ( cmd.sbc_ntiles ) { for ( i = 0 ; i < cmd.sbc_ntiles ; ++i ) { int j; for (j = 0; j <= cmd.n_ntiles[i]; ++j ) add_percentile (j / (double) cmd.n_ntiles[i], true); } } if (stats & BIT_INDEX (FRQ_MEDIAN)) { /* Treat the median as the 50% percentile. We output it in the percentiles table as "50 (Median)." */ add_percentile (0.5, true); stats &= ~BIT_INDEX (FRQ_MEDIAN); n_stats--; } if (cmd.sbc_histogram) { add_percentile (0.25, false); add_percentile (0.75, false); } /* Do it! */ input = casereader_create_filter_weight (proc_open (ds), dataset_dict (ds), NULL, NULL); grouper = casegrouper_create_splits (input, dataset_dict (ds)); for (; casegrouper_get_next_group (grouper, &group); casereader_destroy (group)) { struct ccase *c; precalc (&frq, group, ds); for (; (c = casereader_read (group)) != NULL; case_unref (c)) calc (&frq, c, ds); postcalc (&frq, ds); } ok = casegrouper_destroy (grouper); ok = proc_commit (ds) && ok; free_frequencies(&cmd); free (frq.vars); return ok ? CMD_SUCCESS : CMD_CASCADING_FAILURE; } /* Figure out which charts the user requested. */ static void determine_charts (void) { if (cmd.sbc_barchart) msg (SW, _("Bar charts are not implemented.")); if (cmd.sbc_histogram) { hist.x_min = cmd.hi_min; hist.x_max = cmd.hi_max; hist.y_scale = cmd.hi_scale; hist.y_max = cmd.hi_scale == FRQ_FREQ ? cmd.hi_freq : cmd.hi_pcnt; hist.draw_normal = cmd.hi_norm != FRQ_NONORMAL; hist.include_missing = false; if (hist.x_min != SYSMIS && hist.x_max != SYSMIS && hist.x_min >= hist.x_max) { msg (SE, _("MAX for histogram must be greater than or equal to MIN, " "but MIN was specified as %.15g and MAX as %.15g. " "MIN and MAX will be ignored."), hist.x_min, hist.x_max); hist.x_min = hist.x_max = SYSMIS; } } if (cmd.sbc_piechart) { pie.x_min = cmd.pie_min; pie.x_max = cmd.pie_max; pie.y_scale = cmd.pie_scale; pie.include_missing = cmd.pie_missing == FRQ_MISSING; if (pie.x_min != SYSMIS && pie.x_max != SYSMIS && pie.x_min >= pie.x_max) { msg (SE, _("MAX for pie chart must be greater than or equal to MIN, " "but MIN was specified as %.15g and MAX as %.15g. " "MIN and MAX will be ignored."), pie.x_min, pie.x_max); pie.x_min = pie.x_max = SYSMIS; } } } /* Add data from case C to the frequency table. */ static void calc (struct frq_proc *frq, const struct ccase *c, const struct dataset *ds) { double weight = dict_get_case_weight (dataset_dict (ds), c, NULL); size_t i; for (i = 0; i < frq->n_vars; i++) { struct var_freqs *vf = &frq->vars[i]; const union value *value = case_data (c, vf->var); size_t hash = value_hash (value, vf->width, 0); struct freq *f; f = freq_hmap_search (&vf->tab.data, value, vf->width, hash); if (f == NULL) f = freq_hmap_insert (&vf->tab.data, value, vf->width, hash); f->count += weight; } } /* Prepares each variable that is the target of FREQUENCIES by setting up its hash table. */ static void precalc (struct frq_proc *frq, struct casereader *input, struct dataset *ds) { struct ccase *c; size_t i; c = casereader_peek (input, 0); if (c != NULL) { output_split_file_values (ds, c); case_unref (c); } for (i = 0; i < frq->n_vars; i++) hmap_init (&frq->vars[i].tab.data); } /* Finishes up with the variables after frequencies have been calculated. Displays statistics, percentiles, ... */ static void postcalc (struct frq_proc *frq, const struct dataset *ds) { const struct dictionary *dict = dataset_dict (ds); const struct variable *wv = dict_get_weight (dict); size_t i; for (i = 0; i < frq->n_vars; i++) { struct var_freqs *vf = &frq->vars[i]; int n_categories; postprocess_freq_tab (vf); /* Frequencies tables. */ n_categories = vf->tab.n_valid + vf->tab.n_missing; if (cmd.table == FRQ_TABLE || (cmd.table == FRQ_LIMIT && n_categories <= cmd.limit)) dump_freq_table (vf, wv); /* Statistics. */ if (n_stats) dump_statistics (vf, wv); if (cmd.sbc_histogram && var_is_numeric (vf->var) && vf->tab.n_valid > 0) { double d[FRQ_N_STATS]; struct histogram *histogram; calc_stats (vf, d); histogram = freq_tab_to_hist (&vf->tab, vf->var); chart_item_submit (histogram_chart_create ( histogram->gsl_hist, var_to_string(vf->var), vf->tab.valid_cases, d[FRQ_MEAN], d[FRQ_STDDEV], hist.draw_normal)); statistic_destroy (&histogram->parent); } if (cmd.sbc_piechart) do_piechart(vf->var, &vf->tab); cleanup_freq_tab (vf); } } /* Returns the comparison function that should be used for sorting a frequency table by FRQ_SORT using VAL_TYPE values. */ static algo_compare_func * get_freq_comparator (int frq_sort, enum val_type val_type) { bool is_numeric = val_type == VAL_NUMERIC; switch (frq_sort) { case FRQ_AVALUE: return is_numeric ? compare_value_numeric_a : compare_value_alpha_a; case FRQ_DVALUE: return is_numeric ? compare_value_numeric_d : compare_value_alpha_d; case FRQ_AFREQ: return is_numeric ? compare_freq_numeric_a : compare_freq_alpha_a; case FRQ_DFREQ: return is_numeric ? compare_freq_numeric_d : compare_freq_alpha_d; default: NOT_REACHED (); } } /* Returns true iff the value in struct freq F is non-missing for variable V. */ static bool not_missing (const void *f_, const void *v_) { const struct freq *f = f_; const struct variable *v = v_; return !var_is_value_missing (v, &f->value, MV_ANY); } /* Summarizes the frequency table data for variable V. */ static void postprocess_freq_tab (struct var_freqs *vf) { struct freq_tab *ft = &vf->tab; algo_compare_func *compare; size_t count; struct freq *freqs, *f; size_t i; /* Extract data from hash table. */ count = hmap_count (&ft->data); freqs = freq_hmap_extract (&ft->data); /* Put data into ft. */ ft->valid = freqs; ft->n_valid = partition (freqs, count, sizeof *freqs, not_missing, vf->var); ft->missing = freqs + ft->n_valid; ft->n_missing = count - ft->n_valid; /* Sort data. */ compare = get_freq_comparator (cmd.sort, var_get_type (vf->var)); sort (ft->valid, ft->n_valid, sizeof *ft->valid, compare, vf); sort (ft->missing, ft->n_missing, sizeof *ft->missing, compare, vf); /* Summary statistics. */ ft->valid_cases = 0.0; for(i = 0 ; i < ft->n_valid ; ++i ) { f = &ft->valid[i]; ft->valid_cases += f->count; } ft->total_cases = ft->valid_cases ; for(i = 0 ; i < ft->n_missing ; ++i ) { f = &ft->missing[i]; ft->total_cases += f->count; } } /* Frees the frequency table for variable V. */ static void cleanup_freq_tab (struct var_freqs *vf) { free (vf->tab.valid); freq_hmap_destroy (&vf->tab.data, vf->width); } /* Parses the VARIABLES subcommand. */ static int frq_custom_variables (struct lexer *lexer, struct dataset *ds, struct cmd_frequencies *cmd UNUSED, void *frq_ UNUSED) { struct frq_proc *frq = frq_; struct variable **vars; size_t n_vars; size_t i; lex_match (lexer, '='); if (lex_token (lexer) != T_ALL && (lex_token (lexer) != T_ID || dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) == NULL)) return 2; /* Get list of current variables, to avoid duplicates. */ vars = xmalloc (frq->n_vars * sizeof *vars); n_vars = frq->n_vars; for (i = 0; i < frq->n_vars; i++) vars[i] = frq->vars[i].var; if (!parse_variables (lexer, dataset_dict (ds), &vars, &n_vars, PV_APPEND | PV_NO_SCRATCH)) return 0; frq->vars = xrealloc (frq->vars, n_vars * sizeof *frq->vars); for (i = frq->n_vars; i < n_vars; i++) { struct variable *var = vars[i]; struct var_freqs *vf = &frq->vars[i]; vf->var = var; vf->tab.valid = vf->tab.missing = NULL; vf->tab.dict = dataset_dict (ds); vf->n_groups = 0; vf->groups = NULL; vf->width = var_get_width (var); vf->print = *var_get_print_format (var); } frq->n_vars = n_vars; free (vars); return 1; } /* Parses the GROUPED subcommand, setting the n_grouped, grouped fields of specified variables. */ static int frq_custom_grouped (struct lexer *lexer, struct dataset *ds, struct cmd_frequencies *cmd UNUSED, void *frq_ UNUSED) { struct frq_proc *frq = frq_; lex_match (lexer, '='); if ((lex_token (lexer) == T_ID && dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) != NULL) || lex_token (lexer) == T_ID) for (;;) { size_t i; /* Max, current size of list; list itself. */ int nl, ml; double *dl; /* Variable list. */ size_t n; const struct variable **v; if (!parse_variables_const (lexer, dataset_dict (ds), &v, &n, PV_NO_DUPLICATE | PV_NUMERIC)) return 0; if (lex_match (lexer, '(')) { nl = ml = 0; dl = NULL; while (lex_integer (lexer)) { if (nl >= ml) { ml += 16; dl = pool_nrealloc (syntax_pool, dl, ml, sizeof *dl); } dl[nl++] = lex_tokval (lexer); lex_get (lexer); lex_match (lexer, ','); } /* Note that nl might still be 0 and dl might still be NULL. That's okay. */ if (!lex_match (lexer, ')')) { free (v); msg (SE, _("`)' expected after GROUPED interval list.")); return 0; } } else { nl = 0; dl = NULL; } for (i = 0; i < n; i++) { size_t j; for (j = 0; j < frq->n_vars; j++) { struct var_freqs *vf = &frq->vars[j]; if (vf->var == v[i]) { if (vf->groups != NULL) msg (SE, _("Variables %s specified multiple times on " "GROUPED subcommand."), var_get_name (v[i])); else { vf->n_groups = nl; vf->groups = dl; } goto found; } } msg (SE, _("Variables %s specified on GROUPED but not on " "VARIABLES."), var_get_name (v[i])); found:; } free (v); if (!lex_match (lexer, '/')) break; if ((lex_token (lexer) != T_ID || dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) != NULL) && lex_token (lexer) != T_ALL) { lex_put_back (lexer, '/'); break; } } return 1; } /* Adds X to the list of percentiles, keeping the list in proper order. If SHOW is true, the percentile will be shown in the statistics box, otherwise it will be hidden. */ static void add_percentile (double x, bool show) { int i; for (i = 0; i < n_percentiles; i++) { /* Do nothing if it's already in the list */ if ( fabs(x - percentiles[i].p) < DBL_EPSILON ) { if (show && !percentiles[i].show) { n_show_percentiles++; percentiles[i].show = true; } return; } if (x < percentiles[i].p) break; } if (i >= n_percentiles || x != percentiles[i].p) { percentiles = pool_nrealloc (syntax_pool, percentiles, n_percentiles + 1, sizeof *percentiles); insert_element (percentiles, n_percentiles, sizeof *percentiles, i); percentiles[i].p = x; percentiles[i].show = show; n_percentiles++; if (show) n_show_percentiles++; } } /* Comparison functions. */ /* Ascending numeric compare of values. */ static int compare_value_numeric_a (const void *a_, const void *b_, const void *vf_ UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->value.f > b->value.f) return 1; else if (a->value.f < b->value.f) return -1; else return 0; } /* Ascending string compare of values. */ static int compare_value_alpha_a (const void *a_, const void *b_, const void *vf_) { const struct freq *a = a_; const struct freq *b = b_; const struct var_freqs *vf = vf_; return value_compare_3way (&a->value, &b->value, vf->width); } /* Descending numeric compare of values. */ static int compare_value_numeric_d (const void *a, const void *b, const void *vf_ UNUSED) { return -compare_value_numeric_a (a, b, vf_); } /* Descending string compare of values. */ static int compare_value_alpha_d (const void *a, const void *b, const void *vf_) { return -compare_value_alpha_a (a, b, vf_); } /* Ascending numeric compare of frequency; secondary key on ascending numeric value. */ static int compare_freq_numeric_a (const void *a_, const void *b_, const void *vf_ UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->count > b->count) return 1; else if (a->count < b->count) return -1; if (a->value.f > b->value.f) return 1; else if (a->value.f < b->value.f) return -1; else return 0; } /* Ascending numeric compare of frequency; secondary key on ascending string value. */ static int compare_freq_alpha_a (const void *a_, const void *b_, const void *vf_) { const struct freq *a = a_; const struct freq *b = b_; const struct var_freqs *vf = vf_; if (a->count > b->count) return 1; else if (a->count < b->count) return -1; else return value_compare_3way (&a->value, &b->value, vf->width); } /* Descending numeric compare of frequency; secondary key on ascending numeric value. */ static int compare_freq_numeric_d (const void *a_, const void *b_, const void *vf_ UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->count > b->count) return -1; else if (a->count < b->count) return 1; if (a->value.f > b->value.f) return 1; else if (a->value.f < b->value.f) return -1; else return 0; } /* Descending numeric compare of frequency; secondary key on ascending string value. */ static int compare_freq_alpha_d (const void *a_, const void *b_, const void *vf_) { const struct freq *a = a_; const struct freq *b = b_; const struct var_freqs *vf = vf_; if (a->count > b->count) return -1; else if (a->count < b->count) return 1; else return value_compare_3way (&a->value, &b->value, vf->width); } /* Frequency table display. */ /* Displays a full frequency table for variable V. */ static void dump_freq_table (const struct var_freqs *vf, const struct variable *wv) { const struct fmt_spec *wfmt = wv ? var_get_print_format (wv) : &F_8_0; const struct freq_tab *ft = &vf->tab; int n_categories; struct freq *f; struct tab_table *t; int r, x; double cum_total = 0.0; double cum_freq = 0.0; static const char *headings[] = { N_("Value Label"), N_("Value"), N_("Frequency"), N_("Percent"), N_("Valid Percent"), N_("Cum Percent") }; n_categories = ft->n_valid + ft->n_missing; t = tab_create (6, n_categories + 2); tab_headers (t, 0, 0, 1, 0); for (x = 0; x < 6; x++) tab_text (t, x, 0, TAB_CENTER | TAT_TITLE, gettext (headings[x])); r = 1; for (f = ft->valid; f < ft->missing; f++) { const char *label; double percent, valid_percent; cum_freq += f->count; percent = f->count / ft->total_cases * 100.0; valid_percent = f->count / ft->valid_cases * 100.0; cum_total += valid_percent; label = var_lookup_value_label (vf->var, &f->value); if (label != NULL) tab_text (t, 0, r, TAB_LEFT, label); tab_value (t, 1, r, TAB_NONE, &f->value, ft->dict, &vf->print); tab_double (t, 2, r, TAB_NONE, f->count, wfmt); tab_double (t, 3, r, TAB_NONE, percent, NULL); tab_double (t, 4, r, TAB_NONE, valid_percent, NULL); tab_double (t, 5, r, TAB_NONE, cum_total, NULL); r++; } for (; f < &ft->valid[n_categories]; f++) { const char *label; cum_freq += f->count; label = var_lookup_value_label (vf->var, &f->value); if (label != NULL) tab_text (t, 0, r, TAB_LEFT, label); tab_value (t, 1, r, TAB_NONE, &f->value, ft->dict, &vf->print); tab_double (t, 2, r, TAB_NONE, f->count, wfmt); tab_double (t, 3, r, TAB_NONE, f->count / ft->total_cases * 100.0, NULL); tab_text (t, 4, r, TAB_NONE, _("Missing")); r++; } tab_box (t, TAL_1, TAL_1, -1, TAL_1, 0, 0, 5, r); tab_hline (t, TAL_2, 0, 5, 1); tab_hline (t, TAL_2, 0, 5, r); tab_joint_text (t, 0, r, 1, r, TAB_RIGHT | TAT_TITLE, _("Total")); tab_vline (t, TAL_0, 1, r, r); tab_double (t, 2, r, TAB_NONE, cum_freq, wfmt); tab_fixed (t, 3, r, TAB_NONE, 100.0, 5, 1); tab_fixed (t, 4, r, TAB_NONE, 100.0, 5, 1); tab_title (t, "%s", var_to_string (vf->var)); tab_submit (t); } /* Statistical display. */ /* Calculates all the pertinent statistics for variable V, putting them in array D[]. */ static void calc_stats (const struct var_freqs *vf, double d[FRQ_N_STATS]) { const struct freq_tab *ft = &vf->tab; double W = ft->valid_cases; struct moments *m; struct freq *f=0; int most_often; double X_mode; double rank; int i = 0; int idx; /* Calculate percentiles. */ assert (ft->n_valid > 0); for (i = 0; i < n_percentiles; i++) { percentiles[i].flag = 0; percentiles[i].flag2 = 0; } rank = 0; for (idx = 0; idx < ft->n_valid; ++idx) { static double prev_value = SYSMIS; f = &ft->valid[idx]; rank += f->count ; for (i = 0; i < n_percentiles; i++) { double tp; if ( percentiles[i].flag2 ) continue ; if ( settings_get_algorithm () != COMPATIBLE ) tp = (ft->valid_cases - 1) * percentiles[i].p; else tp = (ft->valid_cases + 1) * percentiles[i].p - 1; if ( percentiles[i].flag ) { percentiles[i].x2 = f->value.f; percentiles[i].x1 = prev_value; percentiles[i].flag2 = 1; continue; } if (rank > tp ) { if ( f->count > 1 && rank - (f->count - 1) > tp ) { percentiles[i].x2 = percentiles[i].x1 = f->value.f; percentiles[i].flag2 = 1; } else { percentiles[i].flag=1; } continue; } } prev_value = f->value.f; } for (i = 0; i < n_percentiles; i++) { /* Catches the case when p == 100% */ if ( ! percentiles[i].flag2 ) percentiles[i].x1 = percentiles[i].x2 = f->value.f; /* printf("percentile %d (p==%.2f); X1 = %g; X2 = %g\n", i,percentiles[i].p,percentiles[i].x1,percentiles[i].x2); */ } for (i = 0; i < n_percentiles; i++) { double s; double dummy; if ( settings_get_algorithm () != COMPATIBLE ) { s = modf((ft->valid_cases - 1) * percentiles[i].p , &dummy); } else { s = modf((ft->valid_cases + 1) * percentiles[i].p -1, &dummy); } percentiles[i].value = percentiles[i].x1 + ( percentiles[i].x2 - percentiles[i].x1) * s ; } /* Calculate the mode. */ most_often = -1; X_mode = SYSMIS; for (f = ft->valid; f < ft->missing; f++) { if (most_often < f->count) { most_often = f->count; X_mode = f->value.f; } else if (most_often == f->count) { /* A duplicate mode is undefined. FIXME: keep track of *all* the modes. */ X_mode = SYSMIS; } } /* Calculate moments. */ m = moments_create (MOMENT_KURTOSIS); for (f = ft->valid; f < ft->missing; f++) moments_pass_one (m, f->value.f, f->count); for (f = ft->valid; f < ft->missing; f++) moments_pass_two (m, f->value.f, f->count); moments_calculate (m, NULL, &d[FRQ_MEAN], &d[FRQ_VARIANCE], &d[FRQ_SKEW], &d[FRQ_KURT]); moments_destroy (m); /* Formulas below are taken from _SPSS Statistical Algorithms_. */ d[FRQ_MIN] = ft->valid[0].value.f; d[FRQ_MAX] = ft->valid[ft->n_valid - 1].value.f; d[FRQ_MODE] = X_mode; d[FRQ_RANGE] = d[FRQ_MAX] - d[FRQ_MIN]; d[FRQ_SUM] = d[FRQ_MEAN] * W; d[FRQ_STDDEV] = sqrt (d[FRQ_VARIANCE]); d[FRQ_SEMEAN] = d[FRQ_STDDEV] / sqrt (W); d[FRQ_SESKEW] = calc_seskew (W); d[FRQ_SEKURT] = calc_sekurt (W); } /* Displays a table of all the statistics requested for variable V. */ static void dump_statistics (const struct var_freqs *vf, const struct variable *wv) { const struct fmt_spec *wfmt = wv ? var_get_print_format (wv) : &F_8_0; const struct freq_tab *ft = &vf->tab; double stat_value[FRQ_N_STATS]; struct tab_table *t; int i, r; if (var_is_alpha (vf->var)) return; if (ft->n_valid == 0) { msg (SW, _("No valid data for variable %s; statistics not displayed."), var_get_name (vf->var)); return; } calc_stats (vf, stat_value); t = tab_create (3, n_stats + n_show_percentiles + 2); tab_box (t, TAL_1, TAL_1, -1, -1 , 0 , 0 , 2, tab_nr(t) - 1) ; tab_vline (t, TAL_1 , 2, 0, tab_nr(t) - 1); tab_vline (t, TAL_GAP , 1, 0, tab_nr(t) - 1 ) ; r=2; /* N missing and N valid are always dumped */ for (i = 0; i < FRQ_N_STATS; i++) if (stats & BIT_INDEX (i)) { tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, gettext (st_name[i].s10)); tab_double (t, 2, r, TAB_NONE, stat_value[i], NULL); r++; } tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("N")); tab_text (t, 1, 0, TAB_LEFT | TAT_TITLE, _("Valid")); tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("Missing")); tab_double (t, 2, 0, TAB_NONE, ft->valid_cases, wfmt); tab_double (t, 2, 1, TAB_NONE, ft->total_cases - ft->valid_cases, wfmt); for (i = 0; i < n_percentiles; i++, r++) { if (!percentiles[i].show) continue; if ( i == 0 ) { tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Percentiles")); } if (percentiles[i].p == 0.5) tab_text (t, 1, r, TAB_LEFT, _("50 (Median)")); else tab_fixed (t, 1, r, TAB_LEFT, percentiles[i].p * 100, 3, 0); tab_double (t, 2, r, TAB_NONE, percentiles[i].value, var_get_print_format (vf->var)); } tab_title (t, "%s", var_to_string (vf->var)); tab_submit (t); } static double calculate_iqr (void) { double q1 = SYSMIS; double q3 = SYSMIS; int i; for (i = 0; i < n_percentiles; i++) { if (fabs (0.25 - percentiles[i].p) < DBL_EPSILON) q1 = percentiles[i].value; else if (fabs (0.75 - percentiles[i].p) < DBL_EPSILON) q3 = percentiles[i].value; } return q1 == SYSMIS || q3 == SYSMIS ? SYSMIS : q3 - q1; } static bool chart_includes_value (const struct frq_chart *chart, const struct variable *var, const union value *value) { if (!chart->include_missing && var_is_value_missing (var, value, MV_ANY)) return false; if (var_is_numeric (var) && ((chart->x_min != SYSMIS && value->f < chart->x_min) || (chart->x_max != SYSMIS && value->f > chart->x_max))) return false; return true; } /* Create a gsl_histogram from a freq_tab */ struct histogram * freq_tab_to_hist (const struct freq_tab *ft, const struct variable *var) { double x_min, x_max, valid_freq; int i; struct histogram *histogram; double iqr; int bins; /* Find out the extremes of the x value, within the range to be included in the histogram, and sum the total frequency of those values. */ x_min = DBL_MAX; x_max = -DBL_MAX; valid_freq = 0; for (i = 0; i < ft->n_valid; i++) { const struct freq *frq = &ft->valid[i]; if (chart_includes_value (&hist, var, &frq->value)) { x_min = MIN (x_min, frq->value.f); x_max = MAX (x_max, frq->value.f); valid_freq += frq->count; } } /* Freedman-Diaconis' choice of bin width. */ iqr = calculate_iqr (); if (iqr != SYSMIS) { double bin_width = 2 * iqr / pow (valid_freq, 1.0 / 3.0); bins = (x_max - x_min) / bin_width; if (bins < 5) bins = 5; else if (bins > 400) bins = 400; } else bins = 5; histogram = histogram_create (bins, x_min, x_max); for (i = 0; i < ft->n_valid; i++) { const struct freq *frq = &ft->valid[i]; if (chart_includes_value (&hist, var, &frq->value)) histogram_add (histogram, frq->value.f, frq->count); } return histogram; } static int add_slice (const struct freq *freq, const struct variable *var, struct slice *slice) { if (chart_includes_value (&pie, var, &freq->value)) { ds_init_empty (&slice->label); var_append_value_name (var, &freq->value, &slice->label); slice->magnitude = freq->count; return 1; } else return 0; } /* Allocate an array of slices and fill them from the data in frq_tab n_slices will contain the number of slices allocated. The caller is responsible for freeing slices */ static struct slice * freq_tab_to_slice_array(const struct freq_tab *frq_tab, const struct variable *var, int *n_slicesp) { struct slice *slices; int n_slices; int i; slices = xnmalloc (frq_tab->n_valid + frq_tab->n_missing, sizeof *slices); n_slices = 0; for (i = 0; i < frq_tab->n_valid; i++) n_slices += add_slice (&frq_tab->valid[i], var, &slices[n_slices]); for (i = 0; i < frq_tab->n_missing; i++) n_slices += add_slice (&frq_tab->missing[i], var, &slices[n_slices]); *n_slicesp = n_slices; return slices; } static void do_piechart(const struct variable *var, const struct freq_tab *frq_tab) { struct slice *slices; int n_slices, i; slices = freq_tab_to_slice_array (frq_tab, var, &n_slices); if (n_slices < 2) msg (SW, _("Omitting pie chart for %s, which has only %d unique values."), var_get_name (var), n_slices); else if (n_slices > 50) msg (SW, _("Omitting pie chart for %s, which has over 50 unique values."), var_get_name (var)); else chart_item_submit (piechart_create (var_to_string(var), slices, n_slices)); for (i = 0; i < n_slices; i++) ds_destroy (&slices[i].label); free (slices); } /* Local Variables: mode: c End: */